JP3286901B2 - Combustion control method for regenerative burner furnace - Google Patents

Combustion control method for regenerative burner furnace

Info

Publication number
JP3286901B2
JP3286901B2 JP7103497A JP7103497A JP3286901B2 JP 3286901 B2 JP3286901 B2 JP 3286901B2 JP 7103497 A JP7103497 A JP 7103497A JP 7103497 A JP7103497 A JP 7103497A JP 3286901 B2 JP3286901 B2 JP 3286901B2
Authority
JP
Japan
Prior art keywords
burner
combustion
regenerative
fuel
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7103497A
Other languages
Japanese (ja)
Other versions
JPH10265836A (en
Inventor
良基 藤井
健人 佐々木
裕和 勝島
敏明 長谷川
敏幸 佐野
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
JFE Engineering Corp
Original Assignee
Daido Steel Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, JFE Engineering Corp filed Critical Daido Steel Co Ltd
Priority to JP7103497A priority Critical patent/JP3286901B2/en
Publication of JPH10265836A publication Critical patent/JPH10265836A/en
Application granted granted Critical
Publication of JP3286901B2 publication Critical patent/JP3286901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Air Supply (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼反応を熱源と
する炉、その他熱設備に設置されている蓄熱式バーナ炉
の燃焼制御方法、特にその燃焼の切換制御に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for a regenerative burner furnace installed in a furnace using a combustion reaction as a heat source and other heat equipment, and more particularly to a switching control of the combustion.

【0002】[0002]

【従来の技術】近年、金属加熱炉、熱処理炉等工業用炉
の熱効率を高める燃焼装置として、特開昭62−947
03号公報、特開平2−10002号公報等において提
案されているように、第1のバーナと第2のバーナとを
一対として、一対または複数対のバーナ群を1つの燃焼
室に配置し、各バーナはそれぞれ燃焼用空気及び燃焼排
ガスが通過する蓄熱体を有し、第1のバーナ群と第2の
バーナ群とを交互に燃焼させてバーナが非燃焼時にその
バーナの蓄熱体を通過する燃焼排ガスの熱をその蓄熱体
に伝熱、蓄熱させ、燃焼時にその蓄熱体に蓄熱された熱
を通過する燃焼用空気が抜熱し予熱(加熱)されるサイ
クルを繰り返す蓄熱式バーナが提案されている。
2. Description of the Related Art In recent years, as a combustion apparatus for improving the thermal efficiency of industrial furnaces such as a metal heating furnace and a heat treatment furnace, Japanese Patent Application Laid-Open No. Sho 62-947 has been proposed.
No. 03, Japanese Patent Application Laid-Open No. 2-10002, etc., a first burner and a second burner are paired, and a pair or a plurality of pairs of burners are arranged in one combustion chamber. Each burner has a heat storage body through which combustion air and combustion exhaust gas pass, and the first burner group and the second burner group are alternately burned, and the burner passes through the heat storage body of the burner when not burning. A regenerative burner has been proposed which repeats a cycle in which heat of combustion exhaust gas is transferred and stored in the regenerator, and combustion air passing through the heat stored in the regenerator is removed and preheated (heated) during combustion. I have.

【0003】[0003]

【発明が解決しようとする課題】特開平2−10002
号公報を例に取って蓄熱式バーナを配置した炉の概要を
説明する。図8は同公報に開示された蓄熱式バーナを示
す系統図ある。同図において、110は蓄熱式バーナ、
112は炉、114はバーナ、116は燃焼空気/排気
通路、118は蓄熱体、120は燃焼ブロワ、121は
ファン入口、122は空気弁、124は排気弁、126
は接続部、そして、127は制御弁である。図4及び図
5はその動作を示す説明図である。
Problems to be Solved by the Invention
The outline of a furnace in which a regenerative burner is arranged will be described with reference to Japanese Patent Application Laid-Open Publication No. HEI 10-202733 as an example. FIG. 8 is a system diagram showing a regenerative burner disclosed in the publication. In the figure, 110 is a regenerative burner,
112 is a furnace, 114 is a burner, 116 is a combustion air / exhaust passage, 118 is a regenerator, 120 is a combustion blower, 121 is a fan inlet, 122 is an air valve, 124 is an exhaust valve, 126
Is a connection, and 127 is a control valve. 4 and 5 are explanatory diagrams showing the operation.

【0004】蓄熱式バーナ110は蓄熱体118から四
方切替弁(燃焼用空気と燃焼排ガス流路を切り替える装
置、空気弁122、排気弁124)までの間の配管中の
流体が燃焼切替毎に、燃焼用空気と燃焼排ガスとに置き
換えられる。特に、空気比1以上の完全燃焼を行う場合
には、燃焼用空気を流し始めるときは、初めに蓄熱体1
18及び蓄熱体118から四方切替弁までの間の配管中
に残存する燃焼排ガスがバーナ114に流入するため、
燃焼切替時に四方切替弁が流路切替完了と同時にバーナ
114に燃料を噴射すると、蓄熱体118及び蓄熱体1
18から四方切替弁までの間の配管中に残存する殆ど酸
素を含まない燃焼排ガス中に燃料を投入することにな
り、残存燃焼排ガスがバーナ部に流入する間は、燃料が
不完全燃焼し未燃焼ガスを排出することになる。
[0004] The regenerative burner 110 is configured such that the fluid in the pipe from the heat storage body 118 to the four-way switching valve (the device for switching between the combustion air and the flue gas flow path, the air valve 122 and the exhaust valve 124) is switched every time combustion is switched. It is replaced by combustion air and flue gas. In particular, when performing complete combustion with an air ratio of 1 or more, when the combustion air starts to flow, first, the heat storage body 1
Since the combustion exhaust gas remaining in the pipe between the heat storage body 18 and the heat storage body 118 to the four-way switching valve flows into the burner 114,
When the four-way switching valve injects fuel to the burner 114 at the same time as the completion of the flow path switching at the time of combustion switching, the heat storage element 118 and the heat storage
The fuel is injected into the flue gas containing almost no oxygen remaining in the pipe from 18 to the four-way switching valve, and while the remaining flue gas flows into the burner, the fuel is incompletely burned and unburned. Combustion gases will be emitted.

【0005】そこで、燃焼切替時の燃焼側バーナ114
への燃料投入は、四方切替弁が流路変更完了後、数秒間
燃料を投入せずに燃焼用空気のみを流して蓄熱体118
及び蓄熱体118から四方切替弁までの間の配管中に残
存する燃焼排ガスを排出(「排ガスパージ」という)
し、その後燃料を投入(噴射)している。
[0005] Therefore, the combustion side burner 114 at the time of combustion switching.
After the four-way switching valve completes the change of the flow path, the fuel is supplied to the heat storage body 118 by flowing only the combustion air without supplying the fuel for several seconds.
And exhausts the combustion exhaust gas remaining in the pipe between the heat storage body 118 and the four-way switching valve (referred to as “exhaust gas purge”).
After that, fuel is injected (injected).

【0006】また、燃料電磁弁から燃料ノズル間の配管
中に残存する燃料ガスは、電磁弁を閉じても残圧によっ
て残燃料が炉内に燃料ノズルから噴出するので、この残
燃料噴出時間を考慮して燃料電磁弁を燃焼切替数秒前に
遮断する運転を実施している。
The fuel gas remaining in the pipe between the fuel solenoid valve and the fuel nozzle causes residual fuel to be ejected from the fuel nozzle into the furnace due to residual pressure even when the solenoid valve is closed. In consideration of this, the operation of shutting off the fuel solenoid valve several seconds before the combustion switching is performed.

【0007】図3に示されるような炉に、前述のような
思想を踏まえて図6に示されるような個々のバーナ動作
を組み合わせた場合の炉全体のバーナ動作を図7に示
す。図3に示される炉は2つのゾーンを持ち1ゾーンに
は5ペア、2ゾーンには3ペアの蓄熱式バーナが配置さ
れている。各バーナは30秒で燃焼切替を行い排ガス→
空気の置換時間Tpaは2秒、残燃料排出時間Tpgは2秒
で運転している。また、各ゾーンでは、バーナの点火消
火をバーナ総てが一斉に行うと点火ショックにより炉圧
変動が激しくなるので、1ゾーンの場合には、燃焼切替
30秒で5ペア配置されているので、バーナの点消火は
各バーナ6秒単位で遅延させ、同様にして、2ゾーンの
場合には、燃焼切替30秒で3ペア配置されているの
で、バーナの点消火は各バーナ10秒単位で遅延させる
運転を実施している。この炉全体の燃焼動作を示したの
が図7である。
FIG. 7 shows the burner operation of the entire furnace when the individual burner operation shown in FIG. 6 is combined with the furnace shown in FIG. 3 based on the above-described concept. The furnace shown in FIG. 3 has two zones, five pairs in one zone and three pairs of regenerative burners in two zones. Each burner switches the combustion in 30 seconds and exhaust gas →
The air replacement time T pa is 2 seconds, and the remaining fuel discharge time T pg is 2 seconds. Further, in each zone, if all the burners ignite and extinguish the burners at the same time, the furnace pressure fluctuates greatly due to the ignition shock. In the case of one zone, five pairs are arranged in 30 seconds of combustion switching. The fire extinguishing of the burner is delayed in units of 6 seconds for each burner. Similarly, in the case of two zones, three pairs are arranged in 30 seconds of combustion switching, so the fire extinguishing of the burners is delayed in units of 10 seconds for each burner. The operation to make it happen. FIG. 7 shows the combustion operation of the entire furnace.

【0008】前述したような、従来方式の燃焼切替シス
テムを用いた場合には以下のような問題がある。図7に
示されるように、1ゾーンにおいては、図3に示される
ような燃料電磁弁20の開いている数が5個と4個が2
秒サイクルで変化する事がわかる。また、2ゾーンにお
いては、燃料電磁弁20の開いている数が3個と2個が
6秒−4秒サイクルで変化する事がわかる。さらに、炉
全体で考えれば、燃料電磁弁20の開いている数が6個
〜8個の間で数秒間隔でサイクリックに変化しているこ
とがわかる。
When the conventional combustion switching system as described above is used, there are the following problems. As shown in FIG. 7, in one zone, the number of open fuel solenoid valves 20 as shown in FIG.
It can be seen that it changes in the second cycle. Further, in the two zones, it can be seen that the number of open fuel solenoid valves 20 changes from three to two in a cycle of 6 seconds to 4 seconds. Further, considering the entire furnace, it can be seen that the number of open fuel solenoid valves 20 changes cyclically at intervals of several seconds between six and eight.

【0009】一般的に、複数のゾーンを保有する炉の場
合には、各ゾーン単位で燃焼量制御を行うので、図3に
示されるような燃料流量制御弁21、22がある。この
燃料流量制御弁21、22は所定の各ゾーンに必要な投
入熱量を燃料流量を制御することで機能しているもので
あり、投入熱量の決定に関しては炉内温度を目標値に制
御するものや被加熱物温度を目標値に制御するもの等が
あり、炉の形式によって異なる。通常、炉の熱負荷が一
定でバーナが切替燃焼を行わない従来型の炉の場合に
は、そのゾーンに投入する燃料量は一定であるので燃料
流量制御弁21、22は一定開度で安定した流量制御を
行える。しかし、図7に示されるような炉の燃焼制御を
行った場合には、前述のように数秒単位で燃料電磁弁2
0の開いている数が変化するために一定の熱負荷であっ
ても、ゾーンの燃料系統の圧力損失が数秒単位で変化す
るため、燃料流量制御弁21、22は常に一定量の燃料
を供給すべくゾーンの燃料系統の圧力損失変化分を吸収
しようとする弁の開閉動作を繰り返す事となる。
Generally, in the case of a furnace having a plurality of zones, since the combustion amount is controlled for each zone, there are fuel flow control valves 21 and 22 as shown in FIG. The fuel flow rate control valves 21 and 22 function by controlling the amount of heat required for each predetermined zone by controlling the fuel flow rate, and control the furnace temperature to a target value with respect to the determination of the amount of heat input. And those that control the temperature of the object to be heated to a target value, etc., and vary depending on the type of furnace. Normally, in the case of a conventional furnace in which the heat load of the furnace is constant and the burner does not perform switching combustion, the amount of fuel to be injected into the zone is constant, so that the fuel flow control valves 21 and 22 are stable at a constant opening. Flow control can be performed. However, when the combustion control of the furnace as shown in FIG. 7 is performed, as described above, the fuel solenoid valve 2
Since the pressure loss of the fuel system in the zone changes every few seconds even when the heat load is constant due to the change in the number of open zeros, the fuel flow control valves 21 and 22 always supply a fixed amount of fuel. In order to absorb the pressure loss change of the fuel system of the zone, the opening and closing operation of the valve is repeated as much as possible.

【0010】これによって、各ゾーンの各バーナ前の燃
料圧力変動が大きくなり燃焼が安定しないという問題が
発生する。場合によっては、炉全体の燃料圧力が変動し
炉全体で燃焼が安定しないという問題が発生する。ま
た、圧力変動に対応可能なように配管容量すなわち配管
サイズを大きくするか、開閉動作が敏速な流量調整弁が
必要となり、設備費が高騰するという問題がある。
As a result, there is a problem that the fuel pressure fluctuation before each burner in each zone becomes large and the combustion becomes unstable. In some cases, there is a problem that the fuel pressure in the entire furnace fluctuates and combustion is not stable in the entire furnace. In addition, there is a problem that a piping capacity, that is, a piping size is increased so as to be able to cope with pressure fluctuations, or a flow regulating valve that opens and closes quickly is required, so that equipment costs rise.

【0011】本発明は、前述のような問題を解決するた
めになされたものであり、バーナ個々が短時間(秒単
位)で切り替えて燃焼しても各バーナが安定燃焼できる
蓄熱式バーナ炉の燃焼制御方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended to provide a regenerative burner furnace that can burn each burner stably even when the burners are switched and burned in a short time (in units of seconds). A method for controlling combustion is provided.

【0012】[0012]

【課題を解決するための手段】本発明に係る蓄熱式バー
ナ炉の燃焼制御方法(請求項1)は、1つのゾーンに複
数ペアの蓄熱式バーナを配置した炉において、空気−排
ガス系の排ガスから空気への置換時間をTpa、燃焼切替
前の燃料残圧による燃料パージ時間をTpg、ゾーン内の
バーナペア数をN、1つの蓄熱式バーナの燃料噴出時間
をTc とした場合、 Tc =(N−1)×(Tpa+Tpg) …(1) の関係で1つの蓄熱式バーナからの燃料噴出時間を決定
し、その燃料噴出時間に基づいて蓄熱式バーナを制御す
る。
According to the present invention, there is provided a combustion control method for a regenerative burner furnace according to the present invention (claim 1), wherein a plurality of pairs of regenerative burners are arranged in one zone. Where T pa is the replacement time from air to air, T pg is the fuel purge time due to residual fuel pressure before switching to combustion, N is the number of burner pairs in the zone, and T c is the fuel ejection time of one regenerative burner. c = (N−1) × (T pa + T pg ) (1) The fuel injection time from one regenerative burner is determined based on the relationship (1), and the regenerative burner is controlled based on the fuel injection time.

【0013】また、本発明に係る他の蓄熱式バーナ炉の
燃焼制御方法(請求項2)は、1つのゾーンに複数ペア
の蓄熱式バーナを配置した炉において、空気−排ガス系
の排ガスから空気への置換時間をTpa、燃焼切替前の燃
料残圧による燃料パージ時間をTpg、ゾーン内のバーナ
ペア数をN、蓄熱式バーナの燃焼切替時間をCTとした
場合、 CT=N×(Tpa+Tpg) …(2) の関係で1つの蓄熱式バーナの燃焼切替時間を決定し、
その燃焼切替時間に基づいて蓄熱式バーナを制御する。
Further, another combustion control method for a regenerative burner furnace according to the present invention (Claim 2) is a method for controlling a combustion in which a plurality of pairs of regenerative burners are arranged in one zone. Where T pa , the fuel purge time due to the residual fuel pressure before combustion switching is T pg , the number of burner pairs in the zone is N, and the combustion switching time of the regenerative burner is CT, CT = N × (T pa + T pg ) ... The combustion switching time of one regenerative burner is determined based on the relationship (2),
The regenerative burner is controlled based on the combustion switching time.

【0014】また、本発明に係る他の蓄熱式バーナ炉の
燃焼制御方法(請求項3)は、蓄熱式バーナを配置し蓄
熱式バーナで構成された複数のゾーンを有する炉におい
て、少なくとも2つ以上のゾーンの蓄熱式バーナの空気
−排ガス系の排ガスから空気への置換時間をTpa、燃焼
切替前の燃料残圧による燃料パージ時間をTpgとし、該
当ゾーンのTpa、Tpgを同値とし、該当ゾーンの合計バ
ーナペア数をN、1つの蓄熱式バーナの燃料噴出時間を
c とした場合、 Tc =(N−1)×(Tpa+Tpg) …(3) の関係で1つの蓄熱式バーナからの燃料噴出時間を決定
し、その燃料噴出時間に基づいて蓄熱式バーナを制御す
る。
According to another aspect of the present invention, there is provided a method for controlling combustion of a regenerative burner furnace, wherein the regenerative burner is arranged and includes at least two zones. The replacement time of the exhaust gas from the air-exhaust system of the regenerative burner in the above zones to air is T pa , the fuel purge time by the residual fuel pressure before switching to combustion is T pg, and T pa and T pg of the corresponding zone are equivalent. and then, if the total Banapea number of the relevant zones and N, 1 single fuel jetting time of regenerative burners and T c, 1 in relation to = T c (N-1) × (T pa + T pg) ... (3) The fuel injection time from one of the regenerative burners is determined, and the regenerative burner is controlled based on the fuel injection time.

【0015】また、本発明に係る他の蓄熱式バーナ炉の
燃焼制御方法(請求項4)は、蓄熱式バーナを配置し蓄
熱式バーナで構成された複数のゾーンを有する炉におい
て、少なくとも2つ以上のゾーンの蓄熱式バーナの空気
−排ガス系の排ガスから空気への置換時間をTpa、燃焼
切替前の燃料残圧による燃料パージ時間をTpgとし、該
当ゾーンのTpa、Tpgを同値とし、該当ゾーンの合計バ
ーナペア数をN、蓄熱式バーナの燃焼切替時間をCTと
した場合、 CT=N×(Tpa+Tpg) …(4) の関係で1つの蓄熱式バーナの燃焼切替時間を決定し、
その燃焼切替時間に基づいて蓄熱式バーナを制御する。
According to another aspect of the present invention, there is provided a method for controlling combustion of a regenerative burner furnace, wherein a regenerative burner is provided and the furnace has a plurality of zones constituted by regenerative burners. The replacement time of the exhaust gas from the air-exhaust system of the regenerative burner in the above zones to air is T pa , the fuel purge time by the residual fuel pressure before switching to combustion is T pg, and T pa and T pg of the corresponding zone are equivalent. and then, the total Banapea applicable number of zones N, if the combustion mode switching time of regenerative burner was CT, CT = N × (T pa + T pg) ... (4) combustion switching time of one regenerative burner in relation And determine
The regenerative burner is controlled based on the combustion switching time.

【0016】また、本発明に係る他の蓄熱式バーナ炉の
燃焼制御方法(請求項5)は、上記の燃焼制御方法にお
いて、蓄熱式バーナの切替が同タイミングで2つ以上の
バーナペアで発生しないようにする。
According to another aspect of the present invention, there is provided a combustion control method for a regenerative burner furnace in which the switching of the regenerative burner does not occur in two or more burner pairs at the same timing. To do.

【0017】また、本発明に係る他の蓄熱式バーナ炉の
燃焼制御方法(請求項6)は、上記の燃焼制御方法にお
いて、蓄熱式バーナには少なくとも1つ以上のラジアン
トチューブバーナが用いられる。
According to another aspect of the present invention, there is provided a combustion control method for a regenerative burner furnace, wherein at least one radiant tube burner is used for the regenerative burner.

【0018】本発明の発明者らは蓄熱式バーナ炉を設計
製作して運転に入った段階で前述のような問題に直面し
て種々検討を行った結果、本発明に至ったものである。
すなわち、管理ゾーンにおける燃料電磁弁の開いている
数が数秒単位で変動しゾーンの燃料系統圧力損失が同期
して変動する為にかかる問題が発生した。これにともな
い、種々検討を行った結果、管理ゾーンにおける燃料電
磁弁の開いている数を常に一定に保持する事が前述の課
題を解決する基本原則であることを見い出した。
The inventors of the present invention have conducted various studies in the stage where the regenerative burner furnace was designed and manufactured and started operation, in view of the above problems, and as a result, the present invention has been achieved.
In other words, the number of open fuel solenoid valves in the management zone fluctuates every few seconds, and the fuel system pressure loss in the zone fluctuates synchronously. Along with this, as a result of various studies, it was found that keeping the number of open fuel solenoid valves in the control zone constant at all times is a basic principle to solve the above-mentioned problem.

【0019】前述のように、点消火を繰り返す蓄熱式バ
ーナでは、点消火毎に、排ガス−空気置換及び残燃料排
出は蓄熱式バーナシステムの構成上安全対策として避け
得ない基本動作である。この排ガス−空気置換時間Tpa
及び残燃料排出時間Tpgの合計時間と、管理ゾーンに配
置された各バーナの燃料電磁弁遅延時間を一致させるこ
とによって、前記の基本原則に則った燃焼制御が可能と
なる。すなわち、空気−排ガス系の排ガスから空気への
置換時間をTpa、燃焼切替前の燃料残圧による燃料パー
ジ時間をTpg、ゾーン内のバーナペア数をN、1つの蓄
熱式バーナの燃料噴出時間をTc とした揚合、 Tc =(N−1)×(Tpa+Tpg) の関係で1つの蓄熱式バーナからの燃料噴出時間を決定
することによって前記基本原則に則った燃焼制御が可能
となる。従って、前記基本原則に則って一対の蓄熱式バ
ーナの燃焼切替時間をCTとして検討すると、 CT=N×(Tpa+Tpg) の関係を維持する必要がある。
As described above, in a regenerative burner that repeats point fire extinguishing, exhaust gas-air replacement and residual fuel discharge are basic operations that cannot be avoided as safety measures due to the configuration of the regenerative burner system every time a point fire extinguishes. This exhaust gas-air replacement time T pa
By making the total time of the remaining fuel discharge time Tpg equal to the fuel solenoid valve delay time of each burner arranged in the control zone, the combustion control in accordance with the basic principle can be performed. That is, the replacement time of the exhaust gas of the air-exhaust system with the air is T pa , the fuel purge time by the residual fuel pressure before the combustion switching is T pg , the number of burner pairs in the zone is N, and the fuel injection time of one regenerative burner. the Agego that the T c, the combustion control in accordance with the basic principles by determining the fuel injection time from T c = (N-1) × (T pa + T pg) 1 single regenerative burner in relation It becomes possible. Therefore, when the combustion switching time of a pair of regenerative burners is considered as CT in accordance with the basic principle, it is necessary to maintain the following relationship: CT = N × (T pa + T pg ).

【0020】また、管理ゾーンに多数のバーナペア数が
確保できる構成の炉であればゾーン単位で前述の基本原
則に則った燃焼切替制御を行えばよいが、2ペア炉の場
合は、運転時間の50%を前述の空気−排ガス系の排ガ
スから空気への置換時間Tpaと燃焼切替前の燃料残圧に
よる燃料パージ時間Tpgに充てることとなりバーナ容量
を倍増する必要が出てくる。したがって、複数のゾーン
をひとまとめにして管理ゾーンと考えて前記の基本原則
を達成することで、蓄熱式バーナの巨大化が防止でき設
備費の高騰が回避できる。
If the furnace has a configuration in which a large number of burner pairs can be secured in the management zone, the combustion switching control may be performed in zone units in accordance with the basic principle described above. 50% above air - necessary to double the burner capacity will be devoted to the fuel purge time T pg by replacement time T pa and combustion before switching fuel residual pressure from the exhaust gas of the exhaust gas system to the air comes out. Accordingly, by considering a plurality of zones collectively as a management zone and achieving the above-described basic principle, it is possible to prevent the regenerative burner from becoming enormous and to avoid a rise in equipment costs.

【0021】また、炉の燃料ガス元圧変動を抑えるに
は、炉で切り替えを実施しているバーナ数を極限に減ら
すことが有効である。すなわち、炉に配置された蓄熱式
バーナの切替が同タイミング(時刻)で2つ以上のバー
ナペアで発生しないことによって炉の燃料ガス元圧変動
を抑えることが可能となる。前述のような、基本原則は
連続焼鈍炉の様に多数の小型バーナで構成されるラジア
ントチューブ炉においては炉の燃料ガス圧変動を低減す
ることはバーナの燃焼安定性確保に重要な項目であり、
メインバーナの失火、未燃損失低減に効果がある。
In order to suppress the fluctuation of the fuel gas source pressure in the furnace, it is effective to reduce the number of burners for which the furnace is switched to the minimum. That is, the switching of the regenerative burners arranged in the furnace does not occur in two or more burner pairs at the same timing (time), so that it is possible to suppress the fluctuation of the fuel gas source pressure of the furnace. As described above, the basic principle is that in a radiant tube furnace composed of many small burners, such as a continuous annealing furnace, reducing the fuel gas pressure fluctuation of the furnace is an important item for ensuring the combustion stability of the burner. ,
It is effective in reducing misfire and unburned loss of the main burner.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1.)第3図に示される蓄熱式バーナを配置
した炉10に本発明を適用した例について説明する。図
3の炉10は2つのゾーンに分割されている。1ゾーン
には5ペア計10台の蓄熱式バーナ1−1−A,1−1
−B,…1−5−Bが配置され、2ゾーンには3ペア計
6台の蓄熱式バーナ2−1−A,2−1−B,…2−3
−Bが配置されている。各バーナには、燃料噴射を制御
する燃料電磁弁20、燃焼用空気噴射を制御する燃焼用
空気電磁弁30、さらに、炉内雰囲気すなわち燃焼排ガ
ス吸引を制御する排ガス電磁弁40が各々配置されてい
る。さらに、各バーナには着火源としてパイロットバー
ナ(図示せず)及び関連機器配管等が配置されている。
(Embodiment 1) An example in which the present invention is applied to a furnace 10 provided with a regenerative burner shown in FIG. 3 will be described. The furnace 10 of FIG. 3 is divided into two zones. One zone has 10 pairs of 5-storage burners 1-1-A and 1-1.
.. 1-5-B are arranged, and two pairs of regenerative burners 2-1-A, 2-1-B,.
-B is arranged. Each burner is provided with a fuel solenoid valve 20 for controlling fuel injection, a combustion air solenoid valve 30 for controlling combustion air injection, and an exhaust gas solenoid valve 40 for controlling furnace atmosphere, that is, suction of combustion exhaust gas. I have. Furthermore, a pilot burner (not shown) and associated equipment piping are arranged in each burner as an ignition source.

【0023】各ゾーンには、投入熱量を制御すべく燃料
流調弁21、22が、また、投入燃料に見合った燃焼用
空気投入量を燃焼用空気流調弁31、32が、さらに、
排ガス吸引量を制御すべく排ガス流調弁41、42が配
置され、燃料投入量を制御する炉内温度制御、燃料と空
気の比率を制御する空気比制御を行いつつ、吸引排ガス
量を制御する炉圧制御を行って炉を運転している。蓄熱
体での排ガス放出顕熱、燃焼用空気吸収顕熱のバランス
をとる場合には、燃焼排ガスの一部を直接炉外へ放出す
る方式を炉に採用する場合があるが、このような炉に本
発明を適用しても何ら支障がない。燃料には、本実施形
態においては供給圧力自体で圧送出来る天然ガスを適用
しているがその他の気体燃料、重油等の液体燃料、微粉
炭等の固体燃料等如何なる燃料にも本発明は適用可能で
ある。燃料用空気は燃焼用空気ブロワ33より大気が圧
送され、燃焼排ガスは排ガス誘引ファン43によって誘
引され煙突より大気に放散される。
In each zone, fuel flow regulating valves 21 and 22 for controlling the amount of heat input, and combustion air flow regulating valves 31 and 32 for controlling the amount of combustion air supplied corresponding to the supplied fuel,
Exhaust gas flow control valves 41 and 42 are arranged to control the amount of exhaust gas suction, and control the temperature of the exhaust gas while controlling the temperature inside the furnace to control the amount of fuel input and the air ratio to control the ratio of fuel to air. The furnace is operated by controlling the furnace pressure. When balancing the sensible heat of exhaust gas emission from the heat storage body and the sensible heat of air absorption for combustion, a method in which part of the combustion exhaust gas is directly discharged to the outside of the furnace may be adopted in the furnace. There is no problem even if the present invention is applied. In the present embodiment, as the fuel, natural gas that can be pumped at the supply pressure itself is applied, but the present invention can be applied to any fuel such as other gas fuel, liquid fuel such as heavy oil, and solid fuel such as pulverized coal. It is. The atmosphere of the fuel air is pressure-fed from the combustion air blower 33, and the combustion exhaust gas is attracted by the exhaust gas inducing fan 43 and is emitted to the atmosphere from the chimney.

【0024】図1は本発明の実施形態1に係る炉全体の
蓄熱式バーナの動作を時系列に示した図であり、次に、
蓄積バーナの個々の動作を同図に基づいて説明する。1
ゾーンにおいては、空気−排ガス系の排ガスから空気へ
の置換時間Tpaを2秒、燃焼切替前の燃料残圧による燃
料パージ時間Tpgを2秒とし、1ゾーン内のバーナペア
数は5ペアであるので、上記の(1)式により、1ゾー
ン1つのバーナの燃料噴出時間Tc は16秒となる。従
って、一対のバーナの燃焼切替時間CTは上記の(2)
式により20秒である。この結果、1ゾーンの燃料電磁
弁は常に4個開いた状態を維持している。
FIG. 1 is a diagram showing the operation of the regenerative burner of the entire furnace according to the first embodiment of the present invention in chronological order.
Each operation of the storage burner will be described with reference to FIG. 1
In zone, air - the replacement time T pa from the exhaust gas of the exhaust gas system to the air for 2 seconds, the fuel purge time T pg by the fuel residual pressure before combustion changeover and 2 seconds, Banapea number in one zone is 5 pairs Therefore, the fuel injection time Tc of one burner per zone is 16 seconds according to the above equation (1). Therefore, the combustion switching time CT of the pair of burners is equal to the above (2).
It is 20 seconds according to the formula. As a result, four fuel solenoid valves in one zone are always kept open.

【0025】また、2ゾーンにおいては、空気−排ガス
系の排ガスから空気への置換時間Tpaを5秒、燃焼切替
前の燃料残圧による燃料パージ時間Tpgを5秒とし、1
ゾーン内のバーナペア数は3ペアであるので、上記の
(1)式により、1ゾーン1つのバーナの燃料噴出時間
c は20秒となる。従って、一対のバーナの燃焼切替
時間CTは上記の(2)式により30秒である。この結
果、1ゾーンの燃料電磁弁は常に2個開いた状態を維持
している。このため、炉全体では、常に6個の電磁弁が
開いた状態を維持していることになる。
Further, in the second zone, air - and from the exhaust gas of the exhaust gas system 5 seconds replacement time T pa to the air, the fuel purge time T pg by the fuel residual pressure before combustion changeover and 5 seconds, 1
Since the number of burner pairs in the zone is three, the fuel ejection time Tc of one burner in one zone is 20 seconds according to the above equation (1). Therefore, the combustion switching time CT of the pair of burners is 30 seconds according to the above equation (2). As a result, the two fuel solenoid valves in one zone are always kept open. Therefore, in the entire furnace, the six solenoid valves are always kept open.

【0026】(実施形態2.)図2は本発明の実施形態
2に係る炉全体の蓄熱式バーナの動作を時系列に示した
図であり、蓄積バーナの個々の動作を同図に基づいて説
明する。本実施形態は、1ゾーン及び2ゾーンの2つの
ゾーンを1つの管理ゾーンとして燃焼切替タイミング制
御を行った例であり、空気−排ガス系の排ガスから空気
への置換時間Tpaを2秒、燃焼切替前の燃料残圧による
燃料パージ時間Tpgを2秒とし、管理ゾーン内のバーナ
ペア数は8ペアであるので、上記の(3)式により、管
理ゾーン1つのバーナの燃料噴出時間Tc は28秒とな
る。従って、一対のバーナの燃焼切替時間CTは、上記
(4)式により、32秒となる。炉全体としては常に燃
料電磁弁が7個開いた状態を維持し、各ゾーンも従来方
式の動作を示す図7の例よりも電磁弁開個数の変動は抑
えられ圧力変動は問題ないレベルで燃焼制御が可能とな
った。
(Embodiment 2) FIG. 2 is a diagram showing the operation of the regenerative burner of the entire furnace according to Embodiment 2 of the present invention in time series. explain. The present embodiment is an example in which the combustion switching timing control is performed by using two zones, one zone and two zones, as one management zone. The replacement time Tpa from the exhaust gas to the air in the air-exhaust gas system is 2 seconds, and the combustion switching timing is 2 seconds. the fuel purge time T pg by switching before the fuel residual pressure was 2 seconds, the Banapea number in the management zone are 8 pairs, by the above equation (3), fuel injection time T c of the management zone one burner 28 seconds. Therefore, the combustion switching time CT of the pair of burners is 32 seconds according to the above equation (4). In the whole furnace, seven fuel solenoid valves are always kept open, and in each zone, the variation in the number of solenoid valves opened is suppressed as compared with the example of FIG. Control became possible.

【0027】[0027]

【発明の効果】以上のように本発明によれば、管理ゾー
ンの蓄熱式バーナの燃料電磁弁の開いている数が常に一
定になるように制御するようにしたので、バーナ前の燃
料圧力変動がなくなり、このため、配管容量すなわち配
管サイズを大きくしたり、或いは、開閉動作が敏速な流
量調整弁を配置したりすることを必要とせずに、各ゾー
ンの各バーナ前及び炉全体の燃料圧力変動がなくなり、
安定燃焼可能な炉の燃焼制御が可能となった。
As described above, according to the present invention, since the number of open fuel solenoid valves of the regenerative burner in the control zone is controlled to be always constant, the fuel pressure fluctuation before the burner is controlled. Therefore, it is not necessary to increase the pipe capacity, that is, the pipe size, or to dispose a flow regulating valve that opens and closes promptly, and the fuel pressure in front of each burner in each zone and the entire furnace is not required. Fluctuations disappear,
Combustion control of a furnace capable of stable combustion has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る炉全体の蓄熱式バー
ナの動作を時系列に示した図である。
FIG. 1 is a diagram showing, in chronological order, the operation of a regenerative burner of an entire furnace according to Embodiment 1 of the present invention.

【図2】本発明の実施形態2に係る炉全体の蓄熱式バー
ナの動作を時系列に示した図である。
FIG. 2 is a diagram showing an operation of a regenerative burner of the entire furnace according to Embodiment 2 of the present invention in chronological order.

【図3】蓄熱式バーナを配置された炉の概要を示す図で
ある。
FIG. 3 is a diagram showing an outline of a furnace in which a regenerative burner is arranged.

【図4】一対の蓄熱式バーナの各機器の動作を示す図で
ある。
FIG. 4 is a diagram showing the operation of each device of a pair of regenerative burners.

【図5】一対の蓄熱式バーナの動作内容を示す図であ
る。
FIG. 5 is a diagram showing operation contents of a pair of regenerative burners.

【図6】一対の蓄熱式バーナの動作実施例を示す図であ
る。
FIG. 6 is a diagram showing an operation example of a pair of regenerative burners.

【図7】従来技術による炉全体のバーナの動作内容を示
す図である。
FIG. 7 is a diagram showing operation contents of a burner of the entire furnace according to the conventional technique.

【図8】従来の蓄熱式バーナの構成を示した図である。FIG. 8 is a diagram showing a configuration of a conventional regenerative burner.

【符号の説明】[Explanation of symbols]

10 炉 20 バーナ前バーナ個々に配置する燃料電磁弁 21 1Z燃料流量調整弁 22 2Z燃料流量調整弁 30 バーナ前バーナ個々に配置する燃焼用空気電磁弁 31 1Z燃焼用空気流量調整弁 32 2Z燃焼用空気流量調整弁 33 燃焼用空気ブロワ 40 バーナ前バーナ個々に配置する排ガス電磁弁 41 1Z燃焼排ガス吸引流量調整弁 42 2Z燃焼排ガス吸引流量調整弁 43 燃焼排ガス誘引ファン DESCRIPTION OF SYMBOLS 10 Furnace 20 Solenoid valve arranged individually for burner before burner 21 1Z Fuel flow regulating valve 22 2Z fuel flow regulating valve 30 Combustion air solenoid valve arranged individually for burner before burner 31 1Z Combustion air flow regulating valve 32 2Z Combustion Air flow control valve 33 Combustion air blower 40 Exhaust gas solenoid valve arranged individually for burner in front of burner 41 1Z combustion exhaust gas suction flow control valve 42 2Z combustion exhaust gas suction flow control valve 43 Combustion exhaust gas inducing fan

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 健人 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 勝島 裕和 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 長谷川 敏明 神奈川県横浜市鶴見区尻手2丁目1番53 号 日本ファーネス工業株式会社内 (72)発明者 佐野 敏幸 名古屋市南区豊二丁目14−6 (72)発明者 高橋 康弘 愛知県一宮市今伊勢町馬寄字山島21−7 (56)参考文献 特開 平6−200329(JP,A) 特開 昭62−94703(JP,A) 特開 平2−10002(JP,A) 特開 平10−185180(JP,A) 特開 平10−17926(JP,A) 特開 平10−185178(JP,A) 特開 平7−280258(JP,A) 特開 平7−218142(JP,A) 特開 平7−97619(JP,A) 特開 平6−200321(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 1/52 C21D 11/00 101 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kento Sasaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hirokazu Katsushima 2-1-1 53, Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture No. Japan Furnace Industry Co., Ltd. (72) Inventor Toshiaki Hasegawa 2-53-1, Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture In-house Furnace Industry Co., Ltd. (72) Inventor Yasuhiro Takahashi 21-7 Yamashima, Imago-cho, Ichinomiya-shi, Aichi Prefecture (56) References JP-A-6-200329 (JP, A) JP-A-62-294703 (JP, A) JP-A-2-10002 (JP, A) JP-A-10-185180 (JP, A) JP-A-10-17926 (JP, A) JP-A-10-185178 (JP, A) JP-A-7-280258 (JP , A) Special Flat 7-218142 (JP, A) JP flat 7-97619 (JP, A) JP flat 6-200321 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) C21D 1 / 52 C21D 11/00 101

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1つのゾーンに複数ペアの蓄熱式バーナ
を配置した炉において、空気−排ガス系の排ガスから空
気への置換時間をTpa、燃焼切替前の燃料残圧による燃
料パージ時間をTpg、ゾーン内のバーナペア数をN、1
つの蓄熱式バーナの燃料噴出時間をTc とした場合、 Tc =(N−1)×(Tpa+Tpg) の関係で1つの蓄熱式バーナからの燃料噴出時間を決定
し、その燃料噴出時間に基づいて蓄熱式バーナを制御す
ることを特徴とする蓄熱式バーナ炉の燃焼制御方法。
1. In a furnace in which a plurality of pairs of regenerative burners are arranged in one zone, the replacement time of the air-exhaust gas from the exhaust gas of the air-exhaust gas system to the air is T pa , and the fuel purge time by the residual fuel pressure before the combustion switching is T. pg , the number of burner pairs in the zone is N, 1
Assuming that the fuel ejection time of one regenerative burner is Tc , the fuel ejection time from one regenerative burner is determined in the relationship of Tc = (N-1) * ( Tpa + Tpg ), and the fuel ejection is performed. A combustion control method for a regenerative burner furnace, wherein the regenerative burner is controlled based on time.
【請求項2】 1つのゾーンに複数ペアの蓄熱式バーナ
を配置した炉において、空気−排ガス系の排ガスから空
気への置換時間をTpa、燃焼切替前の燃料残圧による燃
料パージ時間をTpg、ゾーン内のバーナペア数をN、蓄
熱式バーナの燃焼切替時間をCTとした場合、 CT=N×(Tpa+Tpg) の関係で1つの蓄熱式バーナの燃焼切替時間を決定し、
その燃料切替時間に基づいて蓄熱式バーナを制御するこ
とを特徴とする蓄熱式バーナ炉の燃焼制御方法。
2. In a furnace in which a plurality of pairs of regenerative burners are arranged in one zone, the replacement time of the air-exhaust gas from the exhaust gas of the air-exhaust gas system to the air is T pa , and the fuel purge time by the residual fuel pressure before the combustion switching is T. pg, the Banapea number in a zone N, regenerative If the combustion mode switching time was CT burner, determine the CT = N × (T pa + T pg) combustion switching time of one regenerative burner in relation,
A combustion control method for a regenerative burner furnace, wherein the regenerative burner is controlled based on the fuel switching time.
【請求項3】 蓄熱式バーナを配置し蓄熱式バーナで構
成された複数のゾーンを有する炉において、少なくとも
2つ以上のゾーンの蓄熱式バーナの空気−排ガス系の排
ガスから空気への置換時間をTpa、燃焼切替前の燃料残
圧による燃料パージ時間をTpgとし、該当ゾーンの
pa、Tpgを同値とし、該当ゾーンの合計バーナペア数
をN、1つの蓄熱式バーナの燃料噴出時間をTc とした
場合、 Tc =(N−1)×(Tpa+Tpg) の関係で1つの蓄熱式バーナからの燃料噴出時間を決定
し、その燃料噴出時間に基づいて蓄熱式バーナを制御す
ることを特徴とする蓄熱式バーナ炉の燃焼制御方法。
3. In a furnace having a plurality of zones each including a regenerative burner and including a regenerative burner, a replacement time of at least two or more zones of the regenerative burners from the exhaust gas of the air-exhaust gas to the air is reduced. T pa , the fuel purge time due to the residual fuel pressure before combustion switching is T pg , T pa and T pg in the corresponding zone are the same value, the total number of burner pairs in the zone is N, and the fuel injection time of one regenerative burner is N When Tc is set, the fuel injection time from one regenerative burner is determined in the relationship of Tc = (N-1) * ( Tpa + Tpg ), and the regenerative burner is controlled based on the fuel injection time. Combustion control method for a regenerative burner furnace.
【請求項4】 蓄熱式バーナを配置し蓄熱式バーナで構
成された複数のゾーンを有する炉において、少なくとも
2つ以上のゾーンの蓄熱式バーナの空気−排ガス系の排
ガスから空気への置換時間をTpa、燃焼切替前の燃料残
圧による燃料パージ時間をTpgとし、該当ゾーンの
pa、Tpgを同値とし、該当ゾーンの合計バーナペア数
をN、蓄熱式バーナの燃焼切替時間をCTとした場合、 CT=N×(Tpa+Tpg) の関係で1つの蓄熱式バーナの燃焼切替時間を決定し、
その燃焼切替時間に基づいて蓄熱式バーナの燃焼を制御
することを特徴とする蓄熱式バーナ炉の燃焼制御方法。
4. In a furnace having a plurality of zones each including a regenerative burner and comprising a regenerative burner, the time required for replacing the regenerative burners of at least two or more zones with the air from the exhaust gas of the air-exhaust gas system to the air is reduced. T pa , the fuel purge time due to the residual fuel pressure before switching to combustion is T pg , T pa and T pg in the zone are the same, N is the total number of burner pairs in the zone, and CT is the combustion switching time of the regenerative burner. In this case, the combustion switching time of one regenerative burner is determined in the relationship of CT = N × (T pa + T pg ),
A combustion control method for a regenerative burner furnace, comprising controlling combustion of a regenerative burner based on the combustion switching time.
【請求項5】 前記蓄熱式バーナの切替が同タイミング
で2つ以上のバーナペアで発生しないことを特徴とする
請求項1、2、3又は4記載の蓄熱式バーナ炉の燃焼制
御方法。
5. The combustion control method for a regenerative burner furnace according to claim 1, wherein switching of the regenerative burner does not occur in two or more burner pairs at the same timing.
【請求項6】 前記蓄熱式バーナには少なくとも1つ以
上のラジアントチューブバーナが用いられることを特徴
とする請求項1、2、3、4又は5記載の蓄熱式バーナ
炉の燃焼制御方法。
6. The combustion control method for a regenerative burner furnace according to claim 1, wherein at least one radiant tube burner is used for the regenerative burner.
JP7103497A 1997-03-25 1997-03-25 Combustion control method for regenerative burner furnace Expired - Fee Related JP3286901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103497A JP3286901B2 (en) 1997-03-25 1997-03-25 Combustion control method for regenerative burner furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103497A JP3286901B2 (en) 1997-03-25 1997-03-25 Combustion control method for regenerative burner furnace

Publications (2)

Publication Number Publication Date
JPH10265836A JPH10265836A (en) 1998-10-06
JP3286901B2 true JP3286901B2 (en) 2002-05-27

Family

ID=13448847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103497A Expired - Fee Related JP3286901B2 (en) 1997-03-25 1997-03-25 Combustion control method for regenerative burner furnace

Country Status (1)

Country Link
JP (1) JP3286901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325385B (en) * 1998-04-29 2001-02-14 Pietro Montis High pressure fish container
JP5404533B2 (en) * 2010-06-03 2014-02-05 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace

Also Published As

Publication number Publication date
JPH10265836A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
WO1996009496A1 (en) Radiant tube burner and method of operating radiant tube burners
US4943231A (en) Regenerative burner system
RU2503886C1 (en) Device and method to control non-combustible remains in recuperative heaters that contain such device
JP3286901B2 (en) Combustion control method for regenerative burner furnace
JP6429471B2 (en) Regenerative burner and metal heating furnace
JP4757596B2 (en) Thermal storage burner device and its operation method
JP2796027B2 (en) Operating method of continuous heating furnace having regenerative burner
JP3823403B2 (en) Radiant tube burner system and operation method thereof
JP3149666B2 (en) Radiant heating device and combustion method thereof
JP3438354B2 (en) Thermal storage combustion device
JPH081287B2 (en) Heat storage type combustion device
JP3893677B2 (en) Furnace with regenerative burner
JPH10267262A (en) Regenerative burner furnace
JPH1089614A (en) Radiant tube burner
JP3289437B2 (en) Combustion method of heating furnace using regenerative burner
JP2840534B2 (en) Thermal storage radiant tube burner
JP3075044B2 (en) Heat storage type combustor
JPH08247421A (en) Radiant tube burner
JP2687830B2 (en) Exhaust heat recovery method in heating furnace using regenerative burner
JP2766452B2 (en) Combustion method of regenerative burner
JPH10141611A (en) Regenerative radiant box combustion burner
JP2766451B2 (en) Combustion method of regenerative radiant tube burner
JP2755089B2 (en) Combustion method for continuous heating furnace with regenerative burner
JP3025936B2 (en) Regenerative alternating burner
JPH11316018A (en) Combustion control of thermal storage system combustion equipment

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees