JP3720905B2 - Industrial furnace combustion equipment - Google Patents

Industrial furnace combustion equipment Download PDF

Info

Publication number
JP3720905B2
JP3720905B2 JP08945496A JP8945496A JP3720905B2 JP 3720905 B2 JP3720905 B2 JP 3720905B2 JP 08945496 A JP08945496 A JP 08945496A JP 8945496 A JP8945496 A JP 8945496A JP 3720905 B2 JP3720905 B2 JP 3720905B2
Authority
JP
Japan
Prior art keywords
combustion air
furnace
exhaust gas
combustion
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08945496A
Other languages
Japanese (ja)
Other versions
JPH09280547A (en
Inventor
野田悦郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08945496A priority Critical patent/JP3720905B2/en
Publication of JPH09280547A publication Critical patent/JPH09280547A/en
Application granted granted Critical
Publication of JP3720905B2 publication Critical patent/JP3720905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス顕熱を燃焼用空気の高温予熱によって回収を行い、省エネルギに効果のある燃焼装置に関する。
【0002】
【従来の技術】
従来、加熱炉、熱処理炉、溶解炉あるいは焼却炉等の工業炉においては、炉の熱効率向上を目的とした燃焼装置に、排ガス顕熱で燃焼空気の高温予熱を行う手段として、排気と燃焼を交互に行い、排気時には蓄熱器に収納された蓄熱体によって熱を回収し、燃焼時に燃焼空気を予熱するリジェネレイティブバーナ(以降リジェネバーナとする)を使用している。リジェネバーナは、燃焼と排気の交互燃焼のため、燃料配管、燃焼空気配管、排ガス配管にそれぞれに切替弁が必要である。また、リジェネバーナを備える工業炉においては、2本1組にて燃焼を行うため、バーナの容量あるいは本数が2倍になる。
【0003】
そこで、その解決手段として、特公平6−56261に記載されている熱回収式燃焼装置が提案されている。
【0004】
【発明が解決しようとする課題】
図7は特公平6−56261に記載の燃焼装置の構成を示した図である。この熱回収式燃焼装置の構成は、炉壁に取り付けられたバーナの近傍に配設された燃焼用空気が流通する燃焼空気通路40と、燃焼した後の排気ガスを炉外に排出するようにした排ガス通路42と、この排ガス通路42を流通する排気ガスの熱より前記燃焼空気通路40を流通する燃焼空気を加熱するように前記排ガス通路42と燃焼空気通路40との間に回転しうるように設けられた多数の通気孔を有する蓄熱体41とを有する燃焼装置において、前記炉壁34に開設された開口部に、内部を仕切り板43で仕切ることにより前記空気通路40と排ガス通路42を形成した1つのダクト44を連接し、このダクト44の炉内側端部の前記仕切り板43のない円筒部に前記蓄熱体41を配置したことを特徴とする。
【0005】
この熱回収式燃焼装置は、リジェネバーナの課題、すなわち、リジェネバーナの構成が、リジェネバーナの燃焼が燃焼と排気の交互燃焼のため2本1組で構成され、各バーナには、直近に蓄熱器を持ち、燃料配管、燃焼空気配管、排ガス配管に自動切替弁を備える構成となっているので、バーナ本数あるいは容量が2倍になる、自動切替弁が必要という課題を解決しているが、以下のような課題がある。
【0006】
(1)工業炉の炉壁34に直接蓄熱器35を設置するため、炉壁34開口部が蓄熱器35の寸法に依存し、大きくなるため、バーナタイル36の加工範囲が大きくなる。そのため、炉寸法がバーナタイル36の大きさに制約され、炉37がコンパクトにできない。
【0007】
(2)燃焼装置の構成が図7に示すように、燃料ノズル38と蓄熱器35により構成され、蓄熱器35が炉内に直接繋がっているために、炉内へ吹き込む燃焼空気噴出孔39の面積が絞られないまま蓄熱器35の燃焼空気通路40の大きさとなり、燃焼空気の噴出スピードが遅く、火炎が短炎となり、高NOx値となる。また、燃料ノズル38が燃焼空気噴出孔39と離れているため、炉の立ち上がり時の炉内温度が低温時等の燃焼性が悪化する条件下では、火炎が吹き消える可能性がある。
【0008】
(3)蓄熱器35中の燃焼空気通路40は燃焼空気の炉内への噴出速度を上げるため、燃焼空気通路40を狭く(燃焼空気の通路は全面積に対し、1/8〜1/2.5)しているため、蓄熱体41において、燃焼空気と排ガスのとおる時間が異なり、熱回収率が悪化する。
【0009】
(4)蓄熱体41にセラミック性のハニカムを使用しており、熱応力に比較的弱く割れやすい。
【0010】
(5)燃焼空気通路40、排ガス通路42は直接蓄熱器35に繋がっているため、通路内に偏流が生じ、そのまま蓄熱体41を通る。従って、蓄熱体41を必要以上に長くする必要がある。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決するため、次の構成を要旨とする。
【0022】
)燃料ノズルの外周に、1次空気ノズルを設け、且つ、該ノズルの先端部に設けられているバッフルに1次燃焼ポートを形成してなるバーナを、炉壁に所定間隔を置いて複数設け、一方炉外に設置した円筒管の内部に、駆動装置により軸心を中心として回転自在な蓄熱体を、前記軸心と同方向に多数の小径管を充填して形成し、該蓄熱体の両端部に一定空間のバッファ部を形成し、且つ、該バッファ部のそれぞれを円筒管の軸心と同方向に2分割し、一方を排ガスバッファ室、他方を燃焼空気バッファ室となし、更に、排ガスバッファ室には排ガス通路を、燃焼ガスバッファ室には燃焼空気通路それぞれ連接して回転式蓄熱器を構成すると共に、該回転式蓄熱器を前記バーナ間に配設し、該蓄熱器の炉側に位置する排ガス通路及び燃焼空気通路を、炉壁に形成されている排ガス吸引孔及び燃焼空気ノズルを介しそれぞれ炉内と連通せしめる如く成した。
【0023】
)請求項記載の工業炉用燃焼装置において、炉壁にあって、バーナとバーナ間に排ガス吸引孔を設け、該吸引孔を中にしてその両側に燃焼空気ノズルを少なくとも2個配設すると共に、回転式蓄熱器の炉側に位置する燃焼空気通路を少なくとも2本形成し、前記燃焼空気ノズルを介し炉内と連通する如く成した。
【0024】
)、()より、従って、
より回転式蓄熱器が独立しているため、バーナタイル部の加工は自由に行える。
【0025】
転式蓄熱器での燃焼空気通過断面積と排ガス通過断面積を等しくすることができるので、燃焼空気、排ガスそれぞれの蓄熱体を通る時間が等しく、排ガス顕熱の燃焼空気予熱での熱回収率は良好になる。
【0026】
熱体に独立した小径管を使用しており、蓄熱体に燃焼空気、排ガスそれぞれが通る時に、昇温、冷却といった熱応力を受ける。そこで、小径管間の隙間が昇熱時の膨張代になるため、この熱応力に強く、また、仮に一部破損しても、その部分だけ取り替えることが可能である。
【0027】
筒管内の蓄熱体の両端部にそれぞれ燃焼空気バッファ室、排ガスバッファ室をも設けて、燃焼空気通路、排ガス通路に比べ、急拡大部を構成している。従って、燃焼空気通路、排ガス通路より流入してきた燃焼空気や排ガスをそれぞれ、バッファ室で一旦受けとめて、蓄熱体前後の圧力を均等にできるため、偏流が起こらない。また、蓄熱体を通過して、燃焼空気通路、排ガス通路に流入するときも同じことがいえる。
【0028】
焼空気ノズルは独立して設計できるので、燃焼空気の噴出速度を自由に設計でき、噴出速度を上げることで、排ガスの炉内での巻き込み量を多くして、火炎の長炎化と低NOx化を図ることができる。
【0029】
ーナ部先端に保炎器である1次燃焼ポートを設置することで、炉温が低温時の用にバーナの燃焼性が悪い場合には、1次空気の量を多くして、燃焼性を高め、炉温が高い場合のようなバーナの燃焼性が良くなる場合には1次空気の量を減らし、2次空気量を増やして排ガス顕熱の熱回収量を増加させ、NOx値の低減をはかる。
【0030】
ーナタイル構造を無くすことによって、通常のバーナタイルがある場合と比較して、排ガス巻き込み量を多くすることができ、低NOx性と、火炎の伸長をする事ができる。
【0031】
ーナ2本に1台の割合で回転式蓄熱器を設置するため、回転式蓄熱器の数量を半分に減らすことができる。
【0032】
【発明の実施の形態】
以下図面を参照して本発明を実施例に基づいて詳細に説明する。
【0033】
図1は本発明の参考例としての燃焼装置の概略図、図2は本発明の参考例としての燃焼装置を構成する回転式蓄熱器8の概略図、図3は請求項1,2の工業炉、図4、図5、図6は図2の細部の詳細図である。
【0034】
図1に回転式蓄熱器8を備えた燃焼装置の縦断面図と炉内側より見た正面図を示し、本発明の参考例の説明を行う。バーナ5の構成は、バーナ5の中心に燃料ノズル1を配置し、その周囲に、燃料ノズル1が燃焼空気の顕熱によって高温にならないように、1次空気ノズル2を配置し、燃料ノズル1及び1次空気ノズル2の先端部に設けられているバッフル3、すなわち、炉内側に1次燃焼保炎用の1次燃焼ポート4を配置している。更にこの1次燃焼ポート4の周囲に、本参考例においては、4つの燃焼空気ノズル6をバーナ5軸線を中心に均等に配置している。従って、燃焼空気ノズル6はバッフル3の形状によって、任意の位置、個数を設けることが出来る。そして、1番外側、すなわち、燃焼空気ノズル6の外側に燃焼の邪魔にならないように排ガス吸引孔7を複数個配置する。また、回転式蓄熱器8はバーナ5近傍且つ炉外に配置され、回転式蓄熱器8の燃焼空気通路9とバーナ5の燃焼空気ノズル6は耐火材を施工した配管によって接続される。また、回転式蓄熱器8の排ガス通路10とバーナ5の排ガス吸引孔7も同様に耐火材を施工した配管によって接続されている。
【0035】
このバーナ5の燃焼の特徴は、燃料ノズル1を中心に燃焼空気ノズル6を配置しているので、火炎の形状が偏らず、良好な燃焼となる。また、1次空気を燃料の極近傍に吹き込み、同時に1次燃焼ポート4を設置していることで、炉内温度が低温時(=燃焼空気温度が低温)のような燃焼性の悪化原因がある場合でも、燃焼性を良好に保つことが出来る。また、1次空気に常温の空気を使用することで、燃料ノズル1金物の保護も兼ねる。更に、1次空気の吹き込み量の調整により、バーナ5が低負荷時の火炎の立ち上がるのを防ぐことも出来るようになる。また、回転式蓄熱器8をこのようにバーナ5近傍の炉外に設置することにより、リジェネバーナに比肩する高効率の廃熱回収を行いながら、リジェネバーナと異なり、全数のバーナが燃焼し、燃料切替弁、燃焼空気切替弁、排ガス切替弁が不要である。更に、排ガス吸引孔7をバーナ5近傍に設置することで、燃焼への排ガス巻き込み量を増やし、低NOx化が図れる。
【0036】
次に、本発明の参考例である回転式蓄熱器8について図を用いて詳細に説明をする。この回転式蓄熱器8は円筒管11内部の中央部分に蓄熱体25が設けられている。この蓄熱体25は軸心17を中心にして軸心17と同方向に充填された小径管12から構成されており、軸心17の端部に取り付けられた駆動装置24により、円筒管11内を自在に回転する。図4は蓄熱体17とその円筒管11内壁の様子を示す回転式蓄熱器8の上部よりみた断面図である。図のように、蓄熱体25は円筒管11に対して凹凸を持つ。従って、周方向の流れを考えると拡大縮小部を繰り返すこととなり、圧損が増大し流れにくくなる。よって、排ガスと燃焼空気の混合を最低限に押さえることができる。図5は軸心17と蓄熱体25の関係を示している。軸心17と蓄熱体25は図のように隙間なく接しており、軸心17への蓄熱体25の固定方法は、小径管12間に接着材等で接合する。あるいは、蓄熱体25上下をフランジのようなもので固定する。
【0037】
前記蓄熱体の両端部にはバッファ部がそれぞれ形成されている。これらのバッファ部は、仕切壁22,23によってそれぞれ円筒管11の軸心17と同方向に2分割され一方は排ガスバッファ室13,14、他方は燃焼空気バッファ室15,16という構成になっている。更に、排ガスバッファ室13,14には、配管からなる排ガス通路10,19を連接し、炉側である排ガス通路10はバーナ5の排ガス吸引孔7と耐火材を施工した配管により接続、他方の排ガス通路19は排ガス吸引ブロワに配管により接続される。また、燃焼空気バッファ室15,16には、配管からなる燃焼空気通路9,21を連接して、炉側である燃焼空気通路9はバーナ5の燃焼空気ノズル6と耐火材を施工した配管により接続、他方の燃焼空気通路21は燃焼空気ブロワと配管によって接続される。燃焼空気バッファ室16と排ガスバッファ室13は、各通路から各バッファ室に対して急拡大となり、更に、蓄熱体25の圧力抵抗が大きいので、バッファ室で圧力が均等となり、蓄熱体25を通る流体の偏流防止となる。燃焼空気バッファ室15と排ガスバッファ室14は、各バッファ室から各通路に対し急縮小となり、バッファ室にて流体は整流され各通路に流れ込む、流体の各圧力、温度が均一となる。
【0038】
図6は排ガスバッファ室13,14と燃焼空気バッファ室15,16の間の仕切壁22,23の様子を示している。図のように仕切壁22,23の厚みは小径管12の2〜3倍あり、小径管12が熱交換時、仕切壁22,23を通過する際、この仕切壁22,23によって排ガスあるいは燃焼空気が小径管12内に封じ込められ、排ガスと燃焼空気の混合を連続的に起こらないようにしている。排ガスバッファ室と燃焼空気バッファ室の間の仕切壁の場合も同様である。
【0039】
この回転式蓄熱器8の熱回収の方法は、炉内と連通している排ガス通路10より高温の排ガスが回転式蓄熱器8に入り、排ガスバッファ室13にて整流され、蓄熱体25である各小径管12内外を均等に流れる。そして、小径管12と熱交換を行い、低温となり、排ガスバッファ室16にて流体の温度、圧力を均等にして、排ガス通路19より排ガス吸引ブロワを通して屋外に排出される。熱交換して高温となった蓄熱体25は軸心17を中心に回転をしており、仕切壁22,23上を通り排ガス通路側から燃焼空気通路側に移る。一方、燃焼空気ブロワにより常温の燃焼空気が燃焼空気通路21を通して回転式蓄熱器8に送り込まれており、燃焼空気バッファ室16にて整流され、蓄熱体25である小径管12を均等に通過する。そして、排ガスにより高温に熱せられた小径管12と燃焼空気が熱交換を行い、燃焼空気が高温に予熱される。高温に予熱された燃焼空気は燃焼空気バッファ室15で整流されて温度、圧力を均等にして、燃焼空気通路9よりバーナ5へ送られる。そして、再び低温となった小径管12は軸心17を中心に回転し、排ガス通路側に移り排ガスと再び熱交換を行う。以上により、蓄熱体25が軸心17を中心に連続的に回転されることによって、連続的に排ガス顕熱の熱回収を行うことができる。ここで、蓄熱体25の回転は、連続的に回転しており、その回転速度は燃焼空気、排ガスの蓄熱体25通過流量に比例して速くなる。
上述の参考例によれば、連続的に高効率の熱回収を行うため、全てのバーナを同時に燃焼することができ、切替弁が不要となる。また、バーナ部が回転式蓄熱器と独立しているので、バーナ設計を独立して行える。
さらに、本参考例の回転式蓄熱器を使用することにより、燃焼空気を高温に予熱する、高効率の熱回収を連続的に行うことができる。また、蓄熱体が独立した小径管により構成されているので、リーク量が少なく、耐スポーリング性が良好となる。
【0040】
次に本願発明の実施例として、図3に請求項記載の回転式蓄熱器8をバーナ30間に備えた工業炉のイメージ図を示す。(a)は炉外より見た図、(b)は炉内より見た図、断面(c)はバーナ30部の断面図、断面(d)は回転式蓄熱器8と排ガス吸引孔31の断面図である。この工業炉の構成は、炉壁33に排ガス吸入孔31をバーナ30間の中心に配置し、その両脇に燃焼空気ノズル32を配置し、それらは炉外に設置した回転式蓄熱器8の炉側に位置する。各ノズルは排ガス通路10及び燃焼空気通路9とそれぞれ耐火材を施工した配管により接続される。ここで、回転式蓄熱器8は工業炉に可能な限り近傍、すなわち工業炉の炉壁33から2m以内の炉外に配置する。バーナ30の構成は、バーナ30中心に燃料ノズル26、燃料ノズル26周囲に1次空気ノズル27を配置し、それらの先端部に設けられているバッフル29を配置し、その炉内側に1次燃焼ポート28を配置する。
【0041】
この工業炉の特徴は、保炎器である1次燃焼ポート28によって、炉温が低温時のように燃焼性が悪い場合は1次空気の量を増やして、燃焼性を良くし、炉温が高温のように燃焼性がよい場合は、低NOx性、回転式蓄熱器8の熱回収を良くするために1次空気の流量を少なくする。バーナタイル構造を無くすことによって、排ガス巻き込み量を増やすことによる低NOx性と火炎の伸長を図ることができる。また、従来のビュレット用加熱炉のようにバーナの大きさによって炉高の制約が生じる場合は、排ガス吸引孔31、燃焼空気ノズル32をバーナと平行に配置しているので、その制約が無くなる。更に、バーナとバーナの間に排ガス吸引孔を真ん中に、燃焼空気ノズルを排ガス吸引孔の左右に配置することで、燃料の未燃分が排ガス吸引孔から吸引されるのを防ぐ。
【0042】
次に、実施例に於ける回転式蓄熱器8について説明する。その詳細構成については、前述した参考例に於ける回転式蓄熱器とほぼ同様である。但し、本実施例の場合、請求項記載のように、回転式蓄熱器8をバーナ30とバーナ30の間に配置することにより、各バーナ30に付属する場合と比較して、その数量が半分で済む。すなわち、回転式蓄熱器8と炉側と連通している燃焼空気通路9が2本、排ガス通路10が1本であり、燃焼ブロワ、排ガスブロワと連通しているのはそれぞれ1本づつである。炉側と連通している燃焼空気通路9は燃焼空気バッファ室15に対して対称に配置されているため、 燃焼空気に偏りが生じない構成となっている。
【0045】
【発明の効果】
請求項1,2記載の回転式蓄熱器を備えた工業炉は、回転式蓄熱器を炉外に独立して持つため、回転式蓄熱器数をバーナ1本につき1台備える場合と比較して減らすことができる。また、バーナタイル構造を無くすことによって、低NOx性と火炎の伸長を図ることができる。
【図面の簡単な説明】
【図1】(a)は回転式蓄熱器を備えた燃焼装置の断面図、(b)は回転式蓄熱器を備えた燃焼装置の炉内から見た正面図。
【図2】回転式蓄熱器のイメージ図。
【図3】(a)は回転式蓄熱器をバーナと独立して備えた工業炉の炉壁の1部の外側より見た図、(b)は回転式蓄熱器をバーナと独立して備えた工業炉の炉壁の1部の内側より見た図、(c)は回転式蓄熱器をバーナと独立して備えた工業炉のバーナの断面図、(d)は回転式蓄熱器をバーナと独立して備えた工業炉の回転式蓄熱器の断面図。
【図4】図2の回転式蓄熱器内側の蓄熱体と蓄熱器外壁の関係(I部)を示した図。
【図5】図2の回転式蓄熱器の軸心と蓄熱体の関係(II部)を示した図。
【図6】図2の回転式蓄熱器内の仕切壁の詳細(III 部)を示した図。
【図7】特公平6−56261に記載の燃焼装置の構成を示した図。
【符号の説明】
1…燃料ノズル 2…1次空気ノズル
3…バッフル 4…1次燃焼ポート
5…バーナ 6…燃焼空気ノズル
7…排ガス吸引孔 8…回転式蓄熱器
9…燃焼空気通路(炉側と連通) 10…排ガス通路(炉側と連通)
11…円筒管 12…小径管
13…排ガスバッファ室(炉側と連通)
14…排ガスバッファ室(排ガス吸引ブロワと連通)
15…燃焼空気バッファ室(炉側と連通)
16…燃焼空気バッファ室(燃焼空気ブロワと連通)
17…軸心
19…排ガス通路(排ガスブロワと連通)
21…燃焼空気通路(燃焼空気ブロワと連通)
22…仕切壁(排ガスバッファ室と燃焼空気バッファ室の仕切)
23…仕切壁(排ガスバッファ室と燃焼空気バッファ室の仕切)
24…駆動装置 25…蓄熱体
26…燃料ノズル 27…1次空気ノズル
28…1次燃焼ポート 29…バッフル
30…バーナ 31…排ガス吸引孔
32…燃焼空気ノズル 33…炉壁
34…炉壁 35…蓄熱器
36…バーナタイル 37…炉
38…燃料ノズル 39…燃焼空気噴出孔
40…燃焼空気通路 41…蓄熱体
42…排ガス通路 43…仕切り板
44…ダクト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion apparatus that recovers exhaust gas sensible heat by high-temperature preheating of combustion air and is effective in energy saving.
[0002]
[Prior art]
Conventionally, in industrial furnaces such as heating furnaces, heat treatment furnaces, melting furnaces or incinerators, exhaust and combustion are used as a means for high-temperature preheating of combustion air with exhaust gas sensible heat in a combustion apparatus aimed at improving the thermal efficiency of the furnace. A regenerative burner (hereinafter referred to as a regenerative burner) that performs alternately, recovers heat by a heat storage element housed in a heat accumulator during exhaust, and preheats combustion air during combustion is used. The regenerative burner requires a switching valve in each of fuel piping, combustion air piping, and exhaust gas piping because of alternate combustion of combustion and exhaust. Moreover, in an industrial furnace equipped with a regenerative burner, combustion is performed in pairs, so the capacity or number of burners is doubled.
[0003]
Therefore, as a means for solving the problem, a heat recovery combustion apparatus described in Japanese Patent Publication No. 6-56261 has been proposed.
[0004]
[Problems to be solved by the invention]
FIG. 7 is a diagram showing the configuration of the combustion apparatus described in Japanese Patent Publication No. 6-56261. The configuration of this heat recovery type combustion apparatus is such that combustion air passage 40 through which combustion air is disposed in the vicinity of a burner attached to the furnace wall and exhaust gas after combustion are discharged outside the furnace. The exhaust gas passage 42 can rotate between the exhaust gas passage 42 and the combustion air passage 40 so that the combustion air flowing through the combustion air passage 40 is heated by the heat of the exhaust gas flowing through the exhaust gas passage 42. In the combustion apparatus having a heat storage body 41 having a large number of vent holes provided in the air passage 40 and the exhaust gas passage 42 by partitioning the interior with a partition plate 43 in the opening formed in the furnace wall 34. One of the formed ducts 44 is connected, and the heat storage body 41 is arranged in a cylindrical part without the partition plate 43 at the inner end of the duct 44.
[0005]
This heat recovery type combustor has the problem of regenerative burners, that is, the configuration of the regenerative burner is composed of one set of two because the combustion of the regenerative burner is an alternate combustion of combustion and exhaust. Although it has a configuration with an automatic switching valve in the fuel piping, combustion air piping, and exhaust gas piping, the number of burners or the capacity is doubled. There are the following problems.
[0006]
(1) Since the heat accumulator 35 is installed directly on the furnace wall 34 of the industrial furnace, the opening of the furnace wall 34 depends on the dimensions of the heat accumulator 35 and becomes larger, so that the processing range of the burner tile 36 becomes larger. Therefore, the furnace size is restricted by the size of the burner tile 36, and the furnace 37 cannot be made compact.
[0007]
(2) As shown in FIG. 7, the structure of the combustion apparatus is composed of a fuel nozzle 38 and a heat accumulator 35. Since the heat accumulator 35 is directly connected to the inside of the furnace, the combustion air ejection holes 39 to be blown into the furnace It becomes the size of the combustion air passage 40 of the heat accumulator 35 without reducing the area, the ejection speed of the combustion air is slow, the flame becomes a short flame, and the NOx value becomes high. Further, since the fuel nozzle 38 is separated from the combustion air ejection hole 39, there is a possibility that the flame blows off under conditions where the combustibility deteriorates such as when the temperature in the furnace is low when the furnace starts up.
[0008]
(3) The combustion air passage 40 in the heat accumulator 35 narrows the combustion air passage 40 in order to increase the ejection speed of the combustion air into the furnace (the combustion air passage is 1/8 to 1/2 of the entire area). 5), in the heat storage body 41, the time taken by the combustion air and the exhaust gas is different, and the heat recovery rate is deteriorated.
[0009]
(4) A ceramic honeycomb is used for the heat storage body 41, and it is relatively weak against thermal stress and easily cracked.
[0010]
(5) Since the combustion air passage 40 and the exhaust gas passage 42 are directly connected to the heat accumulator 35, a drift occurs in the passage and passes through the heat accumulator 41 as it is. Therefore, it is necessary to make the heat storage body 41 longer than necessary.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is summarized as follows.
[0022]
( 1 ) A burner formed by providing a primary air nozzle on the outer periphery of the fuel nozzle and forming a primary combustion port in a baffle provided at the tip of the nozzle is spaced from the furnace wall at a predetermined interval. A plurality of provided heat storage bodies that are rotatable around a shaft center by a driving device are formed inside a cylindrical tube installed outside the furnace by filling a large number of small diameter tubes in the same direction as the shaft center. A buffer portion having a constant space is formed at both ends of the body, and each of the buffer portions is divided into two in the same direction as the axis of the cylindrical tube, and one is an exhaust gas buffer chamber and the other is a combustion air buffer chamber; Further, an exhaust gas passage is connected to the exhaust gas buffer chamber and a combustion air passage is connected to the combustion gas buffer chamber to constitute a rotary heat accumulator, and the rotary heat accumulator is disposed between the burners. Exhaust gas passage located on the furnace side and combustion The air passage and forms as occupying passed, communicating with each furnace via an exhaust gas suction hole and the combustion air nozzle is formed in a furnace wall.
[0023]
( 2 ) The combustion apparatus for an industrial furnace according to claim 1 , wherein an exhaust gas suction hole is provided between the burner and the burner, and at least two combustion air nozzles are arranged on both sides of the suction hole. And at least two combustion air passages located on the furnace side of the rotary heat accumulator are formed so as to communicate with the inside of the furnace via the combustion air nozzle.
[0024]
From ( 1 ), ( 2 ), therefore
Since the rotary heat accumulator is independent of the furnace , the burner tile can be processed freely.
[0025]
It is possible to equalize the combustion air passage cross-sectional area and the exhaust gas passage cross-sectional area in rotary type heat accumulator, combustion air, equal time through the exhaust gas each regenerator, heat recovery in the combustion air preheating of the exhaust gas sensible heat The rate will be good.
[0026]
If you are using small diameter tubes independent thermal storage body, the combustion air to the regenerator, when the respective exhaust gas passes, heating, subjected to thermal stress such cooling. Therefore, since the gap between the small-diameter pipes becomes an expansion allowance at the time of heating, it is strong against this thermal stress, and even if it is partially broken, only that part can be replaced.
[0027]
Cylindrical respectively combustion air buffer chamber at both ends of the regenerator within the tube, also provided an exhaust gas buffer chamber, the combustion air passages, compared with the exhaust gas passage constitute a rapidly expanding portion. Accordingly, combustion air and exhaust gas flowing in from the combustion air passage and the exhaust gas passage are once received in the buffer chamber, and the pressure before and after the heat storage body can be made uniform, so that no drift occurs. The same can be said when the heat storage body passes through the combustion air passage and the exhaust gas passage.
[0028]
Since the combustion air nozzles can be designed independently, free to design the ejection speed of the combustion air, by increasing the ejection speed, by increasing the winding amount in the furnace exhaust gas, the long flame of flame and low NOx conversion can be achieved.
[0029]
By the bar burner tip installing a primary combustion port is flame holder, when the furnace temperature is poor combustion of the burner in use at a low temperature is to increase the amount of primary air, the combustion When the burner becomes more flammable, such as when the furnace temperature is high, the amount of primary air is reduced and the amount of secondary air is increased to increase the heat recovery amount of exhaust gas sensible heat. We will try to reduce it.
[0030]
By eliminating the bus Natairu structure, as compared with the case where there is a normal burner tile, it is possible to increase the exhaust gas entrainment amount, can be a low NOx resistance, elongation of the flame.
[0031]
For installing the rotary regenerator at a rate of one to two bar burner, it can be reduced to half the number of rotary regenerator.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
[0033]
Figure 1 is a schematic view of a combustion apparatus as a reference example of the present invention, a schematic view of a rotary regenerator 8 2 constituting the combustion apparatus as a reference example of the present invention, industrial 3 claim 1 Furnace, FIGS. 4, 5 and 6 are detailed views of the details of FIG.
[0034]
FIG. 1 shows a longitudinal sectional view of a combustion apparatus provided with a rotary heat accumulator 8 and a front view seen from the inside of the furnace, and a reference example of the present invention will be described. The burner 5 has a configuration in which a fuel nozzle 1 is arranged at the center of the burner 5, and a primary air nozzle 2 is arranged around the fuel nozzle 1 so that the fuel nozzle 1 does not become high temperature due to sensible heat of combustion air. In addition, a baffle 3 provided at the tip of the primary air nozzle 2, that is, a primary combustion port 4 for primary combustion flame holding is disposed inside the furnace. Furthermore, around this primary combustion port 4, in this reference example, four combustion air nozzles 6 are equally arranged around the burner 5 axis. Therefore, the combustion air nozzle 6 can be provided at an arbitrary position and number depending on the shape of the baffle 3. A plurality of exhaust gas suction holes 7 are arranged outside the combustion air nozzle 6 so as not to obstruct combustion. Further, the rotary heat accumulator 8 is disposed in the vicinity of the burner 5 and outside the furnace, and the combustion air passage 9 of the rotary heat accumulator 8 and the combustion air nozzle 6 of the burner 5 are connected by a pipe provided with a refractory material. Further, the exhaust gas passage 10 of the rotary heat accumulator 8 and the exhaust gas suction hole 7 of the burner 5 are similarly connected by a pipe provided with a refractory material.
[0035]
The burner 5 is characterized in that the combustion air nozzle 6 is arranged around the fuel nozzle 1, so that the shape of the flame is not biased and the combustion is good. In addition, the primary air is blown into the vicinity of the fuel and the primary combustion port 4 is installed at the same time, which may cause deterioration of combustibility such as when the furnace temperature is low (= combustion air temperature is low). Even in some cases, good combustibility can be maintained. Further, by using air at normal temperature as the primary air, the fuel nozzle 1 is also protected. Furthermore, by adjusting the amount of primary air blown in, the burner 5 can be prevented from starting up a flame when the load is low. Further, by installing the rotary heat accumulator 8 outside the furnace in the vicinity of the burner 5, while performing highly efficient waste heat recovery comparable to that of the regenerative burner, unlike the regenerative burner, all the burners are burned, No fuel switching valve, combustion air switching valve, or exhaust gas switching valve is required. Furthermore, by installing the exhaust gas suction hole 7 in the vicinity of the burner 5, the amount of exhaust gas entrained in combustion can be increased and NOx can be reduced.
[0036]
Next, the rotary heat accumulator 8 which is a reference example of the present invention will be described in detail with reference to the drawings. The rotary heat accumulator 8 is provided with a heat accumulator 25 in the central portion inside the cylindrical tube 11. The heat accumulator 25 is composed of a small-diameter tube 12 filled in the same direction as the shaft center 17 with the shaft center 17 as the center. Rotate freely. FIG. 4 is a cross-sectional view of the heat storage body 17 and the inner wall of the cylindrical tube 11 as seen from above the rotary heat storage unit 8. As shown in the figure, the heat storage body 25 is uneven with respect to the cylindrical tube 11. Accordingly, considering the flow in the circumferential direction, the enlargement / reduction portion is repeated, and the pressure loss increases and the flow becomes difficult. Therefore, mixing of exhaust gas and combustion air can be suppressed to a minimum. FIG. 5 shows the relationship between the shaft center 17 and the heat storage body 25. The shaft center 17 and the heat storage body 25 are in contact with each other without a gap as shown in the figure, and the heat storage body 25 is fixed to the shaft center 17 by bonding between the small diameter pipes 12 with an adhesive or the like. Alternatively, the top and bottom of the heat storage body 25 are fixed with a flange or the like.
[0037]
Buffer portions are formed at both ends of the heat storage body. These buffer portions are divided into two in the same direction as the axis 17 of the cylindrical tube 11 by partition walls 22 and 23, respectively, and one is an exhaust gas buffer chamber 13 and 14 and the other is a combustion air buffer chamber 15 and 16. Yes. Further, exhaust gas passages 10 and 19 made of piping are connected to the exhaust gas buffer chambers 13 and 14, and the exhaust gas passage 10 on the furnace side is connected to the exhaust gas suction hole 7 of the burner 5 by a pipe constructed with a refractory material. The exhaust gas passage 19 is connected to an exhaust gas suction blower by piping. The combustion air buffer chambers 15 and 16 are connected with combustion air passages 9 and 21 made of piping, and the combustion air passage 9 on the furnace side is made up of the combustion air nozzle 6 of the burner 5 and piping constructed of a refractory material. The other combustion air passage 21 is connected to the combustion air blower by piping. The combustion air buffer chamber 16 and the exhaust gas buffer chamber 13 suddenly expand from each passage to each buffer chamber. Further, since the pressure resistance of the heat storage body 25 is large, the pressure is equalized in the buffer chamber and passes through the heat storage body 25. It prevents fluid drift. The combustion air buffer chamber 15 and the exhaust gas buffer chamber 14 are rapidly reduced from each buffer chamber to each passage, and the fluid is rectified in the buffer chamber and flows into each passage, so that the pressure and temperature of the fluid are uniform.
[0038]
FIG. 6 shows a state of the partition walls 22 and 23 between the exhaust gas buffer chambers 13 and 14 and the combustion air buffer chambers 15 and 16. As shown in the figure, the partition walls 22 and 23 are two to three times as thick as the small-diameter pipe 12, and when the small-diameter pipe 12 passes through the partition walls 22 and 23 during heat exchange, the partition walls 22 and 23 cause exhaust gas or combustion. Air is confined in the small-diameter pipe 12 to prevent continuous mixing of exhaust gas and combustion air. The same applies to the partition wall between the exhaust gas buffer chamber and the combustion air buffer chamber.
[0039]
In the heat recovery method of the rotary heat accumulator 8, exhaust gas having a higher temperature than the exhaust gas passage 10 communicating with the inside of the furnace enters the rotary heat accumulator 8 and is rectified in the exhaust gas buffer chamber 13 to form the heat accumulator 25. It flows evenly inside and outside each small diameter pipe 12. Then, heat exchange with the small-diameter pipe 12 is performed, the temperature becomes low, the temperature and pressure of the fluid are equalized in the exhaust gas buffer chamber 16, and the fluid is discharged from the exhaust gas passage 19 to the outside through the exhaust gas suction blower. The heat accumulator 25 that has become hot due to heat exchange rotates about the axis 17 and passes over the partition walls 22 and 23 and moves from the exhaust gas passage side to the combustion air passage side. On the other hand, normal-temperature combustion air is sent to the rotary heat accumulator 8 through the combustion air passage 21 by the combustion air blower, rectified in the combustion air buffer chamber 16, and evenly passes through the small-diameter pipe 12 that is the heat storage body 25. . And the small diameter pipe | tube 12 heated by exhaust gas and high temperature and combustion air exchange heat, and combustion air is preheated to high temperature. The combustion air preheated to a high temperature is rectified in the combustion air buffer chamber 15 to equalize the temperature and pressure, and sent to the burner 5 from the combustion air passage 9. Then, the small-diameter pipe 12 that has become low temperature again rotates around the shaft center 17, moves to the exhaust gas passage side, and performs heat exchange with the exhaust gas again. As described above, the heat storage body 25 is continuously rotated around the axis 17 so that the exhaust gas sensible heat can be continuously recovered. Here, the rotation of the heat storage body 25 is continuously rotating, and the rotation speed thereof is increased in proportion to the flow rate of the combustion air and exhaust gas passing through the heat storage body 25.
According to the above-described reference example, heat recovery is performed continuously with high efficiency, so that all the burners can be burned simultaneously, and a switching valve is not necessary. Moreover, since the burner part is independent of the rotary heat accumulator, the burner can be designed independently.
Furthermore, by using the rotary heat accumulator of this reference example, high-efficiency heat recovery that preheats combustion air to a high temperature can be performed continuously. Moreover, since the heat storage body is composed of an independent small-diameter pipe, the amount of leakage is small and the spalling resistance is good.
[0040]
Next, as an embodiment of the present invention , FIG. 3 shows an image diagram of an industrial furnace provided with a rotary heat accumulator 8 according to claim 1 between burners 30. (A) is a view seen from outside the furnace, (b) is a view seen from inside the furnace, a cross section (c) is a cross sectional view of the burner 30 part, and a cross section (d) is the rotary regenerator 8 and the exhaust gas suction hole 31. It is sectional drawing. In this industrial furnace, the exhaust gas suction hole 31 is arranged in the center between the burners 30 on the furnace wall 33, the combustion air nozzles 32 are arranged on both sides thereof, and they are arranged in the rotary heat accumulator 8 installed outside the furnace. Located on the furnace side. Each nozzle is connected to the exhaust gas passage 10 and the combustion air passage 9 by pipes each constructed with a refractory material. Here, the rotary heat accumulator 8 is arranged as close as possible to the industrial furnace, that is, outside the furnace within 2 m from the furnace wall 33 of the industrial furnace. The burner 30 has a structure in which a fuel nozzle 26 is disposed at the center of the burner 30, a primary air nozzle 27 is disposed around the fuel nozzle 26, a baffle 29 provided at the tip of the nozzle is disposed, and primary combustion is performed inside the furnace. Port 28 is arranged.
[0041]
The feature of this industrial furnace is that the primary combustion port 28, which is a flame holder, increases the amount of primary air when the furnace temperature is low, such as when the furnace temperature is low, to improve the combustibility. When the combustibility is good like a high temperature, the flow rate of the primary air is decreased in order to improve the heat recovery of the low NOx property and the rotary regenerator 8. By eliminating the burner tile structure, the low NOx property and the extension of the flame can be achieved by increasing the amount of exhaust gas entrained. Further, when the furnace height is restricted by the size of the burner as in a conventional burette heating furnace, the exhaust gas suction hole 31 and the combustion air nozzle 32 are arranged in parallel with the burner, and thus the restriction is eliminated. Further, by arranging the exhaust gas suction hole between the burners and the combustion air nozzles on the left and right of the exhaust gas suction hole, unburned fuel is prevented from being sucked from the exhaust gas suction hole.
[0042]
Next, the rotary heat accumulator 8 in the present embodiment will be described. The detailed configuration is substantially the same as that of the rotary heat accumulator in the reference example described above. However, in the case of the present embodiment, as described in claim 2 , by arranging the rotary heat accumulator 8 between the burner 30 and the burner 30, the quantity thereof is compared with the case attached to each burner 30. Half is enough. That is, there are two combustion air passages 9 and one exhaust gas passage 10 communicating with the rotary regenerator 8 and the furnace side, and each one communicating with the combustion blower and the exhaust gas blower. . Since the combustion air passage 9 communicating with the furnace side is disposed symmetrically with respect to the combustion air buffer chamber 15, the combustion air is not biased.
[0045]
【The invention's effect】
Since the industrial furnace provided with the rotary heat accumulator according to claims 1 and 2 has the rotary heat accumulator independently outside the furnace, as compared with the case where one rotary heat accumulator is provided per burner. Can be reduced. Further, by eliminating the burner tile structure, low NOx properties and flame extension can be achieved.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of a combustion apparatus provided with a rotary heat accumulator, and FIG. 1B is a front view of the combustion apparatus provided with a rotary heat accumulator as viewed from inside a furnace.
FIG. 2 is an image diagram of a rotary heat accumulator.
FIG. 3A is a view as seen from the outside of a part of a furnace wall of an industrial furnace provided with a rotary heat accumulator independently from a burner, and FIG. 3B is a view showing a rotary heat accumulator independent of a burner. The figure seen from the inside of one part of the furnace wall of the industrial furnace, (c) is a sectional view of the burner of the industrial furnace provided with the rotary heat accumulator independently of the burner, and (d) is the burner of the rotary heat accumulator. Sectional drawing of the rotary regenerator of the industrial furnace provided independently.
4 is a diagram showing a relationship (part I) between a heat storage body inside the rotary heat storage device and the outer wall of the heat storage device of FIG. 2;
5 is a diagram showing a relationship (part II) between the shaft center of the rotary heat accumulator of FIG. 2 and a heat accumulator.
6 is a view showing details (part III) of a partition wall in the rotary heat accumulator of FIG. 2;
FIG. 7 is a diagram showing a configuration of a combustion apparatus described in Japanese Patent Publication No. 6-56261.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel nozzle 2 ... Primary air nozzle 3 ... Baffle 4 ... Primary combustion port 5 ... Burner 6 ... Combustion air nozzle 7 ... Exhaust gas suction hole 8 ... Rotary regenerator 9 ... Combustion air passage (communicating with the furnace side) 10 ... Exhaust gas passage (communication with furnace side)
11 ... Cylindrical tube 12 ... Small diameter tube 13 ... Exhaust gas buffer chamber (communication with furnace side)
14 ... Exhaust gas buffer chamber (communication with exhaust gas suction blower)
15 ... Combustion air buffer chamber (communication with furnace side)
16 ... Combustion air buffer chamber (communicating with combustion air blower)
17 ... Center 19 ... Exhaust gas passage (communication with exhaust gas blower)
21 ... Combustion air passage (communicating with combustion air blower)
22: Partition wall (partition of exhaust gas buffer chamber and combustion air buffer chamber)
23 ... Partition wall (partition of exhaust gas buffer chamber and combustion air buffer chamber)
DESCRIPTION OF SYMBOLS 24 ... Drive device 25 ... Heat storage body 26 ... Fuel nozzle 27 ... Primary air nozzle 28 ... Primary combustion port 29 ... Baffle 30 ... Burner 31 ... Exhaust gas suction hole 32 ... Combustion air nozzle 33 ... Furnace wall 34 ... Furnace wall 35 ... Regenerator 36 ... Burner tile 37 ... Furnace 38 ... Fuel nozzle 39 ... Combustion air ejection hole 40 ... Combustion air passage 41 ... Heat storage body 42 ... Exhaust gas passage 43 ... Partition plate 44 ... Duct

Claims (2)

燃料ノズル(26)の外周に、1次空気ノズル(27)を設け、且つ、該ノズルの先端部に設けられているバッフル(29)に1次燃焼ポート(28)を形成してなるバーナ(30)を、炉壁(33)に所定間隔を置いて複数設け、一方炉外に設置した円筒管(11)の内部に、駆動装置(24)により軸心(17)を中心として回転自在な蓄熱体(25)を、前記軸心と同方向に多数の小径管(12)を充填して形成し、該蓄熱体の両端部に一定空間のバッファ部を形成し、且つ、該バッファ部のそれぞれを円筒管の軸心と同方向に2分割し、一方を排ガスバッファ室(13)(14)、他方を燃焼空気バッファ室(15)(16)となし、更に、排ガスバッファ室には排ガス通路(10)(19)を、燃焼ガスバッファ室には燃焼空気通路(9)(21)をそれぞれ連接して回転式蓄熱器を構成すると共に、該回転式蓄熱器を前記バーナ間に配設し、該蓄熱器の炉側に位置する排ガス通路及び燃焼空気通路を、炉壁に形成されている排ガス吸引孔(31)及び燃焼空気ノズル(32)を介しそれぞれ炉内と連通せしめる如くなしたことを特徴とする工業炉用燃焼装置。 A burner (1) is provided with a primary air nozzle (27) on the outer periphery of the fuel nozzle (26) and a primary combustion port (28) is formed on a baffle (29) provided at the tip of the nozzle. 30) are provided at predetermined intervals on the furnace wall (33), and can be rotated around a shaft center (17) by a driving device (24) inside a cylindrical tube (11) installed outside the furnace. The heat storage body (25) is formed by filling a large number of small-diameter pipes (12) in the same direction as the axis, and a buffer portion having a constant space is formed at both ends of the heat storage body. Each is divided into two in the same direction as the axis of the cylindrical tube, one is an exhaust gas buffer chamber (13) (14), the other is a combustion air buffer chamber (15) (16). The passages (10) and (19) are connected to the combustion gas buffer chamber through the combustion air. (9) A rotary regenerator is constructed by connecting (21) and (21), and the rotary regenerator is disposed between the burners, and an exhaust gas passage and a combustion air passage located on the furnace side of the regenerator are provided. A combustion apparatus for an industrial furnace characterized in that it communicates with the inside of the furnace through an exhaust gas suction hole (31) and a combustion air nozzle (32) formed in the furnace wall. 炉壁(33)にあって、バーナ(30)とバーナ(30)間に排ガス吸引孔(31)を設け、該吸引孔を中にしてその両側に燃焼空気ノズル(32)を少なくとも2個配設すると共に、回転式蓄熱器の炉側に位置する燃焼空気通路(9)を少なくとも2本形成し、前記燃焼空気ノズルを介し炉内と連通する如く成したことを特徴とする請求項記載の工業炉用燃焼装置。An exhaust gas suction hole (31) is provided in the furnace wall (33) between the burner (30) and the burner (30), and at least two combustion air nozzles (32) are arranged on both sides of the suction hole. while setting, the combustion air passage located on the furnace side of the rotary regenerator (9) to form at least two, according to claim 1, characterized in that form as communicating with the furnace through the combustion air nozzles Industrial furnace combustion equipment.
JP08945496A 1996-04-11 1996-04-11 Industrial furnace combustion equipment Expired - Fee Related JP3720905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08945496A JP3720905B2 (en) 1996-04-11 1996-04-11 Industrial furnace combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08945496A JP3720905B2 (en) 1996-04-11 1996-04-11 Industrial furnace combustion equipment

Publications (2)

Publication Number Publication Date
JPH09280547A JPH09280547A (en) 1997-10-31
JP3720905B2 true JP3720905B2 (en) 2005-11-30

Family

ID=13971153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08945496A Expired - Fee Related JP3720905B2 (en) 1996-04-11 1996-04-11 Industrial furnace combustion equipment

Country Status (1)

Country Link
JP (1) JP3720905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113154411B (en) * 2021-04-08 2024-04-02 武汉隆亿达环保工程有限公司 High-efficiency energy-saving RTO combustion furnace

Also Published As

Publication number Publication date
JPH09280547A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US8622736B2 (en) Recuperator burner having flattened heat exchanger pipes
CN102230626B (en) Flat-tube self-preheating burner of flow splitting plate
JP5119331B2 (en) Radiant tube burner device and heat storage unit attachable to radiant tube burner
KR100221500B1 (en) Combustion apparatus
JPH09203501A (en) Small-sized once-through boiler
JPH0351696A (en) Lamination type heat exchanger
JP3720905B2 (en) Industrial furnace combustion equipment
CN202082934U (en) Flat-tube self-preheating burner of flow splitting plate
JPH07208708A (en) Recuperative burner
JP3668546B2 (en) Air circulation type tube heating equipment
JP4229502B2 (en) Thermal storage radiant tube burner
KR100751270B1 (en) Reactor combustion control method and reactor
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
JP2996618B2 (en) Thermal storage combustion burner
JP4122410B2 (en) Alternating combustion type heat storage type radiant tube burner
KR940015358A (en) Combustion Method and Apparatus for Pipe Heat Exchanger Furnace
JPH0979524A (en) Single end type regenerative radiant tube burner
JP3563753B2 (en) Heating method and apparatus for tubular heating furnace
JP2997655B2 (en) Combustion method for industrial combustion equipment
JP2756916B2 (en) Regenerative combustion device
CN112212356B (en) Multichannel heat accumulation formula air heater
RU2125207C1 (en) Recuperator
JP3772922B2 (en) Once-through boiler
CN112404413A (en) Heat storage type bag baking device
JP3852212B2 (en) Billet heating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees