JP2001027412A - Regenerative combustion burner - Google Patents

Regenerative combustion burner

Info

Publication number
JP2001027412A
JP2001027412A JP2000197988A JP2000197988A JP2001027412A JP 2001027412 A JP2001027412 A JP 2001027412A JP 2000197988 A JP2000197988 A JP 2000197988A JP 2000197988 A JP2000197988 A JP 2000197988A JP 2001027412 A JP2001027412 A JP 2001027412A
Authority
JP
Japan
Prior art keywords
exhaust
heat storage
furnace
air supply
switching mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197988A
Other languages
Japanese (ja)
Inventor
Kazuhisa Mitani
和久 三谷
Tomohiko Nishiyama
智彦 西山
Ryoichi Tanaka
良一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Furnace Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd, Toyota Motor Corp filed Critical Nippon Furnace Co Ltd
Publication of JP2001027412A publication Critical patent/JP2001027412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To increase an air supply pressure and to reduce and NOx by providing a thermal storage material separated to a plurality of portions, burner tiles having an air supply and exhaust surface having an opened vent hole, and a switching mechanism of a specific structure having a rotary disc and a fixed disc brought into surface contact with one another separably from each other. SOLUTION: In the regenerative combustion burner 1 in an industrial furnace 100, burner tiles in which a fuel injection nozzle 20 is inserted into a center are disposed at one axial side of a thermal storage material 30 separated into a plurality of portions in a circumferential direction, and a switching mechanism 40 is arranged at an another axial direction of the material 30. The mechanism 40 has a rotary disc 44 and a fixed disc 46 brought into slidable surface contact with one another and an air supply and exhaust partition wall 41 to communicate or shut off a plurality of ventilation openings 42, 43 by a rotation of the disc 44. An air supply to the burner 1 is conducted through an air supply passage 2 by operating an air supply means 4 to the burner 1, and an air exhaust is induction exhausted through an exhaust passage 3 by operating an exhaust induced draft fan 101.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気を蓄熱体に通
して排気の熱を蓄熱体に蓄熱し給気と排気の流れを交互
に切替え排気の熱を蓄熱した蓄熱体に給気を通して給気
をあたためる蓄熱燃焼を実行する工業用炉および蓄熱燃
焼用バーナ並びに工業用炉の燃焼方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device in which exhaust gas is stored in a heat storage device by passing exhaust gas through a heat storage device, heat of the exhaust gas is stored in the heat storage device, and the flow of air supply and exhaust gas is alternately switched. TECHNICAL FIELD The present invention relates to an industrial furnace, a regenerative combustion burner, and a method for burning an industrial furnace, which performs warm regenerative combustion.

【0002】[0002]

【従来の技術】特開平5−256423号公報は、交互
切替式燃焼用バーナを開示している。そこでは、蓄熱体
はバーナ本体に一体に組み込まれているが、切替バルブ
はバーナ本体外に設置され配管でバーナ本体と接続され
ている。しかし、従来の蓄熱燃焼用バーナには次の問題
がある。給排気の切替バルブがバーナ本体と別体のた
め、両者を接続するための配管類が必要で、施工が必要
なこと、配管分装置が大型化すること、などの問題があ
る。また、切替バルブから燃焼ノズルまでの容積が大き
くなるため、切替時のパージ時間が長くなる。上記問題
を解決するために、本願出願人の一名は、バーナ本体に
切替機構を一体に組み込んだ蓄熱燃焼用バーナを先に提
案した。そこでは、蓄熱体を隔壁で仕切り、隔壁端面に
回転ディスクを摺接させ、回転ディスクを回転させて蓄
熱体への給気と排気の流れを切替えていた。
2. Description of the Related Art Japanese Patent Laying-Open No. 5-256423 discloses an alternately switching type combustion burner. There, the regenerator is integrated into the burner body, but the switching valve is installed outside the burner body and connected to the burner body by piping. However, the conventional heat storage combustion burner has the following problems. Since the supply / exhaust switching valve is separate from the burner main body, piping for connecting the two is required, and there are problems such as the necessity of construction and an increase in the size of the piping distribution device. Further, since the volume from the switching valve to the combustion nozzle becomes large, the purge time at the time of switching becomes long. In order to solve the above-mentioned problem, one of the applicants of the present application has previously proposed a burner for heat storage combustion in which a switching mechanism is integrated into a burner body. There, the heat storage was partitioned by a partition, a rotating disk was slid on the partition wall end face, and the rotating disk was rotated to switch the flow of air supply and exhaust to the heat storage.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記蓄熱燃焼
用バーナには、つぎの問題があった。同じ通気孔を給排
を切替えて給気孔および排気孔として用いるので、給気
通路断面積と排気通路断面積が同じであり、炉内圧の制
限から、給気通路を絞って給気流速を上げることが難し
い。その結果、炉内排ガスの給気への巻込み、循環が少
なくNOx生成を抑えることが難しいこと、燃料の給気
への随伴性が低下し、燃焼が悪化すること、火焔が炉の
奥まで到達しにくいこと、等の問題を生じる。また、隔
壁端面と回転ディスクとの間を空気がリークし、給気が
排気にショートパスしやすい。その結果、給気流速が低
減して上記問題がさらに生じやすくなること、燃焼に供
給される空気が不足して不完全燃焼が生じ、排気中のC
Oが増えること、等の問題を生じる。本発明の目的は、
給気の流速を向上できる工業用炉および蓄熱燃焼用バー
ナ並びに工業用炉の燃焼方法を提供することにある。
However, the heat storage combustion burner has the following problems. Since the same vent hole is used as an air supply hole and an exhaust hole by switching the supply and exhaust, the cross-sectional area of the air supply passage and the cross-sectional area of the exhaust passage are the same. It is difficult. As a result, the exhaust gas in the furnace is trapped in the air supply and the circulation is so small that it is difficult to suppress NOx generation. Problems such as difficulty in reaching are caused. Further, air leaks between the end face of the partition wall and the rotating disk, and the supply air tends to short-circuit to the exhaust air. As a result, the supply air flow rate is reduced and the above problem is more likely to occur. In addition, insufficient air is supplied to the combustion to cause incomplete combustion, and the C
Problems such as an increase in O occur. The object of the present invention is
An object of the present invention is to provide an industrial furnace, a regenerative combustion burner, and a method for burning an industrial furnace, which can increase the flow rate of air supply.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) 複数の部分に分離された蓄熱体と、前記蓄熱体
の軸方向一側に配置され、燃料噴射ノズルが挿入される
穴と、給排が切替えられる複数の通気孔と、該通気孔が
開口する給排気面と、を有するバーナタイルと、前記蓄
熱体の軸方向他側に配置され、互いに摺動可能に面接触
された回転ディスクと固定ディスクとを有し、さらに給
排気の仕切壁を有し、前記固定ディスクは複数の貫通孔
を有し、前記回転ディスクは前記回転ディスクの回転に
よって連通、遮断される複数の通気用開口部を有し、該
通気用開口部は前記仕切壁の一側に連通する給気通気用
開口部と前記仕切壁の他側に連通する排気通気用開口部
を含んでいる、切替機構と、を有し、前記蓄熱体、前記
バーナタイル、前記切替機構は、互いに分離可能で、前
記蓄熱体、前記バーナタイル、前記切替機構の少なくと
も一つが炉体に固定されて炉体の一部分を構成してい
る、工業用炉。 (2) 前記バーナタイルに設けられた複数の前記通気
孔のうち前記排気通気用開口部によってカバーされる通
気孔の通路断面積の和が前記給気通路用開口部によって
カバーされる通気孔の通路断面積の和以上となるよう
に、前記回転ディスクに設けられる前記通気用開口部と
前記固定用ディスクに設けられる貫通孔の、形状および
相対位置関係が設定されている(1)記載の工業用炉。 (3) 複数の部分に分離された蓄熱体部分のうち前記
排気通路用開口部によってカバーされる蓄熱体部分の容
積の和が前記給気通気用開口部によってカバーされる蓄
熱体部分の容積の和以上となるように、前記回転ディス
クに設けられる前記通気用開口部と前記固定用ディスク
に設けられる貫通孔の、形状および相対位置関係が設定
されている(1)記載の工業用炉。 (4) 給気用ブロワを前記切替機構のうち前記給気用
通気用開口部に連通する部分に直結した(1)記載の工
業用炉。 (5) 排気用ファンを前記切替機構のうち前記排気用
通気用開口部に連通する部分に直結した(1)記載の工
業用炉。 (6) 給気用ブロワを前記切替機構のうち前記給気用
通気用開口部に連通する部分に直結するとともに、排気
用ファンを前記切替機構のうち前記排気用通気用開口部
に連通する部分に直結した(1)記載の工業用炉。 (7) 給気用ブロワを前記切替機構のうち前記給気用
通気用開口部に連通する部分に直結するとともに、排気
用ファンを前記切替機構のうち前記排気用通気用開口部
に連通する部分に直結し、給気用ブロワと排気用ファン
を同一の駆動手段で駆動せしめた(1)記載の工業用
炉。 (8) 前記蓄熱体を軸方向に複数に蓄熱体部分に分割
するとともに蓄熱体部分間に乱流場を生成する隙間をも
たせた(1)記載の工業用炉。 (9) 前記蓄熱体を分離する隔壁を有し、該隔壁は放
射状に延びており、前記切替機構の前記仕切壁は周方向
に延びている(1)記載の工業用炉。 (10) 前記回転ディスクが一方向にのみ回転される
ディスクからなる(1)記載の工業用炉。 (11) 前記回転ディスクの回転駆動手段がモータか
らなる(1)記載の工業用炉。 (12) 前記仕切壁の内外周のうち給気通気用開口部
がある通路側に、前記切替機構の回転部分を回転させる
ための駆動モータを設置した(1)記載の工業用炉。 (13) 前記切替機構の前記回転ディスクは立体ディ
スクからなり、前記回転ディスクに形成される前記給気
通気用開口部と前記排気通気用開口部のそれぞれの固定
ディスク側端部は同一円周上に設けられており、前記固
定ディスクに設けれる貫通孔は給気と排気とに共用され
るとともに同一円周上に配されている(1)記載の工業
用炉。 (14) 前記切替機構の前記回転ディスクは立体ディ
スクからなり、前記回転ディスクに形成される前記給気
通気用開口部と前記排気通気用開口部のそれぞれの固定
ディスク側端部は同一円周上に設けられており、前記給
気通気用開口部に上流側から接続する給気通路は前記切
替機構に軸方向に接続しており、前記排気通気用開口部
に下流側から接続する排気通路は前記切替機構に軸方向
と直角方向に接続している(1)記載の工業用炉。 (15) 前記排気通気用開口部の排気流れの下流側
に、空気を排気流れ下流側に向けて噴出する排気誘引機
構を設けた請求項1記載の工業用炉。 (16) 前記複数に分離された蓄熱体のそれぞれの部
分は円筒状スリーブ内に納められている(1)記載の工
業用炉。 (17) 前記複数に分離された蓄熱体のそれぞれの部
分は円筒状スリーブ内に納められており、前記バーナタ
イルの通気孔は上流側に向って拡開するロート状部を有
し前記通気孔は該ロート状部を介して前記円筒状スリー
ブに滑らかに接続している(1)記載の工業用炉。 (18) 前記回転ディスクと前記固定ディスクとは金
属面接触によりシールされており、前記回転ディスクは
前記固定ディスクにスプリング付勢により押しつけられ
ている(1)記載の工業用炉。 (19) 前記回転ディスクに設けられた通気孔は扇形
状をしており、前記固定ディスクに設けられた貫通孔も
扇形状をしている(1)記載の工業用炉。 (20) 前記回転ディスクが往復回動されるディスク
からなる(1)記載の工業用炉。 (21) 前記回転ディスクを往復回動する駆動手段が
エアシリンダである(1)記載の工業用炉。 (22) 前記切替機構が、第1の位置と第2の位置を
選択的にとり前記第1の位置と前記第2の位置との間に
往復回動される回転ディスクを含み、前記蓄熱体の分割
された複数の部分の一部に給気または排気が流れない部
分を作ることなく前記第1の位置と前記第2の位置を切
替えるシャッタである(1)記載の工業用炉。 (23) 前記回転ディスクの給気通気用開口部が前記
固定ディスクの貫通孔間部位にきて給気が絞られたとき
に燃料を絞る燃料供給量調整機構を、さらに有している
(1)記載の工業用炉。 (24) 前記回転ディスクの排気通気用開口部は、常
に、その少なくとも一部が前記固定ディスクの貫通孔間
部位によって閉塞されない位置をとる(1)記載の工業
用炉。 (25) 前記切替機構が3以上の通気用開口部を有す
る多孔式シャッタからなる(1)記載の工業用炉。 (26) 前記工業用炉が、溶解炉、焼結炉、予熱炉、
均熱炉、鍛造炉、加熱炉、焼鈍炉、容体化炉、メッキ
炉、乾燥炉、調質炉、焼入れ炉、焼もどし炉、酸化還元
炉、焼成炉、焼付炉、焙焼炉、溶解保持炉、前炉、ルツ
ボ炉、ホモジナイジング炉、エージング炉、反応炉、蒸
留炉、取鍋乾燥予熱炉、鋳型焼成予熱炉、焼準炉、ロー
付け炉、浸炭炉、塗装乾燥炉、保持炉、窒化炉、ソルト
バス炉、ガラス溶解炉、発電用ボイラを含むボイラ、ご
み焼却炉を含む焼却炉、給湯装置、のうちから選択され
た一種の炉である請求項1記載の工業用炉。 (27) 複数の部分に分離された蓄熱体と、前記蓄熱
体の軸方向一側に配置され、燃料噴射ノズルが挿入され
る穴と、給排が切替えられる複数の通気孔と、該通気孔
が開口する給排気面と、を有するバーナタイルと、前記
蓄熱体の軸方向他側に配置され、互いに摺動可能に面接
触された回転ディスクと固定ディスクとを有し、さらに
給排気の仕切壁を有し、前記固定ディスクは複数の貫通
孔を有し、前記回転ディスクは前記回転ディスクの回転
によって連通、遮断される複数の通気用開口部を有し、
該通気用開口部は前記仕切壁の一側に連通する給気通気
用開口部と前記仕切壁の他側に連通する排気通気用開口
部を含んでいる、切替機構と、からなる蓄熱燃焼用バー
ナ。 (28) 前記バーナタイルに設けられた複数の前記通
気孔のうち前記排気通気用開口部によってカバーされる
通気孔の通路断面積の和が前記給気通気用開口部によっ
てカバーされる通気孔の通路断面積の和以上となるよう
に、前記回転ディスクに設けられる前記通気用開口部と
前記固定用ディスクに設けられる貫通孔の、形状および
相対位置関係が設定されている(27)記載の蓄熱燃焼
用バーナ。 (29) 給気用ブロワを前記切替機構のうち前記給気
用通気用開口部に連通する部分に直結した(27)記載
の蓄熱燃焼用バーナ。 (30) 排気用ファンを前記切替機構のうち前記排気
用通気用開口部に連通する部分に直結した(27)記載
の蓄熱燃焼用バーナ。 (31) 給気用ブロワを前記切替機構のうち前記給気
用通気用開口部に連通する部分に直結するとともに、排
気用ファンを前記切替機構のうち前記排気用通気用開口
部に連通する部分に直結した(27)記載の蓄熱燃焼用
バーナ。 (32) 給気用ブロワを前記切替機構のうち前記給気
用通気用開口部に連通する部分に直結するとともに、排
気用ファンを前記切替機構のうち前記排気用通気用開口
部に連通する部分に直結し、給気用ブロワと排気用ファ
ンを同一の駆動手段で駆動せしめた(27)記載の蓄熱
燃焼用バーナ。 (33) 複数の部分に分離された蓄熱体部分のうち前
記排気通路用開口部によってカバーされる蓄熱体部分の
容積の和が前記給気通気用開口部によってカバーされる
蓄熱体部分の容積の和以上となるように、前記回転ディ
スクに設けられる前記通気用開口部と前記固定用ディス
クに設けられる貫通孔の、形状および相対位置関係が設
定されている(27)記載の蓄熱燃焼用バーナ。 (34) 前記蓄熱体を分離する隔壁を有し、該隔壁は
放射状に延びており、前記切替機構の前記仕切壁は周方
向に延びている(27)記載の蓄熱燃焼用バーナ。 (35) 前記蓄熱体を軸方向に複数に蓄熱体部分に分
割するとともに蓄熱体部分間に乱流場を生成する隙間を
もたせた(27)記載の蓄熱燃焼用バーナ。 (36) 前記回転ディスクが一方向にのみ回転される
ディスクからなる(27)記載の蓄熱燃焼用バーナ。 (37) 前記回転ディスクの回転駆動手段がモータか
らなる(27)記載の蓄熱燃焼用バーナ。 (38) 前記仕切壁の内外周のうち給気通気用開口部
がある通路側に、前記切替機構の回転部分を回転させる
ための駆動モータを設置した(27)記載の蓄熱燃焼用
バーナ。 (39) 前記切替機構の前記回転ディスクは立体ディ
スクからなり、前記回転ディスクに形成される前記給気
通気用開口部と前記排気通気用開口部は同一円周上に設
けられており、前記固定ディスクに設けれる貫通孔は給
気と排気とに共用されるとともに同一円周上に配されて
いる(27)記載の蓄熱燃焼用バーナ。 (40) 前記切替機構の前記回転ディスクは立体ディ
スクからなり、前記回転ディスクに形成される前記給気
通気用開口部と前記排気通気用開口部のそれぞれの固定
ディスク側端部は同一円周上に設けられており、前記給
気通気用開口部に上流側から接続する給気通路は前記切
替機構に軸方向に接続しており、前記排気通気用開口部
に下流側から接続する排気通路は前記切替機構に軸方向
と直角方向に接続している(27)記載の蓄熱燃焼用バ
ーナ。 (41) 前記排気通気用開口部の排気流れの下流側
に、空気を排気流れ下流側に向けて噴出する排気誘引機
構を設けた(27)記載の蓄熱燃焼用バーナ。 (42) 前記複数に分離された蓄熱体のそれぞれの部
分は円筒状スリーブ内に納められている(27)記載の
蓄熱燃焼用バーナ。 (43) 前記複数に分離された蓄熱体のそれぞれの部
分は円筒状スリーブ内に納められており、前記バーナタ
イルの通気孔は上流側に向って拡開するロート状部を有
し前記通気孔は該ロート状部を介して前記円筒状スリー
ブに滑らかに接続している(27)記載の蓄熱燃焼用バ
ーナ。 (44) 前記回転ディスクと前記固定ディスクとは金
属面接触によりシールされており、前記回転ディスクは
前記固定ディスクにスプリング付勢により押しつけられ
ている(27)記載の蓄熱燃焼用バーナ。 (45) 前記回転ディスクに設けられた通気孔は扇形
状をしており、前記固定ディスクに設けられた貫通孔も
扇形状をしている(27)記載の蓄熱燃焼用バーナ。 (46) 前記回転ディスクが往復回動されるディスク
からなる(27)記載の蓄熱燃焼用バーナ。 (47) 前記回転ディスクを往復回動する駆動手段が
エアシリンダである(27)記載の蓄熱燃焼用バーナ。 (48) 前記切替機構が、第1の位置と第2の位置を
選択的にとり前記第1の位置と前記第2の位置との間に
往復回動される回転ディスクを含み、前記蓄熱体の分割
された複数の部分の一部に給気または排気が流れない部
分を作ることなく前記第1の位置と前記第2の位置を切
替えるシャッタである(27)記載の蓄熱燃焼用バー
ナ。 (49) 前記回転ディスクの給気通気用開口部が前記
固定ディスクの貫通孔間部位にきて給気が絞られたとき
に燃料を絞る燃料供給量調整機構を、さらに有している
(27)記載の蓄熱燃焼用バーナ。 (50) 前記回転ディスクの排気通気用開口部は、常
に、その少なくとも一部が前記固定ディスクの貫通孔間
部位によって閉塞されない位置をとる請求項27記載の
蓄熱燃焼用バーナ。 (51) 前記切替機構が3以上の通気用開口部を有す
る多孔式シャッタからなる(27)記載の蓄熱燃焼用バ
ーナ。 (52) 給排気面に開口された給排が切替えられる複
数の通気孔のうち給気孔として働いている通気孔を通し
て炉内に給気を供給し、前記給排気面より給気流れ方向
前方で燃料と給気を混合し燃焼させ、炉内排ガスを、前
記複数の通気孔のうち排気孔として働いておりかつ通路
断面積の和が前記給気孔として働いている通気孔の通路
断面積の和以上の、通気孔を通して炉外に排出する、工
程からなる工業用炉の燃焼方法。
The present invention to achieve the above object is as follows. (1) A heat storage body divided into a plurality of parts, a hole arranged on one side in the axial direction of the heat storage body, into which a fuel injection nozzle is inserted, a plurality of ventilation holes for switching between supply and discharge, and the ventilation holes A burner tile having an air supply / exhaust surface having an opening, a rotating disk and a fixed disk disposed on the other axial side of the heat storage body and slidably in surface contact with each other, and further comprising a supply / exhaust partition. A wall, wherein the fixed disk has a plurality of through holes, the rotating disk has a plurality of ventilation openings which are communicated and blocked by the rotation of the rotating disk, and the ventilation openings are the partitions. A switching mechanism including an air supply ventilation opening communicating with one side of the wall and an exhaust ventilation opening communicating with the other side of the partition wall, wherein the heat storage element, the burner tile, The switching mechanism is separable from each other, and the heat storage body and the bar An industrial furnace, wherein at least one of the switching mechanism is fixed to the furnace body and forms a part of the furnace body. (2) The sum of the passage cross-sectional areas of the ventilation holes covered by the exhaust ventilation opening among the plurality of ventilation holes provided in the burner tile is the ventilation hole covered by the air supply passage opening. The industry according to (1), wherein a shape and a relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum of the cross-sectional areas of the passages. Furnace. (3) The sum of the volume of the heat storage portion covered by the exhaust passage opening in the heat storage portion divided into a plurality of portions is equal to the volume of the heat storage portion covered by the air supply ventilation opening. The industrial furnace according to (1), wherein a shape and a relative positional relationship between the ventilation opening provided in the rotary disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum. (4) The industrial furnace according to (1), wherein an air supply blower is directly connected to a portion of the switching mechanism that communicates with the air supply ventilation opening. (5) The industrial furnace according to (1), wherein an exhaust fan is directly connected to a portion of the switching mechanism that communicates with the exhaust ventilation opening. (6) A portion of the switching mechanism, which directly connects the air supply blower to the portion of the switching mechanism communicating with the air supply ventilation opening, and a portion of the switching mechanism which communicates with the exhaust ventilation opening of the switching mechanism. The industrial furnace according to (1), which is directly connected to (1). (7) A portion of the switching mechanism that directly connects the air supply blower to the portion that communicates with the air supply ventilation opening, and a portion of the switching mechanism that communicates with the exhaust ventilation opening of the switching mechanism. The industrial furnace according to (1), wherein the supply blower and the exhaust fan are directly driven by the same driving means. (8) The industrial furnace according to (1), wherein the heat storage body is divided into a plurality of heat storage body portions in the axial direction, and a gap for generating a turbulent flow field is provided between the heat storage body portions. (9) The industrial furnace according to (1), further including a partition for separating the heat storage body, the partition extending radially, and the partition wall of the switching mechanism extending in a circumferential direction. (10) The industrial furnace according to (1), wherein the rotating disk is a disk that is rotated only in one direction. (11) The industrial furnace according to (1), wherein the rotating drive means of the rotating disk comprises a motor. (12) The industrial furnace according to (1), wherein a drive motor for rotating a rotating portion of the switching mechanism is installed on a side of the inner and outer peripheries of the partition wall where the air supply ventilation opening is provided. (13) The rotating disk of the switching mechanism is a three-dimensional disk, and the fixed disk side ends of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are on the same circumference. The industrial furnace according to (1), wherein the through holes provided in the fixed disk are shared by air supply and exhaust and are arranged on the same circumference. (14) The rotating disk of the switching mechanism is a three-dimensional disk, and the fixed disk side ends of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are on the same circumference. An air supply passage connected to the air supply opening from the upstream side is connected to the switching mechanism in the axial direction, and an exhaust passage connected to the exhaust air opening from the downstream side is provided. The industrial furnace according to (1), wherein the furnace is connected to the switching mechanism in a direction perpendicular to an axial direction. (15) The industrial furnace according to claim 1, further comprising an exhaust attraction mechanism for ejecting air toward the downstream side of the exhaust flow at a downstream side of the exhaust flow at the exhaust ventilation opening. (16) The industrial furnace according to (1), wherein each part of the plurality of separated heat storage bodies is housed in a cylindrical sleeve. (17) Each part of the heat storage body separated into a plurality is accommodated in a cylindrical sleeve, and the ventilation hole of the burner tile has a funnel-shaped portion expanding toward the upstream side. The industrial furnace according to (1), which is smoothly connected to the cylindrical sleeve via the funnel. (18) The industrial furnace according to (1), wherein the rotating disk and the fixed disk are sealed by metal surface contact, and the rotating disk is pressed against the fixed disk by a spring bias. (19) The industrial furnace according to (1), wherein the ventilation holes provided in the rotating disk have a fan shape, and the through holes provided in the fixed disk also have a fan shape. (20) The industrial furnace according to (1), wherein the rotating disk is a disk that is reciprocally rotated. (21) The industrial furnace according to (1), wherein the driving means for reciprocatingly rotating the rotating disk is an air cylinder. (22) The switching mechanism includes a rotating disk that selectively takes a first position and a second position and that is reciprocated between the first position and the second position. The industrial furnace according to (1), wherein the shutter switches between the first position and the second position without forming a portion through which air supply or exhaust does not flow in a part of the plurality of divided portions. (23) The apparatus further includes a fuel supply amount adjusting mechanism that throttles fuel when the air supply ventilation opening of the rotating disk reaches the portion between the through holes of the fixed disk and the air supply is reduced. ). (24) The industrial furnace according to (1), wherein the exhaust ventilation opening of the rotating disk always takes a position where at least a part thereof is not closed by a portion between the through holes of the fixed disk. (25) The industrial furnace according to (1), wherein the switching mechanism comprises a porous shutter having three or more ventilation openings. (26) The industrial furnace is a melting furnace, a sintering furnace, a preheating furnace,
Soaking furnace, forging furnace, heating furnace, annealing furnace, soaking furnace, plating furnace, drying furnace, tempering furnace, quenching furnace, tempering furnace, redox furnace, baking furnace, baking furnace, roasting furnace, melting and holding Furnace, forehearth, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace 2. The industrial furnace according to claim 1, wherein the furnace is a kind of furnace selected from the group consisting of a nitriding furnace, a salt bath furnace, a glass melting furnace, a boiler including a power boiler, an incinerator including a refuse incinerator, and a hot water supply device. (27) A heat storage body divided into a plurality of portions, a hole arranged on one side in the axial direction of the heat storage body, into which a fuel injection nozzle is inserted, a plurality of ventilation holes for switching between supply and discharge, and the ventilation holes A burner tile having an air supply / exhaust surface having an opening, a rotating disk and a fixed disk disposed on the other axial side of the heat storage body and slidably in surface contact with each other, and further comprising a supply / exhaust partition. A wall, the fixed disk has a plurality of through holes, and the rotating disk has a plurality of ventilation openings that are communicated and blocked by the rotation of the rotating disk,
A switching mechanism including an air supply ventilation opening communicating with one side of the partition wall and an exhaust ventilation opening communicating with the other side of the partition wall; Burner. (28) The sum of the passage cross-sectional areas of the ventilation holes covered by the exhaust ventilation opening among the plurality of ventilation holes provided in the burner tile is the ventilation hole covered by the air supply ventilation opening. (27) The heat storage according to (27), wherein the shape and the relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum of the cross-sectional areas of the passages. Burner for combustion. (29) The heat storage combustion burner according to (27), wherein the air supply blower is directly connected to a portion of the switching mechanism that communicates with the air supply ventilation opening. (30) The heat storage combustion burner according to (27), wherein an exhaust fan is directly connected to a portion of the switching mechanism that communicates with the exhaust ventilation opening. (31) A portion of the switching mechanism that directly connects the air supply blower to the portion that communicates with the air supply ventilation opening, and a portion of the switching mechanism that communicates with the exhaust ventilation opening of the switching mechanism. (27) The burner for heat storage combustion according to (27), which is directly connected to. (32) A portion of the switching mechanism that directly connects the air supply blower to the portion that communicates with the air supply ventilation opening, and a portion of the switching mechanism that communicates with the exhaust ventilation opening of the switching mechanism. (27), wherein the air supply blower and the exhaust fan are driven by the same driving means. (33) The sum of the volume of the heat storage portion covered by the exhaust passage opening in the heat storage portion divided into a plurality of portions is equal to the volume of the heat storage portion covered by the air supply ventilation opening. (27) The heat storage combustion burner according to (27), wherein a shape and a relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum. (34) The heat storage and combustion burner according to (27), further including a partition for separating the heat storage body, the partition extending radially, and the partition wall of the switching mechanism extending in a circumferential direction. (35) The heat storage combustion burner according to (27), wherein the heat storage element is divided into a plurality of heat storage elements in the axial direction, and a gap for generating a turbulent flow field is provided between the heat storage elements. (36) The heat storage combustion burner according to (27), wherein the rotating disk is a disk that is rotated only in one direction. (37) The heat storage combustion burner according to (27), wherein the rotation drive means of the rotary disk comprises a motor. (38) The heat storage combustion burner according to (27), wherein a drive motor for rotating a rotating portion of the switching mechanism is installed on a side of the inner and outer peripheries of the partition wall where an air supply ventilation opening is provided. (39) The rotating disk of the switching mechanism is formed of a three-dimensional disk, and the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are provided on the same circumference, and the fixed disk is fixed. (27) The burner for heat storage combustion according to (27), wherein the through-hole provided in the disk is shared by the air supply and the exhaust and is arranged on the same circumference. (40) The rotating disk of the switching mechanism is a three-dimensional disk, and the fixed disk side ends of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are on the same circumference. An air supply passage connected to the air supply opening from the upstream side is connected to the switching mechanism in the axial direction, and an exhaust passage connected to the exhaust air opening from the downstream side is provided. The heat storage combustion burner according to (27), wherein the burner is connected to the switching mechanism in a direction perpendicular to an axial direction. (41) The heat storage combustion burner according to (27), further comprising an exhaust attraction mechanism for ejecting air toward a downstream side of the exhaust flow at a downstream side of the exhaust flow at the exhaust ventilation opening. (42) The heat storage combustion burner according to (27), wherein each of the plurality of separated heat storage bodies is accommodated in a cylindrical sleeve. (43) The respective portions of the heat storage body separated into a plurality of pieces are accommodated in a cylindrical sleeve, and the ventilation hole of the burner tile has a funnel-shaped portion expanding toward the upstream side. (27) The burner for heat storage combustion according to (27), wherein the burner is smoothly connected to the cylindrical sleeve via the funnel-shaped portion. (44) The burner according to (27), wherein the rotating disk and the fixed disk are sealed by metal surface contact, and the rotating disk is pressed against the fixed disk by a spring. (45) The heat storage combustion burner according to (27), wherein the ventilation holes provided in the rotating disk have a fan shape, and the through holes provided in the fixed disk also have a fan shape. (46) The burner for heat storage combustion according to (27), wherein the rotating disk is a disk that is reciprocally rotated. (47) The heat storage combustion burner according to (27), wherein the driving means for reciprocatingly rotating the rotating disk is an air cylinder. (48) The switching mechanism includes a rotating disk that selectively takes a first position and a second position and that is reciprocated between the first position and the second position. (27) The burner for heat storage combustion according to (27), wherein the shutter switches between the first position and the second position without forming a portion through which air supply or exhaust does not flow in a part of the plurality of divided portions. (49) There is further provided a fuel supply amount adjusting mechanism that throttles fuel when the air supply ventilation opening of the rotating disk reaches the portion between the through holes of the fixed disk and the air supply is reduced. ). (50) The heat storage combustion burner according to claim 27, wherein the exhaust ventilation opening of the rotating disk always takes a position at least a part of which is not closed by a portion between the through holes of the fixed disk. (51) The heat storage combustion burner according to (27), wherein the switching mechanism comprises a porous shutter having three or more ventilation openings. (52) Supplying air into the furnace through a ventilation hole serving as an air supply hole among a plurality of ventilation holes opened and closed in the air supply / exhaust surface, and provided in front of the air supply / exhaust surface in the air flow direction. The fuel and the air supply are mixed and burned, and the furnace exhaust gas is discharged from the plurality of vents, and the sum of the cross-sectional areas of the passages is the sum of the cross-sectional areas of the vents serving as the air supply holes. The method for burning an industrial furnace, comprising the steps of discharging to the outside of the furnace through the vent hole as described above.

【0005】上記(1)の工業用炉および上記(27)
の蓄熱燃焼用バーナでは、切替機構が、互いに摺動可能
に面接触された回転ディスクと固定ディスクとを有して
いるため、回転ディスクと蓄熱体の隔壁端面との摺動接
触に比べて接触面積を大きくとれ、したがって回転ディ
スクと固定ディスクとの間のシール性が良好である。そ
のため、給気通気用開口部から回転ディスクと固定ディ
スクとの面接触の極小の隙間を通って排気通気用開口部
へと抜ける給気量が抑えられ、給気のうち実際に燃焼に
用いられる部分の割合が増え、効率が向上される。ま
た、高シール性のため給気圧力も高められ、炉内への吹
出し流速も大になる。上記(2)の工業用炉および上記
(28)の蓄熱燃焼用バーナ並びに上記(52)の工業
用炉の燃焼方法では、排気通気孔として働く通気孔の通
路断面積が給気通気孔として働く通気孔の通路断面積以
上になるため、給気通気孔として働く通気孔を通る給気
の流速を従来炉に比べて高くすることができる。給気流
速が高くなると、燃料が給気に強く随伴して流れるとと
もに、炉内排ガスも給気に巻込まれて強循環する。燃料
が給気に強く随伴して流れると、燃料の排気孔への短絡
流が抑制され、燃料の不完全燃焼、COの生成が抑制さ
れる。また、炉内排ガスが給気に巻込まれて炉内で強循
環すると、燃焼が緩慢化し(いわゆるEGR効果)、高
温時のNOx生成を抑制できる。また、燃焼の緩慢化に
よって燃焼領域が炉の奥に向って長く延びるとともに燃
焼領域の温度が平均化する。したがって、温度差の大き
い従来の燃焼領域に比べて燃焼領域全体の温度を許容温
度近く迄上げることができる。その結果、平均熱流束を
上げることができ、高効率伝熱(ふく射伝熱を大幅に向
上できる)が可能になり、同じ伝熱量を達成させる場合
には、炉体のコンパクト化、スペース効率の向上、イニ
シャルコストの低減がはかられる。また、燃焼温度の平
均化によって、炉壁が局所的に高温になることが回避さ
れ、炉体の長寿命化、メンテナンスコストの低減、イニ
シャルコストの低減がはかられる。さらに、燃焼が緩慢
になることにより、燃焼騒音も小さくなる。上記(3)
の工業用炉および上記(29)の蓄熱燃焼用バーナで
は、排気流速が低減するので、蓄熱体が排ガスの熱を奪
いやすく(排ガスの熱が蓄熱体に蓄熱されやすく)、熱
回収効率が向上する。上記(4)の工業用炉および上記
(30)の蓄熱燃焼用バーナでは、給気用ブロワを切替
機構に直結したので設備がコンパクトになる。上記
(5)の工業用炉および上記(31)の蓄熱燃焼用バー
ナでは、排気用ブロワを切替機構に直結したので設備が
コンパクトになるとともに、排気用ファンを設けたため
炉内圧力を低減できる。上記(6)の工業用炉および上
記(32)の蓄熱燃焼用バーナでは、給気用ブロワを切
替機構に直結するとともに、排気用ファンを切替機構に
直結したので、設備がコンパクトになるとともに、排気
用ファンを設けたため炉内圧力を低減できる。上記
(7)の工業用炉および上記(33)の蓄熱燃焼用バー
ナでは、給気用ブロワを切替機構に直結するとともに、
排気用ファンを切替機構に直結し、給気用ブロワと排気
用ファンを同一の駆動手段で駆動したので、駆動手段を
別々に設ける場合に比べて設備費の低減、設置スペース
の低減をはかることができる。上記(8)の工業用炉お
よび上記(34)の蓄熱燃焼用バーナでは、蓄熱体を軸
方向に複数の蓄熱体部分に分割して蓄熱体部分間に隙間
を設けたので、隙間の部分でガスの流れに乱流を生成す
ることができ、熱伝達係数を大にでき、排気から蓄熱体
へ、さらに蓄熱体から給気への伝熱を高めることができ
る。
[0005] The industrial furnace of (1) and (27)
In the heat storage combustion burner, the switching mechanism has a rotating disk and a fixed disk that are slidably brought into surface contact with each other, so that the rotating disk is in contact with the rotating storage and the end face of the partition wall of the heat storage body as compared with the sliding contact. A large area can be taken, so that the sealing property between the rotating disk and the fixed disk is good. Therefore, the amount of air supplied from the air supply opening to the exhaust air opening through the extremely small gap of the surface contact between the rotating disk and the fixed disk is suppressed, and the air supply is actually used for combustion. The proportion of the parts is increased and the efficiency is improved. In addition, the air supply pressure is increased due to the high sealing property, and the flow velocity of the air blown into the furnace is increased. In the industrial furnace of (2), the regenerative combustion burner of (28), and the combustion method of the industrial furnace of (52), the passage cross-sectional area of the vent serving as the exhaust vent serves as the supply vent. Since the cross-sectional area is equal to or larger than the passage cross-sectional area of the ventilation hole, the flow rate of the supply air through the ventilation hole serving as the supply air hole can be increased as compared with the conventional furnace. When the air supply flow rate becomes high, the fuel flows strongly accompanying the air supply, and the furnace exhaust gas is also entrained in the air supply and circulates strongly. When the fuel flows strongly accompanying the air supply, the short-circuit flow of the fuel to the exhaust hole is suppressed, and the incomplete combustion of the fuel and the generation of CO are suppressed. Further, when the exhaust gas in the furnace is entrained in the supply air and is strongly circulated in the furnace, the combustion is slowed down (so-called EGR effect), and the generation of NOx at high temperatures can be suppressed. In addition, the slowing of the combustion extends the combustion region long toward the back of the furnace, and averages the temperature of the combustion region. Therefore, the temperature of the entire combustion region can be increased to near the allowable temperature as compared with the conventional combustion region having a large temperature difference. As a result, the average heat flux can be increased, and high-efficiency heat transfer can be achieved (radiation heat transfer can be greatly improved). To achieve the same heat transfer, the furnace can be made more compact and space efficiency can be reduced. Improvement and reduction of initial cost can be achieved. In addition, by averaging the combustion temperature, it is possible to prevent the furnace wall from being locally heated to a high temperature, thereby increasing the life of the furnace body, reducing maintenance costs, and reducing initial costs. Furthermore, the slow combustion reduces the combustion noise. The above (3)
In the industrial furnace and the heat storage combustion burner of (29), the exhaust gas flow rate is reduced, so that the heat storage body easily takes heat of the exhaust gas (heat of the exhaust gas is easily stored in the heat storage body), and the heat recovery efficiency is improved. I do. In the industrial furnace of (4) and the heat storage combustion burner of (30), the equipment is compact because the air supply blower is directly connected to the switching mechanism. In the industrial furnace of the above (5) and the heat storage combustion burner of the above (31), the exhaust blower is directly connected to the switching mechanism, so that the equipment becomes compact, and the pressure in the furnace can be reduced because the exhaust fan is provided. In the industrial furnace of (6) and the heat storage combustion burner of (32), the air supply blower is directly connected to the switching mechanism, and the exhaust fan is directly connected to the switching mechanism. Since the exhaust fan is provided, the furnace pressure can be reduced. In the industrial furnace (7) and the heat storage combustion burner (33), the air supply blower is directly connected to the switching mechanism.
Since the exhaust fan is directly connected to the switching mechanism, and the air supply blower and exhaust fan are driven by the same driving means, equipment costs and installation space are reduced compared to the case where separate driving means are provided. Can be. In the industrial furnace of the above (8) and the heat storage combustion burner of the above (34), the heat storage is divided into a plurality of heat storages in the axial direction and the gap is provided between the heat storages. Turbulence can be generated in the gas flow, the heat transfer coefficient can be increased, and the heat transfer from the exhaust gas to the heat accumulator and from the heat accumulator to the air supply can be enhanced.

【0006】上記(9)の工業用炉および上記(35)
の蓄熱燃焼用バーナでは、蓄熱体隔壁が放射状に延びて
いるため切替機構に回転ディスク構造をとることができ
る。また、切替機構の仕切壁が周方向に延びているの
で、装置の切替機構の内、外周の何れを比較的低温にし
たいかに対して容易に対応できる。上記(10)の工業
用炉および上記(36)の蓄熱燃焼用バーナでは、回転
ディスクが一方向に回転するので、容易に蓄熱体の周方
向全体部分に順次ガスを流すことができ、その場合、給
排気が通過する蓄熱体の部分が一方向に順次切替わる。
上記(11)の工業用炉および上記(37)の蓄熱燃焼
用バーナでは、回転ディスクをモータにて回転するの
で、一方向のみ何回転でも容易に回転できる。上記(1
2)の工業用炉および上記(38)の蓄熱燃焼用バーナ
では、低温側に切替機構の駆動モータを設置したので、
駆動系が低温雰囲気内に設置され、故障を生じにくい。
The industrial furnace according to the above (9) and the industrial furnace (35) above
In the burner for heat storage combustion described above, since the heat storage partition walls extend radially, the switching mechanism can have a rotating disk structure. In addition, since the partition wall of the switching mechanism extends in the circumferential direction, it is possible to easily cope with which one of the switching mechanisms of the apparatus, the outer circumference of which is desired to have a relatively low temperature. In the industrial furnace of (10) and the heat storage combustion burner of (36), the rotating disk rotates in one direction, so that the gas can easily flow sequentially over the entire circumferential direction of the heat storage body. Then, the portion of the heat storage body through which the supply and exhaust passes is sequentially switched in one direction.
In the industrial furnace of (11) and the heat storage combustion burner of (37), since the rotating disk is rotated by the motor, any number of rotations in one direction can be easily performed. The above (1
In the industrial furnace of 2) and the regenerative combustion burner of (38), the drive motor of the switching mechanism is installed on the low temperature side.
The drive system is installed in a low-temperature atmosphere, and failures are unlikely to occur.

【0007】上記(13)の工業用炉および上記(3
9)の蓄熱燃焼用バーナでは、回転ディスクの給気通気
用孔と排気通気用孔とを同一円周上に配置するとともに
固定ディスクの貫通孔を給排とも同一円周上に配置した
ので、通気用孔も貫通孔も大きくでき、切替機構部分で
の流れの圧損を少なくすることができる。また、固定デ
ィスクに設けられた貫通孔を給排に共用したので、切替
機構の可動部分を小さくでき、ディスクの熱歪みが大と
なる比較的大容量のバーナにも適用できる。上記(1
4)の工業用炉および上記(40)の蓄熱燃焼用バーナ
では、給気通路と排気通路の一方を切替機構に軸方向か
ら他方を切替機構に軸方向と直交方向から接続したの
で、給気通路と排気通路を互いから離すことができ、排
気の高温の影響を大きく受けることなく、駆動機構等の
部品を切替機構に組付けることができる。上記(15)
の工業用炉および上記(41)の蓄熱燃焼用バーナで
は、排気通気用開口部の下流側に排気誘引機構が設けて
あり、ここに給気の余剰分を流すこと等により、特別に
吸引ブロワ、ファン等を設けなくて済み(ただし、設け
てもよい)、設備は小型のままで済む。また、燃焼負荷
に応じて給気を増減することによって、吸引力もリアル
タイムに増減するので、インバータやコントロールモー
タ等による給排気制御を必要としない。
The industrial furnace of (13) and the (3)
In the heat storage and combustion burner of 9), the air supply ventilation hole and the exhaust ventilation hole of the rotating disk are arranged on the same circumference, and the fixed disk through hole is arranged on the same circumference for both supply and discharge. Both the ventilation hole and the through hole can be made large, and the pressure loss of the flow at the switching mechanism can be reduced. In addition, since the through-hole provided in the fixed disk is shared for supply and discharge, the movable portion of the switching mechanism can be reduced, and the invention can be applied to a relatively large-capacity burner in which the thermal distortion of the disk is large. The above (1
In the industrial furnace of 4) and the heat storage combustion burner of (40), one of the air supply passage and the exhaust passage is connected to the switching mechanism in the axial direction, and the other is connected to the switching mechanism in the axial direction and orthogonal to the axial direction. The passage and the exhaust passage can be separated from each other, and components such as the drive mechanism can be assembled to the switching mechanism without being greatly affected by the high temperature of the exhaust gas. The above (15)
In the industrial furnace and the regenerative combustion burner of (41), an exhaust attraction mechanism is provided on the downstream side of the exhaust ventilation opening, and a special suction blower is provided by flowing excess air supply therethrough. , A fan or the like need not be provided (although it may be provided), and the equipment can be kept small. Further, by increasing or decreasing the supply air according to the combustion load, the suction force also increases or decreases in real time, so that supply / exhaust control by an inverter, a control motor or the like is not required.

【0008】上記(16)の工業用炉および上記(4
2)の蓄熱燃焼用バーナでは、蓄熱体を円筒状スリーブ
内に収納するようにしたので、放射状の隔壁に比べて製
作が容易となり、かつ蓄熱体の交換が容易となる。上記
(17)の工業用炉および上記(43)の蓄熱燃焼用バ
ーナでは、蓄熱体を円筒状スリーブ内に収納するように
するとともに、ロート状部を介して円筒状スリーブとバ
ーナタイルの通気孔とを接続したので、流れの通路に段
部が形成されず、流れの圧力損失を小さくすることがで
きるとともに、通気孔を出るときの給気の指向性を強め
ることができる。上記(18)の工業用炉および上記
(44)の蓄熱燃焼用バーナでは、回転ディスクと固定
ディスクとの間のシールをメタルタッチシールとして、
回転部にOリングを使用しないようにしたので、シール
の信頼性が高まる。上記(19)の工業用炉および上記
(45)の蓄熱燃焼用バーナでは、回転ディスクの通気
用開口部も固定ディスクの貫通孔も扇形状としたので、
開口面積を大きくとることができ、流れの圧力損失を小
さくすることができる。
The industrial furnace according to the above (16) and the industrial furnace (4)
In the heat storage combustion burner of 2), since the heat storage is accommodated in the cylindrical sleeve, the manufacture is easier and the replacement of the heat storage is easier as compared with the radial partition. In the industrial furnace of (17) and the heat storage combustion burner of (43), the heat storage body is accommodated in the cylindrical sleeve, and the ventilation hole of the cylindrical sleeve and the burner tile is provided through the funnel-shaped part. Is connected, no step is formed in the flow passage, the pressure loss of the flow can be reduced, and the directivity of air supply when exiting the vent hole can be enhanced. In the industrial furnace of the above (18) and the heat storage combustion burner of the above (44), the seal between the rotating disk and the fixed disk is a metal touch seal.
Since the O-ring is not used in the rotating part, the reliability of the seal is improved. In the industrial furnace of (19) and the burner for heat storage and combustion of (45), both the ventilation opening of the rotating disk and the through-hole of the fixed disk are fan-shaped.
The opening area can be increased, and the pressure loss of the flow can be reduced.

【0009】上記(20)の工業用炉および上記(4
6)の蓄熱燃焼用バーナでは、回転ディスクが往復回動
されるので、駆動手段にエアシリンダを利用できる。上
記(21)の工業用炉および上記(47)の蓄熱燃焼用
バーナでは、回転ディスクの駆動手段がエアシリンダか
らなるので、切替えが瞬時に行える。上記(22)の工
業用炉および上記(48)の蓄熱燃焼用バーナでは、回
転ディスクは第1の位置と第2の位置との間に往復回動
される。この回動はシリンダを用いて行うことができる
ので、モータ等による一方向回転による切替えに比べて
切替え速度ははやく、瞬時シャッタを構成している。切
替えにおいては、複数に分離された蓄熱体の全ての部分
に常に給排気の少なくとも一方が流され、分離された蓄
熱体部分の一部に休止状態が生じないようにされてい
る。上記(23)の工業用炉および上記(49)の蓄熱
燃焼用バーナでは、回転ディスクの給気通気用開口部が
固定ディスクの貫通孔間部位にくると給気通気用開口は
通路断面積が絞られまたは閉塞されるが、その時には、
燃料供給量調整機構が燃料量を絞るので、空気と燃料の
比はほぼ一定に保たれる。なお、給気通気用開口部が貫
通孔間部位によって完全に閉塞されても、一次空気パイ
プから一次空気が供給されるようになっているので、空
気の供給が完全に停止することはなく、連続燃焼が可能
である。上記(24)の工業用炉および上記(50)の
蓄熱燃焼用バーナでは、切替えシャッタの排気通気用開
口部は、絞られても完全には閉塞されないようになって
いるので、連続燃焼が可能である。
[0009] The industrial furnace of the above (20) and the above (4)
In the heat storage combustion burner of 6), since the rotating disk is reciprocated, the air cylinder can be used as the driving means. In the industrial furnace (21) and the regenerative combustion burner (47), switching can be performed instantaneously because the rotating disk drive means is an air cylinder. In the industrial furnace (22) and the regenerative combustion burner (48), the rotating disk is reciprocated between the first position and the second position. Since this rotation can be performed using a cylinder, the switching speed is faster than switching by one-way rotation by a motor or the like, and an instant shutter is formed. In the switching, at least one of the supply and exhaust air is always supplied to all portions of the plurality of separated heat storage units, so that a rest state does not occur in a part of the separated heat storage units. In the industrial furnace of (23) and the heat storage combustion burner of (49), when the air supply ventilation opening of the rotary disk comes to a portion between the through holes of the fixed disk, the air supply ventilation opening has a passage sectional area. Squeezed or blocked, at which time
Since the fuel supply adjustment mechanism throttles the amount of fuel, the ratio of air to fuel is kept substantially constant. In addition, even if the air supply ventilation opening is completely closed by the portion between the through holes, since the primary air is supplied from the primary air pipe, the supply of air does not stop completely, Continuous combustion is possible. In the industrial furnace of (24) and the heat storage combustion burner of (50), the exhaust ventilation opening of the switching shutter is not completely closed even if it is narrowed, so that continuous combustion is possible. It is.

【0010】上記(25)の工業用炉および上記(5
1)の蓄熱燃焼用バーナでは、多孔式シャッタの採用に
よって蓄熱体の全ての部分にほぼ均等に給排気が流れ、
蓄熱体が有効利用されて、実質的に蓄熱体をコンパクト
にできる。さらに、蓄熱体の熱的均一化をはかれるの
で、蓄熱体の耐熱疲労特性も向上し、寿命が延びる。上
記(26)の工業用炉では、列記された各種の工業用炉
に本発明が適用される。
The industrial furnace of (25) and (5)
In the heat storage combustion burner of 1), the supply and exhaust flow to all parts of the heat storage body almost uniformly by adopting the porous shutter.
The heat storage body is effectively used, and the heat storage body can be made substantially compact. Further, since the thermal storage is thermally uniformed, the thermal fatigue resistance of the thermal storage is also improved, and the life is extended. In the industrial furnace of the above (26), the present invention is applied to the various industrial furnaces listed.

【0011】[0011]

【発明の実施の形態】以下に、本発明の望ましい実施例
を図面を参照して説明する。図中、図1〜図4、図5、
図6、図16、図17は本発明の第1実施例に係る工業
用炉および蓄熱燃焼用バーナ並びに工業用炉の燃焼方法
の構成を、図7、図8は本発明の第2実施例に係る工業
用炉および蓄熱燃焼用バーナの構成を、図9〜図11は
本発明の第3実施例に係る工業用炉および蓄熱燃焼用バ
ーナの構成を、図12、図13は本発明の第4実施例に
係る工業用炉および蓄熱燃焼用バーナの構成を、図1
4、図15は本発明の第5実施例に係る工業用炉および
蓄熱燃焼用バーナの構成を、示している。図18は比較
例(従来例)を示している。本発明の全実施例にわたっ
て共通かまたは類似の構成部分には、本発明の全実施例
にわたって同じ符号を付してある。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the figures, FIGS.
FIGS. 6, 16 and 17 show the configuration of an industrial furnace, a regenerative combustion burner and a method of burning an industrial furnace according to a first embodiment of the present invention, and FIGS. 7 and 8 show a second embodiment of the present invention. 9 to 11 show the configuration of an industrial furnace and a regenerative combustion burner according to the third embodiment of the present invention, and FIGS. FIG. 1 shows a configuration of an industrial furnace and a regenerative combustion burner according to a fourth embodiment.
4 and FIG. 15 show configurations of an industrial furnace and a heat storage combustion burner according to a fifth embodiment of the present invention. FIG. 18 shows a comparative example (conventional example). Components that are common or similar throughout all embodiments of the present invention are given the same reference numerals throughout all embodiments of the present invention.

【0012】本発明は、工業用炉100および蓄熱燃焼
用バーナ1の何れにも適用可能である。本発明が工業用
炉に適用される場合は、たとえば、蓄熱燃焼用バーナが
複数の部分に分離可能な構造を有し、そのうちの一部
(たとえば、後述するバーナタイル、またはバーナタイ
ルと枠体、等)が工業用炉100の炉体5に固定されて
炉体側の部材または炉体の一部を構成している場合を含
む。また、本発明が適用される工業用炉100には、溶
解炉、焼結炉、予熱炉、均熱炉、鍛造炉、加熱炉、焼鈍
炉、容体化炉、メッキ炉、乾燥炉、調質炉、焼入れ炉、
焼もどし炉、酸化還元炉、焼成炉、焼付炉、焙焼炉、溶
解保持炉、前炉、ルツボ炉、ホモジナイジング炉、エー
ジング炉、反応炉、蒸留炉、取鍋乾燥予熱炉、鋳型焼成
予熱炉、焼準炉、ロー付け炉、浸炭炉、塗装乾燥炉、保
持炉、窒化炉、ソルトバス炉、ガラス溶解炉、発電用ボ
イラを含むボイラ、ごみ焼却炉を含む焼却炉、給湯装
置、等が含まれるものとする。
The present invention is applicable to both the industrial furnace 100 and the burner 1 for heat storage combustion. When the present invention is applied to an industrial furnace, for example, the regenerative combustion burner has a structure that can be separated into a plurality of parts, and a part of them (for example, a burner tile described later, or a burner tile and a frame body). , Etc.) are fixed to the furnace body 5 of the industrial furnace 100 to form a member on the furnace body side or a part of the furnace body. The industrial furnace 100 to which the present invention is applied includes a melting furnace, a sintering furnace, a preheating furnace, a soaking furnace, a forging furnace, a heating furnace, an annealing furnace, a soaking furnace, a plating furnace, a drying furnace, and a refining furnace. Furnace, quenching furnace,
Tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding furnace, forehearth, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing Preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace, nitriding furnace, salt bath furnace, glass melting furnace, boiler including power generation boiler, incinerator including waste incinerator, hot water supply device, Etc. shall be included.

【0013】まず、本発明の全実施例にわたって共通な
構成部分を、たとえば図1〜図6、図16、図17を参
照して、説明する。図1、図2に示すように、工業用炉
100および蓄熱燃焼用バーナ1は、給気通路2を介し
て給気送風手段(たとえば、ブロワ、コンプレッサ等)
4に接続されている。排気は排気通路3を介して排気さ
れ、排気通路3には排気誘引ファン101(排気ファ
ン)が必要に応じて設けられる。給気ブロワ4は、望ま
しくはは、バーナ本体(切替機構40の部分)に直結さ
れ、また排気ファン101が設けられる場合は排気ファ
ン101もバーナ本体に直結されている。この直結構造
は装置をコンパクトにするためである。排気ファン10
1が設けられる場合は、給気ブロワ4および排気ファン
101は、部品点数低減および設置スペース低減のため
に同一の駆動モータ102により駆動される。一方、燃
料噴射ノズル20からの燃料と、パイロット空気と、給
気通気用開口部42から蓄熱体30を通って流れてきた
給気は、炉100内に送り込まれる。切替機構40は、
給気と排気の蓄熱体分割部分への流れを、所定時間間隔
毎(たとえば、数秒〜数分毎、望ましくは、6秒〜30
秒毎)に切替える。給気は蓄熱体30の上流側でたとえ
ば約20℃であったものが、蓄熱体30を通るときに温
められ、空気噴射ノズル(通気孔)26から燃焼用空気
となって流れ出るときにはたとえば約900℃となり、
排ガス流となって蓄熱体30に入るときはたとえば約1
000℃となり、蓄熱体30を通るときに蓄熱体の温度
を上げて自身はたとえば約200℃に温度が低下され
る。ついで、切替機構40が給排気を切替え、それまで
排気が流れていたところに給気を通し、それまで給気が
流れていたところに排気を通す。かくして排気の熱は蓄
熱体30に蓄熱され、給気に切替えられたときに蓄熱し
た熱で給気を温める。
First, components common to all embodiments of the present invention will be described with reference to, for example, FIGS. 1 to 6, FIG. 16, and FIG. As shown in FIGS. 1 and 2, an industrial furnace 100 and a regenerative combustion burner 1 are provided with a supply air blower (for example, a blower, a compressor, or the like) via a supply passage 2.
4 is connected. The exhaust gas is exhausted through the exhaust passage 3, and an exhaust induction fan 101 (exhaust fan) is provided in the exhaust passage 3 as necessary. Desirably, the air supply blower 4 is directly connected to the burner main body (the portion of the switching mechanism 40), and when the exhaust fan 101 is provided, the exhaust fan 101 is also directly connected to the burner main body. This direct connection structure is to make the device compact. Exhaust fan 10
When 1 is provided, the air supply blower 4 and the exhaust fan 101 are driven by the same drive motor 102 to reduce the number of components and the installation space. On the other hand, the fuel from the fuel injection nozzle 20, the pilot air, and the supply air flowing through the regenerator 30 from the supply air opening 42 are sent into the furnace 100. The switching mechanism 40
The flow of the supply air and the exhaust gas to the heat storage body divided portion is performed at predetermined time intervals (for example, every several seconds to several minutes, preferably, for 6 seconds to 30 minutes).
(Every second). The supply air is, for example, about 20 ° C. on the upstream side of the heat storage body 30, is heated when passing through the heat storage body 30, and flows out of the air injection nozzle (vent) 26 as combustion air, for example, about 900 ° C. ° C
When entering the regenerator 30 as an exhaust gas flow, for example, about 1
000 ° C., and the temperature of the heat storage body is increased when passing through the heat storage body 30 to lower itself to, for example, about 200 ° C. Next, the switching mechanism 40 switches between the supply and the exhaust, and supplies the air to the place where the exhaust has been flowing, and the exhaust to the place where the supply has been flowing. Thus, the heat of the exhaust gas is stored in the heat storage body 30, and when switched to the supply air, the supply air is warmed by the stored heat.

【0014】図1、図2に示すように、本発明実施例の
工業用炉100および蓄熱燃焼用バーナ1は、周方向に
複数の部分に分離された蓄熱体30と、蓄熱体30の軸
方向一側に配置され燃料噴射ノズル20が挿入される穴
と給排が切り替わる通気孔27と通気孔27が開口する
給排気面23とを有するバーナタイル22と、蓄熱体3
0の軸方向他側に配置された切替機構40と、を有す
る。工業用炉100および蓄熱燃焼用バーナ1は、さら
に、燃料噴射ノズル20、蓄熱体30、および切替機構
40を内部に組みつけた枠体10を有している場合もあ
る。
As shown in FIGS. 1 and 2, an industrial furnace 100 and a regenerative combustion burner 1 according to an embodiment of the present invention include a regenerator 30 divided into a plurality of portions in a circumferential direction, and a shaft of the regenerator 30. A burner tile 22 having a hole which is disposed on one side in the direction and into which a fuel injection nozzle 20 is inserted, a ventilation hole 27 for switching between supply and discharge, and a supply / exhaust surface 23 where the ventilation hole 27 is opened;
And a switching mechanism 40 disposed on the other side in the 0 axial direction. The industrial furnace 100 and the heat storage combustion burner 1 may further include a frame 10 in which a fuel injection nozzle 20, a heat storage body 30, and a switching mechanism 40 are assembled.

【0015】図2は、工業用炉100および蓄熱燃焼用
バーナ1の一例を拡大して示している。蓄熱体30はセ
ラミックス、耐熱金属、等の耐熱材からなり、ガスとの
接触面積を大とするために、望ましくはモノリスハニカ
ム構造としてある。ただしガスとの接触面積を大とする
構造はハニカム構造に限るものではなく、たとえば線材
や細い径のパイプを束ねた構造等であってもよい。蓄熱
体30は軸方向にガスを通過させる。蓄熱体30は、温
度勾配によるクラックの発生防止上および製作容易上軸
方向にも複数の蓄熱体部分に分割されている。蓄熱体3
0が軸方向に複数の蓄熱体部分に分割される場合は、組
み立てるときに蓄熱体部分間に耐熱材からなるスペーサ
32を介在させて蓄熱体部分間に若干の(たとえば、約
3〜5mm)隙間33を形成し、乱流を生成させるよう
にすることが望ましい。乱流場33を設けることによっ
て排気から蓄熱体30への、かつ蓄熱体30から給気へ
の熱伝達が向上される。燃料噴射ノズル20は、バーナ
中心部で軸方向に延び、それと同芯状に一次空気(パイ
ロットエア)パイプ21が延びていて、燃料噴射ノズル
20の外周面と一次空気パイプ21の内周面との間の環
状通路を一次空気が流れるようになっている。燃料噴射
ノズル20は、先端部を除いて電気絶縁材、たとえば碍
子、で覆われており、電気絶縁材で覆われていない先端
部に燃料の一部をパイロット燃料として吐出するパイロ
ット燃料吐出口20aを設け、そこから吐出されるパイ
ロット燃料に、電気絶縁材で覆われていない燃料噴射ノ
ズル先端部と一次空気パイプ21との間に電気的に火花
をとばして、着火させるようになっている。図3、図4
はバーナタイル22の詳細構造を示している。バーナタ
イル22は耐火材からなり、給排気面23と、そこから
突出された突出部24と、突出部24の内側に形成され
た燃料/一次空気混合物が流出する燃料開放面25を有
している。燃料開放面25は、望ましくは、下流側にい
くにしたがい拡がる末拡がり(テーパ、R形状等)構造
とされている。ただし、燃料開放面25を先端までスト
レートに形成してもよい。給排気面23には複数の通気
孔26が開口しており、通気孔26は、切替機構40に
よる給排気の切替によってある時は給気孔となりある時
は排気孔となる。通気孔26の給排気面23への開口端
には、排気の通気孔26への流れ込みを円滑にするため
に、望ましくは、湾曲26Rが設けられている。
FIG. 2 shows an enlarged example of the industrial furnace 100 and the burner 1 for regenerative combustion. The heat storage body 30 is made of a heat-resistant material such as ceramics or heat-resistant metal, and preferably has a monolith honeycomb structure in order to increase the contact area with the gas. However, the structure for increasing the contact area with the gas is not limited to the honeycomb structure, but may be, for example, a structure in which wires or small-diameter pipes are bundled. The heat storage body 30 allows gas to pass in the axial direction. The heat storage element 30 is also divided into a plurality of heat storage elements in the axial direction in order to prevent the occurrence of cracks due to the temperature gradient and to facilitate manufacture. Thermal storage 3
In the case where 0 is divided into a plurality of heat storage portions in the axial direction, spacers 32 made of a heat-resistant material are interposed between the heat storage portions at the time of assembling, and a slight distance (for example, about 3 to 5 mm) is provided between the heat storage portions. It is desirable to form the gap 33 to generate turbulence. By providing the turbulence field 33, heat transfer from the exhaust gas to the heat storage body 30 and from the heat storage body 30 to the supply air is improved. The fuel injection nozzle 20 extends in the axial direction at the center of the burner, and a primary air (pilot air) pipe 21 extends coaxially therewith. The outer peripheral surface of the fuel injection nozzle 20 and the inner peripheral surface of the primary air pipe 21 The primary air flows through the annular passage between the two. The fuel injection nozzle 20 is covered with an electrical insulating material, for example, an insulator, except for the tip, and a pilot fuel outlet 20a that discharges a part of the fuel as pilot fuel to the tip not covered with the electrical insulating material. Is provided, and the pilot fuel discharged therefrom is electrically sparked between the tip of the fuel injection nozzle not covered with the electric insulating material and the primary air pipe 21 to ignite. 3 and 4
Shows the detailed structure of the burner tile 22. The burner tile 22 is made of a refractory material and has a supply / exhaust surface 23, a protrusion 24 protruding therefrom, and a fuel release surface 25 formed inside the protrusion 24 and through which the fuel / primary air mixture flows out. I have. Desirably, the fuel release surface 25 has a flared (tapered, R-shaped, or the like) structure that expands toward the downstream side. However, the fuel release surface 25 may be formed straight up to the tip. A plurality of air holes 26 are opened in the air supply / exhaust surface 23, and the air holes 26 become air supply holes at some times due to switching of air supply and exhaust by the switching mechanism 40, and become air exhaust holes at some times. A curved portion 26R is desirably provided at an open end of the ventilation hole 26 to the air supply / exhaust surface 23 in order to smoothly flow exhaust gas into the ventilation hole 26.

【0016】突出部24の外周面には軸方向に延びるエ
アガイド溝27が形成されている。ただし、エアガイド
溝27は必須のものではない。エアガイド溝27と孔2
6は軸方向に一致しており、孔26を通って流出される
給気(二次空気、メインエア)は、少なくとも一部がエ
アガイド溝27を通って指向性の強い流れ28Aとな
る。この流れ28Aに燃料/一次空気混合物の流れ28
Bが随伴され、遠くまで届く燃焼流が形成される。ま
た、エアガイド溝27の外側から燃焼排ガスを巻き込
み、酸素リーンとなって緩慢な燃焼となり、したがって
NOX の生成は少ない。排気は通気孔26に矢印28C
のように流入していくので、矢印28Bのように流れる
燃料/一次空気混合物から遠く燃料/一次空気混合物を
ほとんど巻き込まず、燃料の不完全燃焼によるCOが排
気に含まれることが少なくなる。
An air guide groove 27 extending in the axial direction is formed on the outer peripheral surface of the projection 24. However, the air guide groove 27 is not essential. Air guide groove 27 and hole 2
Numeral 6 coincides in the axial direction, and at least a part of the supply air (secondary air, main air) flowing out through the hole 26 becomes a highly directional flow 28A through the air guide groove 27. This stream 28A includes a stream 28 of the fuel / primary air mixture.
B is entrained to form a combustion stream that reaches far away. Further, the combustion exhaust gas is entrained from the outside of the air guide groove 27, becomes oxygen-lean, and performs slow combustion, so that the generation of NO X is small. Exhaust gas is inserted into the vent hole 26 by an arrow 28
Therefore, the fuel / primary air mixture is far from the fuel / primary air mixture flowing as indicated by the arrow 28B, and is hardly entrained, and CO due to incomplete combustion of the fuel is less contained in the exhaust gas.

【0017】切替機構40は、互いに摺動可能に面接触
された回転ディスク44と固定ディスク46と、給排気
の仕切壁41を有し、回転ディスク44は回転ディスク
44の回転によって連通、遮断される複数の通気用開口
部42、43を有し、固定ディスク46は貫通孔47を
有し、通気用開口部42、43は仕切壁41の一側に連
通する給気通気用開口部42と仕切壁41の他側に連通
する排気通気用開口部43を含んでいる。
The switching mechanism 40 has a rotating disk 44 and a fixed disk 46, which are slidably contacted with each other, and a partition wall 41 for air supply and exhaust. The fixed disk 46 has a through hole 47, and the ventilation openings 42, 43 are provided with the air supply ventilation openings 42 communicating with one side of the partition wall 41. The partition wall 41 includes an exhaust ventilation opening 43 communicating with the other side.

【0018】切替機構40のうち一部の部材は可動部材
である。たとえば図5の例では仕切壁41、回転ディス
ク44は可動部材である。切替機構40のうち残りの部
材は静止部材である。たとえば固定ディスク46は静止
部材である。切替機構40のうち可動部材は、駆動手段
(たとえば、モータ、シリンダ等)45によって一方向
または往復回転駆動される。回転ディスク44と固定デ
ィスク46は互いに、広い面積をもつ平面同士で面接触
されているので、すなわち回転ディスク44の軸芯と直
交する平面と固定ディスク46の軸芯と直交する平面と
の摺動面同士で面接触されているので、仕切壁端面と回
転ディスクとの接触に比べて、接触面積は大であり、シ
ール性が高くされている。また、シール性を上げるため
に、回転ディスク44はばね51、52で固定ディスク
46に押しつけられている(図9、図12、図14参
照)。蓄熱体30は静止部材である。蓄熱体30は複数
の部分に分離されており、隔壁31によって分離される
か、またはスリーブ31S(図9)に収納されて互いに
分離されている。 回転ディスク44が回転されること
により、蓄熱体30の分離された部分の給、排気の流れ
が切替わる。
Some members of the switching mechanism 40 are movable members. For example, in the example of FIG. 5, the partition wall 41 and the rotating disk 44 are movable members. The remaining members of the switching mechanism 40 are stationary members. For example, the fixed disk 46 is a stationary member. The movable member of the switching mechanism 40 is driven in one direction or reciprocating rotation by a driving unit (for example, a motor, a cylinder, or the like) 45. Since the rotating disk 44 and the fixed disk 46 are in surface contact with each other on a plane having a large area, that is, the sliding between the plane orthogonal to the axis of the rotating disk 44 and the plane orthogonal to the axis of the fixed disk 46 is performed. Since the surfaces are in surface contact with each other, the contact area is larger than the contact between the end surface of the partition wall and the rotating disk, and the sealing property is enhanced. In order to improve the sealing performance, the rotating disk 44 is pressed against the fixed disk 46 by springs 51 and 52 (see FIGS. 9, 12 and 14). The heat storage body 30 is a stationary member. The heat storage body 30 is divided into a plurality of parts, and is separated by a partition wall 31 or housed in a sleeve 31S (FIG. 9) and separated from each other. By rotating the rotating disk 44, the supply and exhaust flow of the separated portion of the heat storage body 30 is switched.

【0019】複数に分離された蓄熱体部分には、それぞ
れに対して、下流側にバーナタイル22の通気孔26が
設けられる。この通気孔26のうち、排気通気用開口部
43によってカバーされる通気孔26の通路断面積の和
が給気通気用開口部42によってカバーされる通気孔2
6の通路断面積の和以上となるように、回転ディスク4
4に設けられる通気用開口部42、43と固定ディスク
46に設けられる貫通孔47の形状および相対位置関係
が設定されている。たとえば、図5、図6の例では、給
気通気用開口部42によってカバーされる通気孔26は
1個または2個であるが、排気通気用開口部43によっ
てカバーされる通気孔26は3個または2個であり、給
気通気孔は排気通気孔と同等かそれ以上に絞られる。こ
れによって、給気流速が増大する。上記において、給気
通気用開口部42によってカバーされる通気孔26と排
気通気用開口部43によってカバーされる通気孔26と
の個数比は、整数比でなくてもよい。
Each of the plurality of heat storage portions is provided with a vent hole 26 of the burner tile 22 on the downstream side. Of the ventilation holes 26, the sum of the passage cross-sectional areas of the ventilation holes 26 covered by the exhaust ventilation openings 43 is the ventilation hole 2 covered by the air supply ventilation openings 42.
6 so that it is equal to or larger than the sum of the cross-sectional areas of the passages 6.
The shapes and relative positional relations of the ventilation openings 42 and 43 provided in the base 4 and the through holes 47 provided in the fixed disk 46 are set. For example, in the examples of FIGS. 5 and 6, one or two air holes 26 are covered by the air supply air opening 42, but three or more air holes 26 are covered by the exhaust air opening 43. Or two, and the supply air vent is narrowed to be equal to or more than the exhaust air vent. As a result, the air supply flow rate increases. In the above description, the number ratio between the ventilation holes 26 covered by the supply / ventilation openings 42 and the ventilation holes 26 covered by the exhaust / vent ventilation openings 43 may not be an integer ratio.

【0020】複数に分離された蓄熱体部分のうち排気通
気用開口部43でカバーされる部分の容積は給気通気用
開口部42でカバーされる部分の容積以上となるように
給、排気通気用開口部42、43の個数、形状が設定さ
れている。たとえば、蓄熱体30が4個に隔壁31によ
って分割された場合、排気通気用開口部43でカバーさ
れるのは3個または2個で、給気通気用開口部42でカ
バーされるのは1個または2個である。排気容積を大き
くすることによって排気流速が低減するため、蓄熱体3
0が蓄熱しやすくなる。
Supply and exhaust ventilation is performed so that the volume of the portion covered by the exhaust ventilation opening 43 among the plurality of separated heat storage portions is greater than the volume of the portion covered by the air supply ventilation opening 42. The number and shape of the openings 42 and 43 are set. For example, when the heat storage body 30 is divided into four by the partition wall 31, three or two are covered by the exhaust ventilation opening 43, and one is covered by the air supply ventilation opening 42. Or two. Since the exhaust flow velocity is reduced by increasing the exhaust volume, the heat storage body 3
0 easily stores heat.

【0021】上記の共通構成による作用は次の通りであ
る。まず、切替機構40では、回転ディスク44と固定
ディスク46とが摺動可能に広い平面で面接触されてい
るので、回転ディスク44と固定ディスク46との接触
面積が増大し、給気が回転ディスク44と固定ディスク
46との間を通って排気にリークするのを抑制でき、炉
内への給気吹出流速も大になる。また、回転ディスク4
4が仕切壁を通過する場合に比べて、給気のカバーエリ
アの自由度が向上しており、切替時の給気量の減少が発
生しない設定が可能(図8)となるし、隔壁31の厚さ
も自由に設定できるので、蓄熱室の設計が自由になる。
また、燃料噴射ノズル20、蓄熱体30、切替機構40
が枠体10の内部に組みつけられているので、蓄熱体3
0と切替機構40とを接続する配管類が不要となり、配
管の施工が不要で、装置が小型化される。また、配管が
あるときには配管内の排気のパージが切替時に必要にな
るが、配管がないためパージが必要でなくなり、切替時
間も短い。
The operation of the above common configuration is as follows. First, in the switching mechanism 40, since the rotating disk 44 and the fixed disk 46 are in slidable surface contact with each other on a wide plane, the contact area between the rotating disk 44 and the fixed disk 46 is increased, and the supply air is reduced. Leakage to the exhaust gas passing between the fixed disk 44 and the fixed disk 46 can be suppressed, and the flow rate of supply air to the furnace can be increased. The rotating disk 4
The degree of freedom of the air supply cover area is improved as compared with the case where the air passage 4 passes through the partition wall, and it is possible to set such that the air supply amount does not decrease at the time of switching (FIG. 8). The thickness of the heat storage chamber can be freely set, so that the design of the heat storage chamber is free.
Further, the fuel injection nozzle 20, the heat storage body 30, the switching mechanism 40
Is assembled inside the frame 10, so that the heat storage body 3
There is no need for piping to connect the zero and the switching mechanism 40, and there is no need to perform piping, and the apparatus is downsized. Further, when there is a pipe, it is necessary to purge the exhaust gas in the pipe at the time of switching, but since there is no pipe, purging is not required, and the switching time is short.

【0022】また、回転ディスク44の通気用開口部4
2、43と固定用ディスク46の貫通孔47の形状およ
び位置関係が、通気孔27のうち給気通気孔通路断面積
を排気通気孔通路断面積と同等以下に絞るように設定さ
れているので、給気の流速が向上する。そして、切替機
構40でのシール性の増大と合わせて、給気流速が従来
に比べて非常に大となる。図16に示すように、給気流
速が大となると、燃料が給気に強く随伴して流れるとと
もに、炉内排ガスも給気に巻込まれて強循環する。燃料
が給気に強く随伴して流れると、燃料の排気孔への短絡
流が少なくなり、燃料の不完全燃焼、COの生成が抑制
される。また、炉内排ガスが給気に巻込まれて炉内で強
循環すると、燃焼が緩慢となる。その結果、NOx生成
量が図17に示すように約20ppmに減少する。従来
の蓄熱燃焼用バーナ1´を備えた工業用炉5´(図1
8)では約200ppmのNOxが生成し、通常のバー
ナの炉では約2000ppmのNOxが生成するので、
それらに比べて、NOx生成量が大幅に減少する。ま
た、燃焼が緩慢になることによって、燃焼領域Rが従来
の燃焼領域R´に比べて炉の奥に向って延び、燃焼領域
の温度Tが図16に示すように平均化する。すなわち、
温度差ΔTが従来の炉の温度差ΔT´(図18)に比べ
て少なくなる。そのため、最高温度を炉壁許容温度Ta
以下にするという条件下で、燃焼領域Rの温度Tを従来
のT´に比べて全体的に上げることができる。その結
果、燃焼領域Rのほぼ全域にわたって平均熱流束を上げ
ることができ、高効率伝熱が可能になり、同じ伝熱を達
成する場合、炉体のコンパクト化、スペース効率向上、
イニシャルコスト低減がはかられる。また、燃焼領域温
度Tの平均化によって、炉壁が局所的に高温になること
が回避され、炉の長寿命化、メンテナンスコストの低減
がはかられる。さらに、燃焼の緩慢によって、燃焼騒音
も小さくなる。
The ventilation opening 4 of the rotary disk 44
Since the shapes and positional relationships of the through holes 47 of the fixing disks 46 are set so that the cross-sectional area of the supply-air vent passage of the vent hole 27 is reduced to be equal to or less than the cross-sectional area of the exhaust vent passage. The flow rate of the air supply is improved. In addition to the increase in the sealing performance of the switching mechanism 40, the air supply flow rate becomes very large as compared with the conventional case. As shown in FIG. 16, when the flow rate of the supply air is large, the fuel flows strongly accompanying the supply air, and the exhaust gas in the furnace is entrained in the supply air and strongly circulates. When the fuel flows strongly accompanying the air supply, the short-circuit flow of the fuel to the exhaust hole is reduced, and the incomplete combustion of the fuel and the generation of CO are suppressed. Further, if the exhaust gas in the furnace is entrained in the supply air and strongly circulates in the furnace, the combustion becomes slow. As a result, the NOx generation amount decreases to about 20 ppm as shown in FIG. An industrial furnace 5 'equipped with a conventional regenerative combustion burner 1' (FIG. 1)
In 8), about 200 ppm of NOx is produced, and in a normal burner furnace, about 2000 ppm of NOx is produced.
In comparison with them, the NOx generation amount is greatly reduced. Further, due to the slow combustion, the combustion region R extends toward the back of the furnace as compared with the conventional combustion region R ', and the temperature T of the combustion region is averaged as shown in FIG. That is,
The temperature difference ΔT is smaller than the temperature difference ΔT ′ of the conventional furnace (FIG. 18). Therefore, the maximum temperature is set to the furnace wall allowable temperature Ta.
Under the following conditions, the temperature T of the combustion region R can be raised as a whole as compared with the conventional T '. As a result, it is possible to increase the average heat flux over almost the entire region of the combustion region R, enable high-efficiency heat transfer, and, when achieving the same heat transfer, make the furnace compact, improve space efficiency,
The initial cost can be reduced. In addition, by averaging the combustion zone temperature T, it is possible to prevent the furnace wall from being locally heated to a higher temperature, thereby extending the life of the furnace and reducing maintenance costs. Further, the slow combustion reduces the combustion noise.

【0023】また、蓄熱体部分のうち回転ディスク44
の排気通気用開口部43によりカバーされる部分の容積
が回転ディスク44の給気通気用開口部42によりカバ
ーされる部分の容積以上に設定されているため、蓄熱体
30を通過する排ガスの流速が低減し、蓄熱体30が排
ガスの熱を回収しやすくなり、熱回収効率、したがって
炉の熱効率が上昇する。
The rotating disk 44 of the heat storage portion
Is set to be equal to or greater than the volume of the portion covered by the air supply opening 42 of the rotating disk 44, so that the flow rate of the exhaust gas passing through the heat storage 30 And the heat storage body 30 can easily recover the heat of the exhaust gas, and the heat recovery efficiency, and thus the heat efficiency of the furnace, increase.

【0024】つぎに、本発明の各実施例に特有な構成、
作用を説明する。本発明の第1実施例では、蓄熱体30
を分割する隔壁31は、図6に示すように放射状に延び
て、蓄熱体30を周方向に複数(2以上、図6の実施例
では4)に分割している。これに対し、切替機構40の
仕切壁41は周方向に延びていて、内外周の一方に給気
通路2、他方に排気通路3を形成する。回転ディスク4
4のうち、仕切壁41の内外周の一方に給気通気用開口
部42があけられており、他方に排気通気用開口部43
があけられている。給気通気用開口部42は給気通路2
側に設けられ、排気通気用開口部43は排気通路3側に
設けられる。図5、図6に示されているように、切替機
構40は、回転ディスク44と固定ディスク46との2
枚ディスク構造となっている。回転ディスク44には、
仕切壁41の外周側で弧状に延びる給気通気用開口部4
2と仕切壁41の内周側で弧状に延びる排気通気用開口
部43とが設けられており、固定ディスク46には、蓄
熱体の隔壁31の中間部に対応する位置に、仕切壁41
の内外周のそれぞれに貫通孔47が設けられている。回
転ディスク44は、一方向のみに回転される。一方向回
転のため、回転駆動手段には駆動モータ45を使用でき
る。駆動モータ45は、排気の熱の影響を受けないよう
にするために、仕切壁41より給気通路2側(給気通気
用開口部42がある通路側)に設定されている。また、
蓄熱体30は隔壁31によって周方向に4等分に分割さ
れている。排気通気用開口部43は蓄熱体の4分割部分
のうち3つまたは2つの部分にまたがり、給気通気用開
口部42は1つの部分にまたがる。また、排気通気用開
口部43によってカバーされる蓄熱体分割部分と給気通
気用開口部42によってカバーされる分割部分とは互い
に重ならないように開口部42、43の位置関係が設定
されている。この重なり合いのない条件が満足されれ
ば、蓄熱体30の隔壁31による分割個数は、4以外で
あってもよく、任意である。
Next, a configuration specific to each embodiment of the present invention,
The operation will be described. In the first embodiment of the present invention, the heat storage 30
The partition wall 31 that divides the heat storage body 30 radially extends as shown in FIG. 6 and divides the heat storage body 30 into a plurality (two or more, four in the embodiment of FIG. 6) in the circumferential direction. On the other hand, the partition wall 41 of the switching mechanism 40 extends in the circumferential direction, and forms the air supply passage 2 on one of the inner and outer circumferences and the exhaust passage 3 on the other. Rotating disk 4
4, an air supply ventilation opening 42 is formed in one of the inner and outer circumferences of the partition wall 41, and an exhaust ventilation opening 43 is formed in the other.
Has been opened. The air supply ventilation opening 42 is provided in the air supply passage 2.
The exhaust ventilation opening 43 is provided on the exhaust passage 3 side. As shown in FIGS. 5 and 6, the switching mechanism 40 includes a rotating disk 44 and a fixed disk 46.
It has a single disc structure. The rotating disk 44 includes
Air supply ventilation opening 4 extending in an arc shape on the outer peripheral side of partition wall 41
2 and an exhaust ventilation opening 43 extending in an arc shape on the inner peripheral side of the partition wall 41, and the fixed disk 46 is provided at a position corresponding to an intermediate portion of the partition wall 31 of the heat storage body.
Are provided with through holes 47 on the inner and outer circumferences, respectively. The rotating disk 44 is rotated only in one direction. For one-way rotation, a drive motor 45 can be used as the rotation drive means. The drive motor 45 is set on the air supply passage 2 side (the passage side with the air supply ventilation opening 42) from the partition wall 41 so as not to be affected by the heat of the exhaust gas. Also,
The heat storage body 30 is divided into four equal parts in the circumferential direction by partition walls 31. The exhaust ventilation opening 43 extends over three or two of the four divided portions of the heat storage body, and the air supply ventilation opening 42 extends over one portion. The positional relationship between the openings 42 and 43 is set so that the heat storage body divided portion covered by the exhaust ventilation opening 43 and the division covered by the air supply ventilation opening 42 do not overlap each other. . As long as the non-overlapping condition is satisfied, the number of divisions of the heat storage body 30 by the partition walls 31 may be other than four and is arbitrary.

【0025】第1実施例の作用については、蓄熱体30
の隔壁31を放射状に延ばしたため、回転ディスク44
を回転させることによって容易に蓄熱体30の各部分の
給排気を切替える切替構造が得られる。回転ディスク4
4が回転されると、図6において開口部42、43が静
止の貫通孔47に対して回転していき、蓄熱体30の給
気が通過する領域および排気が通過する領域が順次移っ
ていく。これによって、連続的に給排気の切替が行われ
る。また、切替機構40の仕切壁41を周方向に延ばし
たので、回転ディスク44を回転させても、常に可動の
給気通路用開口部42と静止の吸気通路2を対応させ、
可動の排気通気用開口部43と静止の排気通路3を対応
させることが可能になる。また、給気通路2の方に駆動
モータ45を設置したので、駆動モータ45に排気の熱
が影響することが抑制される。
The operation of the first embodiment will be described.
Of the rotating disk 44 because the partition wall 31 is radially extended.
By rotating, a switching structure for easily switching the supply and exhaust of each part of the heat storage body 30 is obtained. Rotating disk 4
When the rotating member 4 is rotated, the openings 42 and 43 rotate relative to the stationary through hole 47 in FIG. 6, and the region of the heat storage body 30 through which the air supply passes and the region through which the exhaust air passes sequentially shift. . As a result, the supply and exhaust are switched continuously. Further, since the partition wall 41 of the switching mechanism 40 is extended in the circumferential direction, the movable intake passage opening 42 always corresponds to the stationary intake passage 2 even when the rotating disk 44 is rotated,
The movable exhaust ventilation opening 43 can correspond to the stationary exhaust passage 3. Further, since the drive motor 45 is provided in the air supply passage 2, the influence of the heat of the exhaust gas on the drive motor 45 is suppressed.

【0026】本発明の第2実施例は、図7、図8に示す
ように、固定ディスク46の貫通孔47を給、排気に共
用したものである。貫通孔47は同一円周上に周方向に
等間隔に配されている。回転ディスク44はディスクの
厚みを大にして立体状(三次元状)とされている。回転
ディスク44に設けられた給気通気用開口部42は仕切
壁41の一側の給気通路2に開口しており、排気通気用
開口部43は仕切壁41の他側の排気通路3に開口して
いる。排気通気用開口部43のカバーエリアは、給気通
気用開口部42のカバーエリアより大である。また、回
転ディスク44の外周と固定ディスク46との間にシー
ル材48を介装して、回転ディスク44と固定ディスク
46とをシールしている。排気通気用開口部43の排気
流れ下流側には、給気の余剰部分を排気流れ下流側に向
けて噴出する排気誘引機構49が設けられている。ま
た、一次空気パイプ21の、回転ディスク44の内側に
対応する部分に一次空気導入口50を設け、給気の一部
を一次空気として一次空気パイプ21内に導入するよう
にしてある。
In the second embodiment of the present invention, as shown in FIGS. 7 and 8, the through hole 47 of the fixed disk 46 is used for both supply and exhaust. The through holes 47 are arranged at equal intervals in the circumferential direction on the same circumference. The rotating disk 44 has a three-dimensional shape (three-dimensional shape) by increasing the thickness of the disk. The air supply opening 42 provided in the rotating disk 44 is open in the air supply passage 2 on one side of the partition wall 41, and the exhaust air opening 43 is provided in the exhaust passage 3 on the other side of the partition wall 41. It is open. The cover area of the exhaust ventilation opening 43 is larger than the cover area of the air supply ventilation opening 42. In addition, a sealing member 48 is interposed between the outer periphery of the rotating disk 44 and the fixed disk 46 to seal the rotating disk 44 and the fixed disk 46. An exhaust attraction mechanism 49 is provided downstream of the exhaust ventilation opening 43 on the exhaust flow side to eject an excess portion of the supply air toward the exhaust flow downstream. Further, a primary air inlet 50 is provided in a portion of the primary air pipe 21 corresponding to the inside of the rotary disk 44, and a part of the supply air is introduced into the primary air pipe 21 as primary air.

【0027】第2実施例の作用については、固定ディス
ク46の貫通孔47を給排気に共用したので、切替機構
がコンパクトなわりに通気孔面積が大きくとれる。した
がっって、大きな径のディスクでは歪み等が問題となる
大容量のバーナにも適用しやすい。回転ディスク44の
外周にシール材48を設けたので、回転ディスク44外
周端部と固定ディスク46との間からリークするエアの
リークを防止できる。また、排気誘引機構49に余剰給
気を利用したので、特別な排気吸引ブロワ等を設ける必
要がなくなり、装置のコンパクト化、コストダウンがは
かられる。
In the operation of the second embodiment, the through hole 47 of the fixed disk 46 is used for both supply and exhaust, so that the switching mechanism is compact and the area of the ventilation hole can be increased. Therefore, it can be easily applied to a large-capacity burner in which distortion or the like becomes a problem in a large-diameter disk. Since the seal member 48 is provided on the outer periphery of the rotating disk 44, it is possible to prevent air leaking from between the outer peripheral end of the rotating disk 44 and the fixed disk 46. Further, since the excess air supply is used for the exhaust attraction mechanism 49, it is not necessary to provide a special exhaust suction blower or the like, and the apparatus can be made compact and the cost can be reduced.

【0028】本発明の第3実施例は、図9〜図11に示
すように、本発明の第2実施例をさらに改良したもので
ある。本発明の第3実施例では、複数に分離された蓄熱
体30のそれぞれの部分は円筒状スリーブ31S内に納
められている。円筒状スリーブ31Sは枠体10の端板
10aに固定されている。蓄熱体30のそれぞれの部分
は円筒状スリーブ31S内に納められ、円筒状押え10
bを介して固定ディスク46により押えられている。蓄
熱体30のそれぞれの部分を交換するときには、固定デ
ィスク46を枠体10の端板10aから外し、円筒状押
え10bを取り出した後、蓄熱体30の部分を取り出
し、新しい蓄熱体30の部分を円筒状スリーブ31Sに
挿入した後、円筒状押え10bを挿入し、固定ディスク
46を枠体10の端板10aに締結する手順により行
う。バーナタイル22の通気孔26は上流側に向って拡
開するロート状部26Aを有し,通気孔26はロート状
部26Aを介して円筒状スリーブ31Sに滑らかに接続
している。ロート状部26Aの断面は円形で、円筒状ス
リーブ31Sの断面も円形のため、両者は段部を形成せ
ずにつながることができる。その結果、給気が通気孔2
6から出る時の指向性が強まる。回転ディスク44と固
定ディスク46とはメタルタッチシールとされており、
回転ディスク44は固定ディスク46にスプリング52
による付勢により押しつけられている。したがって、回
転摺動部にOリングを設けていない。スプリング52は
周方向に複数箇所設けられており、回転ディスク44を
固定ディスク46に均一な力で押しつけている。モータ
45の回転はドライブギア45A、ドリブンギア45
B、スリーブ45C、カップリング45Dを介して回転
ディスク44に伝えられる。スプリング51はドリブン
ギア45Bが踊ることを防止している。回転ディスク4
4に設けられた給気通気用開口部42および排気用開口
部43は扇形状をしており、固定ディスク46に設けら
れた貫通孔47も扇形状をしている。そして、給気通気
用開口部42および排気用開口部43のそれぞれの固定
ディスク46側の端部は、互いに同一円周状に設けられ
ている。給気通気用開口部42と貫通孔47との重なり
面積を1とすると、排気通気用開口部43と貫通孔47
との重なり面積は2または3となるように、給気通気用
開口部42および排気通気用開口部43と貫通孔47の
位置、形状が設定されており、給気流速を高く、排気流
速を低くするようにしてある。給気通気用開口部42に
接続する給気通路2と排気用開口部43に接続する排気
通路3のうち一方は切替機構40に軸方向から接続し、
他方は切替機構40に軸方向と直角方向から接続してい
る。これによって、給気経路と排気経路を離すことがで
き、回転ディスク駆動用モータ45等の部品が切替機構
40に組付やすくなっている。
The third embodiment of the present invention is a further improvement of the second embodiment of the present invention as shown in FIGS. In the third embodiment of the present invention, each part of the heat storage body 30 divided into a plurality of pieces is accommodated in a cylindrical sleeve 31S. The cylindrical sleeve 31S is fixed to the end plate 10a of the frame 10. Each part of the heat storage body 30 is accommodated in a cylindrical sleeve 31S,
b and is held down by the fixed disk 46. When replacing each part of the heat storage body 30, the fixed disk 46 is removed from the end plate 10a of the frame 10, the cylindrical presser 10b is taken out, the part of the heat storage body 30 is taken out, and the new heat storage body 30 is taken out. After the insertion into the cylindrical sleeve 31S, the procedure is performed by inserting the cylindrical presser 10b and fastening the fixed disk 46 to the end plate 10a of the frame 10. The ventilation hole 26 of the burner tile 22 has a funnel-like portion 26A that expands toward the upstream side, and the ventilation hole 26 is smoothly connected to the cylindrical sleeve 31S via the funnel-like portion 26A. Since the cross section of the funnel-shaped portion 26A is circular and the cross section of the cylindrical sleeve 31S is also circular, both can be connected without forming a step. As a result, the air supply is
The directivity when leaving 6 is increased. The rotating disk 44 and the fixed disk 46 are metal touch seals,
The rotating disk 44 includes a fixed disk 46 and a spring 52.
Is pressed by the urging force. Therefore, no O-ring is provided on the rotary sliding portion. A plurality of springs 52 are provided in the circumferential direction, and press the rotating disk 44 against the fixed disk 46 with a uniform force. The rotation of the motor 45 is performed by the drive gear 45A and the driven gear 45A.
B, the sleeve 45C, and the coupling 45D are transmitted to the rotating disk 44. The spring 51 prevents the driven gear 45B from dancing. Rotating disk 4
The air supply / ventilation opening 42 and the exhaust opening 43 provided in 4 have a fan shape, and the through hole 47 provided in the fixed disk 46 also has a fan shape. The ends of the supply air ventilation opening 42 and the exhaust opening 43 on the fixed disk 46 side are provided on the same circumference. Assuming that the overlapping area between the air supply ventilation opening 42 and the through hole 47 is 1, the exhaust ventilation opening 43 and the through hole 47 are provided.
The positions and shapes of the air supply ventilation opening 42, the exhaust ventilation opening 43, and the through hole 47 are set so that the overlapping area with 2 is 3 or 3. I try to lower it. One of the air supply passage 2 connected to the air supply ventilation opening 42 and the exhaust passage 3 connected to the exhaust opening 43 is connected to the switching mechanism 40 in the axial direction,
The other is connected to the switching mechanism 40 from a direction perpendicular to the axial direction. As a result, the supply path and the exhaust path can be separated, and components such as the rotary disk drive motor 45 can be easily assembled to the switching mechanism 40.

【0029】第3実施例の作用については、蓄熱体30
のそれぞれの部分を円筒状スリーブ31S内に収納する
ようにしたので、放射状の隔壁31に比べて製作が容易
となり、かつ蓄熱体30の交換が容易となる。また、蓄
熱体30の部分を円筒状スリーブ31S内に収納するよ
うにするとともに、ロート状部26Aを介して円筒状ス
リーブ31Sとバーナタイル22の通気孔26とを接続
したので、流れの通路に段部が形成されず、流れの圧力
損失を小さくすることができるとともに、通気孔26を
出るときの給気の流れの指向性を強めることができる。
また、回転ディスク44と固定ディスク46との間のシ
ールをメタルタッチシールとして、回転摺動部にOリン
グを使用しないようにしたので、シールの信頼性が高ま
る。また、回転ディスク44の通気用開口部42、43
も固定ディスク46の貫通孔47も扇形状としたので、
開口面積を大きくとることができ、流れの圧力損失を小
さくすることができる。
The operation of the third embodiment will be described.
Are accommodated in the cylindrical sleeve 31S, so that the manufacture is easier and the heat storage body 30 can be easily replaced as compared with the radial partition wall 31. In addition, since the heat storage body 30 is accommodated in the cylindrical sleeve 31S and the cylindrical sleeve 31S and the ventilation holes 26 of the burner tiles 22 are connected via the funnel-shaped portion 26A, the flow passage is formed. Since no step is formed, the pressure loss of the flow can be reduced, and the directivity of the supply air flow when exiting the vent hole 26 can be enhanced.
In addition, since the seal between the rotating disk 44 and the fixed disk 46 is a metal touch seal, and the O-ring is not used in the rotating sliding portion, the reliability of the seal is improved. Further, the ventilation openings 42 and 43 of the rotary disc 44 are provided.
Since the through hole 47 of the fixed disk 46 also has a fan shape,
The opening area can be increased, and the pressure loss of the flow can be reduced.

【0030】本発明の第4実施例では、図12、図13
に示すように、切替機構40は、第1の位置P1と第2
の位置P2を選択的にとり、隔壁31によって分離され
た蓄熱体30の複数の部分の一部に給排気の少なくとも
一方が流れない部分を作ることなく、第1の位置P1と
第2の位置P2を切替えるシャッタからなる。回転ディ
スク44は往復回転される。往復回転のため、回転ディ
スク44の駆動手段45にはたとえばエアシリンダが使
用できる。エアシリンダによる切替えは短時間で行わ
れ、瞬時シャッタとなっている。給気通気用開口部42
が固定ディスク46の貫通孔47間部位にきたときは、
給気通気用開口部42が絞られる(閉塞される)が、そ
の時には、燃料噴射ノズル20に燃料を送る配管に設け
た燃料供給量調整機構6、たとえば制御弁が燃料を絞
り、燃料と空気との比を一定にし、パイロット燃料と一
次空気による連続運転が可能である。蓄熱体30は隔壁
31(31A、31B)によって周方向に、たとえば2
分割されている。隔壁31の厚さは、給気通気用開口部
42が通過する隔壁31Aの方が排気通気用開口部43
が通過する隔壁31Bよりも大とされている。隔壁31
Aの厚さ(したがって貫通孔47間の距離)は給気通気
用開口部42の直径より大であり、隔壁31Bの厚さ
(反対側の貫通孔47間の距離)は排気通気用開口部4
3の直径より小とされている。したがって、排気通気用
開口部43は、少なくともその一部が貫通孔47間部位
によって封鎖されないようにしてある(一次燃焼排ガス
排出のため)。
In the fourth embodiment of the present invention, FIGS.
As shown in the figure, the switching mechanism 40 is configured to move the first position P1
Of the heat storage body 30 separated by the partition wall 31 without forming a portion through which at least one of the supply and exhaust air does not flow, without making the first position P1 and the second position P2. And a shutter for switching between. The rotating disk 44 is reciprocated. For reciprocating rotation, for example, an air cylinder can be used as the driving means 45 of the rotating disk 44. Switching by the air cylinder is performed in a short time, and is an instant shutter. Air supply ventilation opening 42
Comes to the portion between the through holes 47 of the fixed disk 46,
The air supply ventilation opening 42 is narrowed (closed). At that time, the fuel supply amount adjusting mechanism 6 provided in the pipe for sending fuel to the fuel injection nozzle 20, for example, a control valve throttles the fuel, and the fuel and air , And continuous operation with pilot fuel and primary air is possible. The heat storage body 30 is formed in a circumferential direction by partition walls 31 (31A, 31B), for example, by 2
Has been split. The thickness of the partition wall 31 is such that the partition wall 31A through which the air supply and ventilation opening 42 passes has the exhaust ventilation and ventilation opening 43.
Is larger than the partition wall 31B through which. Partition wall 31
The thickness of A (therefore, the distance between the through holes 47) is larger than the diameter of the air supply ventilation opening 42, and the thickness of the partition wall 31B (the distance between the opposite through holes 47) is the exhaust ventilation opening. 4
3 is smaller than the diameter. Therefore, at least a part of the exhaust ventilation opening 43 is not blocked by the portion between the through holes 47 (for discharging the primary combustion exhaust gas).

【0031】第4実施例の作用については、はじめは第
1の位置P1上にあった給、排気通気用開口部42、4
3が回転ディスク44の回転につれて隔壁31A、31
Bに対応する固定ディスク46の貫通孔間部分にいた
る。給気通気用開口部42が隔壁31Aに対応する固定
ディスク46の貫通孔間部分で完全に閉塞されても(そ
の場合でも一次空気は炉体5内に供給されている)、排
気通気用開口部43を通って排気が全ての蓄熱体部分に
流れており、一次燃焼を消火することなく連続燃焼切替
えを可能とする。また、休止している蓄熱体部分がない
ため、蓄熱体30の全体を最も有効に利用でき、蓄熱体
に休止部分が存在するものに比べて、蓄熱体のコンパク
ト化、バーナの小型化がはかられている。
Regarding the operation of the fourth embodiment, the supply / exhaust ventilation openings 42, 4 which were initially on the first position P1.
3 are the partitions 31A, 31 as the rotating disk 44 rotates.
B reaches the portion between the through holes of the fixed disk 46 corresponding to B. Even if the air supply ventilation opening 42 is completely closed at the portion between the through holes of the fixed disk 46 corresponding to the partition wall 31A (even in this case, the primary air is supplied into the furnace body 5), the exhaust ventilation opening also exists. Exhaust gas flows to all the heat storage sections through the section 43, and enables continuous combustion switching without extinguishing the primary combustion. In addition, since there is no regenerator portion at rest, the entire regenerator 30 can be used most effectively, and the regenerator can be made more compact and the burner can be made smaller compared to a regenerator having a pause portion. I'm skewed.

【0032】本発明の第5実施例は、本発明の第4実施
例を通気用開口部の孔42、43の個数が3以上の多孔
シャッタとしたものであり、図14、図15に示されて
いる。図14、図15において、切替機構40は、エア
シリンダ45によって往復回動される回転ディスク44
と、静止の固定ディスク46とを有する。固定ディスク
46にはたとえば円形の貫通孔47が穿設されており、
回転ディスク44にはたとえばほぼ四角形の給気通気用
開口部42および排気通気用開口部43が設けられてい
る。給気通気用開口部42は仕切壁41の外周側にあっ
て、個数は隔壁31の左右のそれぞれに対して2以上で
ある。また、排気通気用開口部43は仕切壁41の内周
側にあって、個数は隔壁31の左右のそれぞれに対して
2以上である。また、排気通路には給気の一部を流して
排気を誘引する排気誘引機構49が設けられている。ま
た、回転ディスク44はばね51によって固定ディスク
46に押しつけられており、シール性が高められる。
The fifth embodiment of the present invention is different from the fourth embodiment of the present invention in that the number of the holes 42 and 43 of the ventilation opening is three or more. Have been. 14 and 15, the switching mechanism 40 includes a rotating disk 44 that is reciprocated by an air cylinder 45.
And a stationary fixed disk 46. The fixed disk 46 has, for example, a circular through hole 47 formed therein.
The rotating disk 44 is provided with, for example, a substantially square air supply opening 42 and an exhaust opening 43. The air supply ventilation openings 42 are provided on the outer peripheral side of the partition wall 41, and the number thereof is two or more for each of the left and right sides of the partition wall 31. Further, the exhaust ventilation openings 43 are on the inner peripheral side of the partition wall 41, and the number thereof is two or more for each of the right and left sides of the partition wall 31. Further, the exhaust passage is provided with an exhaust attraction mechanism 49 for causing a part of the supply air to flow to induce exhaust. Further, the rotating disk 44 is pressed against the fixed disk 46 by the spring 51, and the sealing performance is improved.

【0033】第5実施例の作用については、図15にお
いて、a位置が右給気左排気の状態であり、b位置がア
イドルの状態で、c位置が右排気左給気の状態である。
アイドルの状態では、給気通気用開口部42は完全に閉
塞されるが、排気通気用開口部43は少なくとも一部が
貫通孔47にかかって排気できる(一次燃焼排ガス排出
のため)。回転ディスク44の回動はa、b、cの順で
回動され、c、b、aの順で戻される。第5実施例で
は、全ての蓄熱体分割部分が有効利用されるので、蓄熱
体30、工業用炉100およびバーナ1がコンパクト化
される。また、第4実施例に比べて、多孔のため、蓄熱
体30の各部に、より均一に流れが流れ、蓄熱、放熱に
おいて局部加熱がなくなる。これによって、さらなる蓄
熱体30の有効利用がはかれる。
In the operation of the fifth embodiment, in FIG. 15, the position a is a state of right air supply and left exhaust, the position b is idle and the position c is a state of right exhaust and left air supply.
In the idle state, the air supply ventilation opening 42 is completely closed, but at least a part of the exhaust ventilation opening 43 can be exhausted through the through hole 47 (for discharging the primary combustion exhaust gas). The rotating disk 44 is rotated in the order of a, b, and c, and returned in the order of c, b, and a. In the fifth embodiment, since all the heat storage body divided portions are effectively used, the heat storage body 30, the industrial furnace 100, and the burner 1 are made compact. Further, compared to the fourth embodiment, the flow is more uniform in each part of the heat storage body 30 because of the porosity, and there is no local heating in heat storage and heat radiation. Thereby, the further effective use of the heat storage body 30 is achieved.

【0034】[0034]

【発明の効果】請求項1の工業用炉、請求項27の蓄熱
燃焼用バーナによれば、切替機構が回転ディスクと固定
ディスクとを広い面で摺動接触させたものからなるの
で、回転ディスクと蓄熱体隔壁端面との摺動接触に比べ
てシール面積が大になり、給気から排気へのエアリーク
が抑制できる。このため給気圧力が実質的に増大し、燃
料噴射側で給気流速が上り、CO低下、NOX 低下、火
焔距離の伸長をはかることができる。また、給気リーク
が抑制されることにより、燃料と給気との比もほぼ一定
に保て、完全燃焼に寄与できる。請求項2の工業用炉、
請求項28の蓄熱燃焼用バーナ並びに請求項52の工業
用炉の燃焼方法によれば、給気流速を向上できる。その
結果、CO低下、NOx低下、火焔距離の伸長、燃焼領
域温度の平均化、燃焼領域温度の上昇、平均熱流束の増
大、高効率伝熱の実現、炉のコンパクト化、スペース効
率の向上、イニシャルコストの低減、炉壁の局所的高温
加熱の回避、炉の長寿命化、メンテナンスコストの低
減、燃焼騒音の低減がはかられる。請求項3の工業用
炉、請求項29の蓄熱燃焼用バーナによれば、蓄熱体の
排気容積を給気容積以上としたので、蓄熱体を通る排ガ
スの流速を低減でき、熱回収効率を向上できる。請求項
4の工業用炉、請求項30の蓄熱燃焼用バーナでは、給
気用ブロワを切替機構に直結したので設備がコンパクト
になる。請求項5の工業用炉および請求項31の蓄熱燃
焼用バーナでは、排気吸引用ファンを切替機構に直結し
たので設備がコンパクトになるとともに、排気吸引用フ
ァンを設けたため炉内圧力を低減できる。請求項6の工
業用炉、請求項32の蓄熱燃焼用バーナでは、給気用ブ
ロワを切替機構に直結するとともに、排気吸引用ファン
を切替機構に直結したので、設備がコンパクトになると
ともに、排気吸引用ファンを設けたため炉内圧力を低減
できる。請求項7の工業用炉、請求項33の蓄熱燃焼用
バーナでは、給気用ブロワを切替機構に直結するととも
に、排気吸引用ファンを切替機構に直結し、給気用ブロ
ワと排気吸引用ファンを同一の駆動手段で駆動したの
で、駆動手段を別々に設ける場合に比べて設備費の低
減、設置スペースの低減をはかることができる。請求項
8の工業用炉、請求項34の蓄熱燃焼用バーナでは、蓄
熱体を軸方向に複数の蓄熱体部分に分割して蓄熱体部分
間に隙間を設けたので、隙間の部分でガスの流れに乱流
を生成することができ、熱伝達係数を大にでき、排気か
ら蓄熱体へ、さらに蓄熱体から給気への伝熱を高めるこ
とができる。請求項9の工業用炉、請求項35の蓄熱燃
焼用バーナによれば、切替機構の仕切壁を周方向に延ば
したため、回転ディスクの回転にかかわらず、常に、給
気通路と給気通気用開口部とを対応させ、排気通路と排
気通気用開口部とを対応させることができる。請求項1
0の工業用炉、請求項36の蓄熱燃焼用バーナによれ
ば、回転ディスクを一方向に回転させるようにしたた
め、給排気を蓄熱体の周方向に順次切替えていくことが
できる。請求項11の工業用炉、請求項37の蓄熱燃焼
用バーナによれば、回転ディスクをモータで回転するの
で、一方向のみに容易に回転できる。請求項12の工業
用炉、請求項38の蓄熱燃焼用バーナによれば、駆動モ
ータを仕切壁より給気通路側に配置したので、排気から
の熱影響を受けないで済む。請求項13の工業用炉、請
求項39の蓄熱燃焼用バーナによれば、固定ディスクに
設けられた貫通孔を給排に共用したので、切替機構の可
動部分を小さくでき、ディスクの熱歪みが大となる比較
的大容量のバーナにも適用できるほか、貫通孔の径を大
きくすることができるため、給気通気用開口部と排気通
気用開口部での圧損を低減できる。請求項14の工業用
炉および請求項40の蓄熱燃焼用バーナでは、給気通路
と排気通路の一方を切替機構に軸方向から他方を切替機
構に軸方向と直交方向から接続したので、給気通路と排
気通路を互いから離すことができ、排気の高温の影響を
大きく受けることなく、駆動機構等の部品を切替機構に
組付けることができる。請求項15の工業用炉および請
求項41の蓄熱燃焼用バーナによれば、排気誘引機構を
設けたので、別のファン、ブロワ等を設けて排気を誘引
する必要がなく、装置全体からみてコンパクト化がはか
れる。請求項16の工業用炉、請求項42の蓄熱燃焼用
バーナによれば、蓄熱体を円筒状スリーブ内に収納する
ようにしたので、放射状の隔壁に比べて製作が容易とな
り、かつ蓄熱体の交換が容易となる。請求項17の工業
用炉、請求項43の蓄熱燃焼用バーナによれば、蓄熱体
を円筒状スリーブ内に収納するようにするとともに、ロ
ート状部を介して円筒状スリーブとバーナタイルの通気
孔とを接続したので、流れの通路に段部が形成されず、
流れの圧力損失を小さくすることができるとともに、通
気孔を出るときの給気の指向性を強めることができる。
請求項18の工業用炉、請求項44の蓄熱燃焼用バーナ
によれば、回転ディスクと固定ディスクとの間のシール
をメタルタッチシールとして、回転部にOリングを使用
しないようにしたので、シールの信頼性が高まる。請求
項19の工業用炉、請求項45の蓄熱燃焼用バーナによ
れば、回転ディスクの通気用開口部も固定ディスクの貫
通孔も扇形状としたので、開口面積を大きくとることが
でき、流れの圧力損失を小さくすることができる。請求
項20の工業用炉および請求項46の蓄熱燃焼用バーナ
によれば、回転ディスク駆動にエアシリンダを用いるこ
とができる。請求項21の工業用炉および請求項47の
蓄熱燃焼用バーナによれば、回転ディスクの回転を瞬時
に行え瞬時シャッタを提供できる。請求項22の工業用
炉および請求項48の蓄熱燃焼用バーナによれば、蓄熱
体分割部分の全てに給、排気の流れの何れか少なくとも
一方が常に流されるので、蓄熱体の全体を有効利用で
き、実質的に蓄熱体およびバーナをコンパクト化でき
る。請求項23の工業用炉および請求項49の蓄熱燃焼
用バーナによれば、給気通気用開口部が絞られたときに
燃料を絞ることができ、燃料と空気の比をほぼ一定に保
てる。請求項24の工業用炉および請求項50の蓄熱燃
焼用バーナによれば、排気通気用開口部が完全閉塞され
ることがないので、一次燃焼排ガスを必ず排出できる。
請求項25の工業用炉および請求項51の蓄熱燃焼用バ
ーナによれば、多孔式シャッタとしたので、蓄熱体中の
給排気の流れを均一化でき、蓄熱体の有効利用がはかれ
る。請求項26の工業用炉では、各種の工業用炉に本発
明が適用できる。
According to the industrial furnace of the first aspect and the burner for regenerative combustion of the twenty-seventh aspect, the switching mechanism comprises a rotating disk and a fixed disk which are brought into sliding contact with each other on a wide surface. The sealing area becomes large as compared with the sliding contact between the heat storage element and the end face of the heat storage partition, and the air leak from the air supply to the exhaust can be suppressed. Therefore boost pressure is substantially increased, the supply air flow rate upstream fuel injection side, CO reduction, NO X reduction, can be achieved extension of flame distance. Further, by suppressing the supply air leak, the ratio between the fuel and the supply air can be kept almost constant, thereby contributing to complete combustion. An industrial furnace according to claim 2,
According to the heat storage combustion burner of claim 28 and the industrial furnace combustion method of claim 52, the supply air flow rate can be improved. As a result, CO reduction, NOx reduction, flame distance extension, combustion zone temperature averaging, combustion zone temperature rise, average heat flux increase, high efficiency heat transfer, furnace downsizing, space efficiency improvement, It is possible to reduce the initial cost, avoid local high-temperature heating of the furnace wall, extend the life of the furnace, reduce maintenance costs, and reduce combustion noise. According to the industrial furnace of claim 3 and the burner for regenerative storage combustion of claim 29, the exhaust volume of the regenerator is equal to or more than the supply volume, so that the flow velocity of the exhaust gas passing through the regenerator can be reduced and the heat recovery efficiency is improved. it can. In the industrial furnace according to the fourth aspect and the burner for heat storage combustion according to the thirtieth aspect, the equipment is compact because the air supply blower is directly connected to the switching mechanism. In the industrial furnace according to the fifth aspect and the heat storage combustion burner according to the thirty-first aspect, since the exhaust suction fan is directly connected to the switching mechanism, the equipment becomes compact, and the pressure in the furnace can be reduced because the exhaust suction fan is provided. In the industrial furnace of claim 6 and the heat storage combustion burner of claim 32, the air supply blower is directly connected to the switching mechanism, and the exhaust suction fan is directly connected to the switching mechanism. Since the suction fan is provided, the pressure in the furnace can be reduced. In the industrial furnace of claim 7 and the heat storage combustion burner of claim 33, the air supply blower is directly connected to the switching mechanism, and the exhaust suction fan is directly connected to the switching mechanism, so that the air supply blower and the exhaust suction fan are connected. Are driven by the same driving means, so that equipment costs and installation space can be reduced as compared with the case where driving means are separately provided. In the industrial furnace according to claim 8 and the heat storage combustion burner according to claim 34, the heat storage body is divided into a plurality of heat storage body parts in the axial direction and the gap is provided between the heat storage parts. Turbulence can be generated in the flow, the heat transfer coefficient can be increased, and the heat transfer from the exhaust gas to the heat storage body and from the heat storage body to the air supply can be increased. According to the industrial furnace of claim 9 and the burner for regenerative combustion of claim 35, the partition wall of the switching mechanism is extended in the circumferential direction. The opening can correspond to the exhaust passage, and the exhaust passage and the exhaust ventilation opening can correspond to each other. Claim 1
According to the industrial furnace of No. 0 and the burner for thermal storage combustion of claim 36, since the rotating disk is rotated in one direction, the supply and exhaust can be sequentially switched in the circumferential direction of the thermal storage body. According to the industrial furnace of the eleventh aspect and the burner for heat storage combustion of the thirty-seventh aspect, since the rotating disk is rotated by the motor, it can be easily rotated only in one direction. According to the industrial furnace of the twelfth aspect and the burner for heat storage combustion of the thirty-eighth aspect, the drive motor is disposed closer to the air supply passage than the partition wall, so that there is no need to be affected by heat from the exhaust gas. According to the industrial furnace of the thirteenth aspect and the burner for regenerative combustion of the thirty-ninth aspect, the through-hole provided in the fixed disk is shared for supply and discharge, so that the movable portion of the switching mechanism can be made small, and the thermal distortion of the disk is reduced In addition to being applicable to a burner having a relatively large capacity, which can be large, the diameter of the through-hole can be increased, so that pressure loss at the air supply ventilation opening and the exhaust ventilation opening can be reduced. In the industrial furnace of claim 14 and the regenerative combustion burner of claim 40, one of the air supply passage and the exhaust passage is connected to the switching mechanism in the axial direction, and the other is connected to the switching mechanism in the axial direction and orthogonal. The passage and the exhaust passage can be separated from each other, and components such as the drive mechanism can be assembled to the switching mechanism without being greatly affected by the high temperature of the exhaust gas. According to the industrial furnace of claim 15 and the burner for regenerative storage combustion of claim 41, since the exhaust attraction mechanism is provided, there is no need to provide another fan, blower or the like to induce the exhaust, and the apparatus is compact as a whole. Is being measured. According to the industrial furnace of claim 16 and the burner for heat storage and combustion of claim 42, since the heat storage is housed in the cylindrical sleeve, it is easier to manufacture as compared with the radial partition wall, and the heat storage is more compact. Exchange becomes easy. According to the industrial furnace of claim 17 and the burner for regenerative combustion of claim 43, the regenerator is housed in the cylindrical sleeve, and the vent hole of the cylindrical sleeve and the burner tile is provided via the funnel. Connected, so that no step is formed in the flow passage,
The pressure loss of the flow can be reduced, and the directivity of air supply when exiting the vent hole can be enhanced.
According to the industrial furnace of claim 18 and the heat storage combustion burner of claim 44, the seal between the rotating disk and the fixed disk is a metal touch seal, and the O-ring is not used in the rotating part. Reliability is increased. According to the industrial furnace of claim 19 and the burner for regenerative combustion of claim 45, both the ventilation opening of the rotating disk and the through hole of the fixed disk are fan-shaped, so that the opening area can be increased, and Pressure loss can be reduced. According to the industrial furnace of claim 20 and the burner for regenerative combustion of claim 46, an air cylinder can be used for driving the rotating disk. According to the industrial furnace of claim 21 and the burner for regenerative combustion of claim 47, the rotating disk can be rotated instantaneously and an instant shutter can be provided. According to the industrial furnace of claim 22 and the burner for heat storage combustion of claim 48, at least one of the flow of supply and exhaust is always flowed to all of the heat storage divided parts, so that the entire heat storage is effectively used. It is possible to make the heat storage body and the burner compact. According to the industrial furnace of claim 23 and the burner for regenerative combustion of claim 49, the fuel can be throttled when the air supply ventilation opening is narrowed, so that the ratio of fuel to air can be kept almost constant. According to the industrial furnace of claim 24 and the heat storage combustion burner of claim 50, the exhaust ventilation opening is not completely closed, so that the primary combustion exhaust gas can always be discharged.
According to the industrial furnace of the twenty-fifth aspect and the burner for regenerative combustion according to the fifty-first aspect, since the multi-hole shutter is used, the flow of supply / exhaust air in the regenerator can be uniformed, and the regenerator can be effectively used. In the industrial furnace according to claim 26, the present invention can be applied to various industrial furnaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る工業用炉および蓄熱
燃焼用バーナの全体概略断面図である。
FIG. 1 is an overall schematic sectional view of an industrial furnace and a regenerative combustion burner according to a first embodiment of the present invention.

【図2】図1のうち工業用炉の一部および蓄熱燃焼用バ
ーナの拡大断面図である。
FIG. 2 is an enlarged sectional view of a part of an industrial furnace and a heat storage combustion burner in FIG.

【図3】図2のうちタイル部の断面図である。FIG. 3 is a sectional view of a tile portion in FIG. 2;

【図4】図3の平面図である。FIG. 4 is a plan view of FIG. 3;

【図5】図1のうち切替機構とその近傍の拡大断面図で
ある。
FIG. 5 is an enlarged sectional view of a switching mechanism and its vicinity in FIG.

【図6】図5の平面図である。FIG. 6 is a plan view of FIG. 5;

【図7】本発明の第2実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナの切替機構とその近傍の拡大断面図
である。
FIG. 7 is an enlarged sectional view of a part of an industrial furnace according to a second embodiment of the present invention, a switching mechanism of a heat storage combustion burner, and its vicinity.

【図8】図7の平面図である。FIG. 8 is a plan view of FIG. 7;

【図9】本発明の第3実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナの切替機構とその近傍の拡大断面図
である。
FIG. 9 is an enlarged sectional view of a part of an industrial furnace, a switching mechanism of a heat storage combustion burner, and its vicinity according to a third embodiment of the present invention.

【図10】図9の切替機構側から見た平面図である。FIG. 10 is a plan view seen from the switching mechanism side of FIG. 9;

【図11】図9のバーナタイル側から見た平面図であ
る。
FIG. 11 is a plan view as seen from a burner tile side in FIG. 9;

【図12】本発明の第4実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナの切替機構とその近傍の拡大断面
図である。
FIG. 12 is an enlarged sectional view of a part of an industrial furnace, a switching mechanism of a heat storage combustion burner, and its vicinity according to a fourth embodiment of the present invention.

【図13】図12の平面図である。FIG. 13 is a plan view of FIG.

【図14】本発明の第5実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナの切替機構とその近傍の拡大断面
図である。
FIG. 14 is an enlarged sectional view of a part of an industrial furnace according to a fifth embodiment of the present invention, a switching mechanism of a heat storage combustion burner, and its vicinity.

【図15】図14の平面図である。FIG. 15 is a plan view of FIG.

【図16】本発明実施例の工業用炉とその炉内の熱流束
分布の概略図である。
FIG. 16 is a schematic diagram of an industrial furnace according to an embodiment of the present invention and a heat flux distribution in the furnace.

【図17】図16の工業用炉のCO、NOx生成量と炉
温との関係を示す図である。
17 is a diagram showing a relationship between CO and NOx generation amounts and furnace temperature of the industrial furnace of FIG.

【図18】従来の蓄熱燃焼用バーナをもつ工業用炉とそ
の炉内の熱流束分布の概略図である。
FIG. 18 is a schematic diagram of a conventional industrial furnace having a regenerative combustion burner and a heat flux distribution in the furnace.

【符号の説明】[Explanation of symbols]

1 蓄熱燃焼用バーナ 2 給気通路 3 排気通路 4 送風手段 5 炉体 10 枠体 20 燃料噴射ノズル 21 一次空気パイプ 22 バーナタイル 23 給排気面 24 突出部 25 燃料開放面 26 通気孔 26A ロート状部 27 エアガイド溝 30 蓄熱体 31 隔壁 31S スリーブ 40 切替機構 41 仕切壁 42 給気通気用開口部 43 排気通気用開口部 44 回転ディスク 45 駆動モータまたはシリンダ 46 固定ディスク 47 貫通孔 48 シール 49 排気誘引機構 50 一次空気導入口 51 ばね 52 スプリング 100 工業用炉 P1 第1の位置 P2 第2の位置 DESCRIPTION OF REFERENCE NUMERALS 1 burner for heat storage combustion 2 air supply passage 3 exhaust passage 4 blowing means 5 furnace body 10 frame body 20 fuel injection nozzle 21 primary air pipe 22 burner tile 23 supply / exhaust surface 24 protrusion 25 fuel open surface 26 vent hole 26A funnel-shaped portion 27 air guide groove 30 heat storage body 31 partition wall 31S sleeve 40 switching mechanism 41 partition wall 42 air supply ventilation opening 43 exhaust ventilation ventilation opening 44 rotating disk 45 drive motor or cylinder 46 fixed disk 47 through hole 48 seal 49 exhaust induction mechanism Reference Signs List 50 primary air inlet 51 spring 52 spring 100 industrial furnace P1 first position P2 second position

【手続補正書】[Procedure amendment]

【提出日】平成12年7月3日(2000.7.3)[Submission date] July 3, 2000 (2007.3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 蓄熱燃焼用バーナ[Title of the Invention] Burner for heat storage combustion

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気を蓄熱体に通
して排気の熱を蓄熱体に蓄熱し給気と排気の流れを交互
に切替え排気の熱を蓄熱した蓄熱体に給気を通して給気
をあたためる蓄熱燃焼を実行する蓄熱燃焼用バーナに
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying heat to a regenerator which stores heat of exhaust gas by passing exhaust gas through a regenerator, storing heat of the exhaust gas in the regenerator, and alternately switching the flow of air supply and exhaust. Seki a regenerative combustion which heat the air to be that thermal storage combustion burners run to <br/>.

【0002】[0002]

【従来の技術】特開平5−256423号公報は、交互
切替式燃焼用バーナを開示している。そこでは、蓄熱体
はバーナ本体に一体に組み込まれているが、切替バルブ
はバーナ本体外に設置され配管でバーナ本体と接続され
ている
2. Description of the Related Art Japanese Patent Laying-Open No. 5-256423 discloses an alternately switching type combustion burner. There, the regenerator is integrated into the burner body, but the switching valve is installed outside the burner body and connected to the burner body by piping .

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の蓄熱燃
焼用バーナには次の問題があ給排気の切替バルブが
バーナ本体と別体のため、両者を接続するための配管類
が必要で、施工が必要なこと、配管分装置が大型化する
こと、などの問題がある。本発明の目的は、蓄熱体と切
替機構を接続する配管が不要で装置の小型化を実現でき
る蓄熱燃焼用バーナを提供することにある。
The object of the invention is to be Solved However, the next you have problems with the conventional regenerative combustion burner. Supply / exhaust switching valve
Piping to connect both because it is separate from the burner body
Is necessary, construction is required, and the piping distribution equipment becomes large.
That there are problems. An object of the present invention, the regenerator and the switching
No piping for connecting the replacement mechanism is required, and the device can be downsized.
To provide a burner for heat storage combustion.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) 燃料噴射ノズル、蓄熱体、切替機構が枠体に組
み付けられ、当該枠体が炉体の炉壁の厚さ方向の範囲内
に配置することを特徴とする蓄熱燃焼用バーナ。 (2) 複数の通路と、その通路内に収納される蓄熱体
を備え、一部が工業炉の炉体内に固定されて炉体側の部
材または炉体の一部を構成する蓄熱燃焼バーナであっ
て、前記複数の通路およびその通路内に収納される蓄熱
体は、炉体の炉壁の厚さ方向の範囲内に互いに分離され
て配置することを特徴とする蓄熱燃焼用バーナ。 (3) 前記複数の通路は、燃料噴射軸の周りに互いに
分離されて配置することを特徴とする(2)記載の蓄熱
燃焼用バーナ。 (4) 前記複数の通路は、炉体の炉壁の厚さ方向の範
囲内に配置する複数のスリーブであることを特徴とする
(2)または(3)記載の蓄熱燃焼用バーナ。
The present invention to achieve the above object is as follows. (1 ) The fuel injection nozzle, heat storage, and switching mechanism are assembled in a frame
And the frame is within the furnace wall thickness direction.
A burner for heat storage combustion, wherein the burner is arranged in a burner. (2 ) A plurality of passages and a heat storage element stored in the passages
Which is partially fixed inside the furnace of the industrial furnace and
A heat storage combustion burner that forms part of the material or furnace body.
The plurality of passages and heat stored in the passages.
The bodies are separated from one another within the thickness direction of the furnace wall of the furnace body
A burner for regenerative combustion characterized by being arranged in a vertical position. (3 ) The plurality of passages are mutually connected around a fuel injection axis.
(2) The heat storage according to (2), which is arranged separately.
Burner for combustion. (4 ) The plurality of passages extend in a thickness direction of the furnace wall of the furnace body.
Characterized by a plurality of sleeves arranged in the enclosure
The burner for heat storage combustion according to (2) or (3).

【0005】上記(1)または(2)の蓄熱燃焼用バー
ナでは、燃料噴射ノズル、蓄熱体、切替機構が枠体内部
に組み付けられているので、蓄熱体と切替機構を接続す
る配管類が不要となり、配管の施工が不要で、装置の小
型化が実現できる。上記(3)または(4)の蓄熱燃焼
用バーナでは、蓄熱体のそれぞれの部分を複数個の通気
路内に収納するようにしたので、製作が容易となり、ま
た、蓄熱体の交換も容易となる。
[0005] The bar for heat storage combustion of the above (1) or (2)
The fuel injection nozzle, heat storage, and switching mechanism are inside the frame
Is connected to the heat storage unit and the switching mechanism.
This eliminates the need for piping, which eliminates the need for
Type can be realized. Thermal storage combustion of (3) or (4) above
Burners use multiple vents for each part of the heat storage
Because it is stored in the road, production is easy and
In addition, replacement of the heat storage body is also facilitated.

【0006】[0006]

【発明の実施の形態】以下に、本発明の望ましい実施例
を図面を参照して説明する。図中、図1〜図4、図5、
図6、図16、図17は本発明の第1実施例に係る工業
用炉および蓄熱燃焼用バーナ並びに工業用炉の燃焼方法
の構成を、図7、図8は本発明の第2実施例に係る工業
用炉および蓄熱燃焼用バーナの構成を、図9〜図11は
本発明の第3実施例に係る工業用炉および蓄熱燃焼用バ
ーナの構成を、図12、図13は本発明の第4実施例に
係る工業用炉および蓄熱燃焼用バーナの構成を、図1
4、図15は本発明の第5実施例に係る工業用炉および
蓄熱燃焼用バーナの構成を、示している。図18は比較
例(従来例)を示している。本発明の全実施例にわたっ
て共通かまたは類似の構成部分には、本発明の全実施例
にわたって同じ符号を付してある。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the figures, FIGS.
FIGS. 6, 16 and 17 show the configuration of an industrial furnace, a regenerative combustion burner and a method of burning an industrial furnace according to a first embodiment of the present invention, and FIGS. 7 and 8 show a second embodiment of the present invention. 9 to 11 show the configuration of an industrial furnace and a regenerative combustion burner according to the third embodiment of the present invention, and FIGS. FIG. 1 shows a configuration of an industrial furnace and a regenerative combustion burner according to a fourth embodiment.
4 and FIG. 15 show configurations of an industrial furnace and a heat storage combustion burner according to a fifth embodiment of the present invention. FIG. 18 shows a comparative example (conventional example). Components that are common or similar throughout all embodiments of the present invention are given the same reference numerals throughout all embodiments of the present invention.

【0007】 本発明は、工業用炉100および蓄熱燃焼
用バーナ1の何れにも適用可能である。本発明が工業用
炉に適用される場合は、たとえば、蓄熱燃焼用バーナが
複数の部分に分離可能な構造を有し、そのうちの一部
(たとえば、後述するバーナタイル、またはバーナタイ
ルと枠体、等)が工業用炉100の炉体5に固定されて
炉体側の部材または炉体の一部を構成している場合を含
む。また、本発明が適用される工業用炉100には、溶
解炉、焼結炉、予熱炉、均熱炉、鍛造炉、加熱炉、焼鈍
炉、容体化炉、メッキ炉、乾燥炉、調質炉、焼入れ炉、
焼もどし炉、酸化還元炉、焼成炉、焼付炉、焙焼炉、溶
解保持炉、前炉、ルツボ炉、ホモジナイジング炉、エー
ジング炉、反応炉、蒸留炉、取鍋乾燥予熱炉、鋳型焼成
予熱炉、焼準炉、ロー付け炉、浸炭炉、塗装乾燥炉、保
持炉、窒化炉、ソルトバス炉、ガラス溶解炉、発電用ボ
イラを含むボイラ、ごみ焼却炉を含む焼却炉、給湯装
置、等が含まれるものとする。
The present invention is applicable to both the industrial furnace 100 and the burner 1 for heat storage combustion. When the present invention is applied to an industrial furnace, for example, the regenerative combustion burner has a structure that can be separated into a plurality of parts, and a part of them (for example, a burner tile described later, or a burner tile and a frame body). , Etc.) are fixed to the furnace body 5 of the industrial furnace 100 to form a member on the furnace body side or a part of the furnace body. The industrial furnace 100 to which the present invention is applied includes a melting furnace, a sintering furnace, a preheating furnace, a soaking furnace, a forging furnace, a heating furnace, an annealing furnace, a soaking furnace, a plating furnace, a drying furnace, and a refining furnace. Furnace, quenching furnace,
Tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding furnace, forehearth, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing Preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace, nitriding furnace, salt bath furnace, glass melting furnace, boiler including power generation boiler, incinerator including waste incinerator, hot water supply device, Etc. shall be included.

【0008】 まず、本発明の全実施例にわたって共通な
構成部分を、たとえば図1〜図6、図16、図17を参
照して、説明する。図1、図2に示すように、工業用炉
100および蓄熱燃焼用バーナ1は、給気通路2を介し
て給気送風手段(たとえば、ブロワ、コンプレッサ等)
4に接続されている。排気は排気通路3を介して排気さ
れ、排気通路3には排気誘引ファン101(排気ファ
ン)が必要に応じて設けられる。給気ブロワ4は、望ま
しくはは、バーナ本体(切替機構40の部分)に直結さ
れ、また排気ファン101が設けられる場合は排気ファ
ン101もバーナ本体に直結されている。この直結構造
は装置をコンパクトにするためである。排気ファン10
1が設けられる場合は、給気ブロワ4および排気ファン
101は、部品点数低減および設置スペース低減のため
に同一の駆動モータ102により駆動される。一方、燃
料噴射ノズル20からの燃料と、パイロット空気と、給
気通気用開口部42から蓄熱体30を通って流れてきた
給気は、炉100内に送り込まれる。切替機構40は、
給気と排気の蓄熱体分割部分への流れを、所定時間間隔
毎(たとえば、数秒〜数分毎、望ましくは、6秒〜30
秒毎)に切替える。給気は蓄熱体30の上流側でたとえ
ば約20℃であったものが、蓄熱体30を通るときに温
められ、空気噴射ノズル(通気孔)26から燃焼用空気
となって流れ出るときにはたとえば約900℃となり、
排ガス流となって蓄熱体30に入るときはたとえば約1
000℃となり、蓄熱体30を通るときに蓄熱体の温度
を上げて自身はたとえば約200℃に温度が低下され
る。ついで、切替機構40が給排気を切替え、それまで
排気が流れていたところに給気を通し、それまで給気が
流れていたところに排気を通す。かくして排気の熱は蓄
熱体30に蓄熱され、給気に切替えられたときに蓄熱し
た熱で給気を温める。
[0008] First, the common components throughout all of the embodiments of the present invention, for example, Figures 1-6, Figure 16, with reference to FIG. 17 will be described. As shown in FIGS. 1 and 2, an industrial furnace 100 and a regenerative combustion burner 1 are provided with a supply air blower (for example, a blower, a compressor, or the like) via a supply passage 2.
4 is connected. The exhaust gas is exhausted through the exhaust passage 3, and an exhaust induction fan 101 (exhaust fan) is provided in the exhaust passage 3 as necessary. Desirably, the air supply blower 4 is directly connected to the burner main body (the portion of the switching mechanism 40), and when the exhaust fan 101 is provided, the exhaust fan 101 is also directly connected to the burner main body. This direct connection structure is to make the device compact. Exhaust fan 10
When 1 is provided, the air supply blower 4 and the exhaust fan 101 are driven by the same drive motor 102 to reduce the number of components and the installation space. On the other hand, the fuel from the fuel injection nozzle 20, the pilot air, and the supply air flowing through the regenerator 30 from the supply air opening 42 are sent into the furnace 100. The switching mechanism 40
The flow of the supply air and the exhaust gas to the heat storage body divided portion is performed at predetermined time intervals (for example, every several seconds to several minutes, preferably, for 6 seconds to 30 minutes).
(Every second). The supply air is, for example, about 20 ° C. on the upstream side of the heat storage body 30, is heated when passing through the heat storage body 30, and flows out of the air injection nozzle (vent) 26 as combustion air, for example, about 900 ° C. ° C
When entering the regenerator 30 as an exhaust gas flow, for example, about 1
000 ° C., and the temperature of the heat storage body is increased when passing through the heat storage body 30 to lower itself to, for example, about 200 ° C. Next, the switching mechanism 40 switches between the supply and the exhaust, and supplies the air to the place where the exhaust has been flowing, and the exhaust to the place where the supply has been flowing. Thus, the heat of the exhaust gas is stored in the heat storage body 30, and when switched to the supply air, the supply air is warmed by the stored heat.

【0009】 図1、図2に示すように、本発明実施例の
工業用炉100および蓄熱燃焼用バーナ1は、周方向に
複数の部分に分離された蓄熱体30と、蓄熱体30の軸
方向一側に配置され燃料噴射ノズル20が挿入される穴
と給排が切り替わる通気孔27と通気孔27が開口する
給排気面23とを有するバーナタイル22と、蓄熱体3
0の軸方向他側に配置された切替機構40と、を有す
る。工業用炉100および蓄熱燃焼用バーナ1は、さら
に、燃料噴射ノズル20、蓄熱体30、および切替機構
40を内部に組みつけた枠体10を有している場合もあ
る。
As shown in FIGS. 1 and 2, an industrial furnace 100 and a regenerative combustion burner 1 according to an embodiment of the present invention include a regenerator 30 divided into a plurality of portions in a circumferential direction, and a shaft of the regenerator 30. A burner tile 22 having a hole which is disposed on one side in the direction and into which a fuel injection nozzle 20 is inserted, a ventilation hole 27 for switching between supply and discharge, and a supply / exhaust surface 23 where the ventilation hole 27 is opened;
And a switching mechanism 40 disposed on the other side in the 0 axial direction. The industrial furnace 100 and the heat storage combustion burner 1 may further include a frame 10 in which a fuel injection nozzle 20, a heat storage body 30, and a switching mechanism 40 are assembled.

【0010】 図2は、工業用炉100および蓄熱燃焼用
バーナ1の一例を拡大して示している。蓄熱体30はセ
ラミックス、耐熱金属、等の耐熱材からなり、ガスとの
接触面積を大とするために、望ましくはモノリスハニカ
ム構造としてある。ただしガスとの接触面積を大とする
構造はハニカム構造に限るものではなく、たとえば線材
や細い径のパイプを束ねた構造等であってもよい。蓄熱
体30は軸方向にガスを通過させる。蓄熱体30は、温
度勾配によるクラックの発生防止上および製作容易上軸
方向にも複数の蓄熱体部分に分割されている。蓄熱体3
0が軸方向に複数の蓄熱体部分に分割される場合は、組
み立てるときに蓄熱体部分間に耐熱材からなるスペーサ
32を介在させて蓄熱体部分間に若干の(たとえば、約
3〜5mm)隙間33を形成し、乱流を生成させるよう
にすることが望ましい。乱流場33を設けることによっ
て排気から蓄熱体30への、かつ蓄熱体30から給気へ
の熱伝達が向上される。燃料噴射ノズル20は、バーナ
中心部で軸方向に延び、それと同芯状に一次空気(パイ
ロットエア)パイプ21が延びていて、燃料噴射ノズル
20の外周面と一次空気パイプ21の内周面との間の環
状通路を一次空気が流れるようになっている。燃料噴射
ノズル20は、先端部を除いて電気絶縁材、たとえば碍
子、で覆われており、電気絶縁材で覆われていない先端
部に燃料の一部をパイロット燃料として吐出するパイロ
ット燃料吐出口20aを設け、そこから吐出されるパイ
ロット燃料に、電気絶縁材で覆われていない燃料噴射ノ
ズル先端部と一次空気パイプ21との間に電気的に火花
をとばして、着火させるようになっている。図3、図4
はバーナタイル22の詳細構造を示している。バーナタ
イル22は耐火材からなり、給排気面23と、そこから
突出された突出部24と、突出部24の内側に形成され
た燃料/一次空気混合物が流出する燃料開放面25を有
している。燃料開放面25は、望ましくは、下流側にい
くにしたがい拡がる末拡がり(テーパ、R形状等)構造
とされている。ただし、燃料開放面25を先端までスト
レートに形成してもよい。給排気面23には複数の通気
孔26が開口しており、通気孔26は、切替機構40に
よる給排気の切替によってある時は給気孔となりある時
は排気孔となる。通気孔26の給排気面23への開口端
には、排気の通気孔26への流れ込みを円滑にするため
に、望ましくは、湾曲26Rが設けられている。
FIG . 2 shows an enlarged example of the industrial furnace 100 and the burner 1 for regenerative combustion. The heat storage body 30 is made of a heat-resistant material such as ceramics or heat-resistant metal, and preferably has a monolith honeycomb structure in order to increase the contact area with the gas. However, the structure for increasing the contact area with the gas is not limited to the honeycomb structure, but may be, for example, a structure in which wires or small-diameter pipes are bundled. The heat storage body 30 allows gas to pass in the axial direction. The heat storage element 30 is also divided into a plurality of heat storage elements in the axial direction in order to prevent the occurrence of cracks due to the temperature gradient and to facilitate manufacture. Thermal storage 3
In the case where 0 is divided into a plurality of heat storage portions in the axial direction, spacers 32 made of a heat-resistant material are interposed between the heat storage portions at the time of assembling, and a slight distance (for example, about 3 to 5 mm) is provided between the heat storage portions. It is desirable to form the gap 33 to generate turbulence. By providing the turbulence field 33, heat transfer from the exhaust gas to the heat storage body 30 and from the heat storage body 30 to the supply air is improved. The fuel injection nozzle 20 extends in the axial direction at the center of the burner, and a primary air (pilot air) pipe 21 extends coaxially therewith. The outer peripheral surface of the fuel injection nozzle 20 and the inner peripheral surface of the primary air pipe 21 The primary air flows through the annular passage between the two. The fuel injection nozzle 20 is covered with an electrical insulating material, for example, an insulator, except for the tip, and a pilot fuel outlet 20a that discharges a part of the fuel as pilot fuel to the tip not covered with the electrical insulating material. Is provided, and the pilot fuel discharged therefrom is electrically sparked between the tip of the fuel injection nozzle not covered with the electric insulating material and the primary air pipe 21 to ignite. 3 and 4
Shows the detailed structure of the burner tile 22. The burner tile 22 is made of a refractory material and has a supply / exhaust surface 23, a protrusion 24 protruding therefrom, and a fuel release surface 25 formed inside the protrusion 24 and through which the fuel / primary air mixture flows out. I have. Desirably, the fuel release surface 25 has a flared (tapered, R-shaped, or the like) structure that expands toward the downstream side. However, the fuel release surface 25 may be formed straight up to the tip. A plurality of air holes 26 are opened in the air supply / exhaust surface 23, and the air holes 26 become air supply holes at some times due to switching of air supply and exhaust by the switching mechanism 40, and become air exhaust holes at some times. A curved portion 26R is desirably provided at an open end of the ventilation hole 26 to the air supply / exhaust surface 23 in order to smoothly flow exhaust gas into the ventilation hole 26.

【0011】 突出部24の外周面には軸方向に延びるエ
アガイド溝27が形成されている。ただし、エアガイド
溝27は必須のものではない。エアガイド溝27と孔2
6は軸方向に一致しており、孔26を通って流出される
給気(二次空気、メインエア)は、少なくとも一部がエ
アガイド溝27を通って指向性の強い流れ28Aとな
る。この流れ28Aに燃料/一次空気混合物の流れ28
Bが随伴され、遠くまで届く燃焼流が形成される。ま
た、エアガイド溝27の外側から燃焼排ガスを巻き込
み、酸素リーンとなって緩慢な燃焼となり、したがって
NOX の生成は少ない。排気は通気孔26に矢印28C
のように流入していくので、矢印28Bのように流れる
燃料/一次空気混合物から遠く燃料/一次空気混合物を
ほとんど巻き込まず、燃料の不完全燃焼によるCOが排
気に含まれることが少なくなる。
An air guide groove 27 extending in the axial direction is formed on the outer peripheral surface of the projection 24. However, the air guide groove 27 is not essential. Air guide groove 27 and hole 2
Numeral 6 coincides in the axial direction, and at least a part of the supply air (secondary air, main air) flowing out through the hole 26 becomes a highly directional flow 28A through the air guide groove 27. This stream 28A includes a stream 28 of the fuel / primary air mixture.
B is entrained to form a combustion stream that reaches far away. Further, the combustion exhaust gas is entrained from the outside of the air guide groove 27, becomes oxygen-lean, and performs slow combustion, so that the generation of NO X is small. Exhaust gas is inserted into the vent hole 26 by an arrow 28
Therefore, the fuel / primary air mixture is far from the fuel / primary air mixture flowing as indicated by the arrow 28B, and is hardly entrained, and CO due to incomplete combustion of the fuel is less contained in the exhaust gas.

【0012】 切替機構40は、互いに摺動可能に面接触
された回転ディスク44と固定ディスク46と、給排気
の仕切壁41を有し、回転ディスク44は回転ディスク
44の回転によって連通、遮断される複数の通気用開口
部42、43を有し、固定ディスク46は貫通孔47を
有し、通気用開口部42、43は仕切壁41の一側に連
通する給気通気用開口部42と仕切壁41の他側に連通
する排気通気用開口部43を含んでいる。
The switching mechanism 40 has a rotating disk 44 and a fixed disk 46, which are slidably contacted with each other, and a supply / exhaust partition wall 41. The rotating disk 44 communicates and is cut off by the rotation of the rotating disk 44. The fixed disk 46 has a through hole 47, and the ventilation openings 42, 43 are provided with the air supply ventilation openings 42 communicating with one side of the partition wall 41. It includes an exhaust ventilation opening 43 communicating with the other side of the partition wall 41.

【0013】 切替機構40のうち一部の部材は可動部材
である。たとえば図5の例では仕切壁41、回転ディス
ク44は可動部材である。切替機構40のうち残りの部
材は静止部材である。たとえば固定ディスク46は静止
部材である。切替機構40のうち可動部材は、駆動手段
(たとえば、モータ、シリンダ等)45によって一方向
または往復回転駆動される。回転ディスク44と固定デ
ィスク46は互いに、広い面積をもつ平面同士で面接触
されているので、すなわち回転ディスク44の軸芯と直
交する平面と固定ディスク46の軸芯と直交する平面と
の摺動面同士で面接触されているので、仕切壁端面と回
転ディスクとの接触に比べて、接触面積は大であり、シ
ール性が高くされている。また、シール性を上げるため
に、回転ディスク44はばね51、52で固定ディスク
46に押しつけられている(図9、図12、図14参
照)。蓄熱体30は静止部材である。蓄熱体30は複数
の部分に分離されており、隔壁31によって分離される
か、またはスリーブ31S(図9)に収納されて互いに
分離されている。 回転ディスク44が回転されること
により、蓄熱体30の分離された部分の給、排気の流れ
が切替わる。
[0013] Some of the members of the switching mechanism 40 is a movable member. For example, in the example of FIG. 5, the partition wall 41 and the rotating disk 44 are movable members. The remaining members of the switching mechanism 40 are stationary members. For example, the fixed disk 46 is a stationary member. The movable member of the switching mechanism 40 is driven in one direction or reciprocating rotation by a driving unit (for example, a motor, a cylinder, or the like) 45. Since the rotating disk 44 and the fixed disk 46 are in surface contact with each other on a plane having a large area, that is, the sliding between the plane orthogonal to the axis of the rotating disk 44 and the plane orthogonal to the axis of the fixed disk 46 is performed. Since the surfaces are in surface contact with each other, the contact area is larger than the contact between the end surface of the partition wall and the rotating disk, and the sealing property is enhanced. In order to improve the sealing performance, the rotating disk 44 is pressed against the fixed disk 46 by springs 51 and 52 (see FIGS. 9, 12 and 14). The heat storage body 30 is a stationary member. The heat storage body 30 is divided into a plurality of parts, and is separated by a partition wall 31 or housed in a sleeve 31S (FIG. 9) and separated from each other. By rotating the rotating disk 44, the supply and exhaust flow of the separated portion of the heat storage body 30 is switched.

【0014】 複数に分離された蓄熱体部分には、それぞ
れに対して、下流側にバーナタイル22の通気孔26が
設けられる。この通気孔26のうち、排気通気用開口部
43によってカバーされる通気孔26の通路断面積の和
が給気通気用開口部42によってカバーされる通気孔2
6の通路断面積の和以上となるように、回転ディスク4
4に設けられる通気用開口部42、43と固定ディスク
46に設けられる貫通孔47の形状および相対位置関係
が設定されている。たとえば、図5、図6の例では、給
気通気用開口部42によってカバーされる通気孔26は
1個または2個であるが、排気通気用開口部43によっ
てカバーされる通気孔26は3個または2個であり、給
気通気孔は排気通気孔と同等かそれ以上に絞られる。こ
れによって、給気流速が増大する。上記において、給気
通気用開口部42によってカバーされる通気孔26と排
気通気用開口部43によってカバーされる通気孔26と
の個数比は、整数比でなくてもよい。
[0014] The plurality of separated regenerator section, for each, the vent hole 26 of the burner tile 22 is provided on the downstream side. Of the ventilation holes 26, the sum of the passage cross-sectional areas of the ventilation holes 26 covered by the exhaust ventilation openings 43 is the ventilation hole 2 covered by the air supply ventilation openings 42.
6 so that it is equal to or larger than the sum of the cross-sectional areas of the passages 6.
The shapes and relative positional relations of the ventilation openings 42 and 43 provided in the base 4 and the through holes 47 provided in the fixed disk 46 are set. For example, in the examples of FIGS. 5 and 6, one or two air holes 26 are covered by the air supply air opening 42, but three or more air holes 26 are covered by the exhaust air opening 43. Or two, and the supply air vent is narrowed to be equal to or more than the exhaust air vent. As a result, the air supply flow rate increases. In the above description, the number ratio between the ventilation holes 26 covered by the supply / ventilation openings 42 and the ventilation holes 26 covered by the exhaust / vent ventilation openings 43 may not be an integer ratio.

【0015】 複数に分離された蓄熱体部分のうち排気通
気用開口部43でカバーされる部分の容積は給気通気用
開口部42でカバーされる部分の容積以上となるように
給、排気通気用開口部42、43の個数、形状が設定さ
れている。たとえば、蓄熱体30が4個に隔壁31によ
って分割された場合、排気通気用開口部43でカバーさ
れるのは3個または2個で、給気通気用開口部42でカ
バーされるのは1個または2個である。排気容積を大き
くすることによって排気流速が低減するため、蓄熱体3
0が蓄熱しやすくなる。
[0015] plurality volume of the portion covered by the exhaust ventilation openings 43 of the separated regenerator portion sheet so that the above volume of the portion covered by the openings 42 for air supply vent, the exhaust vent The number and shape of the openings 42 and 43 are set. For example, when the heat storage body 30 is divided into four by the partition wall 31, three or two are covered by the exhaust ventilation opening 43, and one is covered by the air supply ventilation opening 42. Or two. Since the exhaust flow velocity is reduced by increasing the exhaust volume, the heat storage body 3
0 easily stores heat.

【0016】 上記の共通構成による作用は次の通りであ
る。まず、切替機構40では、回転ディスク44と固定
ディスク46とが摺動可能に広い平面で面接触されてい
るので、回転ディスク44と固定ディスク46との接触
面積が増大し、給気が回転ディスク44と固定ディスク
46との間を通って排気にリークするのを抑制でき、炉
内への給気吹出流速も大になる。また、回転ディスク4
4が仕切壁を通過する場合に比べて、給気のカバーエリ
アの自由度が向上しており、切替時の給気量の減少が発
生しない設定が可能(図8)となるし、隔壁31の厚さ
も自由に設定できるので、蓄熱室の設計が自由になる。
また、燃料噴射ノズル20、蓄熱体30、切替機構40
が枠体10の内部に組みつけられているので、蓄熱体3
0と切替機構40とを接続する配管類が不要となり、配
管の施工が不要で、装置が小型化される。また、配管が
あるときには配管内の排気のパージが切替時に必要にな
るが、配管がないためパージが必要でなくなり、切替時
間も短い。
The operation of the above common configuration is as follows. First, in the switching mechanism 40, since the rotating disk 44 and the fixed disk 46 are in slidable surface contact with each other on a wide plane, the contact area between the rotating disk 44 and the fixed disk 46 is increased, and the supply air is reduced. Leakage to the exhaust gas passing between the fixed disk 44 and the fixed disk 46 can be suppressed, and the flow rate of supply air to the furnace can be increased. The rotating disk 4
The degree of freedom of the air supply cover area is improved as compared with the case where the air passage 4 passes through the partition wall, and it is possible to set such that the air supply amount does not decrease at the time of switching (FIG. 8). The thickness of the heat storage chamber can be freely set, so that the design of the heat storage chamber is free.
Further, the fuel injection nozzle 20, the heat storage body 30, the switching mechanism 40
Is assembled inside the frame 10, so that the heat storage body 3
There is no need for piping to connect the zero and the switching mechanism 40, and there is no need to perform piping, and the apparatus is downsized. Further, when there is a pipe, it is necessary to purge the exhaust gas in the pipe at the time of switching, but since there is no pipe, purging is not required, and the switching time is short.

【0017】 また、回転ディスク44の通気用開口部4
2、43と固定用ディスク46の貫通孔47の形状およ
び位置関係が、通気孔27のうち給気通気孔通路断面積
を排気通気孔通路断面積と同等以下に絞るように設定さ
れているので、給気の流速が向上する。そして、切替機
構40でのシール性の増大と合わせて、給気流速が従来
に比べて非常に大となる。図16に示すように、給気流
速が大となると、燃料が給気に強く随伴して流れるとと
もに、炉内排ガスも給気に巻込まれて強循環する。燃料
が給気に強く随伴して流れると、燃料の排気孔への短絡
流が少なくなり、燃料の不完全燃焼、COの生成が抑制
される。また、炉内排ガスが給気に巻込まれて炉内で強
循環すると、燃焼が緩慢となる。その結果、NOx生成
量が図17に示すように約20ppmに減少する。従来
の蓄熱燃焼用バーナ1´を備えた工業用炉5´(図1
8)では約200ppmのNOxが生成し、通常のバー
ナの炉では約2000ppmのNOxが生成するので、
それらに比べて、NOx生成量が大幅に減少する。ま
た、燃焼が緩慢になることによって、燃焼領域Rが従来
の燃焼領域R´に比べて炉の奥に向って延び、燃焼領域
の温度Tが図16に示すように平均化する。すなわち、
温度差ΔTが従来の炉の温度差ΔT´(図18)に比べ
て少なくなる。そのため、最高温度を炉壁許容温度Ta
以下にするという条件下で、燃焼領域Rの温度Tを従来
のT´に比べて全体的に上げることができる。その結
果、燃焼領域Rのほぼ全域にわたって平均熱流束を上げ
ることができ、高効率伝熱が可能になり、同じ伝熱を達
成する場合、炉体のコンパクト化、スペース効率向上、
イニシャルコスト低減がはかられる。また、燃焼領域温
度Tの平均化によって、炉壁が局所的に高温になること
が回避され、炉の長寿命化、メンテナンスコストの低減
がはかられる。さらに、燃焼の緩慢によって、燃焼騒音
も小さくなる。
Further, the ventilation opening 4 of the rotary disc 44
Since the shapes and positional relationships of the through holes 47 of the fixing disks 46 are set so that the cross-sectional area of the supply-air vent passage of the vent hole 27 is reduced to be equal to or less than the cross-sectional area of the exhaust vent passage. The flow rate of the air supply is improved. In addition to the increase in the sealing performance of the switching mechanism 40, the air supply flow rate becomes very large as compared with the conventional case. As shown in FIG. 16, when the flow rate of the supply air is large, the fuel flows strongly accompanying the supply air, and the exhaust gas in the furnace is entrained in the supply air and strongly circulates. When the fuel flows strongly accompanying the air supply, the short-circuit flow of the fuel to the exhaust hole is reduced, and the incomplete combustion of the fuel and the generation of CO are suppressed. Further, if the exhaust gas in the furnace is entrained in the supply air and strongly circulates in the furnace, the combustion becomes slow. As a result, the NOx generation amount decreases to about 20 ppm as shown in FIG. An industrial furnace 5 'equipped with a conventional regenerative combustion burner 1' (FIG. 1)
In 8), about 200 ppm of NOx is produced, and in a normal burner furnace, about 2000 ppm of NOx is produced.
In comparison with them, the NOx generation amount is greatly reduced. Further, due to the slow combustion, the combustion region R extends toward the back of the furnace as compared with the conventional combustion region R ', and the temperature T of the combustion region is averaged as shown in FIG. That is,
The temperature difference ΔT is smaller than the temperature difference ΔT ′ of the conventional furnace (FIG. 18). Therefore, the maximum temperature is set to the furnace wall allowable temperature Ta.
Under the following conditions, the temperature T of the combustion region R can be raised as a whole as compared with the conventional T '. As a result, it is possible to increase the average heat flux over almost the entire region of the combustion region R, enable high-efficiency heat transfer, and, when achieving the same heat transfer, make the furnace compact, improve space efficiency,
The initial cost can be reduced. In addition, by averaging the combustion zone temperature T, it is possible to prevent the furnace wall from being locally heated to a higher temperature, thereby extending the life of the furnace and reducing maintenance costs. Further, the slow combustion reduces the combustion noise.

【0018】 また、蓄熱体部分のうち回転ディスク44
の排気通気用開口部43によりカバーされる部分の容積
が回転ディスク44の給気通気用開口部42によりカバ
ーされる部分の容積以上に設定されているため、蓄熱体
30を通過する排ガスの流速が低減し、蓄熱体30が排
ガスの熱を回収しやすくなり、熱回収効率、したがって
炉の熱効率が上昇する。
The rotating disk 44 of the heat storage portion
Is set to be equal to or greater than the volume of the portion covered by the air supply opening 42 of the rotating disk 44, so that the flow rate of the exhaust gas passing through the heat storage 30 And the heat storage body 30 can easily recover the heat of the exhaust gas, and the heat recovery efficiency, and thus the heat efficiency of the furnace, increase.

【0019】 つぎに、本発明の各実施例に特有な構成、
作用を説明する。本発明の第1実施例では、蓄熱体30
を分割する隔壁31は、図6に示すように放射状に延び
て、蓄熱体30を周方向に複数(2以上、図6の実施例
では4)に分割している。これに対し、切替機構40の
仕切壁41は周方向に延びていて、内外周の一方に給気
通路2、他方に排気通路3を形成する。回転ディスク4
4のうち、仕切壁41の内外周の一方に給気通気用開口
部42があけられており、他方に排気通気用開口部43
があけられている。給気通気用開口部42は給気通路2
側に設けられ、排気通気用開口部43は排気通路3側に
設けられる。図5、図6に示されているように、切替機
構40は、回転ディスク44と固定ディスク46との2
枚ディスク構造となっている。回転ディスク44には、
仕切壁41の外周側で弧状に延びる給気通気用開口部4
2と仕切壁41の内周側で弧状に延びる排気通気用開口
部43とが設けられており、固定ディスク46には、蓄
熱体の隔壁31の中間部に対応する位置に、仕切壁41
の内外周のそれぞれに貫通孔47が設けられている。回
転ディスク44は、一方向のみに回転される。一方向回
転のため、回転駆動手段には駆動モータ45を使用でき
る。駆動モータ45は、排気の熱の影響を受けないよう
にするために、仕切壁41より給気通路2側(給気通気
用開口部42がある通路側)に設定されている。また、
蓄熱体30は隔壁31によって周方向に4等分に分割さ
れている。排気通気用開口部43は蓄熱体の4分割部分
のうち3つまたは2つの部分にまたがり、給気通気用開
口部42は1つの部分にまたがる。また、排気通気用開
口部43によってカバーされる蓄熱体分割部分と給気通
気用開口部42によってカバーされる分割部分とは互い
に重ならないように開口部42、43の位置関係が設定
されている。この重なり合いのない条件が満足されれ
ば、蓄熱体30の隔壁31による分割個数は、4以外で
あってもよく、任意である。
Next, unique to each embodiment of the present invention structure,
The operation will be described. In the first embodiment of the present invention, the heat storage 30
The partition wall 31 that divides the heat storage body 30 radially extends as shown in FIG. 6 and divides the heat storage body 30 into a plurality (two or more, four in the embodiment of FIG. 6) in the circumferential direction. On the other hand, the partition wall 41 of the switching mechanism 40 extends in the circumferential direction, and forms the air supply passage 2 on one of the inner and outer circumferences and the exhaust passage 3 on the other. Rotating disk 4
4, an air supply ventilation opening 42 is formed in one of the inner and outer circumferences of the partition wall 41, and an exhaust ventilation opening 43 is formed in the other.
Has been opened. The air supply ventilation opening 42 is provided in the air supply passage 2.
The exhaust ventilation opening 43 is provided on the exhaust passage 3 side. As shown in FIGS. 5 and 6, the switching mechanism 40 includes a rotating disk 44 and a fixed disk 46.
It has a single disc structure. The rotating disk 44 includes
Air supply ventilation opening 4 extending in an arc shape on the outer peripheral side of partition wall 41
2 and an exhaust ventilation opening 43 extending in an arc shape on the inner peripheral side of the partition wall 41, and the fixed disk 46 is provided at a position corresponding to an intermediate portion of the partition wall 31 of the heat storage body.
Are provided with through holes 47 on the inner and outer circumferences, respectively. The rotating disk 44 is rotated only in one direction. For one-way rotation, a drive motor 45 can be used as the rotation drive means. The drive motor 45 is set on the air supply passage 2 side (the passage side with the air supply ventilation opening 42) from the partition wall 41 so as not to be affected by the heat of the exhaust gas. Also,
The heat storage body 30 is divided into four equal parts in the circumferential direction by partition walls 31. The exhaust ventilation opening 43 extends over three or two of the four divided portions of the heat storage body, and the air supply ventilation opening 42 extends over one portion. The positional relationship between the openings 42 and 43 is set so that the heat storage body divided portion covered by the exhaust ventilation opening 43 and the division covered by the air supply ventilation opening 42 do not overlap each other. . As long as the non-overlapping condition is satisfied, the number of divisions of the heat storage body 30 by the partition walls 31 may be other than four and is arbitrary.

【0020】 第1実施例の作用については、蓄熱体30
の隔壁31を放射状に延ばしたため、回転ディスク44
を回転させることによって容易に蓄熱体30の各部分の
給排気を切替える切替構造が得られる。回転ディスク4
4が回転されると、図6において開口部42、43が静
止の貫通孔47に対して回転していき、蓄熱体30の給
気が通過する領域および排気が通過する領域が順次移っ
ていく。これによって、連続的に給排気の切替が行われ
る。また、切替機構40の仕切壁41を周方向に延ばし
たので、回転ディスク44を回転させても、常に可動の
給気通路用開口部42と静止の吸気通路2を対応させ、
可動の排気通気用開口部43と静止の排気通路3を対応
させることが可能になる。また、給気通路2の方に駆動
モータ45を設置したので、駆動モータ45に排気の熱
が影響することが抑制される。
[0020] For the operation of the first embodiment, the regenerator 30
Of the rotating disk 44 because the partition wall 31 is radially extended.
By rotating, a switching structure for easily switching the supply and exhaust of each part of the heat storage body 30 is obtained. Rotating disk 4
When the rotating member 4 is rotated, the openings 42 and 43 rotate relative to the stationary through hole 47 in FIG. 6, and the region of the heat storage body 30 through which the air supply passes and the region through which the exhaust air passes sequentially shift. . As a result, the supply and exhaust are switched continuously. Further, since the partition wall 41 of the switching mechanism 40 is extended in the circumferential direction, the movable intake passage opening 42 always corresponds to the stationary intake passage 2 even when the rotating disk 44 is rotated,
The movable exhaust ventilation opening 43 can correspond to the stationary exhaust passage 3. Further, since the drive motor 45 is provided in the air supply passage 2, the influence of the heat of the exhaust gas on the drive motor 45 is suppressed.

【0021】 本発明の第2実施例は、図7、図8に示す
ように、固定ディスク46の貫通孔47を給、排気に共
用したものである。貫通孔47は同一円周上に周方向に
等間隔に配されている。回転ディスク44はディスクの
厚みを大にして立体状(三次元状)とされている。回転
ディスク44に設けられた給気通気用開口部42は仕切
壁41の一側の給気通路2に開口しており、排気通気用
開口部43は仕切壁41の他側の排気通路3に開口して
いる。排気通気用開口部43のカバーエリアは、給気通
気用開口部42のカバーエリアより大である。また、回
転ディスク44の外周と固定ディスク46との間にシー
ル材48を介装して、回転ディスク44と固定ディスク
46とをシールしている。排気通気用開口部43の排気
流れ下流側には、給気の余剰部分を排気流れ下流側に向
けて噴出する排気誘引機構49が設けられている。ま
た、一次空気パイプ21の、回転ディスク44の内側に
対応する部分に一次空気導入口50を設け、給気の一部
を一次空気として一次空気パイプ21内に導入するよう
にしてある。
In the second embodiment of the present invention, as shown in FIGS. 7 and 8, the through hole 47 of the fixed disk 46 is used for both supply and exhaust. The through holes 47 are arranged at equal intervals in the circumferential direction on the same circumference. The rotating disk 44 has a three-dimensional shape (three-dimensional shape) by increasing the thickness of the disk. The air supply opening 42 provided in the rotating disk 44 is open in the air supply passage 2 on one side of the partition wall 41, and the exhaust air opening 43 is provided in the exhaust passage 3 on the other side of the partition wall 41. It is open. The cover area of the exhaust ventilation opening 43 is larger than the cover area of the air supply ventilation opening 42. In addition, a sealing member 48 is interposed between the outer periphery of the rotating disk 44 and the fixed disk 46 to seal the rotating disk 44 and the fixed disk 46. An exhaust attraction mechanism 49 is provided downstream of the exhaust ventilation opening 43 on the exhaust flow side to eject an excess portion of the supply air toward the exhaust flow downstream. Further, a primary air inlet 50 is provided in a portion of the primary air pipe 21 corresponding to the inside of the rotary disk 44, and a part of the supply air is introduced into the primary air pipe 21 as primary air.

【0022】 第2実施例の作用については、固定ディス
ク46の貫通孔47を給排気に共用したので、切替機構
がコンパクトなわりに通気孔面積が大きくとれる。した
がっって、大きな径のディスクでは歪み等が問題となる
大容量のバーナにも適用しやすい。回転ディスク44の
外周にシール材48を設けたので、回転ディスク44外
周端部と固定ディスク46との間からリークするエアの
リークを防止できる。また、排気誘引機構49に余剰給
気を利用したので、特別な排気吸引ブロワ等を設ける必
要がなくなり、装置のコンパクト化、コストダウンがは
かられる。
In the operation of the second embodiment, since the through hole 47 of the fixed disk 46 is used for both supply and exhaust, the switching mechanism is compact and the area of the ventilation hole can be increased. Therefore, it can be easily applied to a large-capacity burner in which distortion or the like becomes a problem in a large-diameter disk. Since the seal member 48 is provided on the outer periphery of the rotating disk 44, it is possible to prevent air leaking from between the outer peripheral end of the rotating disk 44 and the fixed disk 46. Further, since the excess air supply is used for the exhaust attraction mechanism 49, it is not necessary to provide a special exhaust suction blower or the like, and the apparatus can be made compact and the cost can be reduced.

【0023】 本発明の第3実施例は、図9〜図11に示
すように、本発明の第2実施例をさらに改良したもので
ある。本発明の第3実施例では、複数に分離された蓄熱
体30のそれぞれの部分は円筒状スリーブ31S内に納
められている。円筒状スリーブ31Sは枠体10の端板
10aに固定されている。蓄熱体30のそれぞれの部分
は円筒状スリーブ31S内に納められ、円筒状押え10
bを介して固定ディスク46により押えられている。蓄
熱体30のそれぞれの部分を交換するときには、固定デ
ィスク46を枠体10の端板10aから外し、円筒状押
え10bを取り出した後、蓄熱体30の部分を取り出
し、新しい蓄熱体30の部分を円筒状スリーブ31Sに
挿入した後、円筒状押え10bを挿入し、固定ディスク
46を枠体10の端板10aに締結する手順により行
う。バーナタイル22の通気孔26は上流側に向って拡
開するロート状部26Aを有し,通気孔26はロート状
部26Aを介して円筒状スリーブ31Sに滑らかに接続
している。ロート状部26Aの断面は円形で、円筒状ス
リーブ31Sの断面も円形のため、両者は段部を形成せ
ずにつながることができる。その結果、給気が通気孔2
6から出る時の指向性が強まる。回転ディスク44と固
定ディスク46とはメタルタッチシールとされており、
回転ディスク44は固定ディスク46にスプリング52
による付勢により押しつけられている。したがって、回
転摺動部にOリングを設けていない。スプリング52は
周方向に複数箇所設けられており、回転ディスク44を
固定ディスク46に均一な力で押しつけている。モータ
45の回転はドライブギア45A、ドリブンギア45
B、スリーブ45C、カップリング45Dを介して回転
ディスク44に伝えられる。スプリング51はドリブン
ギア45Bが踊ることを防止している。回転ディスク4
4に設けられた給気通気用開口部42および排気用開口
部43は扇形状をしており、固定ディスク46に設けら
れた貫通孔47も扇形状をしている。そして、給気通気
用開口部42および排気用開口部43のそれぞれの固定
ディスク46側の端部は、互いに同一円周状に設けられ
ている。給気通気用開口部42と貫通孔47との重なり
面積を1とすると、排気通気用開口部43と貫通孔47
との重なり面積は2または3となるように、給気通気用
開口部42および排気通気用開口部43と貫通孔47の
位置、形状が設定されており、給気流速を高く、排気流
速を低くするようにしてある。給気通気用開口部42に
接続する給気通路2と排気用開口部43に接続する排気
通路3のうち一方は切替機構40に軸方向から接続し、
他方は切替機構40に軸方向と直角方向から接続してい
る。これによって、給気経路と排気経路を離すことがで
き、回転ディスク駆動用モータ45等の部品が切替機構
40に組付やすくなっている。
Third embodiment of the [0023] present invention, as shown in FIGS. 9 to 11 is obtained by further improving the second embodiment of the present invention. In the third embodiment of the present invention, each part of the heat storage body 30 divided into a plurality of pieces is accommodated in a cylindrical sleeve 31S. The cylindrical sleeve 31S is fixed to the end plate 10a of the frame 10. Each part of the heat storage body 30 is accommodated in a cylindrical sleeve 31S,
b and is held down by the fixed disk 46. When replacing each part of the heat storage body 30, the fixed disk 46 is removed from the end plate 10a of the frame 10, the cylindrical presser 10b is taken out, the part of the heat storage body 30 is taken out, and the new heat storage body 30 is taken out. After the insertion into the cylindrical sleeve 31S, the procedure is performed by inserting the cylindrical presser 10b and fastening the fixed disk 46 to the end plate 10a of the frame 10. The ventilation hole 26 of the burner tile 22 has a funnel-like portion 26A that expands toward the upstream side, and the ventilation hole 26 is smoothly connected to the cylindrical sleeve 31S via the funnel-like portion 26A. Since the cross section of the funnel-shaped portion 26A is circular and the cross section of the cylindrical sleeve 31S is also circular, both can be connected without forming a step. As a result, the air supply is
The directivity when leaving 6 is increased. The rotating disk 44 and the fixed disk 46 are metal touch seals,
The rotating disk 44 includes a fixed disk 46 and a spring 52.
Is pressed by the urging force. Therefore, no O-ring is provided on the rotary sliding portion. A plurality of springs 52 are provided in the circumferential direction, and press the rotating disk 44 against the fixed disk 46 with a uniform force. The rotation of the motor 45 is performed by the drive gear 45A and the driven gear 45A.
B, the sleeve 45C, and the coupling 45D are transmitted to the rotating disk 44. The spring 51 prevents the driven gear 45B from dancing. Rotating disk 4
The air supply / ventilation opening 42 and the exhaust opening 43 provided in 4 have a fan shape, and the through hole 47 provided in the fixed disk 46 also has a fan shape. The ends of the supply air ventilation opening 42 and the exhaust opening 43 on the fixed disk 46 side are provided on the same circumference. Assuming that the overlapping area between the air supply ventilation opening 42 and the through hole 47 is 1, the exhaust ventilation opening 43 and the through hole 47 are provided.
The positions and shapes of the air supply ventilation opening 42, the exhaust ventilation opening 43, and the through hole 47 are set so that the overlapping area with 2 is 3 or 3. I try to lower it. One of the air supply passage 2 connected to the air supply ventilation opening 42 and the exhaust passage 3 connected to the exhaust opening 43 is connected to the switching mechanism 40 in the axial direction,
The other is connected to the switching mechanism 40 from a direction perpendicular to the axial direction. As a result, the supply path and the exhaust path can be separated, and components such as the rotary disk drive motor 45 can be easily assembled to the switching mechanism 40.

【0024】 第3実施例の作用については、蓄熱体30
のそれぞれの部分を円筒状スリーブ31S内に収納する
ようにしたので、放射状の隔壁31に比べて製作が容易
となり、かつ蓄熱体30の交換が容易となる。また、蓄
熱体30の部分を円筒状スリーブ31S内に収納するよ
うにするとともに、ロート状部26Aを介して円筒状ス
リーブ31Sとバーナタイル22の通気孔26とを接続
したので、流れの通路に段部が形成されず、流れの圧力
損失を小さくすることができるとともに、通気孔26を
出るときの給気の流れの指向性を強めることができる。
また、回転ディスク44と固定ディスク46との間のシ
ールをメタルタッチシールとして、回転摺動部にOリン
グを使用しないようにしたので、シールの信頼性が高ま
る。また、回転ディスク44の通気用開口部42、43
も固定ディスク46の貫通孔47も扇形状としたので、
開口面積を大きくとることができ、流れの圧力損失を小
さくすることができる。
[0024] For the operation of the third embodiment, the regenerator 30
Are accommodated in the cylindrical sleeve 31S, so that the manufacture is easier and the heat storage body 30 can be easily replaced as compared with the radial partition wall 31. In addition, since the heat storage body 30 is accommodated in the cylindrical sleeve 31S and the cylindrical sleeve 31S and the ventilation holes 26 of the burner tiles 22 are connected via the funnel-shaped portion 26A, the flow passage is formed. Since no step is formed, the pressure loss of the flow can be reduced, and the directivity of the supply air flow when exiting the vent hole 26 can be enhanced.
In addition, since the seal between the rotating disk 44 and the fixed disk 46 is a metal touch seal, and the O-ring is not used in the rotating sliding portion, the reliability of the seal is improved. Further, the ventilation openings 42 and 43 of the rotary disc 44 are provided.
Since the through hole 47 of the fixed disk 46 also has a fan shape,
The opening area can be increased, and the pressure loss of the flow can be reduced.

【0025】 本発明の第4実施例では、図12、図13
に示すように、切替機構40は、第1の位置P1と第2
の位置P2を選択的にとり、隔壁31によって分離され
た蓄熱体30の複数の部分の一部に給排気の少なくとも
一方が流れない部分を作ることなく、第1の位置P1と
第2の位置P2を切替えるシャッタからなる。回転ディ
スク44は往復回転される。往復回転のため、回転ディ
スク44の駆動手段45にはたとえばエアシリンダが使
用できる。エアシリンダによる切替えは短時間で行わ
れ、瞬時シャッタとなっている。給気通気用開口部42
が固定ディスク46の貫通孔47間部位にきたときは、
給気通気用開口部42が絞られる(閉塞される)が、そ
の時には、燃料噴射ノズル20に燃料を送る配管に設け
た燃料供給量調整機構6、たとえば制御弁が燃料を絞
り、燃料と空気との比を一定にし、パイロット燃料と一
次空気による連続運転が可能である。蓄熱体30は隔壁
31(31A、31B)によって周方向に、たとえば2
分割されている。隔壁31の厚さは、給気通気用開口部
42が通過する隔壁31Aの方が排気通気用開口部43
が通過する隔壁31Bよりも大とされている。隔壁31
Aの厚さ(したがって貫通孔47間の距離)は給気通気
用開口部42の直径より大であり、隔壁31Bの厚さ
(反対側の貫通孔47間の距離)は排気通気用開口部4
3の直径より小とされている。したがって、排気通気用
開口部43は、少なくともその一部が貫通孔47間部位
によって封鎖されないようにしてある(一次燃焼排ガス
排出のため)。
In the fourth embodiment of the present invention, FIGS.
As shown in the figure, the switching mechanism 40 is configured to move the first position P1
Of the heat storage body 30 separated by the partition wall 31 without forming a portion through which at least one of the supply and exhaust air does not flow, without making the first position P1 and the second position P2. And a shutter for switching between. The rotating disk 44 is reciprocated. For reciprocating rotation, for example, an air cylinder can be used as the driving means 45 of the rotating disk 44. Switching by the air cylinder is performed in a short time, and is an instant shutter. Air supply ventilation opening 42
Comes to the portion between the through holes 47 of the fixed disk 46,
The air supply ventilation opening 42 is narrowed (closed). At that time, the fuel supply amount adjusting mechanism 6 provided in the pipe for sending fuel to the fuel injection nozzle 20, for example, a control valve throttles the fuel, and the fuel and air , And continuous operation with pilot fuel and primary air is possible. The heat storage body 30 is formed in a circumferential direction by partition walls 31 (31A, 31B), for example, by 2
Has been split. The thickness of the partition wall 31 is such that the partition wall 31A through which the air supply and ventilation opening 42 passes has the exhaust ventilation and ventilation opening 43.
Is larger than the partition wall 31B through which. Partition wall 31
The thickness of A (therefore, the distance between the through holes 47) is larger than the diameter of the air supply ventilation opening 42, and the thickness of the partition wall 31B (the distance between the opposite through holes 47) is the exhaust ventilation opening. 4
3 is smaller than the diameter. Therefore, at least a part of the exhaust ventilation opening 43 is not blocked by the portion between the through holes 47 (for discharging the primary combustion exhaust gas).

【0026】 第4実施例の作用については、はじめは第
1の位置P1上にあった給、排気通気用開口部42、4
3が回転ディスク44の回転につれて隔壁31A、31
Bに対応する固定ディスク46の貫通孔間部分にいた
る。給気通気用開口部42が隔壁31Aに対応する固定
ディスク46の貫通孔間部分で完全に閉塞されても(そ
の場合でも一次空気は炉体5内に供給されている)、排
気通気用開口部43を通って排気が全ての蓄熱体部分に
流れており、一次燃焼を消火することなく連続燃焼切替
えを可能とする。また、休止している蓄熱体部分がない
ため、蓄熱体30の全体を最も有効に利用でき、蓄熱体
に休止部分が存在するものに比べて、蓄熱体のコンパク
ト化、バーナの小型化がはかられている。
[0026] For the operation of the fourth embodiment, initially supply, exhaust ventilation openings which was on the first position P1 42,4
3 are the partitions 31A, 31 as the rotating disk 44 rotates.
B reaches the portion between the through holes of the fixed disk 46 corresponding to B. Even if the air supply ventilation opening 42 is completely closed at the portion between the through holes of the fixed disk 46 corresponding to the partition wall 31A (even in this case, the primary air is supplied into the furnace body 5), the exhaust ventilation opening also exists. Exhaust gas flows to all the heat storage sections through the section 43, and enables continuous combustion switching without extinguishing the primary combustion. In addition, since there is no regenerator portion at rest, the entire regenerator 30 can be used most effectively, and the regenerator can be made more compact and the burner can be made smaller compared to a regenerator having a pause portion. I'm skewed.

【0027】 本発明の第5実施例は、本発明の第4実施
例を通気用開口部の孔42、43の個数が3以上の多孔
シャッタとしたものであり、図14、図15に示されて
いる。図14、図15において、切替機構40は、エア
シリンダ45によって往復回動される回転ディスク44
と、静止の固定ディスク46とを有する。固定ディスク
46にはたとえば円形の貫通孔47が穿設されており、
回転ディスク44にはたとえばほぼ四角形の給気通気用
開口部42および排気通気用開口部43が設けられてい
る。給気通気用開口部42は仕切壁41の外周側にあっ
て、個数は隔壁31の左右のそれぞれに対して2以上で
ある。また、排気通気用開口部43は仕切壁41の内周
側にあって、個数は隔壁31の左右のそれぞれに対して
2以上である。また、排気通路には給気の一部を流して
排気を誘引する排気誘引機構49が設けられている。ま
た、回転ディスク44はばね51によって固定ディスク
46に押しつけられており、シール性が高められる。
Fifth embodiment of the [0027] present invention, a fourth embodiment of the present invention is obtained by a number of 3 or more porous shutter ducting aperture holes 42 and 43, shown in Figure 14, Figure 15 Have been. 14 and 15, the switching mechanism 40 includes a rotating disk 44 that is reciprocated by an air cylinder 45.
And a stationary fixed disk 46. The fixed disk 46 has, for example, a circular through hole 47 formed therein.
The rotating disk 44 is provided with, for example, a substantially square air supply opening 42 and an exhaust opening 43. The air supply ventilation openings 42 are provided on the outer peripheral side of the partition wall 41, and the number thereof is two or more for each of the left and right sides of the partition wall 31. Further, the exhaust ventilation openings 43 are on the inner peripheral side of the partition wall 41, and the number thereof is two or more for each of the right and left sides of the partition wall 31. Further, the exhaust passage is provided with an exhaust attraction mechanism 49 for causing a part of the supply air to flow to induce exhaust. Further, the rotating disk 44 is pressed against the fixed disk 46 by the spring 51, and the sealing performance is improved.

【0028】 第5実施例の作用については、図15にお
いて、a位置が右給気左排気の状態であり、b位置がア
イドルの状態で、c位置が右排気左給気の状態である。
アイドルの状態では、給気通気用開口部42は完全に閉
塞されるが、排気通気用開口部43は少なくとも一部が
貫通孔47にかかって排気できる(一次燃焼排ガス排出
のため)。回転ディスク44の回動はa、b、cの順で
回動され、c、b、aの順で戻される。第5実施例で
は、全ての蓄熱体分割部分が有効利用されるので、蓄熱
体30、工業用炉100およびバーナ1がコンパクト化
される。また、第4実施例に比べて、多孔のため、蓄熱
体30の各部に、より均一に流れが流れ、蓄熱、放熱に
おいて局部加熱がなくなる。これによって、さらなる蓄
熱体30の有効利用がはかれる。
[0028] The operation of the fifth embodiment, in FIG. 15, a state of a position right air supply left exhaust, in position b is idle, c position is the state of the right exhaust left air supply.
In the idle state, the air supply ventilation opening 42 is completely closed, but at least a part of the exhaust ventilation opening 43 can be exhausted through the through hole 47 (for discharging the primary combustion exhaust gas). The rotating disk 44 is rotated in the order of a, b, and c, and returned in the order of c, b, and a. In the fifth embodiment, since all the heat storage body divided portions are effectively used, the heat storage body 30, the industrial furnace 100, and the burner 1 are made compact. Further, compared to the fourth embodiment, the flow is more uniform in each part of the heat storage body 30 because of the porosity, and there is no local heating in heat storage and heat radiation. Thereby, the further effective use of the heat storage body 30 is achieved.

【0029】[0029]

【発明の効果】請求項1または請求項2記載の蓄熱燃焼
用バーナによれば、燃料噴射ノズル、蓄熱体、切替機構
が枠体内部に組み付けられているので、蓄熱体と切替機
構を接続する配管類が不要となり、配管の施工が不要
で、装置の小型化が実現できる。請求項3または請求項
4記載の蓄熱燃焼用バーナによれば、蓄熱体のそれぞれ
の部分を複数個の通気路内に収納するようにしたので、
製作が容易となり、また、蓄熱体の交換も容易となる。
The heat storage combustion according to claim 1 or 2
Fuel burner, heat storage, switching mechanism
Is installed inside the frame, so the heat storage
Piping to connect the structure is not required, and piping is not required
Thus, the size of the apparatus can be reduced. Claim 3 or Claim
According to the heat storage combustion burner described in 4, each of the heat storage bodies
Part is stored in multiple ventilation paths,
The production becomes easy, and the exchange of the heat storage body becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る工業用炉および蓄熱
燃焼用バーナの全体概略断面図である。
FIG. 1 is an overall schematic sectional view of an industrial furnace and a regenerative combustion burner according to a first embodiment of the present invention.

【図2】図1のうち工業用炉の一部および蓄熱燃焼用バ
ーナの拡大断面図である。
FIG. 2 is an enlarged sectional view of a part of an industrial furnace and a heat storage combustion burner in FIG.

【図3】図2のうちタイル部の断面図である。FIG. 3 is a sectional view of a tile portion in FIG. 2;

【図4】図3の平面図である。FIG. 4 is a plan view of FIG. 3;

【図5】図1のうち切替機構とその近傍の拡大断面図で
ある。
FIG. 5 is an enlarged sectional view of a switching mechanism and its vicinity in FIG.

【図6】図5の平面図である。FIG. 6 is a plan view of FIG. 5;

【図7】本発明の第2実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナの切替機構とその近傍の拡大断面図
である。
FIG. 7 is an enlarged sectional view of a part of an industrial furnace according to a second embodiment of the present invention, a switching mechanism of a heat storage combustion burner, and its vicinity.

【図8】図7の平面図である。FIG. 8 is a plan view of FIG. 7;

【図9】本発明の第3実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナの切替機構とその近傍の拡大断面図
である。
FIG. 9 is an enlarged sectional view of a part of an industrial furnace, a switching mechanism of a heat storage combustion burner, and its vicinity according to a third embodiment of the present invention.

【図10】図9の切替機構側から見た平面図である。FIG. 10 is a plan view seen from the switching mechanism side of FIG. 9;

【図11】図9のバーナタイル側から見た平面図であ
る。
FIG. 11 is a plan view as seen from a burner tile side in FIG. 9;

【図12】本発明の第4実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナの切替機構とその近傍の拡大断面
図である。
FIG. 12 is an enlarged sectional view of a part of an industrial furnace, a switching mechanism of a heat storage combustion burner, and its vicinity according to a fourth embodiment of the present invention.

【図13】図12の平面図である。FIG. 13 is a plan view of FIG.

【図14】本発明の第5実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナの切替機構とその近傍の拡大断面
図である。
FIG. 14 is an enlarged sectional view of a part of an industrial furnace according to a fifth embodiment of the present invention, a switching mechanism of a heat storage combustion burner, and its vicinity.

【図15】図14の平面図である。FIG. 15 is a plan view of FIG.

【図16】本発明実施例の工業用炉とその炉内の熱流束
分布の概略図である。
FIG. 16 is a schematic diagram of an industrial furnace according to an embodiment of the present invention and a heat flux distribution in the furnace.

【図17】図16の工業用炉のCO、NOx生成量と炉
温との関係を示す図である。
17 is a diagram showing a relationship between CO and NOx generation amounts and furnace temperature of the industrial furnace of FIG.

【図18】従来の蓄熱燃焼用バーナをもつ工業用炉とそ
の炉内の熱流束分布の概略図である。
FIG. 18 is a schematic diagram of a conventional industrial furnace having a regenerative combustion burner and a heat flux distribution in the furnace.

【符号の説明】 1 蓄熱燃焼用バーナ 2 給気通路 3 排気通路 4 送風手段 5 炉体 10 枠体 20 燃料噴射ノズル 21 一次空気パイプ 22 バーナタイル 23 給排気面 24 突出部 25 燃料開放面 26 通気孔 26A ロート状部 27 エアガイド溝 30 蓄熱体 31 隔壁 31S スリーブ 40 切替機構 41 仕切壁 42 給気通気用開口部 43 排気通気用開口部 44 回転ディスク 45 駆動モータまたはシリンダ 46 固定ディスク 47 貫通孔 48 シール 49 排気誘引機構 50 一次空気導入口 51 ばね 52 スプリング 100 工業用炉 P1 第1の位置 P2 第2の位置[Description of Signs] 1 Burner for heat storage and combustion 2 Air supply passage 3 Exhaust passage 4 Blowing means 5 Furnace body 10 Frame body 20 Fuel injection nozzle 21 Primary air pipe 22 Burner tile 23 Supply / exhaust surface 24 Projecting portion 25 Fuel release surface 26 Communication Pores 26A Funnel-shaped part 27 Air guide groove 30 Heat storage body 31 Partition wall 31S Sleeve 40 Switching mechanism 41 Partition wall 42 Air supply ventilation opening 43 Exhaust ventilation opening 44 Rotating disk 45 Drive motor or cylinder 46 Fixed disk 47 Through hole 48 Seal 49 Exhaust air induction mechanism 50 Primary air inlet 51 Spring 52 Spring 100 Industrial furnace P1 First position P2 Second position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 智彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohiko Nishiyama 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Ryoichi Tanaka 2-1-153 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industrial Co., Ltd.

Claims (52)

【特許請求の範囲】[Claims] 【請求項1】 複数の部分に分離された蓄熱体と、 前記蓄熱体の軸方向一側に配置され、燃料噴射ノズルが
挿入される穴と、給排が切替えられる複数の通気孔と、
該通気孔が開口する給排気面と、を有するバーナタイル
と、 前記蓄熱体の軸方向他側に配置され、互いに摺動可能に
面接触された回転ディスクと固定ディスクとを有し、さ
らに給排気の仕切壁を有し、前記固定ディスクは複数の
貫通孔を有し、前記回転ディスクは前記回転ディスクの
回転によって連通、遮断される複数の通気用開口部を有
し、該通気用開口部は前記仕切壁の一側に連通する給気
通気用開口部と前記仕切壁の他側に連通する排気通気用
開口部を含んでいる、切替機構と、を有し、 前記蓄熱体、前記バーナタイル、前記切替機構は、互い
に分離可能で、前記蓄熱体、前記バーナタイル、前記切
替機構の少なくとも一つが炉体に固定されて炉体の一部
分を構成している、工業用炉。
1. A heat storage body separated into a plurality of portions, a hole arranged on one side in the axial direction of the heat storage body, into which a fuel injection nozzle is inserted, and a plurality of ventilation holes for switching between supply and discharge.
A burner tile having a supply / exhaust surface in which the ventilation hole is opened; and a rotating disk and a fixed disk disposed on the other axial side of the heat storage body and slidably in surface contact with each other. An exhaust partition wall, the fixed disk has a plurality of through holes, the rotating disk has a plurality of ventilation openings that are communicated and blocked by rotation of the rotation disk, and the ventilation openings A switching mechanism including an air supply ventilation opening communicating with one side of the partition wall and an exhaust ventilation opening communicating with the other side of the partition wall, wherein the heat storage element and the burner An industrial furnace, wherein the tile and the switching mechanism are separable from each other, and at least one of the heat storage body, the burner tile, and the switching mechanism is fixed to the furnace body to form a part of the furnace body.
【請求項2】 前記バーナタイルに設けられた複数の前
記通気孔のうち前記排気通気用開口部によってカバーさ
れる通気孔の通路断面積の和が前記給気通路用開口部に
よってカバーされる通気孔の通路断面積の和以上となる
ように、前記回転ディスクに設けられる前記通気用開口
部と前記固定用ディスクに設けられる貫通孔の、形状お
よび相対位置関係が設定されている請求項1記載の工業
用炉。
2. A passage covered by the air supply passage opening, the sum of the passage cross-sectional areas of the ventilation holes covered by the exhaust ventilation opening among the plurality of ventilation holes provided in the burner tile. The shape and relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the cross-sectional area of the passage of the pore. Industrial furnace.
【請求項3】 複数の部分に分離された蓄熱体部分のう
ち前記排気通路用開口部によってカバーされる蓄熱体部
分の容積の和が前記給気通気用開口部によってカバーさ
れる蓄熱体部分の容積の和以上となるように、前記回転
ディスクに設けられる前記通気用開口部と前記固定用デ
ィスクに設けられる貫通孔の、形状および相対位置関係
が設定されている請求項1記載の工業用炉。
3. The sum of the volumes of the heat storage portion covered by the exhaust passage opening of the heat storage portion divided into a plurality of portions is equal to that of the heat storage portion covered by the air supply ventilation opening. 2. The industrial furnace according to claim 1, wherein the shape and relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum of the volumes. .
【請求項4】 給気用ブロワを前記切替機構のうち前記
給気用通気用開口部に連通する部分に直結した請求項1
記載の工業用炉。
4. The air supply blower is directly connected to a portion of the switching mechanism which communicates with the air supply ventilation opening.
The industrial furnace as described.
【請求項5】 排気用ファンを前記切替機構のうち前記
排気用通気用開口部に連通する部分に直結した請求項1
記載の工業用炉。
5. The exhaust fan is directly connected to a portion of the switching mechanism that communicates with the exhaust ventilation opening.
The industrial furnace as described.
【請求項6】 給気用ブロワを前記切替機構のうち前記
給気用通気用開口部に連通する部分に直結するととも
に、排気用ファンを前記切替機構のうち前記排気用通気
用開口部に連通する部分に直結した請求項1記載の工業
用炉。
6. An air supply blower is directly connected to a portion of the switching mechanism communicating with the air supply ventilation opening, and an exhaust fan is communicated with the exhaust gas ventilation opening of the switching mechanism. The industrial furnace according to claim 1, which is directly connected to a portion to be heated.
【請求項7】 給気用ブロワを前記切替機構のうち前記
給気用通気用開口部に連通する部分に直結するととも
に、排気用ファンを前記切替機構のうち前記排気用通気
用開口部に連通する部分に直結し、給気用ブロワと排気
用ファンを同一の駆動手段で駆動せしめた請求項1記載
の工業用炉。
7. An air supply blower is directly connected to a portion of the switching mechanism communicating with the air supply ventilation opening, and an exhaust fan is communicated with the exhaust gas ventilation opening of the switching mechanism. 2. The industrial furnace according to claim 1, wherein the supply blower and the exhaust fan are directly driven by the same driving means.
【請求項8】 前記蓄熱体を軸方向に複数に蓄熱体部分
に分割するとともに蓄熱体部分間に乱流場を生成する隙
間をもたせた請求項1記載の工業用炉。
8. The industrial furnace according to claim 1, wherein the heat storage body is divided into a plurality of heat storage parts in an axial direction, and a gap for generating a turbulent flow field is provided between the heat storage parts.
【請求項9】 前記蓄熱体を分離する隔壁を有し、該隔
壁は放射状に延びており、前記切替機構の前記仕切壁は
周方向に延びている請求項1記載の工業用炉。
9. The industrial furnace according to claim 1, further comprising a partition for separating the heat storage body, the partition extending radially, and the partition wall of the switching mechanism extending in a circumferential direction.
【請求項10】 前記回転ディスクが一方向にのみ回転
されるディスクからなる請求項1記載の工業用炉。
10. The industrial furnace according to claim 1, wherein said rotating disk comprises a disk which is rotated only in one direction.
【請求項11】 前記回転ディスクの回転駆動手段がモ
ータからなる請求項1記載の工業用炉。
11. The industrial furnace according to claim 1, wherein said rotary disk rotating drive means comprises a motor.
【請求項12】 前記仕切壁の内外周のうち給気通気用
開口部がある通路側に、前記切替機構の回転部分を回転
させるための駆動モータを設置した請求項1記載の工業
用炉。
12. The industrial furnace according to claim 1, wherein a drive motor for rotating a rotating portion of the switching mechanism is installed on a side of the inner and outer circumferences of the partition wall where an air supply ventilation opening is provided.
【請求項13】 前記切替機構の前記回転ディスクは立
体ディスクからなり、前記回転ディスクに形成される前
記給気通気用開口部と前記排気通気用開口部のそれぞれ
の固定ディスク側端部は同一円周上に設けられており、
前記固定ディスクに設けれる貫通孔は給気と排気とに共
用されるとともに同一円周上に配されている請求項1記
載の工業用炉。
13. The rotating disk of the switching mechanism comprises a three-dimensional disk, and the fixed disk side end of each of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk is the same circle. It is provided on the circumference,
The industrial furnace according to claim 1, wherein the through-holes provided in the fixed disk are shared for supply and exhaust and are arranged on the same circumference.
【請求項14】 前記切替機構の前記回転ディスクは立
体ディスクからなり、前記回転ディスクに形成される前
記給気通気用開口部と前記排気通気用開口部のそれぞれ
の固定ディスク側端部は同一円周上に設けられており、
前記給気通気用開口部に上流側から接続する給気通路と
前記排気通気用開口部に下流側から接続する排気通路の
うち、一方は前記切替機構に軸方向に接続しており、他
方は前記切替機構に軸方向と直角方向に接続している請
求項1記載の工業用炉。
14. The rotating disk of the switching mechanism comprises a three-dimensional disk, and the fixed disk side ends of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are the same circle. It is provided on the circumference,
One of an air supply passage connected to the air supply opening from the upstream side and an exhaust passage connected to the exhaust air opening from the downstream side is connected to the switching mechanism in the axial direction, and the other is connected to the switching mechanism. The industrial furnace according to claim 1, wherein the industrial furnace is connected to the switching mechanism in a direction perpendicular to an axial direction.
【請求項15】 前記排気通気用開口部の排気流れの下
流側に、空気を排気流れ下流側に向けて噴出する排気誘
引機構を設けた請求項1記載の工業用炉。
15. The industrial furnace according to claim 1, further comprising an exhaust attraction mechanism for ejecting air toward a downstream side of the exhaust flow at a downstream side of the exhaust flow at the exhaust ventilation opening.
【請求項16】 前記複数に分離された蓄熱体のそれぞ
れの部分は円筒状スリーブ内に納められている請求項1
記載の工業用炉。
16. The heat storage element according to claim 1, wherein each part of the heat storage element is accommodated in a cylindrical sleeve.
The industrial furnace as described.
【請求項17】 前記複数に分離された蓄熱体のそれぞ
れの部分は円筒状スリーブ内に納められており、前記バ
ーナタイルの通気孔は上流側に向って拡開するロート状
部を有し前記通気孔は該ロート状部を介して前記円筒状
スリーブに滑らかに接続している請求項1記載の工業用
炉。
17. A part of each of the plurality of separated heat storage bodies is accommodated in a cylindrical sleeve, and a vent hole of the burner tile has a funnel-shaped portion expanding toward an upstream side. The industrial furnace according to claim 1, wherein the vent is smoothly connected to the cylindrical sleeve through the funnel.
【請求項18】 前記回転ディスクと前記固定ディスク
とは金属面接触によりシールされており、前記回転ディ
スクは前記固定ディスクにスプリング付勢により押しつ
けられている請求項1記載の工業用炉。
18. The industrial furnace according to claim 1, wherein said rotating disk and said fixed disk are sealed by metal surface contact, and said rotating disk is pressed against said fixed disk by spring bias.
【請求項19】 前記回転ディスクに設けられた通気孔
は扇形状をしており、前記固定ディスクに設けられた貫
通孔も扇形状をしている請求項1記載の工業用炉。
19. The industrial furnace according to claim 1, wherein the ventilation holes provided in the rotating disk have a fan shape, and the through holes provided in the fixed disk also have a fan shape.
【請求項20】 前記回転ディスクが往復回動されるデ
ィスクからなる請求項1記載の工業用炉。
20. The industrial furnace according to claim 1, wherein said rotating disk comprises a disk which is reciprocated.
【請求項21】 前記回転ディスクを往復回動する駆動
手段がエアシリンダである請求項1記載の工業用炉。
21. The industrial furnace according to claim 1, wherein the driving means for reciprocatingly rotating the rotating disk is an air cylinder.
【請求項22】 前記切替機構が、第1の位置と第2の
位置を選択的にとり前記第1の位置と前記第2の位置と
の間に往復回動される回転ディスクを含み、前記蓄熱体
の分割された複数の部分の一部に給気または排気が流れ
ない部分を作ることなく前記第1の位置と前記第2の位
置を切替えるシャッタである請求項1記載の工業用炉。
22. The heat storage device, wherein the switching mechanism includes a rotating disk that selectively takes a first position and a second position and is reciprocated between the first position and the second position. The industrial furnace according to claim 1, wherein the shutter is configured to switch between the first position and the second position without forming a portion through which air supply or exhaust does not flow in a part of the plurality of divided parts of the body.
【請求項23】 前記回転ディスクの給気通気用開口部
が前記固定ディスクの貫通孔間部位にきて給気が絞られ
たときに燃料を絞る燃料供給量調整機構を、さらに有し
ている請求項1記載の工業用炉。
23. A fuel supply amount adjusting mechanism which throttles fuel when the air supply opening of the rotary disk is located between the through holes of the fixed disk and the air supply is reduced. The industrial furnace according to claim 1.
【請求項24】 前記回転ディスクの排気通気用開口部
は、常に、その少なくとも一部が前記固定ディスクの貫
通孔間部位によって閉塞されない位置をとる請求項1記
載の工業用炉。
24. The industrial furnace according to claim 1, wherein the exhaust ventilation opening of the rotating disk always takes a position at least part of which is not closed by a portion between the through holes of the fixed disk.
【請求項25】 前記切替機構が3以上の通気用開口部
を有する多孔式シャッタからなる請求項1記載の工業用
炉。
25. The industrial furnace according to claim 1, wherein the switching mechanism comprises a multi-hole shutter having three or more ventilation openings.
【請求項26】 前記工業用炉が、溶解炉、焼結炉、予
熱炉、均熱炉、鍛造炉、加熱炉、焼鈍炉、容体化炉、メ
ッキ炉、乾燥炉、調質炉、焼入れ炉、焼もどし炉、酸化
還元炉、焼成炉、焼付炉、焙焼炉、溶解保持炉、前炉、
ルツボ炉、ホモジナイジング炉、エージング炉、反応
炉、蒸留炉、取鍋乾燥予熱炉、鋳型焼成予熱炉、焼準
炉、ロー付け炉、浸炭炉、塗装乾燥炉、保持炉、窒化
炉、ソルトバス炉、ガラス溶解炉、発電用ボイラを含む
ボイラ、ごみ焼却炉を含む焼却炉、給湯装置、のうちか
ら選択された一種の炉である請求項1記載の工業用炉。
26. The industrial furnace includes a melting furnace, a sintering furnace, a preheating furnace, a soaking furnace, a forging furnace, a heating furnace, an annealing furnace, a soaking furnace, a plating furnace, a drying furnace, a tempering furnace, and a quenching furnace. , Tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding furnace, forehearth,
Crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace, nitriding furnace, salt The industrial furnace according to claim 1, which is a kind of furnace selected from a bath furnace, a glass melting furnace, a boiler including a power generation boiler, an incinerator including a refuse incinerator, and a hot water supply device.
【請求項27】 複数の部分に分離された蓄熱体と、 前記蓄熱体の軸方向一側に配置され、燃料噴射ノズルが
挿入される穴と、給排が切替えられる複数の通気孔と、
該通気孔が開口する給排気面と、を有するバーナタイル
と、 前記蓄熱体の軸方向他側に配置され、互いに摺動可能に
面接触された回転ディスクと固定ディスクとを有し、さ
らに給排気の仕切壁を有し、前記固定ディスクは複数の
貫通孔を有し、前記回転ディスクは前記回転ディスクの
回転によって連通、遮断される複数の通気用開口部を有
し、該通気用開口部は前記仕切壁の一側に連通する給気
通気用開口部と前記仕切壁の他側に連通する排気通気用
開口部を含んでいる、切替機構と、からなる蓄熱燃焼用
バーナ。
27. A heat accumulator divided into a plurality of portions, a hole arranged on one side in the axial direction of the heat accumulator, into which a fuel injection nozzle is inserted, and a plurality of ventilation holes for switching between supply and discharge.
A burner tile having a supply / exhaust surface in which the ventilation hole is opened; and a rotating disk and a fixed disk disposed on the other axial side of the heat storage body and slidably in surface contact with each other. An exhaust partition wall, the fixed disk has a plurality of through holes, the rotating disk has a plurality of ventilation openings that are communicated and blocked by rotation of the rotation disk, and the ventilation openings Is a burner for heat storage combustion, comprising: a switching mechanism including an air supply ventilation opening communicating with one side of the partition wall and an exhaust ventilation opening communicating with the other side of the partition wall.
【請求項28】 前記バーナタイルに設けられた複数の
前記通気孔のうち前記排気通気用開口部によってカバー
される通気孔の通路断面積の和が前記給気通気用開口部
によってカバーされる通気孔の通路断面積の和以上とな
るように、前記回転ディスクに設けられる前記通気用開
口部と前記固定用ディスクに設けられる貫通孔の、形状
および相対位置関係が設定されている請求項27記載の
蓄熱燃焼用バーナ。
28. The sum of the passage cross-sectional areas of the ventilation holes covered by the exhaust ventilation opening of the plurality of ventilation holes provided in the burner tile is covered by the air supply ventilation opening. 28. The shape and relative positional relationship between the ventilation opening provided in the rotating disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the cross-sectional area of the passage of the pore. Burner for heat storage combustion.
【請求項29】 給気用ブロワを前記切替機構のうち前
記給気用通気用開口部に連通する部分に直結した請求項
27記載の蓄熱燃焼用バーナ。
29. The heat storage combustion burner according to claim 27, wherein an air supply blower is directly connected to a portion of said switching mechanism communicating with said air supply ventilation opening.
【請求項30】 排気用ファンを前記切替機構のうち前
記排気用通気用開口部に連通する部分に直結した請求項
27記載の蓄熱燃焼用バーナ。
30. The heat storage combustion burner according to claim 27, wherein an exhaust fan is directly connected to a portion of said switching mechanism communicating with said exhaust ventilation opening.
【請求項31】 給気用ブロワを前記切替機構のうち前
記給気用通気用開口部に連通する部分に直結するととも
に、排気用ファンを前記切替機構のうち前記排気用通気
用開口部に連通する部分に直結した請求項27記載の蓄
熱燃焼用バーナ。
31. An air supply blower is directly connected to a portion of the switching mechanism communicating with the air supply ventilation opening, and an exhaust fan is communicated with the exhaust gas ventilation opening of the switching mechanism. 28. The heat storage combustion burner according to claim 27, wherein the burner is directly connected to a portion to be heated.
【請求項32】 給気用ブロワを前記切替機構のうち前
記給気用通気用開口部に連通する部分に直結するととも
に、排気用ファンを前記切替機構のうち前記排気用通気
用開口部に連通する部分に直結し、給気用ブロワと排気
用ファンを同一の駆動手段で駆動せしめた請求項27記
載の蓄熱燃焼用バーナ。
32. An air supply blower is directly connected to a portion of the switching mechanism communicating with the air supply ventilation opening, and an exhaust fan is communicated with the exhaust gas ventilation opening of the switching mechanism. 28. The heat storage combustion burner according to claim 27, wherein the burner for air supply and the fan for exhaust are directly driven by the same driving means.
【請求項33】 複数の部分に分離された蓄熱体部分の
うち前記排気通路用開口部によってカバーされる蓄熱体
部分の容積の和が前記給気通気用開口部によってカバー
される蓄熱体部分の容積の和以上となるように、前記回
転ディスクに設けられる前記通気用開口部と前記固定用
ディスクに設けられる貫通孔の、形状および相対位置関
係が設定されている請求項27記載の蓄熱燃焼用バー
ナ。
33. The sum of the volumes of the heat storage portion covered by the exhaust passage opening in the heat storage portion divided into a plurality of portions is equal to that of the heat storage portion covered by the air supply ventilation opening. The shape and relative positional relationship between the ventilation opening provided in the rotary disk and the through hole provided in the fixing disk are set so as to be equal to or greater than the sum of the volumes. Burner.
【請求項34】 前記蓄熱体を分離する隔壁を有し、該
隔壁は放射状に延びており、前記切替機構の前記仕切壁
は周方向に延びている請求項27記載の蓄熱燃焼用バー
ナ。
34. The heat storage combustion burner according to claim 27, further comprising a partition for separating said heat storage body, said partition extending radially, and said partition wall of said switching mechanism extending in a circumferential direction.
【請求項35】 前記蓄熱体を軸方向に複数に蓄熱体部
分に分割するとともに蓄熱体部分間に乱流場を生成する
隙間をもたせた請求項27記載の蓄熱燃焼用バーナ。
35. The heat storage combustion burner according to claim 27, wherein the heat storage body is divided into a plurality of heat storage parts in the axial direction, and a gap for generating a turbulent flow field is provided between the heat storage parts.
【請求項36】 前記回転ディスクが一方向にのみ回転
されるディスクからなる請求項27記載の蓄熱燃焼用バ
ーナ。
36. The heat storage combustion burner according to claim 27, wherein the rotating disk is a disk that rotates only in one direction.
【請求項37】 前記回転ディスクの回転駆動手段がモ
ータからなる請求項27記載の蓄熱燃焼用バーナ。
37. The heat storage combustion burner according to claim 27, wherein the rotating drive means of the rotary disk comprises a motor.
【請求項38】 前記仕切壁の内外周のうち給気通気用
開口部がある通路側に、前記切替機構の回転部分を回転
させるための駆動モータを設置した請求項27記載の蓄
熱燃焼用バーナ。
38. The heat storage combustion burner according to claim 27, wherein a drive motor for rotating a rotating portion of the switching mechanism is provided on a side of the inner and outer circumferences of the partition wall where an air supply ventilation opening is provided. .
【請求項39】 前記切替機構の前記回転ディスクは立
体ディスクからなり、前記回転ディスクに形成される前
記給気通気用開口部と前記排気通気用開口部は同一円周
上に設けられており、前記固定ディスクに設けれる貫通
孔は給気と排気とに共用されるとともに同一円周上に配
されている請求項27記載の蓄熱燃焼用バーナ。
39. The rotating disk of the switching mechanism comprises a three-dimensional disk, and the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are provided on the same circumference, 28. The heat storage combustion burner according to claim 27, wherein the through-hole provided in the fixed disk is shared by the air supply and the exhaust and arranged on the same circumference.
【請求項40】 前記切替機構の前記回転ディスクは立
体ディスクからなり、前記回転ディスクに形成される前
記給気通気用開口部と前記排気通気用開口部のそれぞれ
の固定ディスク側端部は同一円周上に設けられており、
前記給気通気用開口部に上流側から接続する給気通路と
前記排気通気用開口部に下流側から接続する排気通路の
うち、一方は前記切替機構に軸方向に接続しており、他
方は前記切替機構に軸方向と直角方向に接続している請
求項27記載の蓄熱燃焼用バーナ。
40. The rotating disk of the switching mechanism is a three-dimensional disk, and the fixed disk side ends of the air supply ventilation opening and the exhaust ventilation opening formed in the rotation disk are the same circle. It is provided on the circumference,
One of an air supply passage connected to the air supply opening from the upstream side and an exhaust passage connected to the exhaust air opening from the downstream side is connected to the switching mechanism in the axial direction, and the other is connected to the switching mechanism. 28. The heat storage combustion burner according to claim 27, wherein the burner is connected to the switching mechanism in a direction perpendicular to the axial direction.
【請求項41】 前記排気通気用開口部の排気流れの下
流側に、空気を排気流れ下流側に向けて噴出する排気誘
引機構を設けた請求項27記載の蓄熱燃焼用バーナ。
41. The heat storage combustion burner according to claim 27, further comprising an exhaust attraction mechanism for ejecting air toward the downstream side of the exhaust flow at a downstream side of the exhaust flow at the exhaust ventilation opening.
【請求項42】 前記複数に分離された蓄熱体のそれぞ
れの部分は円筒状スリーブ内に納められている請求項2
7記載の蓄熱燃焼用バーナ。
42. A part of each of the plurality of separated heat storage bodies is accommodated in a cylindrical sleeve.
A burner for heat storage combustion according to claim 7.
【請求項43】 前記複数に分離された蓄熱体のそれぞ
れの部分は円筒状スリーブ内に納められており、前記バ
ーナタイルの通気孔は上流側に向って拡開するロート状
部を有し前記通気孔は該ロート状部を介して前記円筒状
スリーブに滑らかに接続している請求項27記載の蓄熱
燃焼用バーナ。
43. A part of each of the plurality of separated heat storage bodies is accommodated in a cylindrical sleeve, and a vent hole of the burner tile has a funnel-shaped part expanding toward an upstream side. 28. The burner according to claim 27, wherein the ventilation hole is smoothly connected to the cylindrical sleeve through the funnel.
【請求項44】 前記回転ディスクと前記固定ディスク
とは金属面接触によりシールされており、前記回転ディ
スクは前記固定ディスクにスプリング付勢により押しつ
けられている請求項27記載の蓄熱燃焼用バーナ。
44. The heat storage combustion burner according to claim 27, wherein said rotating disk and said fixed disk are sealed by metal surface contact, and said rotating disk is pressed against said fixed disk by spring bias.
【請求項45】 前記回転ディスクに設けられた通気孔
は扇形状をしており、前記固定ディスクに設けられた貫
通孔も扇形状をしている請求項27記載の蓄熱燃焼用バ
ーナ。
45. The heat storage combustion burner according to claim 27, wherein the ventilation holes provided in the rotating disk have a fan shape, and the through holes provided in the fixed disk also have a fan shape.
【請求項46】 前記回転ディスクが往復回動されるデ
ィスクからなる請求項27記載の蓄熱燃焼用バーナ。
46. The heat storage combustion burner according to claim 27, wherein said rotating disk is a reciprocating disk.
【請求項47】 前記回転ディスクを往復回動する駆動
手段がエアシリンダである請求項27記載の蓄熱燃焼用
バーナ。
47. The heat storage combustion burner according to claim 27, wherein the driving means for reciprocatingly rotating the rotary disk is an air cylinder.
【請求項48】 前記切替機構が、第1の位置と第2の
位置を選択的にとり前記第1の位置と前記第2の位置と
の間に往復回動される回転ディスクを含み、前記蓄熱体
の分割された複数の部分の一部に給気または排気が流れ
ない部分を作ることなく前記第1の位置と前記第2の位
置を切替えるシャッタである請求項27記載の蓄熱燃焼
用バーナ。
48. The heat storage device, wherein the switching mechanism includes a rotating disk that selectively takes a first position and a second position and is reciprocated between the first position and the second position. 28. The heat storage combustion burner according to claim 27, wherein the shutter switches between the first position and the second position without forming a portion through which air supply or exhaust does not flow in a part of the plurality of divided portions of the body.
【請求項49】 前記回転ディスクの給気通気用開口部
が前記固定ディスクの貫通孔間部位にきて給気が絞られ
たときに燃料を絞る燃料供給量調整機構を、さらに有し
ている請求項27記載の蓄熱燃焼用バーナ。
49. A fuel supply amount adjusting mechanism which throttles the fuel when the air supply is reduced when the air supply ventilation opening of the rotary disk is located between the through holes of the fixed disk. A heat storage combustion burner according to claim 27.
【請求項50】 前記回転ディスクの排気通気用開口部
は、常に、その少なくとも一部が前記固定ディスクの貫
通孔間部位によって閉塞されない位置をとる請求項27
記載の蓄熱燃焼用バーナ。
50. The exhaust ventilation opening of the rotating disk always takes a position where at least a part thereof is not closed by a portion between the through holes of the fixed disk.
A burner for regenerative combustion as described.
【請求項51】 前記切替機構が3以上の通気用開口部
を有する多孔式シャッタからなる請求項27記載の蓄熱
燃焼用バーナ。
51. The heat storage combustion burner according to claim 27, wherein said switching mechanism comprises a multi-hole shutter having three or more ventilation openings.
【請求項52】 給排気面に開口された給排が切替えら
れる複数の通気孔のうち給気孔として働いている通気孔
を通して炉内に給気を供給し、 前記給排気面より給気流れ方向前方で燃料と給気を混合
し燃焼させ、 炉内排ガスを、前記複数の通気孔のうち排気孔として働
いておりかつ通路断面積の和が前記給気孔として働いて
いる通気孔の通路断面積の和以上の、通気孔を通して炉
外に排出する、工程からなる工業用炉の燃焼方法。
52. An air supply is supplied into the furnace through a ventilation hole serving as an air supply hole among a plurality of ventilation holes opened and closed between the air supply and exhaust surfaces, and a flow direction of the air supply from the air supply and exhaust surface. A fuel and an air supply are mixed and burned forward, and the furnace exhaust gas is used as an exhaust hole of the plurality of air holes, and the sum of the cross-sectional area of the air passage serves as the air supply hole. The method for burning an industrial furnace, comprising the steps of:
JP2000197988A 1994-10-14 2000-06-30 Regenerative combustion burner Pending JP2001027412A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24935694 1994-10-14
JP6-249356 1994-10-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23214395A Division JP3310503B2 (en) 1994-10-14 1995-09-11 Industrial furnaces and burners for regenerative combustion

Publications (1)

Publication Number Publication Date
JP2001027412A true JP2001027412A (en) 2001-01-30

Family

ID=17191815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197988A Pending JP2001027412A (en) 1994-10-14 2000-06-30 Regenerative combustion burner

Country Status (1)

Country Link
JP (1) JP2001027412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100824244B1 (en) * 2002-07-31 2008-04-24 아사히 가라스 가부시키가이샤 Method and device for polishing substrate
KR20170001017U (en) 2015-09-09 2017-03-17 주식회사 에스에이씨 Preheating device for ladle
CN112146109A (en) * 2020-09-25 2020-12-29 江苏优尚环境工程有限公司 Heat accumulating type oxidation furnace convenient for overhauling burner
CN113154380A (en) * 2021-04-09 2021-07-23 山东一然环保科技有限公司 Low-nitrogen combustion system of regenerative heating furnace and working method thereof
CN116182171A (en) * 2023-03-23 2023-05-30 广东众大智能科技有限公司 Waste gas incineration device and incineration control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100824244B1 (en) * 2002-07-31 2008-04-24 아사히 가라스 가부시키가이샤 Method and device for polishing substrate
KR20170001017U (en) 2015-09-09 2017-03-17 주식회사 에스에이씨 Preheating device for ladle
CN112146109A (en) * 2020-09-25 2020-12-29 江苏优尚环境工程有限公司 Heat accumulating type oxidation furnace convenient for overhauling burner
CN113154380A (en) * 2021-04-09 2021-07-23 山东一然环保科技有限公司 Low-nitrogen combustion system of regenerative heating furnace and working method thereof
CN113154380B (en) * 2021-04-09 2022-02-22 山东一然环保科技有限公司 Low-nitrogen combustion system of regenerative heating furnace and working method thereof
CN116182171A (en) * 2023-03-23 2023-05-30 广东众大智能科技有限公司 Waste gas incineration device and incineration control method thereof
CN116182171B (en) * 2023-03-23 2023-11-07 广东众大智能科技有限公司 Waste gas incineration device and incineration control method thereof

Similar Documents

Publication Publication Date Title
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
KR0171959B1 (en) An industrial furnace and a burner for conducting regenerative combustion and a combustion method thereof
JP5595008B2 (en) Generator burner
JPH1194239A (en) Alternate changing-over heat storage regenerative burner system and method of controlling its combustion
JP3005110B2 (en) Heat recovery type combustion device
KR101239092B1 (en) Radiant tube burner device and heat storing element unit capable of being mounted to radiant tube burner
JPH1038261A (en) Combustion device
JP2001027412A (en) Regenerative combustion burner
JP3310503B2 (en) Industrial furnaces and burners for regenerative combustion
JP6400559B2 (en) Regenerative combustion furnace
JP2002031307A (en) Fluid-heating apparatus provided with premixing burner
JP4229502B2 (en) Thermal storage radiant tube burner
JP3155155B2 (en) Single-ended radiant tube heating element
JP2584193B2 (en) Combustion system using a regenerative burner
JP3796343B2 (en) Thermal storage burner system
JP3180050B2 (en) Heat recovery type combustion apparatus and control method thereof
JP3180044B2 (en) Combustion equipment
JP2001173905A (en) Exhaust gas circulating indirect heating pyrogen unit
JP3721032B2 (en) Regenerative burner
KR100523548B1 (en) A burner for regenerative furance
JP3113584U (en) Combustion heating chamber for external heat engines
JP2742236B2 (en) Heating method of material by open flame burner
JP2933868B2 (en) Combustion equipment
JPH09222224A (en) Combustion method of regenerative combustion device
JPH0894007A (en) Radiant tube burner and alternate combustion type radiant tube burner system using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203