JP4229502B2 - Thermal storage radiant tube burner - Google Patents

Thermal storage radiant tube burner Download PDF

Info

Publication number
JP4229502B2
JP4229502B2 JP35255098A JP35255098A JP4229502B2 JP 4229502 B2 JP4229502 B2 JP 4229502B2 JP 35255098 A JP35255098 A JP 35255098A JP 35255098 A JP35255098 A JP 35255098A JP 4229502 B2 JP4229502 B2 JP 4229502B2
Authority
JP
Japan
Prior art keywords
heat storage
radiant tube
burner
exhaust gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35255098A
Other languages
Japanese (ja)
Other versions
JP2000180081A (en
Inventor
正夫 野々廣
弘行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP35255098A priority Critical patent/JP4229502B2/en
Publication of JP2000180081A publication Critical patent/JP2000180081A/en
Application granted granted Critical
Publication of JP4229502B2 publication Critical patent/JP4229502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Gas Burners (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱式ラジアントチューブバーナに関するものである。
【0002】
【従来の技術と発明が解決しようとする課題】
従来、鉄鋼炉やアルミ溶解炉等の工業用燃焼加熱炉においては、高温の燃焼排ガスの顕熱を最大限に利用するため、蓄熱体により排ガスの熱を回収し、つぎにこの熱により燃焼用空気を予熱して省エネルギーを図る蓄熱式バーナが広く採用実用化されている。
【0003】
そして、前記蓄熱体としては、特開平9−243055号公報に記載のセラミックからなるボール状の蓄熱材を利用したものや、特開平8−24767号公報に記載のセラミックからなるハニカム状の蓄熱材を利用するものが知られている。
【0004】
しかしながら、蓄熱体としてボール状の蓄熱材を使用する場合には、通気ガスが蓄熱材に衝突しながら流れる、つまり、乱流となるので熱伝達は良いが近接する蓄熱材間の通気抵抗が大きく、かつ、蓄熱材と通気ガスとの接触面積が小さいため効果的に熱回収することができず、必要な伝熱面積を確保するためには蓄熱体を大型化する必要があるという問題を有する。
【0005】
一方、ハニカム状の蓄熱体は、その体積の割に表面積が大きいため、通気抵抗が少なく効果的に熱回収できるが、高温の燃焼排ガスから排熱を回収する場合、その構造上、周辺部分は中心部分に比べて高温となり、燃焼用空気を予熱する場合は、周辺部分は中心部分に比べて低温となって、大きな温度勾配が生じるため、一様に燃焼用空気(燃焼排ガス顕熱)を予熱(蓄熱)できない。また、セラミックからなるハニカム状の蓄熱材を使用する場合は外側部分が破損しやすいという問題を有する。
【0006】
また、蓄熱式ラジアントチューブバーナとしては、特公平6−35885号公報で図に示すように、ラジアントチューブ40の両端部に蓄熱体41a,41bを備えたバーナ本体42a,42bを設け、バーナを交互に燃焼させ、燃焼排ガスを一方の蓄熱体で回収し、つぎのバーナ切替え時にこの蓄熱体で燃焼用空気を予熱して省エネルギーを図る蓄熱式ラジアントチューブバーナが提案されている。
【0007】
この蓄熱式ラジアントチューブバーナにおいては、切替弁V10および遮断弁V11、V12を操作して燃料ガスと燃焼用空気を図に示すように、一方のバーナ本体42aに供給して燃焼させて炉内を加熱する。そして、800〜900℃の燃焼排ガスは蓄熱体41bを通過して蓄熱体41bを800〜900℃とし、燃焼排ガス自身は約200℃に降温して切替弁V10を介して排ガス吸引ファン43から排気される。その後、所定時間経過すると、前記切替弁V10および遮断弁V11,V12を操作して、バーナ本体42bを燃焼させる。この場合、燃焼用空気は蓄熱体41bを通過することにより予熱され、その燃焼排ガスは約200℃の蓄熱体41aを800〜900℃に加熱したのち排ガス吸引ファン43から排気されるものである。なお、44は燃焼用空気ブロワ、45は炉壁である。
【0008】
ところで、ヒートサイクルの変更あるいは炉内修理等を行なう場合、炉内温度を急速に冷却させることが要求される。このような場合、前記蓄熱式ラジアントチューブバーナにおいて、炉内冷却機能をもたせるためには、バーナを消火して、ラジアントチューブ40内に燃焼用空気(冷却空気兼用)を供給することによりラジアントチューブを冷却することが考えられる。
【0009】
しかしながら、いま、燃焼状態のバーナ本体42aを消火し、この消火したバーナ本体42a側から冷却用空気を供給すると、常温の冷却用空気は初期において約200℃の蓄熱体41aを通過して予熱されたのち、ラジアントチューブ40内に流入し、ラジアントチューブ40を冷却したのち、バーナ本体42aの燃焼によって発生した燃焼排ガスで800〜900℃に加熱された蓄熱体41bを通過するため、冷却初期には700〜800℃に加熱されて排出されることになるが、このとき、切替弁V10および排ガス吸引ファン43を焼損するという問題を有する。
【0010】
なお、切替弁V10および排ガス吸引ファン43を耐熱鋼製とすることにより焼損事故は防止できるが、高価になるばかりか、つぎにバーナを燃焼させる場合、各蓄熱体41a,41bは低温になっているため、立上がり時間がかかるという問題を有する。
【0011】
また、逆に、他方のバーナ本体42b側から冷却用空気を供給すると、前記同様、冷却用空気は初期において高温状態の蓄熱体41bを通過して予熱され、700〜800℃となってラジアントチューブ40内に供給されるため、冷却時間が長くなるという問題を有する。
【0012】
さらに、切替弁V10および排ガス吸引ファン43の焼損を防止するために、冷却空気を短時間(数秒間隔)で供給方向を切換えるようにすると、前述の700〜800℃の空気の熱を蓄熱体41a,41bで受渡しすることになり、炉内を短時間で冷却することができないという問題を有する。
【0013】
したがって、本発明は前記問題を解決すべく種々検討の結果なされたもので、熱回収効率の良好な蓄熱体を用いて、冷却空気を蓄熱体を通過することなくラジアントチューブに供給して前記課題を解決することのできる蓄熱式ラジアントチューブバーナを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、前記目的を達成するために、蓄熱式ラジアントチューブバーナを、ラジアントチューブの両端部内にバーナ本体を設けるとともに、多数の貫通孔を有する複数のリング状蓄熱材を前記バーナ本体の外周に所定空間を保ち、かつ、隣接するリング状蓄熱材の貫通孔が同一直線上とならないように積層一体化した蓄熱体を前記ラジアントチューブ内面と所定空間を有するように配設するとともに、前記蓄熱体とラジアントチューブ内面との空間をラジアントチューブの長手方向に仕切部材で区画し、この仕切部材で区画された空間のラジアントチューブ端部側に燃焼用空気供給兼排ガス排気口を、他方側に冷却空気供給口を設けた構成としたものである。
【0015】
【発明の実施の形態】
つぎに、本発明の実施の形態について図を参照しながら説明する。
10はラジアントチューブで、その両端部には、燃料供給管11a,11bが設けられ るとともに、この燃料供給管11a,11bの外方に設けた内筒12a,12bの外周に外筒13a,13bが設けられ、前記内筒12a,12bと外筒13a,13bとで形成される空間には下記する蓄熱体14a,14bが配設されている。なお、蓄熱体14a,14bの前方には多数の開口22a,22bが設けられている。
【0016】
ところで、前記蓄熱体14a,14bは、内径を前記内筒12a,12bと略同一で、外径を外筒13a,13bより若干小径とし多数の貫通孔16を有する円板状のセラミック焼成体等からなる複数の板状蓄熱材15と、内径を内筒12a,12bと略同一の内環状部18と外径を前記板状蓄熱材15の外径と等しくした外環状部19とをリブ20で一体化した複数のスペーサ17とからなる。
【0017】
そして、前記板状蓄熱材15とスペーサ17とを、図4に示すように、内筒12a,12b上に交互に、しかも、前記隣接する板状蓄熱材15の貫通孔16が同一直線上にならないように積層するとともに、その外周にセラミックテープ21を巻回して一体化したもので、その後、外筒13a,13b内に装着したものである。なお、貫通孔16の開口率は、蓄熱材15の平板部における35〜55%であるのが好ましい。
【0018】
また、前記蓄熱体14a,14bを内蔵する外筒13a,13bとラジアントチューブ10との間には空間Aが形成されているが、この空間Aは仕切板23a,23bにより長手方向に2分割されている。
【0019】
さらに、ラジアントチューブ10の前記仕切板23a,23bより後方には燃焼用空気供給兼排気口24a,24bが、前方には冷却用空気供給兼排気口25a,25bが設けられている。
【0020】
そして、前記燃料供給管11a,11bは燃料遮断弁V 1a , 1b を介して燃料供給ラインに接続するとともに、燃焼用空気供給兼排気口24a,24bは排ガス遮断弁V 2a ,V 2b を介して排ガス吸引ファンF 1 に連通し、かつ、前記排ガス遮断弁V 2a ,V 2b と燃焼用空気供給兼排気口24a,24b間は燃焼用空気遮断弁V 3a ,V 3b を介して燃焼用空気ブロワF 2 に連通している。
【0021】
また、前記冷却用空気供給兼排気口25a,25bは冷却用空気遮断弁V 4a ,V 4b を介して前記燃焼用空気ブロワF 2 に連通するとともに、前記冷却用空気遮断弁V 4a ,V 4b と冷却用空気供給兼排気口25a,25bとの間は冷却用空気遮断弁V 5a ,V 5b に接続している。
【0022】
さらに、前記排ガス遮断弁V 2a ,V 2b より下流の排ガス合流点aより下流の排ガスラインに排ガス遮断弁V 6 を設けるとともに、この排ガス遮断弁V 6 のバイパスラインに調整弁V 7 とモータ駆動により開・閉する脈動流発生機構である回転弁V 8 が設置してある。
【0023】
前記回転弁V 8 は、図5に示すように、流路Pを有する弁箱27と、弁体28を回転するシャフト29とからなり、モータMの駆動により流路Pを開閉するものである。なお、30はシールパッキンで31はグランドである。
【0024】
つぎに、前記構成からなる蓄熱式ラジアントチューブバーナB r は、まず、前記燃料遮断弁V 1a 、排ガス遮断弁V 2b 、燃焼用空気遮断弁V 3a および排ガス遮断弁V 6 を開、その他の遮断弁を閉とし、燃焼用空気ブロワF 2 、排ガス吸引ファンF 1 を駆動するとともに燃料供給ラインから燃料ガスを一方のバーナ本体B ra に供給する。燃焼用空気は蓄熱体14aを通過して開口22aから噴出する一方、燃料ガスは燃料供給管11aの先端開口部から噴出する。そして、燃焼用空気と燃料ガスは開口22aと燃料供給管11aの先端開口 部との間に形成される保炎部26aで混合され、図示しない点火プラグのスパークによりバーナ本体B ra が着火し完全燃焼する。そして、その燃焼排ガスはラジアントチューブ10を通り、その輻射伝熱により炉T内を加熱したのち蓄熱体14bを通過して、該蓄熱体14bを800〜900℃に加熱し、燃焼ガス自身は約200℃に降温し、排ガス吸引ファンF 1 から排気される。
【0025】
このように、前記蓄熱体14a,14bは燃焼排ガスを通過させることにより蓄熱し、燃焼用空気を通過させることにより燃焼用空気を予熱するが、蓄熱体14a,14bは前述のように、板状蓄熱材15とスペーサ17とからなり、しかも隣接する板状蓄熱材15に設けた貫通孔16は同一直線上にならないようになっている。したがって、たとえば、高温の燃焼排ガスは貫通孔16を通過してスペーサ17により形成された空間Bに至るが、貫通孔16が同一直線上に配置されていないため、燃焼排ガスは板状蓄熱材15の平面部に衝突して拡散される。つまり、空間B内は乱流となり、板状蓄熱材15は貫通孔16の内面および平面部を一様に加熱されて燃焼排ガス自身は抜熱されて、順次、下流側の空間Bへと流れる。
したがって、加熱(蓄熱)効率は非常に良好である。また、同様に、燃焼用空気をも効率よく予熱することができる。
【0026】
その後、所定時間経過後、前記冷却用空気遮断弁V 4a ,V 4b ,V 5a ,V 5b を除く他の遮断弁を互いに逆方向に切替え、つまり、バーナ本体B rb が燃焼し、バーナ本体B ra は消火する。
この場合、バーナ本体B rb に供給される燃焼用空気は、既に高温となった蓄熱体14bを通過して高温(700〜800℃)に予熱されて開口22bから噴出する一方、燃料ガスは燃料供給管11bの先端開口部から噴出する。そして、燃焼用空気と燃料ガスは燃料供給管11bの先端開口部との間で形成される保炎部26bで混合され完全燃焼する。この燃焼排ガスは今度は蓄熱体14aを通って蓄熱体14aを800〜900℃に予熱して排気される。
その後、所定時間が経過すると、前述とは逆に各遮断弁が元の状態に切替り順次バーナ本体B ra ,B rb は交番燃焼を行なう。
【0027】
ところで、バーナ装置において、加熱効率を向上させる技術として、伝熱管内の燃焼排ガスを脈動させることにより流速を速め熱伝達係数を大きくするパルス燃焼方式が知られている。したがって、これを前記蓄熱式ラジアントチューブバーナB r に適用するには、前述のように、バーナ本体B ra ,B rb を交番燃焼させるとともに、前記排ガス遮断弁V 6 を閉とし、調整弁V 7 をラジアントチューブ10内の圧力P 1 をプラス圧力となるように調整したうえで、モータMの駆動により回転弁V 8 を作動させて数10Hz〜100Hzのサイクルで流路Pを開閉させる。これによりラジアントチューブ10内の圧力は、図6に示すように圧力はP 1 ,P max と変動し、つまり、燃焼排ガスは脈動流となって排気されることとなり、ラジアントチューブ10内の加熱効率を向上させることになる。
【0028】
つぎに、ヒートサイクルの変更等により、炉温を降温させる必要が生じると、前記燃料遮断弁V 1a ,V 1b 、排ガス遮断弁V 2a ,V 2b 、燃焼用空気遮断弁V 3a ,V 3b を閉とするとともに、たとえば、冷却用空気遮断弁V 4a を開、V 4b を閉とする一方、冷却用空気遮断弁V 5a を閉、V 5b を開、排ガス吸引ファンF 1 を停止する。
そうすると、冷却用空気供給兼排気口25aから燃焼用空気ブロワF 2 からの冷却用空気が供給され、この冷却用空気は高温となっている蓄熱体14a内を通過することなく、すなわち、余り昇温することなくラジアントチューブ10に供給され、ラジアントチューブ10を有効に冷却したのち冷却用空気遮断弁V 5b から排気されることになる。
【0029】
なお、冷却用空気を供給する冷却用空気供給口兼排気口は25a,25bのいずれでも よいが、低温側蓄熱体、たとえば、今まで燃焼状態にあったバーナ本体側から供給すれば、ラジアントチューブ10を通過して昇温した冷却用空気が高温側蓄熱体の外周を通過するため該蓄熱体の保有熱の損失が少なく、つぎのバーナ燃焼時に、バーナ点火初期から燃焼用空気を予熱することができる。
【0030】
【発明の効果】
以上の説明で明らかなように、本発明にかかる蓄熱式ラジアントチューブバーナによれば、蓄熱体は多数の貫通孔を有する板状蓄熱材をスペーサを介して所定空間を介するとともに隣接する貫通孔が互いに同一直線上とならないように積層一体化したものである。したがって、一端側の蓄熱材の貫通孔を通過して空間に入った高温(低温)気体は貫通孔内壁を加熱(冷却)したのち次の蓄熱材表面に衝突して乱流となりその表面を一様に加熱(冷却)し、前記空間内で拡散された気体は次の蓄熱材の各貫通孔に均一に流入し、前述のように各蓄熱材を一様に加熱(冷却)する。従って、蓄熱体の中心部と周辺部とで温度差を生じることがないので、効率のよい熱交換を行なうことができるとともに、ラジアントチューブを冷却する冷却用空気は、蓄熱体の外方とラジアントチューブ内方間の区画空間に供給され、蓄熱体内を通過することなく供給・排気されることになる。したがって、冷却用空気が蓄熱体により予熱されることがなく、従来、炉内冷却に要していた時間を、たとえば1時間から30分に短縮でき生産効率を向上することができる。
【0031】
また、炉の冷却終了後、再度、炉を昇温させる場合、蓄熱体は余り降温していないため、バーナ点火初期から燃焼用空気を予熱することができ省エネルギーを図ることができるという著効を奏する。
【図面の簡単な説明】
【図1】 本発明にかかる蓄熱式ラジアントチューブバーナおよびその配管系統を示す図。
【図2】 板状蓄熱材の平面図。
【図3】 スペーサの平面図。
【図4】 図1の部分断面拡大図。
【図5】 回転弁の断面図。
【図6】 回転弁開閉周期と炉圧との関係を示すグラフ。
【図7】 従来の蓄熱式ラジアントチューブバーナを示す図。
【符号の説明】
10…ラジアントチューブ、11a,11b…燃料供給管、12a,12b…内筒、13a,13b…外筒、14a,14b…蓄熱体、15…板状蓄熱材、16…貫通孔、17…スペーサ、22a,22b…開口、23a,23b…仕切板、24a,24b…燃焼用空気供給兼排気口、25a,25b…冷却用空気供給兼排気口、A…空間、Br…蓄熱式ラジアントチューブバーナ、Bra,Brb…バーナ本体、F1…排ガス吸引ファン、F2…燃焼用空気ブロワ、V1a,V1b…燃料遮断弁、V2a,V2b…排ガス遮断弁、V3a,V3b…燃焼用空気遮断弁、V4a,V4b…冷却用空気遮断弁、V5a,V5b…冷却用空気遮断弁、V6…排ガス遮断弁、V7…調整弁、V8…回転弁、a…排ガス合流点、T…炉。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to thermal storage type radiant tube burner.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, in industrial combustion heating furnaces such as steel furnaces and aluminum melting furnaces, in order to make maximum use of the sensible heat of high-temperature combustion exhaust gas, the heat of the exhaust gas is recovered by a heat storage, and then this heat is used for combustion. A regenerative burner that preheats air to save energy has been widely adopted and used.
[0003]
And as said heat storage body, the thing using the ball-shaped heat storage material which consists of ceramics as described in Unexamined-Japanese-Patent No. 9-243055, and the honeycomb-shaped heat storage material which consists of ceramics as described in Unexamined-Japanese-Patent No. 8-24767 What uses is known.
[0004]
However, when a ball-shaped heat storage material is used as the heat storage body, the aeration gas flows while colliding with the heat storage material, that is, turbulent flow, so heat transfer is good, but the ventilation resistance between adjacent heat storage materials is large. In addition, since the contact area between the heat storage material and the ventilation gas is small, heat cannot be effectively recovered, and in order to secure the necessary heat transfer area, it is necessary to enlarge the heat storage body. .
[0005]
On the other hand, since the honeycomb-shaped heat storage body has a large surface area for its volume, it can effectively recover heat with little airflow resistance. However, when recovering exhaust heat from high-temperature combustion exhaust gas, the peripheral part is When the combustion air is preheated compared to the central part and the surrounding air is preheated compared to the central part, a large temperature gradient is generated, so the combustion air (combustion exhaust gas sensible heat) is uniformly distributed. Preheating (heat storage) is not possible. Further, when a honeycomb-shaped heat storage material made of ceramic is used, there is a problem that the outer portion is easily damaged.
[0006]
Moreover, as a heat storage type radiant tube burner, as shown in FIG. 7 in Japanese Patent Publication No. 6-35885, burner main bodies 42a and 42b provided with heat storage bodies 41a and 41b are provided at both ends of the radiant tube 40, and the burner is provided. A regenerative radiant tube burner has been proposed in which combustion is performed alternately, combustion exhaust gas is collected by one heat accumulator, and combustion air is preheated by this heat accumulator when the next burner is switched to save energy.
[0007]
In this regenerative radiant tube burner, and by operating the switching valves V 10 and shut-off valve V 11, V 12 the combustion air and fuel gas as shown in FIG, burned by supplying the one of the burner body 42a Heat the furnace. Then, from the exhaust gas suction fan 43 through the combustion exhaust gas and 800 to 900 ° C. The regenerator 41b passes through the regenerator 41b, the flue gas itself changeover valve V 10 was lowered to about 200 ° C. of 800 to 900 ° C. Exhausted. Thereafter, when a predetermined time has elapsed, by operating the switching valve V 10 and shut-off valve V 11, V 12, to burn the burner body 42b. In this case, the combustion air is preheated by passing through the heat storage body 41b, and the combustion exhaust gas is exhausted from the exhaust gas suction fan 43 after heating the heat storage body 41a at about 200 ° C to 800 to 900 ° C. 44 is a combustion air blower, and 45 is a furnace wall.
[0008]
By the way, when changing the heat cycle or repairing the inside of the furnace, it is required to rapidly cool the inside temperature. In such a case, in order to provide the in-furnace cooling function in the regenerative radiant tube burner, the burner is extinguished and the combustion air (also used as cooling air) is supplied into the radiant tube 40 to thereby remove the radiant tube. It is conceivable to cool.
[0009]
However, if the burner main body 42a in the combustion state is extinguished and cooling air is supplied from the extinguished burner main body 42a side, the normal-temperature cooling air passes through the heat storage body 41a at about 200 ° C. and is preheated in the initial stage. After that, after flowing into the radiant tube 40 and cooling the radiant tube 40, it passes through the heat storage body 41b heated to 800 to 900 ° C. with the combustion exhaust gas generated by the combustion of the burner body 42a. It is heated to 700 to 800 ° C. and discharged, but at this time, there is a problem that the switching valve V 10 and the exhaust gas suction fan 43 are burned out.
[0010]
Although the burnout accident can be prevented by making the switching valve V 10 and the exhaust gas suction fan 43 made of heat-resistant steel, not only is it expensive, but when the burner is burned next, each of the heat storage bodies 41a and 41b becomes low temperature. Therefore, there is a problem that it takes a rise time.
[0011]
Conversely, when the cooling air is supplied from the other burner body 42b side, the cooling air is preheated through the high-temperature heat storage body 41b in the initial stage and becomes 700 to 800 ° C., as described above. Since it is supplied in 40, it has the problem that cooling time becomes long.
[0012]
Further, when the supply direction of the cooling air is switched in a short time (several seconds) in order to prevent the switching valve V 10 and the exhaust gas suction fan 43 from being burned out, the heat of the above-mentioned 700 to 800 ° C. air is stored in the heat accumulator. It will be delivered by 41a and 41b, and there exists a problem that the inside of a furnace cannot be cooled in a short time.
[0013]
Accordingly, the present invention has been made as a result of various studies to solve the above problem, and uses a heat storage body with good heat recovery efficiency to supply cooling air to the radiant tube without passing through the heat storage body. It aims at providing the thermal storage type radiant tube burner which can solve this.
[0014]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, a thermal storage type radiant tube burner, provided with a burner body in both ends of the radiant tube, a plurality of ring-shaped heat storage material having a large number of through holes of the burner body periphery A heat storage body that is laminated and integrated so that the through-holes of adjacent ring-shaped heat storage materials are not on the same straight line so as to have a predetermined space and the inner surface of the radiant tube, and the heat storage The space between the body and the inner surface of the radiant tube is partitioned by a partition member in the longitudinal direction of the radiant tube, and the combustion air supply / exhaust gas exhaust port is cooled on the other side of the space partitioned by the partition member and the other side is cooled. The air supply port is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
10 is a radiant tube, the both end portions, the fuel supply pipe 11a, 11b is provided Rutotomoni, the fuel supply pipe 11a, 11b inner cylinder 12a provided on the outside of, 12b periphery the outer cylinder 13a of, 13b In the space formed by the inner cylinders 12a, 12b and the outer cylinders 13a, 13b, the following heat storage bodies 14a, 14b are arranged. In addition, many opening 22a, 22b is provided ahead of the thermal storage body 14a, 14b.
[0016]
By the way, the heat storage bodies 14a, 14b are disk-shaped ceramic fired bodies having an inner diameter substantially the same as that of the inner cylinders 12a, 12b, an outer diameter slightly smaller than that of the outer cylinders 13a, 13b, and a large number of through holes 16. A plurality of plate-like heat storage materials 15, an inner annular portion 18 whose inner diameter is substantially the same as the inner cylinders 12 a and 12 b, and an outer annular portion 19 whose outer diameter is equal to the outer diameter of the plate-like heat storage material 15. And a plurality of spacers 17 integrated with each other.
[0017]
Then, as shown in FIG. 4, the plate-shaped heat storage material 15 and the spacer 17 are alternately arranged on the inner cylinders 12a and 12b, and the through-holes 16 of the adjacent plate-shaped heat storage materials 15 are on the same straight line. The layers are laminated so as not to be formed, and the ceramic tape 21 is wound around the outer periphery to be integrated, and then mounted in the outer cylinders 13a and 13b. In addition, it is preferable that the aperture ratio of the through-hole 16 is 35 to 55% in the flat plate portion of the heat storage material 15.
[0018]
Further, a space A is formed between the outer cylinders 13a, 13b containing the heat storage members 14a, 14b and the radiant tube 10, and this space A is divided into two in the longitudinal direction by the partition plates 23a, 23b. ing.
[0019]
Furthermore, combustion air supply / exhaust ports 24a, 24b are provided behind the partition plates 23a, 23b of the radiant tube 10, and cooling air supply / exhaust ports 25a, 25b are provided in the front.
[0020]
The fuel supply pipes 11a and 11b are connected to a fuel supply line via fuel cutoff valves V 1a and V 1b , and the combustion air supply and exhaust ports 24a and 24b are connected to exhaust gas cutoff valves V 2a and V 2b . Combustion air is communicated with the exhaust gas suction fan F 1 and between the exhaust gas cutoff valves V 2a and V 2b and the combustion air supply / exhaust ports 24a and 24b via combustion air cutoff valves V 3a and V 3b. and it communicates with the blower F 2.
[0021]
Moreover, the cooling air supply and exhaust ports 25a, 25b are cooling air shut-off valve V 4a, communicates with the said combustion air blower F 2 via the V 4b, the cooling air shut-off valve V 4a, V 4b And the cooling air supply / exhaust ports 25a and 25b are connected to cooling air shut-off valves V 5a and V 5b .
[0022]
Further, an exhaust gas cutoff valve V 6 is provided in the exhaust gas line downstream of the exhaust gas junction point a downstream of the exhaust gas cutoff valves V 2a and V 2b , and an adjustment valve V 7 and a motor drive are provided in the bypass line of the exhaust gas cutoff valve V 6. A rotary valve V 8, which is a pulsating flow generating mechanism that opens and closes due to, is installed.
[0023]
As shown in FIG. 5, the rotary valve V 8 includes a valve box 27 having a flow path P and a shaft 29 that rotates the valve body 28, and opens and closes the flow path P by driving a motor M. . In addition, 30 is a seal packing and 31 is a gland.
[0024]
Then, regenerative radiant tube burner B r consisting of the configuration, first, blocking the fuel cutoff valve V 1a, the exhaust gas shutoff valve V 2b, the combustion air shutoff valves V 3a and the exhaust gas shutoff valve V 6 is opened, other The valve is closed, the combustion air blower F 2 and the exhaust gas suction fan F 1 are driven, and fuel gas is supplied from the fuel supply line to one burner body Bra . Combustion air passes through the heat accumulator 14a and is ejected from the opening 22a, while fuel gas is ejected from the front end opening of the fuel supply pipe 11a. Then, combustion air and fuel gas are mixed in the flame-stabilization portion 26a which is formed between the tip opening portion of the opening 22a and the fuel supply pipe 11a, complete with ignition burner body B ra by spark of the ignition plug (not shown) Burn. The combustion exhaust gas passes through the radiant tube 10, heats the inside of the furnace T by the radiant heat transfer, passes through the heat storage body 14 b, heats the heat storage body 14 b to 800 to 900 ° C., and the combustion gas itself is about The temperature is lowered to 200 ° C. and exhausted from the exhaust gas suction fan F 1 .
[0025]
As described above, the heat storage bodies 14a and 14b store heat by passing combustion exhaust gas, and preheat the combustion air by passing combustion air. However, the heat storage bodies 14a and 14b are plate-shaped as described above. The through-holes 16 formed of the heat storage material 15 and the spacer 17 and provided in the adjacent plate-shaped heat storage material 15 are not on the same straight line. Therefore, for example, high-temperature combustion exhaust gas passes through the through-hole 16 and reaches the space B formed by the spacer 17. However, since the through-hole 16 is not arranged on the same straight line, the combustion exhaust gas is the plate-shaped heat storage material 15. It collides with the plane part of and is diffused. That is, the inside of the space B becomes a turbulent flow, and the plate-shaped heat storage material 15 is uniformly heated on the inner surface and the flat portion of the through-hole 16 so that the combustion exhaust gas itself is removed from the heat and flows sequentially into the downstream space B. .
Therefore, the heating (heat storage) efficiency is very good. Similarly, the combustion air can be preheated efficiently.
[0026]
Thereafter, after a predetermined time has elapsed, the other shut-off valves other than the cooling air shut-off valves V 4a , V 4b , V 5a , V 5b are switched in the opposite directions, that is, the burner body B rb burns and the burner body B Ra extinguishes fire.
In this case, the combustion air supplied to the burner body B rb passes through the heat accumulator 14b that has already become high temperature, is preheated to high temperature (700 to 800 ° C.), and is ejected from the opening 22b, while the fuel gas is fuel. It ejects from the front end opening of the supply pipe 11b. The combustion air and the fuel gas are mixed in the flame holding portion 26b formed between the tip opening portion of the fuel supply pipe 11b and completely burned. This combustion exhaust gas is then exhausted through the heat accumulator 14a by preheating the heat accumulator 14a to 800-900 ° C.
Thereafter, when a predetermined time elapses, each shut-off valve is switched to the original state contrary to the above, and the burner bodies B ra and B rb sequentially perform alternating combustion.
[0027]
By the way, in the burner apparatus, as a technique for improving the heating efficiency, a pulse combustion system is known in which the flow rate is increased and the heat transfer coefficient is increased by pulsating the combustion exhaust gas in the heat transfer tube. Therefore, to apply to this the regenerative radiant tube burner B r, as previously described, the burner body B ra, causes alternating combusting B rb, the exhaust cutoff valve V 6 is closed, control valve V 7 After adjusting the pressure P 1 in the radiant tube 10 to be a positive pressure, the rotary valve V 8 is operated by driving the motor M to open and close the flow path P in a cycle of several tens to 100 Hz. As a result, the pressure in the radiant tube 10 fluctuates as P 1 and P max as shown in FIG. 6 , that is, the combustion exhaust gas is exhausted as a pulsating flow, and the heating efficiency in the radiant tube 10 is increased. Will be improved.
[0028]
Next, when it is necessary to lower the furnace temperature by changing the heat cycle, the fuel cutoff valves V 1a and V 1b , the exhaust gas cutoff valves V 2a and V 2b , and the combustion air cutoff valves V 3a and V 3b are set. For example, the cooling air cutoff valve V 4a is opened and V 4b is closed, while the cooling air cutoff valve V 5a is closed and V 5b is opened, and the exhaust gas suction fan F 1 is stopped.
Then, the cooling air from the combustion air blower F 2 is supplied from the cooling air supply / exhaust port 25a , and this cooling air does not pass through the high-temperature heat storage body 14a, that is, rises so much. It is supplied to the radiant tube 10 without being heated, and after the radiant tube 10 is effectively cooled, it is exhausted from the cooling air shut-off valve V 5b .
[0029]
The cooling air supply port / exhaust port for supplying the cooling air may be either 25a or 25b , but if it is supplied from a low temperature side heat storage body, for example, the burner main body side which has been in a combustion state until now, the radiant tube The cooling air that has been heated through 10 passes through the outer periphery of the high-temperature side heat accumulator, so that there is little loss of the heat stored in the heat accumulator, and the combustion air is preheated from the beginning of burner ignition at the next burner combustion. Can do.
[0030]
【The invention's effect】
As is apparent from the above description, according to the heat storage type radiant tube burner according to the present invention, the heat storage body has a plate-shaped heat storage material having a large number of through-holes through a predetermined space and adjacent through-holes. They are laminated and integrated so as not to be on the same straight line. Therefore, the high-temperature (low-temperature) gas that has passed through the through-hole of the heat storage material on one end side and enters the space collides with the surface of the next heat storage material after heating (cooling) the inner wall of the through-hole and becomes a turbulent flow. The gas diffused in the space is uniformly flown into each through-hole of the next heat storage material, and the heat storage material is uniformly heated (cooled) as described above. Accordingly, since there is no temperature difference between the central portion and the peripheral portion of the heat storage body, efficient heat exchange can be performed, and the cooling air for cooling the radiant tube is separated from the outside of the heat storage body and the radiant. It is supplied to the space between the tubes and supplied and exhausted without passing through the heat storage body. Therefore, the cooling air is not preheated by the heat accumulator, and the time conventionally required for cooling in the furnace can be shortened from 1 hour to 30 minutes, for example, and the production efficiency can be improved.
[0031]
In addition, when the temperature of the furnace is increased again after the cooling of the furnace, the temperature of the heat storage body is not so much lowered, so that the combustion air can be preheated from the initial stage of the burner ignition and energy saving can be achieved. Play.
[Brief description of the drawings]
FIG. 1 is a view showing a regenerative radiant tube burner and its piping system according to the present invention.
FIG. 2 is a plan view of a plate-shaped heat storage material.
FIG. 3 is a plan view of a spacer.
4 is an enlarged partial sectional view of FIG. 1. FIG.
FIG. 5 is a cross-sectional view of a rotary valve.
FIG. 6 is a graph showing a relationship between a rotary valve opening / closing cycle and a furnace pressure.
FIG. 7 is a view showing a conventional heat storage type radiant tube burner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Radiant tube, 11a, 11b ... Fuel supply pipe, 12a, 12b ... Inner cylinder, 13a, 13b ... Outer cylinder, 14a, 14b ... Heat storage body, 15 ... Plate-shaped heat storage material, 16 ... Through-hole, 17 ... Spacer, 22a, 22b ... opening, 23a, 23b ... partition plate, 24a, 24b ... combustion air supply / exhaust port, 25a, 25b ... cooling air supply / exhaust port, A ... space, Br ... heat storage radiant tube burner, B ra , B rb ... burner body, F 1 ... exhaust gas suction fan, F 2 ... combustion air blower, V 1a , V 1b ... fuel cutoff valve, V 2a , V 2b ... exhaust gas cutoff valve, V 3a , V 3b ... Combustion air shut-off valve, V 4a , V 4b ... Cooling air shut-off valve, V 5a , V 5b ... Cooling air shut-off valve, V 6 ... Exhaust gas shut-off valve, V 7 ... Adjusting valve, V 8 ... Rotary valve, a ... exhaust gas junction, T ... furnace.

Claims (1)

ラジアントチューブの両端部内にバーナ本体を設けるとともに、多数の貫通孔を有する複数のリング状蓄熱材を前記バーナ本体の外周に所定空間を保ち、かつ、隣接するリング状蓄熱材の貫通孔が同一直線上とならないように積層一体化した蓄熱体を前記ラジアントチューブ内面と所定空間を有するように配設するとともに、前記蓄熱体とラジアントチューブ内面との空間をラジアントチューブの長手方向に仕切部材で区画し、この仕切部材で区画された空間のラジアントチューブ端部側に燃焼用空気供給兼排ガス排気口を、他方側に冷却空気供給口を設けたことを特徴とする蓄熱式ラジアントチューブバーナ。  A burner body is provided in both ends of the radiant tube, and a plurality of ring-shaped heat storage materials having a large number of through holes are maintained at a predetermined space on the outer periphery of the burner body, and the through-holes of adjacent ring-shaped heat storage materials are the same A heat storage body laminated and integrated so as not to be on the line is disposed so as to have a predetermined space with the inner surface of the radiant tube, and a space between the heat storage body and the inner surface of the radiant tube is partitioned by a partition member in the longitudinal direction of the radiant tube A regenerative radiant tube burner characterized in that a combustion air supply / exhaust gas exhaust port is provided on the radiant tube end side of the space partitioned by the partition member, and a cooling air supply port is provided on the other side.
JP35255098A 1998-12-11 1998-12-11 Thermal storage radiant tube burner Expired - Lifetime JP4229502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35255098A JP4229502B2 (en) 1998-12-11 1998-12-11 Thermal storage radiant tube burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35255098A JP4229502B2 (en) 1998-12-11 1998-12-11 Thermal storage radiant tube burner

Publications (2)

Publication Number Publication Date
JP2000180081A JP2000180081A (en) 2000-06-30
JP4229502B2 true JP4229502B2 (en) 2009-02-25

Family

ID=18424836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35255098A Expired - Lifetime JP4229502B2 (en) 1998-12-11 1998-12-11 Thermal storage radiant tube burner

Country Status (1)

Country Link
JP (1) JP4229502B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020002036A (en) * 2000-06-29 2002-01-09 이구택 Burner for annealing furnace
JP2009229043A (en) * 2008-03-25 2009-10-08 Ngk Insulators Ltd Spacer for heat exchanger
JP5962050B2 (en) * 2012-02-16 2016-08-03 いすゞ自動車株式会社 Stirling engine regenerator component and regenerator using the same
CN105509053A (en) * 2014-09-23 2016-04-20 宝钢新日铁汽车板有限公司 Heat storage type burner used for radiant tube
JP6555001B2 (en) * 2015-08-19 2019-08-07 株式会社デンソー Heat storage system
JP6952461B2 (en) * 2016-12-15 2021-10-20 大阪瓦斯株式会社 Heat storage burner and heating furnace

Also Published As

Publication number Publication date
JP2000180081A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
KR970000103B1 (en) Steel heating furnace
JP4229502B2 (en) Thermal storage radiant tube burner
JP4096016B2 (en) Combustion method of regenerative radiant tube burner
JP2598619Y2 (en) Thermal storage type alternating combustion device
JP3880725B2 (en) Thermal storage radiant tube burner
JP3322470B2 (en) Thermal storage type low NOx burner
JP2571556Y2 (en) Heat storage regeneration burner
JP3332306B2 (en) Radiant tube heating device
KR0118983B1 (en) Combustion air preheating method of furnace
JP3075044B2 (en) Heat storage type combustor
JP2001027412A (en) Regenerative combustion burner
JPH10318528A (en) Operation of radiant tube burner furnace and apparatus therefor
JP4060990B2 (en) Alternating combustion type regenerative burner system and heating furnace using the same
JP3852212B2 (en) Billet heating method
JPH0619941Y2 (en) Heat storage type radiant tube burner device
JP2587588B2 (en) Thermal storage radiant tube burner device
JPH0225549A (en) Cast ingot continuous heating furnace
JP2677776B2 (en) How to operate a regenerative burner
JP2598622Y2 (en) Thermal storage type alternating combustion device
JP3720905B2 (en) Industrial furnace combustion equipment
JPH10111087A (en) Indirect hot air generator
JP3726526B2 (en) Heating method with regenerative combustion burner
JP3499963B2 (en) Regenerative alternating burner
TW201925708A (en) Regenerative combustion stove structure characterized in that a smoke passageway is integrated inside the stove for increasing an on-site space utilizing flexibility, and achieving benefits of ensuring heating property and reducing heating time
JPH09222224A (en) Combustion method of regenerative combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

EXPY Cancellation because of completion of term