JPH09203501A - Small-sized once-through boiler - Google Patents

Small-sized once-through boiler

Info

Publication number
JPH09203501A
JPH09203501A JP8011639A JP1163996A JPH09203501A JP H09203501 A JPH09203501 A JP H09203501A JP 8011639 A JP8011639 A JP 8011639A JP 1163996 A JP1163996 A JP 1163996A JP H09203501 A JPH09203501 A JP H09203501A
Authority
JP
Japan
Prior art keywords
combustion
heat storage
chamber
combustion chamber
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8011639A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuo
護 松尾
Ryoichi Tanaka
良一 田中
Kazuhisa Mitani
和久 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Furnace Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd, Toyota Motor Corp filed Critical Nippon Furnace Co Ltd
Priority to JP8011639A priority Critical patent/JPH09203501A/en
Priority to EP97300450A priority patent/EP0786624A3/en
Priority to US08/788,544 priority patent/US5791299A/en
Priority to KR1019970002143A priority patent/KR100215577B1/en
Publication of JPH09203501A publication Critical patent/JPH09203501A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • F22B21/04Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely
    • F22B21/06Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged annularly in sets, e.g. in abutting connection with drums of annular shape
    • F22B21/065Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes involving a single upper drum and a single lower drum, e.g. the drums being arranged transversely the water tubes being arranged annularly in sets, e.g. in abutting connection with drums of annular shape involving an upper and lower drum of annular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/08Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To enable compactification by preventing burnout by overheat of a water pipe, especially the burnout in the periphery of the stoke port of a burner, and enlarging heat load of a combustion chamber more than a conventional boiler. SOLUTION: A regenerative of burner system, which is so constituted as to supply air A for combustion through a heat storage body 22 heated with the heat of combustion gas by performing the supply of air A for combustion and the discharge of combustion gas E through the heat storage body 22, switching the flow of the combustion gas E and the air A for combustion to the heat storage body 22, is arranged at least one system or more in a combustion chamber 1. Then, a group of water pipes 4...4 are installed apart from the wall face 3 of the combustion chamber, and a passage 12 is made between the rear of the group of pipes 4 and the wall face 3 of the combustion chamber, while communication ports 10 and 11 where combustion gas passes are made each between adjacent water pipes 4 at the top and bottom of the group of the water pipes 4...4 so that a part of the combustion gas C may pass the passage 12 behind the group of the water pipes 4...4, and a part of combustion gas flows in the passage 12 from the communication port 11, and goes up, and flows in the combustion chamber 1 again from the upper communication port 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は小型貫流ボイラに関
する。更に詳述すると、本発明は、小型貫流ボイラの燃
焼室の改良に関する。
TECHNICAL FIELD The present invention relates to a small once-through boiler. More specifically, the present invention relates to improvements in the combustion chamber of small once-through boilers.

【0002】[0002]

【従来の技術】従来の小型貫流ボイラの燃焼室は、例え
ば図6に示すように、縦長の円筒形の炉体101の炉壁
(内周壁)102の内側に水管103,104を二重に
環状に配置することによって伝熱面を構成すると共に炉
壁102の冷却を図るようにしている。外側に配置され
る水管103は、図示のようにフィン109で連結され
て炉壁102に半分埋め込まれるか、あるいは図示して
いないがフィンを使わずに隙間なく配置されて半分埋め
込むようにして若しくは炉壁102と接するように設置
されている。また、内側に配置される水管104は外側
の水管103との間に排ガスが流れる程度の隙間をあけ
て設置されている。内側の水管104と外側の水管10
3とはそれぞれ環状に配置されてフィン109で相互に
連結されるか密に配置されているため、内側の水管10
4と外側の水管103との間の隙間は排ガスが流れる流
路105として構成される。そこで、このボイラの燃焼
室構造は、内側の水管104の内側の面がふく射伝熱面
として機能し、外側の水管103の内側の面と内側の水
管104の外側の面とが対流伝熱面として機能する。
2. Description of the Related Art In a conventional combustion chamber of a small once-through boiler, for example, as shown in FIG. 6, water tubes 103 and 104 are doubled inside a furnace wall (inner peripheral wall) 102 of a vertically long cylindrical furnace body 101. By arranging in a ring shape, a heat transfer surface is formed and the furnace wall 102 is cooled. The water pipe 103 arranged on the outside is connected to the fins 109 as shown and half-filled in the furnace wall 102, or, although not shown, it is arranged without fins without gaps and half-filled, or It is installed in contact with the furnace wall 102. Further, the water pipe 104 arranged on the inner side is installed with a gap to the extent that exhaust gas flows between the water pipe 104 on the outer side. Inner water pipe 104 and outer water pipe 10
3 are arranged annularly and are connected to each other by fins 109 or are densely arranged, so that the inner water pipe 10
The gap between the water pipe 4 and the outer water pipe 103 is configured as a flow path 105 through which exhaust gas flows. Therefore, in the combustion chamber structure of this boiler, the inner surface of the inner water pipe 104 functions as a radiant heat transfer surface, and the inner surface of the outer water pipe 103 and the outer surface of the inner water pipe 104 convective heat transfer surface. Function as.

【0003】そして、従来の一般的なボイラは、燃焼室
底部付近の水管104,104の間に流路105と繋が
る連通口106が設けられると共に燃焼室頂部付近の水
管103,103の間に排気手段107と繋がる排気口
108がそれぞれ設けられ、燃焼室110内で発生した
燃焼ガスを燃焼室底部の連通口106から内側の水管1
04と外側の水管103との間の流路105に導入して
ボイラ上部の排気口108から排出するように設けられ
ている。即ち、バーナ111の燃焼によって燃焼室11
0内に発生した燃焼ガスを燃焼室底部の連通口106か
ら内側の水管104と外側の水管103とを通して排出
する間にふく射伝熱と対流伝熱とによってボイラ水と熱
交換させて蒸気を得るようにしている。ふく射伝熱部で
は火炎温度も高く火炉熱負荷も高いが、この部分だけで
は燃焼ガスの熱を十分利用し切れない。そこで、従来の
ボイラはふく射伝熱部だけでは内側の水管群と外側の水
管群との対流伝熱部によって燃焼ガスの熱を回収しなけ
れば排ガス温度が極めて高くなり周辺環境へ与える熱に
因る影響も大きくなると共にボイラの熱経済も悪化する
ことから、大きな対流伝熱部が通常併設されている。例
えば、ボイラの頂部でバーナ111を焚いて得られる燃
焼ガスは燃焼室110内でのふく射伝熱によってボイラ
底部で1200℃程度にまで下がり、さらに内側の水管
104群と外側の水管103群との対流伝熱部を通過す
る間に300℃程度にまで下がってから排気される。
In the conventional general boiler, a communication port 106 connected to the flow path 105 is provided between the water pipes 104, 104 near the bottom of the combustion chamber, and exhaust gas is exhausted between the water pipes 103, 103 near the top of the combustion chamber. Exhaust ports 108 connected to the means 107 are respectively provided, and the combustion gas generated in the combustion chamber 110 is supplied from the communication port 106 at the bottom of the combustion chamber to the inner water pipe 1.
04 and the water pipe 103 on the outside, and is introduced so as to be discharged from the exhaust port 108 at the upper part of the boiler. That is, combustion of the burner 111 causes combustion chamber 11
While discharging the combustion gas generated in 0 from the communication port 106 at the bottom of the combustion chamber through the inner water pipe 104 and the outer water pipe 103, heat is exchanged with the boiler water by radiant heat transfer and convective heat transfer to obtain steam. I am trying. The radiant heat transfer section has a high flame temperature and a high furnace heat load, but the heat of the combustion gas cannot be fully utilized only in this section. Therefore, in the conventional boiler, if the heat of the combustion gas is not recovered by the convection heat transfer section between the inner water tube group and the outer water tube group only by the radiant heat transfer section, the exhaust gas temperature becomes extremely high and the heat is given to the surrounding environment. A large convection heat transfer section is usually installed side by side because the impact on the boiler becomes large and the thermal economy of the boiler deteriorates. For example, the combustion gas obtained by burning the burner 111 at the top of the boiler is lowered to about 1200 ° C. at the bottom of the boiler by the radiant heat transfer in the combustion chamber 110, and the inner water pipes 104 group and the outer water pipe 103 group are separated. While passing through the convection heat transfer section, the temperature is lowered to about 300 ° C. and then exhausted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
燃焼室構造では、バーナ111の焚き口付近が最も燃焼
ガスの温度が高くなるため、燃焼室熱負荷を大きくでき
ないという問題を有している。即ち、貫流ボイラの場
合、水が水管内を下から上へ通過する間に加熱されて蒸
気となるため、水管内103,104には水・湯の状態
の領域112と沸騰領域113及びドライアウトした蒸
気領域114とが下から上へ順に形成される。このた
め、バーナ111の焚き口付近には蒸気領域114が位
置してしまう。ところが、水や蒸気は伝熱係数が小さく
大きな熱を与えても水や蒸気が受け入れず、火炎にさら
される水管を過熱することとなる。このため、水管の焼
損を防ぐためにはバーナ111の焚き口付近での燃焼ガ
ス温度を下げるしかなく、従来は燃焼室熱負荷を小さく
し、ボイラの大型化によって必要な蒸気量を確保してい
た。
However, the conventional combustion chamber structure has a problem that the combustion chamber heat load cannot be increased because the temperature of the combustion gas is highest near the burning port of the burner 111. That is, in the case of a once-through boiler, since water is heated and becomes steam while passing through the water pipe from the bottom to the top, the water / hot water region 112, the boiling region 113, and the dry-out are provided in the water pipes 103 and 104. Vapor regions 114 are formed in order from bottom to top. Therefore, the steam region 114 is located near the burning port of the burner 111. However, water or steam has a small heat transfer coefficient, and even if a large amount of heat is applied, the water or steam does not accept it, and the water pipe exposed to the flame is overheated. Therefore, in order to prevent the water pipe from being burnt out, the combustion gas temperature in the vicinity of the burner port of the burner 111 must be lowered. Conventionally, the heat load in the combustion chamber was reduced and the required steam amount was secured by enlarging the boiler. .

【0005】本発明は、水管の過熱による焼損特にバー
ナの焚き口周辺での焼損を防止し、尚かつ従来のボイラ
よりも燃焼室熱負荷を大きくしてコンパクト化が可能と
なる小型貫流ボイラを提供することを目的とする。
The present invention provides a small-sized once-through boiler capable of preventing burnout due to overheating of a water tube, especially burnt around the burner opening, and having a larger heat load in the combustion chamber than that of a conventional boiler, thereby enabling compactification. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の小型貫流ボイラは、蓄熱体を通して燃焼用
空気の供給及び燃焼ガスの排出を行いかつ蓄熱体に対す
る燃焼ガス及び燃焼用空気の流れを相対的に切替えて燃
焼ガスの熱で加熱された蓄熱体を通して燃焼用空気を供
給するようにした蓄熱型バーナシステムを燃焼室に少な
くとも1システム以上配置し、水管群を燃焼室壁面から
離して設置し水管群の背面と燃焼室壁面との間に流路を
形成する一方、水管群の上端と下端部分に隣り合う水管
の間に燃焼ガスが通過する連通口をそれぞれ形成して燃
焼ガスの一部が水管群の裏側の前記流路を通過するよう
に設け、燃焼ガスの一部が下方の連通口より流路に流入
して上昇し上方の連通口より再度燃焼室内に流入するよ
うにしている。
In order to achieve such an object, a small once-through boiler of the present invention supplies combustion air and discharges combustion gas through a heat storage body and supplies combustion gas and combustion air to the heat storage body. At least one heat storage type burner system in which combustion air is supplied through a heat storage body heated by the heat of combustion gas by relatively switching the flow is arranged in the combustion chamber, and the water pipe group is separated from the wall surface of the combustion chamber. Installed to form a flow path between the back surface of the water tube group and the wall surface of the combustion chamber, while forming a communication port through which the combustion gas passes between the water tubes adjacent to the upper and lower ends of the water tube group. A part of the combustion gas passes through the flow passage on the back side of the water pipe group, and a part of the combustion gas flows into the flow passage through the lower communication port, rises, and flows into the combustion chamber again through the upper communication port. I have to.

【0007】したがって、燃焼室内に噴射された燃焼ガ
スのふく射熱によって燃焼室内に面した水管の内側の面
が加熱される。そして、燃焼ガスの一部は炉底部で反転
上昇してそのまま蓄熱型バーナシステムの蓄熱体を経て
排気される。また残りの燃焼ガスは燃焼室底部の連通口
から水管の背部の流路側へ流入し、上方の連通口より再
び燃焼室内に流入する。そして一部が燃焼用空気に随伴
されて再循環されると共に一部が蓄熱型バーナシステム
の蓄熱体を経て排気される。これによって、水管内を流
れるボイラ水は内側の伝熱面で火炎および燃焼ガスから
の輻射伝熱によって加熱されると同時に、外側の伝熱面
で水管群と燃焼室炉壁との間の流路を流れる燃焼ガスか
らの対流熱伝達によって加熱される。しかも、上方の連
通口から再び燃焼室内へ流入する燃焼ガスの一部が燃焼
室内に噴射される燃焼用空気に随伴されて燃焼ガスの容
量を増大させ、燃焼室が深くても、火炎の浮き上がりを
防いで燃焼室の底部まで燃焼ガスを到達させて燃焼室底
部までふく射伝熱による加熱を可能とする。同時に、こ
のとき燃焼ガスの再循環によって低NOx化が図られ
る。また、ふく射伝熱と対流伝熱とに使われて温度が下
がったガスでバーナ焚き口付近の火炎及び燃焼ガスが希
釈され、火炎及び燃焼ガス温度が平均化される。
Therefore, the radiant heat of the combustion gas injected into the combustion chamber heats the inner surface of the water pipe facing the combustion chamber. Then, a part of the combustion gas reversely rises at the bottom of the furnace and is discharged as it is through the heat storage body of the heat storage type burner system. Further, the remaining combustion gas flows from the communication port at the bottom of the combustion chamber to the flow path side at the back of the water pipe, and again flows into the combustion chamber from the communication port at the top. Then, a part of the heat is recirculated along with the combustion air and a part of the heat is exhausted through the heat storage body of the heat storage type burner system. As a result, the boiler water flowing in the water pipe is heated on the inner heat transfer surface by the radiant heat transfer from the flame and the combustion gas, and at the same time on the outer heat transfer surface, the flow between the water tube group and the combustion chamber furnace wall is increased. It is heated by convective heat transfer from the combustion gases flowing through the passage. Moreover, a part of the combustion gas flowing into the combustion chamber again from the upper communication port is accompanied by the combustion air injected into the combustion chamber to increase the volume of the combustion gas, and even if the combustion chamber is deep, the flame rises. It is possible to allow the combustion gas to reach the bottom of the combustion chamber and to heat the bottom of the combustion chamber by radiant heat transfer. At the same time, the NOx is reduced by recirculating the combustion gas at this time. Further, the flame and the combustion gas near the burner firing port are diluted with the gas used for the radiant heat transfer and the convective heat transfer, and the temperature of the flame and the combustion gas is averaged.

【0008】更に、高温の燃焼排ガスを蓄熱体を通過さ
せて排気する際に、その顕熱が直接熱交換によって蓄熱
体に回収される。そして、蓄熱体に回収された熱は直接
熱交換によって極めて高い効率で燃焼用空気の予熱に使
われて再び燃焼室内へ戻される。燃焼用空気の温度は蓄
熱体へ流出する燃焼排ガスの温度に近い高温とできるの
で、この高温の燃焼用空気を使って少ない燃料で燃焼を
維持できかつ燃焼室内温度を急速に昇温させ得る。
Further, when the high temperature combustion exhaust gas passes through the heat storage body and is exhausted, the sensible heat thereof is directly recovered by the heat exchange in the heat storage body. Then, the heat recovered in the heat storage body is used for preheating the combustion air with extremely high efficiency by direct heat exchange and is returned to the combustion chamber again. Since the temperature of the combustion air can be set to a high temperature close to the temperature of the combustion exhaust gas flowing out to the heat storage body, combustion can be maintained with a small amount of fuel using this high temperature combustion air and the temperature in the combustion chamber can be rapidly raised.

【0009】ここで、本発明の小型貫流ボイラは、燃料
を切り替えずに連続的に同じ燃料ノズルから噴射し、蓄
熱体に対する燃焼排ガス及び燃焼用空気の流れを相対的
に切り替えるようにした蓄熱型バーナシステムを使用す
ることが好ましい。この場合、燃料を切り替えずに燃焼
排ガスと燃焼用空気の流れを切り替えるだけで燃焼を途
切らせることがない。そして、燃焼室内に直接別々に噴
射される燃焼用空気と燃料とは、燃焼室内へ噴射された
後に混合されるが、燃焼用空気が極めて高温(例えば1
000℃近いあるいはそれ以上)であることから、安定
した燃焼を起こす。
Here, the small once-through boiler of the present invention is a heat storage type in which fuel is continuously injected from the same fuel nozzle without switching, and the flow of combustion exhaust gas and combustion air to the heat storage body is relatively switched. It is preferred to use a burner system. In this case, combustion is not interrupted only by switching the flow of combustion exhaust gas and combustion air without switching fuel. The combustion air and the fuel that are directly injected into the combustion chamber are mixed after being injected into the combustion chamber, but the combustion air has an extremely high temperature (for example, 1
Since the temperature is close to 000 ° C or higher), stable combustion occurs.

【0010】更には、蓄熱型バーナシステムは、周方向
に3室以上に均等に区画され各室内を軸方向に流体が通
過可能とした蓄熱体と、この蓄熱体の中心を貫通して燃
焼室内に燃料を直接噴射する燃料ノズルと、燃焼用空気
供給系に接続される給気室と燃焼ガス排気系に接続され
る排気室とを有する出入口手段と、この出入口手段と蓄
熱体との間に介在されて蓄熱体と出入口手段との間を遮
断する一方、連続的あるいは間欠的に回転して出入口手
段の排気室と給気室とを3室以上に区画された蓄熱体の
いずれかの区画に重複させずに順次連通させる切替手段
とから構成され、燃焼室内に燃料を連続的に噴射すると
共にその周りに高温の燃焼用空気を蓄熱体から燃焼室内
に噴射箇所を周方向に移しながら直接噴射することが好
ましい。
Further, the heat storage type burner system has a heat storage body which is evenly divided into three or more chambers in the circumferential direction and allows a fluid to pass axially through each chamber, and a heat storage body which penetrates through the center of the heat storage body. Between the inlet / outlet means and the heat storage body, the inlet / outlet means having a fuel nozzle for directly injecting fuel into the fuel cell, an air supply chamber connected to the combustion air supply system, and an exhaust chamber connected to the combustion gas exhaust system. While being interposed to shut off between the heat storage body and the inlet / outlet means, it continuously or intermittently rotates to divide the exhaust chamber and the air supply chamber of the inlet / outlet means into three or more compartments. It is composed of a switching means for sequentially communicating with each other without overlapping with each other, and continuously injects fuel into the combustion chamber and directly moves high temperature combustion air from the heat storage body to the combustion chamber around the injection portion in the circumferential direction. It is preferable to inject.

【0011】この場合、出入口手段の給気室と排気室と
はそれぞれ間欠的あるいは連続的に回転する切替手段を
介して蓄熱体の異なる室・区画に連通され、燃焼用空気
と燃焼排ガスとが互いに交わることなく蓄熱体内に同時
に流れる。このため、燃焼用空気と燃焼排ガスとが蓄熱
体の同じ室・区画を時間を異にして流れることとなり、
例えば、燃焼排ガスを流した後の蓄熱体に燃焼用空気が
流れることとなり、燃焼排ガスの通過で加熱された蓄熱
体の熱を使って燃焼用空気が燃焼排ガスの温度に近い高
温まで予熱されて供給される。また、蓄熱体の熱が低下
すると、切替手段の回転によって燃焼用空気の噴射位置
を円周方向に移動させて今まで燃焼ガスを排気していた
燃焼用空気供給手段の蓄熱体を利用して燃焼用空気を供
給する。依って、燃料ノズルの周囲を回転するように場
所を移して供給される燃焼用空気と中心に噴射される燃
料とで形成される火炎は燃焼室内を円周方向に回転して
燃焼室を均一に加熱する。
In this case, the air supply chamber and the exhaust chamber of the inlet / outlet means are communicated with different chambers / compartments of the heat storage body through the switching means which rotate intermittently or continuously, and the combustion air and the combustion exhaust gas are separated from each other. They flow in the heat storage body at the same time without crossing each other. Therefore, the combustion air and the combustion exhaust gas flow in the same chamber / compartment of the heat storage body at different times,
For example, combustion air will flow into the heat storage body after flowing the combustion exhaust gas, and the combustion air is preheated to a high temperature close to the temperature of the combustion exhaust gas by using the heat of the heat storage body heated by the passage of the combustion exhaust gas. Supplied. Further, when the heat of the heat storage body is lowered, the injection position of the combustion air is moved in the circumferential direction by the rotation of the switching means to utilize the heat storage body of the combustion air supply means that has exhausted the combustion gas until now. Supply combustion air. Therefore, the flame formed by the combustion air supplied by moving the place so as to rotate around the fuel nozzle and the fuel injected at the center rotates in the circumferential direction in the combustion chamber to make the combustion chamber uniform. Heat to.

【0012】また、本発明の小型貫流ボイラは、蓄熱体
を各々装備した一対のバーナを短時間に交互に燃焼させ
て燃焼していない方のバーナの蓄熱体を経て排気させる
蓄熱型バーナシステムを使用することが好ましい。この
場合、火炎位置が頻繁に移り変わるために燃焼室内の温
度分布がより均一化できる。
Further, the small once-through boiler of the present invention is a heat storage type burner system in which a pair of burners each equipped with a heat storage body are alternately burned in a short time and exhausted through the heat storage body of the burner which is not burning. Preference is given to using. In this case, since the flame position changes frequently, the temperature distribution in the combustion chamber can be made more uniform.

【0013】[0013]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施例に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0014】図1〜図5に本発明の小型貫流ボイラの一
実施例を示す。この小型貫流ボイラは、例えば燃焼室1
を形成する縦長の円筒形の炉体2の内周壁面3から離し
て一群の水管4,4,…,4が設置されている。一群の
水管4,4,…,4は、下ヘッダ5と上ヘッダ6によっ
て連結されている。更に、上ヘッダ6と下ヘッダ5とは
気液分離器7を介して連結されている。下ヘッダ5から
給水されたボイラ水15は、水管4,…,4内を上昇す
る間に加熱され、沸騰しかつ蒸気となって上ヘッダ6に
集められてから気液分離器7へ移され、気液分離器7に
おいて蒸気のみが取り出され、温水はボイラ水15とし
て還流管14を経て再び給水される。炉体2の内周壁面
(燃焼室壁面)3と多数の水管4,…,4によって構成
される管壁との間には円筒形の流路12が形成される。
そして、水管4の上端および下端付近即ち炉頂部8およ
び炉底部9の付近には流路12と管壁の内側の燃焼室1
とを連通させて燃焼ガスCの出入りを可能とする上連通
口10と下連通口11とが設けられている。これら連通
口10,11は、例えば図3に示すように、水管4の上
端と下端部分の口径を絞って隣の水管との間に隙間を形
成することによって形成される。水管4は両端を除いて
ほぼ隙間なく配置され、上連通口10と下連通口11と
を介して燃焼室1内と連通する流路12が燃焼室壁面3
との間で形成されかつ燃焼室1を囲繞する管壁を形成す
る。また、連通口10,11は例えば図4に示すよう
に、水管4の上端と下部を除く部分にフィン13を固着
し、このフィン13同士を溶接ないしリベット止めなど
によって連結することによって形成される。いずれの場
合においても、水管4と水管4との間は、上連通口10
と下連通口11を除いてほぼ隙間なく連結されている
が、全く隙間を排除しようとするものではなく、少し位
は隙間が生じて洩れが起きても支障はない。
1 to 5 show an embodiment of a small once-through boiler according to the present invention. This small once-through boiler is, for example, a combustion chamber 1
A group of water pipes 4, 4, ..., 4 are installed apart from the inner peripheral wall surface 3 of the vertically long cylindrical furnace body 2 that forms the. A group of water pipes 4, 4, ..., 4 are connected by a lower header 5 and an upper header 6. Further, the upper header 6 and the lower header 5 are connected via a gas-liquid separator 7. The boiler water 15 supplied from the lower header 5 is heated while rising in the water pipes 4, ..., 4 and is boiled and becomes vapor to be collected in the upper header 6 and then transferred to the gas-liquid separator 7. Only steam is taken out in the gas-liquid separator 7, and hot water is supplied again as boiler water 15 through the reflux pipe 14. A cylindrical flow path 12 is formed between the inner peripheral wall surface (combustion chamber wall surface) 3 of the furnace body 2 and the tube wall formed by a large number of water tubes 4 ,.
In the vicinity of the upper and lower ends of the water pipe 4, that is, in the vicinity of the furnace top portion 8 and the furnace bottom portion 9, the flow passage 12 and the combustion chamber 1 inside the pipe wall are provided.
An upper communication port 10 and a lower communication port 11 are provided that allow the combustion gas C to enter and exit by communicating with the above. These communication ports 10 and 11 are formed, for example, as shown in FIG. 3, by narrowing the diameters of the upper and lower ends of the water pipe 4 to form a gap between adjacent water pipes. The water pipes 4 are arranged with almost no gap except at both ends, and the flow passage 12 communicating with the inside of the combustion chamber 1 through the upper communication port 10 and the lower communication port 11 has a combustion chamber wall surface 3
To form a tube wall surrounding the combustion chamber 1. Further, the communication ports 10 and 11 are formed, for example, as shown in FIG. 4, by fixing fins 13 to a portion of the water pipe 4 excluding the upper end and the lower part, and connecting the fins 13 with each other by welding or riveting. . In any case, the upper communication port 10 is provided between the water pipes 4 and 4.
With the exception of the lower communication port 11, there is almost no gap, but this is not intended to eliminate the gap at all, and there is no problem even if there is a gap and a leak occurs.

【0015】炉体2は、通常、鋼板製ケーシングの内側
を耐火断熱材で内張りしたり、空冷層を設けることによ
って形成されている。そして、この炉体2の炉頂部8に
は熱源として蓄熱型バーナシステム20が装備されてい
る。本実施例では燃焼室1に1セットの蓄熱型バーナシ
ステム20を設けているが、場合によっては2セット以
上のバーナシステムを装備しても良い。
The furnace body 2 is usually formed by lining the inside of a steel plate casing with a refractory heat insulating material or providing an air cooling layer. The furnace top 8 of the furnace body 2 is equipped with a heat storage type burner system 20 as a heat source. In the present embodiment, one set of heat storage type burner system 20 is provided in the combustion chamber 1, but two or more sets of burner systems may be equipped depending on the case.

【0016】本実施例では1基のバーナを構成する蓄熱
型バーナシステムの場合を示す。この蓄熱型バーナシス
テム20は、燃料Fを燃焼室1内に直接噴射する燃料ノ
ズル21を蓄熱体22の中心に貫通させ、燃料Fの噴流
の周りからほぼ平行に高温とされた燃焼用空気Aを噴射
させるようにしている。
In this embodiment, a case of a heat storage type burner system which constitutes one burner is shown. In this heat storage type burner system 20, a fuel nozzle 21 that directly injects the fuel F into the combustion chamber 1 is penetrated through the center of the heat storage body 22, and the combustion air A that has been heated to a temperature substantially parallel to the periphery of the jet of the fuel F is used. Is to be jetted.

【0017】ここで、燃焼用空気Aの供給と排ガスEの
排気とを図るシステムは、基本的には、周方向に均等に
3室以上例えば本実施例の場合符号30,31,32で
示される3室に区画されて軸方向に流体が通過可能とさ
れた蓄熱体22と、空気供給系41に接続される給気室
23aと排気系43に接続される排気室23bとを有す
る出入口手段23と、この出入口手段23と蓄熱体22
との間に介在されて蓄熱体22と出入口手段23との間
を遮断する一方、同時に同じ区画に存在しない給気用連
通孔25と排気用連通孔26とを有し連続的あるいは間
欠的に回転して出入口手段23の排気室23bと給気室
23aとを蓄熱体22の室30,31,32のいずれか
に順次に連通させる切替手段24とから構成されてい
る。
Here, the system for supplying the combustion air A and exhausting the exhaust gas E is basically indicated by reference numerals 30, 31, 32 in the present embodiment, for example, three or more chambers. Inlet / outlet means having a heat storage body 22 partitioned into three chambers through which a fluid can pass in the axial direction, an air supply chamber 23a connected to an air supply system 41, and an exhaust chamber 23b connected to an exhaust system 43. 23, the inlet / outlet means 23 and the heat storage body 22
Is interposed between the heat storage body 22 and the inlet / outlet means 23, and at the same time has a supply hole 25 and an exhaust communication hole 26 that are not present in the same section, either continuously or intermittently. The switching means 24 is configured to rotate to sequentially communicate the exhaust chamber 23b of the inlet / outlet means 23 and the air supply chamber 23a with any of the chambers 30, 31, 32 of the heat storage body 22.

【0018】蓄熱体22としては、特定の形状や材質に
限定されるものではないが、1000℃前後の排ガスと
20℃前後の燃焼用空気との熱交換には、例えばコージ
ライトやムライト等のセラミックスを材料として押し出
し成形によって製造されるハニカム形状のものの使用が
好ましい。ここで、蓄熱体22,22としては比較的圧
力損失が低い割に熱容量が大きく耐久性の高い材料、例
えばセラミックスで成形されたハニカム形状のセル孔を
多数有する筒体の使用が好ましい。この場合、排ガスE
から熱を回収する際に排ガスが酸露点温度以下に低下し
てもセラミックス内に燃料中のイオウ分やその化学変化
物質が捕捉され、下流の排気系のダクトなどを低温腐食
させることがない。勿論、特にこれに限定されるもので
はなくセラミックボールやナゲットなどの他の蓄熱体を
使用しても良い。また、ハニカム形状の蓄熱体22は、
場合によってはセラミックス以外の素材例えば耐熱鋼等
の金属で製作しても良い。また、500〜600℃前後
の中高温では、セラミックスよりも比較的安価なアルミ
ニウムや鉄、銅などの金属の使用が好ましい。尚、ハニ
カム形状とは、本来六角形のセル(穴)を意味している
が、本明細書では本来の六角形のみならず四角形や三角
形のセルを無数にあけたものを含む。また、上述の如く
一体成形せずに管などを束ねることによってハニカム形
状の蓄熱体22を得るようにしても良い。本実施例の場
合、蓄熱体22はその前後に配置された分配室27,2
7によって周方向に3室に区画されている。例えば、本
実施例の場合、仕切り28によって3室29a,29
b,29cに区画された分配室27,27によって、蓄
熱体22内が図2に示すように流体が流れない空室30
と排ガスEを流す室31と空気Aを流す室32との3室
に区画される。即ち、蓄熱体22そのものは、1つ1つ
が独立した流路を構成するセルの集合から成るハニカム
形状を成していることから、分配室27の仕切り28に
よって仕切られた範囲が1つの区画された室を形成する
こととなる。分配室27を設ける場合、連通孔25,2
6を経て流入する流体を分散させて蓄熱体22の全域に
均一に分流させることができる。また、蓄熱体22の形
状も特に図示のハニカム形状に限定されず、図示してい
ないが平板形状や波板形状の蓄熱材料を筒状のケーシン
グ内に放射状に配置したり、パイプ形状の蓄熱材料を軸
方向に流体が通過するように筒状のケーシング内に充填
したものであっても良い。更には、本実施例では分配室
27によって単一の蓄熱体22が実質的に3室30,3
1,32に区画されているが、これに特に限定されるも
のではなく、蓄熱体22そのものをあらかじめ3室に区
画形成しても良い。例えば、図示していないが隔壁によ
って周方向に3室に区画形成され、軸方向に流体が通過
可能とした筒状のケーシングを用意し、これの各室に球
状、短管、短棒、細片、ナゲット状、網状などの蓄熱材
料の塊りを充填することによって構成されたものでも良
い。コージライトやムライトなどよりもはるかに高温で
使用可能なSiN等の蓄熱材料を使用する場合には、複
雑なハニカム形状に成形することは容易ではないが、単
純なパイプ形状や棒、ボールなどに成形することは容易
である。
The heat storage body 22 is not limited to a particular shape or material, but for heat exchange between the exhaust gas at around 1000 ° C. and the combustion air at around 20 ° C., for example, cordierite or mullite is used. It is preferable to use a honeycomb-shaped product manufactured by extrusion using ceramics as a material. Here, as the heat storage bodies 22, 22, it is preferable to use a material having a large heat capacity and a high durability, for example, a cylinder body having a large number of honeycomb-shaped cell holes formed of ceramics although the pressure loss is relatively low. In this case, the exhaust gas E
Even if the exhaust gas falls below the acid dew point temperature when the heat is recovered from the gas, the sulfur content in the fuel and its chemically modified substances are trapped in the ceramics, and the exhaust ducts in the downstream are not corroded at low temperature. Of course, the present invention is not particularly limited to this, and another heat storage material such as a ceramic ball or a nugget may be used. Further, the honeycomb-shaped heat storage body 22 is
In some cases, it may be made of a material other than ceramics, for example, a metal such as heat resistant steel. In addition, at medium to high temperatures around 500 to 600 ° C., it is preferable to use a metal such as aluminum, iron, or copper, which is relatively cheaper than ceramics. The honeycomb shape originally means hexagonal cells (holes), but in the present specification, not only the original hexagonal cells but also quadrangular or triangular cells are opened innumerably. Further, as described above, the honeycomb-shaped heat storage body 22 may be obtained by bundling tubes or the like without integrally molding. In the case of this embodiment, the heat storage body 22 has the distribution chambers 27, 2 arranged in front of and behind it.
It is divided into three chambers by 7 in the circumferential direction. For example, in the case of this embodiment, the three chambers 29a, 29
Due to the distribution chambers 27, 27 divided into b and 29c, a vacant chamber 30 in which the fluid does not flow in the heat storage body 22 as shown in FIG.
And a chamber 31 for flowing the exhaust gas E and a chamber 32 for flowing the air A. That is, since the heat storage bodies 22 themselves have a honeycomb shape formed of a set of cells each of which constitutes an independent flow path, the range partitioned by the partition 28 of the distribution chamber 27 is divided into one. Will form a chamber. When the distribution chamber 27 is provided, the communication holes 25, 2
It is possible to disperse the fluid flowing in via 6 and divide the fluid uniformly over the entire area of the heat storage body 22. Further, the shape of the heat storage body 22 is not particularly limited to the honeycomb shape shown in the figure, and although not shown, flat plate-shaped or corrugated plate-shaped heat storage material is radially arranged in a tubular casing, or a pipe-shaped heat storage material. May be filled in a cylindrical casing so that the fluid may pass in the axial direction. Further, in the present embodiment, the distribution chamber 27 allows the single heat storage body 22 to substantially form three chambers 30, 3.
However, the heat storage body 22 itself may be divided into three chambers in advance. For example, although not shown, a cylindrical casing, which is partitioned into three chambers in the circumferential direction by a partition wall and through which fluid can pass in the axial direction, is prepared, and each of these chambers has a spherical shape, a short tube, a short rod, or a thin rod. It may be configured by filling a lump of heat storage material such as a piece, a nugget shape, or a net shape. When using a heat storage material such as SiN that can be used at a much higher temperature than cordierite or mullite, it is not easy to mold it into a complicated honeycomb shape, but for simple pipe shapes, rods, balls, etc. It is easy to mold.

【0019】ここで、蓄熱体22に区画される室の数は
空気Aを流す室(以下給気用の室という)32と排ガス
Eを流す室(以下排気用の室という)31とを1組とし
て最低1組に1つの空室(流体が流れない室)30を組
み合わせたものであり、3室を最低室数とする。また、
給気用の室32と排気用の室31との間にそれぞれ流体
が流れない室30を介在させることによっても上述のシ
ステムは構成される。この場合には最低室数は4室とな
る。
Here, the number of chambers divided into the heat storage body 22 is 1 for a chamber in which air A flows (hereinafter referred to as an air supply chamber) 32 and a chamber in which exhaust gas E flows (hereinafter referred to as an exhaust chamber) 31. As a set, at least one set is combined with one vacant chamber (a chamber in which a fluid does not flow) 30, and three chambers are the minimum number. Also,
The above-mentioned system is also configured by interposing the chambers 30 through which the fluid does not flow between the air supply chamber 32 and the exhaust chamber 31. In this case, the minimum number of rooms is four.

【0020】出入口手段23は、本実施例の場合、矩形
状のケーシング33の中に円筒状の仕切壁34を設ける
ことによって、空気供給系41と接続される給気室23
と排気系統43と接続される排気室23bとに区画され
ている。本実施例の場合、仕切壁34の外側に供給室2
3a、内側に排気室23bが形成されている。本実施例
の場合、切替手段24は出入口手段23と分配室27の
間で単独に回転するように設けられている。仕切壁34
と切替手段24の間には切替手段24の回転を許容しか
つ流体が漏洩しないように密閉するシール部材35が設
けられている。尚、切替手段24は、例えば出入口手段
23の仕切壁34と中央の燃料ノズル21によって回転
自在に支持され、その周縁にギア36が形成され、ケー
シング33のコーナ部分に配置されたドライブギア37
と噛合してモータ38で回転駆動される。勿論、これに
限定されるものではなく、切替手段24の周縁に圧接さ
れる摩擦車やチェーン、ベルト等によって回転駆動させ
るようにしても良い。
In this embodiment, the inlet / outlet means 23 is provided with a cylindrical partition wall 34 in a rectangular casing 33 so that the air supply chamber 23 is connected to the air supply system 41.
And an exhaust chamber 23b connected to the exhaust system 43. In the case of this embodiment, the supply chamber 2 is provided outside the partition wall 34.
3a, an exhaust chamber 23b is formed inside. In the case of the present embodiment, the switching means 24 is provided so as to rotate independently between the inlet / outlet means 23 and the distribution chamber 27. Partition wall 34
A seal member 35 is provided between the switch means 24 and the switch means 24 so as to allow the switch means 24 to rotate and to prevent fluid from leaking. The switching means 24 is rotatably supported by, for example, the partition wall 34 of the inlet / outlet means 23 and the fuel nozzle 21 at the center, and a gear 36 is formed on the periphery thereof, and a drive gear 37 arranged at a corner portion of the casing 33.
And is driven to rotate by the motor 38. Of course, the present invention is not limited to this, and it may be rotationally driven by a friction wheel, a chain, a belt or the like that is pressed against the peripheral edge of the switching means 24.

【0021】出入口手段23の給気室23aと排気室2
3bとをそれぞれ対応する蓄熱体22の室・区画32,
31にのみ連通させる切替手段24は、流路と直交する
円板から成り、蓄熱体22の或る1つの区画と給気室2
3aとを連通させる給気用連通孔25と、1つの区画と
排気室23bとを連通させる排気用連通孔26とを少な
くとも1個ずつ有している。そして、この排気用連通孔
26と給気用連通孔25とは、同じ室・区画に給気用
連通孔25と排気用連通孔26とが同時に存在し得ない
こと、空室30の次の室・区画に位置する最前列の連
通孔から順次1つずつ前方の室・区画に移り変わるこ
と、給気用連通孔26及び排気用連通孔26の大きさ
は、半径方向に互いに重ならないように配置したときに
1室に全てが同時に収まる大きさであること、の3条件
を満たすように設けられている。このとき、給気用連通
孔25と排気用連通孔26とはほぼ同じ大きさ同じ形状
の孔に設定されているが、これに特に限定されるもので
はなく、給気用と排気用とで大きさや形状を変更しても
良いし、必要であれば連通孔1つ1つ毎に大きさや形状
を変更しても良い。一般に空気の量と排ガスの量とがほ
ぼバランスする関係に設定されるが、場合によっては一
方の連通孔を他方の連通孔よりも大きめに設定されるこ
ともある。
Air supply chamber 23a and exhaust chamber 2 of the entrance / exit means 23
3b and the chamber / compartment 32 of the heat storage body 22, which respectively correspond to
The switching means 24 that communicates only with 31 is formed of a disc orthogonal to the flow path, and is provided with one compartment of the heat storage body 22 and the air supply chamber 2.
At least one air supply communication hole 25 for communicating with 3a and at least one exhaust communication hole 26 for communicating one compartment with the exhaust chamber 23b are provided. The exhaust communication hole 26 and the air supply communication hole 25 must be such that the air supply communication hole 25 and the exhaust communication hole 26 cannot exist in the same chamber / compartment at the same time. Change from the front-most communication holes in the chambers / compartments one by one to the front chamber / compartment, and make sure that the sizes of the air supply communication holes 26 and the exhaust communication holes 26 do not overlap each other in the radial direction. It is provided so as to satisfy the three conditions that the size is such that all can be accommodated in one room at the same time when arranged. At this time, the air supply communication hole 25 and the exhaust communication hole 26 are set to have substantially the same size and the same shape, but the present invention is not particularly limited to this, and it is possible to supply air and exhaust gas. The size and shape may be changed, and if necessary, the size and shape may be changed for each communication hole. In general, the amount of air and the amount of exhaust gas are set to have a substantially balanced relationship, but in some cases, one communication hole may be set to be larger than the other communication hole.

【0022】燃料ノズル21は、蓄熱体22を貫通して
燃焼室1に直接露出ないし突出するように配置されてい
る。蓄熱体22は耐火断熱材のケーシング39によって
囲繞され、金属ケーシング33に収容されている。ま
た、燃料ノズル21も耐火断熱材ケーシング39によっ
て抱持されている。ここで、耐火断熱材ケーシング39
には、分配室27の各室29a,29b,29cにそれ
ぞれ連通する3つの噴射口40,40,40が軸方向に
開口するように設けられている。
The fuel nozzle 21 is arranged so as to penetrate the heat storage body 22 and be directly exposed or projected into the combustion chamber 1. The heat storage body 22 is surrounded by a casing 39 made of a refractory heat insulating material and housed in a metal casing 33. The fuel nozzle 21 is also held by the refractory heat insulating material casing 39. Here, the refractory insulation casing 39
Is provided with three injection ports 40, 40, 40 communicating with the respective chambers 29a, 29b, 29c of the distribution chamber 27 so as to open in the axial direction.

【0023】以上のように構成されたボイラによれば、
次のようにして水管の全周面を伝熱面として機能させ、
むらのない均一加熱を実現する。
According to the boiler constructed as described above,
Make the entire circumference of the water pipe function as a heat transfer surface as follows,
Realizes uniform heating without unevenness.

【0024】空気供給系41と燃料供給系42とを経て
燃焼室1内へ供給される空気Aと燃料Fとを混合して燃
焼させる。燃焼用空気Aは立ち上げ燃焼によって温めら
れた蓄熱型バーナシステム20の蓄熱体22を通過して
高温に予熱されてから燃焼室1内へ供給される。また、
燃料Fは燃料ノズル21から燃焼室1内へ直接噴射され
る。
The air A and the fuel F supplied into the combustion chamber 1 through the air supply system 41 and the fuel supply system 42 are mixed and burned. The combustion air A is supplied to the combustion chamber 1 after passing through the heat storage body 22 of the heat storage type burner system 20 which is warmed by the startup combustion and preheated to a high temperature. Also,
The fuel F is directly injected from the fuel nozzle 21 into the combustion chamber 1.

【0025】ここで、高温の空気Aと燃料ノズル21か
ら噴射される燃料Fとは別々に燃焼室1内に噴射され、
燃焼室1に広がり、燃料ノズル21から離れた所で混合
される。このとき、空気Aと燃料Fはその流速を急速に
低下させかつ混合領域を広範囲に拡大していることか
ら、本来は燃焼し難い条件である。しかし、空気Aその
ものが700〜800℃あるいはそれ以上の高温である
ため、このような条件でも容易に燃焼する。即ち、NO
xの発生の少ない緩慢燃焼を起こす。この緩慢燃焼で発
生する燃焼ガスCのふく射熱によって燃焼室1に面した
水管4,…,4の内側の面が加熱される。その後、一部
の燃焼ガスCは、炉底部9の下連通口11から水管4の
背部の流路12へ流入して上昇し(矢印Pで示す)、上
連通口10から再び燃焼室1内へ戻るまでに水管4の背
面を対流熱伝達によって加熱する。また、残る燃焼ガス
Cは、炉底部9で反転し、燃焼室1内を上昇して(矢印
B)排気系43と接続されている蓄熱体の室31の噴射
口40から炉外に排出される。
Here, the hot air A and the fuel F injected from the fuel nozzle 21 are separately injected into the combustion chamber 1,
It spreads to the combustion chamber 1 and is mixed away from the fuel nozzle 21. At this time, since the air A and the fuel F rapidly reduce their flow velocities and expand the mixing region over a wide range, they are conditions that are originally difficult to burn. However, since the air A itself has a high temperature of 700 to 800 ° C. or higher, it burns easily even under such conditions. That is, NO
Slow combustion with less generation of x occurs. The inner surface of the water pipes 4, ..., 4 facing the combustion chamber 1 is heated by the radiant heat of the combustion gas C generated by the slow combustion. After that, a part of the combustion gas C flows from the lower communication port 11 of the furnace bottom 9 into the flow passage 12 at the back of the water pipe 4 and rises (indicated by an arrow P), and then from the upper communication port 10 into the combustion chamber 1 again. The back surface of the water pipe 4 is heated by convection heat transfer before returning to. The remaining combustion gas C is reversed at the bottom 9 of the furnace, rises in the combustion chamber 1 (arrow B), and is discharged to the outside of the furnace from the injection port 40 of the heat storage chamber 31 connected to the exhaust system 43. It

【0026】また、下連通口11を経て流路12に流入
した燃焼ガスの一部は、流路12を通過して上連通口1
0より再び燃焼室1内に流入し、その一部が噴射口40
から噴射される空気Aに随伴されて再循環すると共に残
部が燃焼室1内で反転上昇した燃焼ガスと混じり合って
蓄熱体22を経て排気される。ここで、流路12を経て
上連通口10から再び燃焼室1内へ流入する燃焼ガスC
は、水管4,…,4の背部の流路12を通過する間の対
流伝熱によって温度が下がっている。例えば、燃焼室底
部で1000℃程度まで温度が下がった燃焼ガスは流路
12を通過する間に更に温度が下がって上連通口10か
ら燃焼室1内へ再び流入する際には200℃程度にまで
下がっている。したがって、バーナ焚き口付近の燃焼ガ
スは温度が下がった燃焼ガスで希釈されて温度が下げら
れ、局部高温域を発生させずに全体的に燃焼ガス温度を
下げることができる。また、再び燃焼室1内へ流入する
燃焼ガスの一部がバーナシステム20から噴射される燃
焼ガスCに随伴されて燃焼ガスCの容量を増大させ、燃
焼室1が深くても、火炎の浮き上がりを防いで燃焼室1
の底まで燃焼ガスCを到達させ、燃焼室1の縦方向に均
一に加熱する。しかも、このとき燃焼ガスCの再循環に
よって低NOx化が図られる。加えて、燃焼室内を循環
する燃焼ガスの量の増大は、水管4,…,4の背部の流
路12を流れる燃焼ガスCの量も増やすため、下連通口
11付近と上連通口10付近とでのガス温度差が小さく
なり、水管4,…,4並びにボイラ水15への伝熱量を
大きくできるので、伝熱面面積を小さくできる。一方、
水管4と燃焼室壁面3との間の流路12を経て燃焼室1
の上部へ還流してきた200℃程度の燃焼ガスCの一部
は、燃焼室1の底部で反転上昇し炉内で還流してきた1
000℃近くの大量の燃焼ガスCの一部と混じり合って
約900℃程度の排ガスとなって排気される。図示の状
態では、燃焼ガス排気系43に接続された蓄熱体区画3
1に連通する噴射口40から排気される。
Further, a part of the combustion gas flowing into the flow path 12 through the lower communication port 11 passes through the flow path 12 and the upper communication port 1
From 0 to the combustion chamber 1 again, and a part of it flows into the injection port 40.
It is recirculated along with the air A injected from the inside of the combustion chamber 1 and the rest is mixed with the combustion gas that has risen upside down in the combustion chamber 1 and is exhausted through the heat storage body 22. Here, the combustion gas C flowing into the combustion chamber 1 again from the upper communication port 10 through the flow path 12.
Is cooled by convective heat transfer while passing through the flow path 12 at the back of the water pipes 4 ,. For example, the temperature of the combustion gas whose temperature has dropped to about 1000 ° C. at the bottom of the combustion chamber further decreases while passing through the flow path 12, and when it flows back into the combustion chamber 1 from the upper communication port 10, the temperature becomes about 200 ° C. Has gone down. Therefore, the combustion gas in the vicinity of the burner firing port is diluted with the lowered temperature combustion gas to lower the temperature, and the temperature of the combustion gas can be entirely lowered without generating a local high temperature region. Further, a part of the combustion gas flowing into the combustion chamber 1 again is accompanied by the combustion gas C injected from the burner system 20 to increase the volume of the combustion gas C, and even if the combustion chamber 1 is deep, the flame rises. Combustion chamber 1 to prevent
The combustion gas C reaches the bottom of the combustion chamber 1 and is heated uniformly in the vertical direction of the combustion chamber 1. Moreover, at this time, the NOx can be reduced by recirculating the combustion gas C. In addition, the increase in the amount of combustion gas circulating in the combustion chamber also increases the amount of combustion gas C flowing in the flow passage 12 at the back of the water pipes 4, ..., 4, so that the vicinity of the lower communication port 11 and the vicinity of the upper communication port 10 are increased. The gas temperature difference between and becomes small, and the amount of heat transfer to the water pipes 4, ..., 4 and the boiler water 15 can be made large, so that the heat transfer surface area can be made small. on the other hand,
The combustion chamber 1 passes through the flow path 12 between the water pipe 4 and the combustion chamber wall surface 3.
A part of the combustion gas C having a temperature of about 200 ° C that has recirculated to the upper part of the combustion chamber 1 reversely rises at the bottom of the combustion chamber 1 and has recirculated in the furnace
It is mixed with a part of a large amount of combustion gas C near 000 ° C. and is exhausted as an exhaust gas at about 900 ° C. In the illustrated state, the heat storage section 3 connected to the combustion gas exhaust system 43
1 is exhausted from the injection port 40 communicating with 1.

【0027】ここで、蓄熱体32に流す燃焼用空気と燃
焼ガスの切替は、例えば10秒〜90秒、好ましくは1
0秒〜20秒程度の間隔で行うか、あるいは蓄熱体22
を経由して排出される排ガスEが所定の温度例えば20
0℃程度となったときに行う。
Here, the switching between the combustion air and the combustion gas flowing through the heat storage body 32 is, for example, 10 seconds to 90 seconds, preferably 1 second.
It is performed at intervals of about 0 to 20 seconds, or the heat storage body 22
The exhaust gas E discharged via the exhaust gas has a predetermined temperature, for example, 20
Perform when the temperature reaches 0 ° C.

【0028】まず、図2の状態において、出入口手段2
3の給気室23aに空気Aが導入されると、この空気A
は給気用連通孔32を経て分配室27の第2の室29c
に流入し、更に該当する蓄熱体22の室・区画32に流
入する。このとき、蓄熱体22の該当する区画・室32
は切替前に通過していた高温の排ガスEの熱によって加
熱されているため、通過する空気Aは蓄熱体22の熱を
奪って高温即ち当該蓄熱体22を加熱した排ガスの温度
近くの高温とされ、蓄熱体22の中央に配置された燃料
ノズル21の周りから、燃焼室1内へ直接燃料Fとほぼ
平行に噴射される(図5の(A)の状態)。他方、出入
口手段23の排気室23bに排気用連通孔26を介して
連通された蓄熱体22の該当する区画31には、排気系
43の誘引ファンの働きによって燃焼室1内の排ガスE
が導入される。そして、この蓄熱体22の区画31部分
を加熱することによって温度が下がった排ガスEは分配
室27の第1の室29bに流入してから排気用連通孔2
6を経て排気室23bに排出される。
First, in the state of FIG. 2, the entrance / exit means 2
When the air A is introduced into the air supply chamber 23a of No. 3, the air A
Is the second chamber 29c of the distribution chamber 27 through the air supply communication hole 32.
To the chamber / compartment 32 of the corresponding heat storage body 22. At this time, the corresponding compartment / chamber 32 of the heat storage body 22
Is heated by the heat of the high-temperature exhaust gas E that has passed before the switching, the passing air A takes away the heat of the heat storage body 22 and has a high temperature near the temperature of the exhaust gas that has heated the heat storage body 22. Then, from around the fuel nozzle 21 arranged in the center of the heat storage body 22, the fuel is directly injected into the combustion chamber 1 substantially in parallel to the fuel F (state of (A) in FIG. 5). On the other hand, in the corresponding section 31 of the heat storage body 22 communicated with the exhaust chamber 23b of the inlet / outlet means 23 through the exhaust communication hole 26, the exhaust gas E in the combustion chamber 1 is generated by the action of the induction fan of the exhaust system 43.
Is introduced. Then, the exhaust gas E whose temperature has been lowered by heating the section 31 of the heat storage body 22 flows into the first chamber 29b of the distribution chamber 27, and then the exhaust communication hole 2
Then, the gas is discharged to the exhaust chamber 23b via No.6.

【0029】次いで、切替手段24を図2の状態から時
計回転方向へ連続的にあるいは間欠的に回転させると、
まず排気用連通孔26が左隣りの分配室の第3の室29
aにかかり、第1の室29bと第3の室29aとが同時
に排気室23bと連通する。したがって、燃焼室2内の
排ガスEは蓄熱体22の2つの区画31,30を通過し
てから分配室27の第1の室29bと第3の室29aと
に流入してこれら両室29a,29bに排気用連通孔2
6を介して接続されている排気室23bに流出する。そ
して排気される。その後、排気用連通孔26が完全に第
3の室29a(図2において符号30で示される空室で
あった部分)に切り替えられてから、第2の室29cに
占位していた給気用連通孔25が第1の室29b(図2
において符号31で示される室部分)に切り替えられ、
第2の室29c(図2において符号32で示される室)
で区画される領域が空室となる。換言すれば、今まで流
体が流されていなかった空室30に排ガスEが流され、
今まで排ガスEが流されていた室31に空気Aが流さ
れ、更に空気Aが流されていた室32には流体が流され
ない。依って、排ガスEの熱によって蓄熱体22が加熱
され、加熱された蓄熱体22を通過する空気Aが蓄熱体
22の熱によって温められる。このとき、流体の流れの
切替は、空室30を利用して2室に跨ったときにもそれ
ぞれの室と連通させながら行うので、流体の流れが途絶
えることがない。そして、排ガスEの次に空気Aと順次
流れを途切らすことなく切り替えられる。したがって燃
焼用空気Aは、加熱された蓄熱体22を通って排ガス温
度に近い高温の熱風となって燃焼室2内へ供給される
(図5の(B)の状態)。そこで、切替手段24の連続
的あるいは間欠的な回転によって、図5の(A)〜
(C)に示すように空気Aが噴射する位置が順次円周方
向に移り変わり、燃焼室1内で火炎が円周方向に回る。
Next, when the switching means 24 is continuously or intermittently rotated clockwise from the state shown in FIG.
First, the exhaust communication hole 26 has the third chamber 29 of the distribution chamber adjacent on the left.
As a result, the first chamber 29b and the third chamber 29a simultaneously communicate with the exhaust chamber 23b. Therefore, the exhaust gas E in the combustion chamber 2 passes through the two compartments 31 and 30 of the heat storage body 22 and then flows into the first chamber 29b and the third chamber 29a of the distribution chamber 27, and both chambers 29a, 29a, Exhaust communication hole 2 at 29b
It flows out to the exhaust chamber 23b connected via 6. And it is exhausted. After that, the exhaust communication hole 26 is completely switched to the third chamber 29a (the part that was an empty chamber indicated by reference numeral 30 in FIG. 2), and then the air supply that has been occupied in the second chamber 29c. The communication hole 25 for the first chamber 29b (see FIG. 2).
In the room portion indicated by reference numeral 31),
The second chamber 29c (the chamber indicated by reference numeral 32 in FIG. 2)
The area partitioned by is an empty room. In other words, the exhaust gas E is flown into the vacant chamber 30 where the fluid has not been flown until now,
The air A is made to flow into the chamber 31 in which the exhaust gas E has been made to flow, and the fluid is not made to flow in the chamber 32 in which the air A has been made to flow. Accordingly, the heat storage body 22 is heated by the heat of the exhaust gas E, and the air A passing through the heated heat storage body 22 is warmed by the heat of the heat storage body 22. At this time, the switching of the fluid flow is performed while communicating with each of the two chambers when the vacant chamber 30 is used, so that the fluid flow is not interrupted. Then, the exhaust gas E is sequentially switched to the air A next to the exhaust gas E without interruption. Therefore, the combustion air A passes through the heated heat storage body 22 and becomes hot air having a high temperature close to the exhaust gas temperature and is supplied into the combustion chamber 2 (state (B) of FIG. 5). Therefore, by continuous or intermittent rotation of the switching means 24, (A) of FIG.
As shown in (C), the position at which the air A is injected sequentially changes in the circumferential direction, and the flame rotates in the circumferential direction in the combustion chamber 1.

【0030】尚、上述の実施例は本発明の好適な実施の
一例ではあるが、本発明はこれに限定されるものではな
く本発明の要旨を逸脱しない範囲において種々変形実施
可能である。例えば、本実施例では固定された蓄熱体2
2に対し空気供給系41と排気系43とを流路切替手段
24で交互に切り替えて接続するようにしているが、蓄
熱体そのものを排気系と空気供給系との間で回転させる
ことによって、蓄熱体に対する排ガス及び空気の流れを
相対的に切り替えるようにした構造としても良い。
Although the above-described embodiment is a preferred embodiment of the present invention, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in this embodiment, the fixed heat storage body 2
For 2, the air supply system 41 and the exhaust system 43 are alternately switched and connected by the flow path switching means 24. However, by rotating the heat storage body itself between the exhaust system and the air supply system, The structure may be such that the flow of exhaust gas and air relative to the heat storage body is switched relatively.

【0031】また、燃焼用空気だけではなく燃料も同時
に切り替えることによって一対のバーナを交互に燃焼さ
せ燃焼させていない停止中のバーナの蓄熱体を通して排
気させるものでも良い。例えば、図示していないが、バ
ーナボディ内に蓄熱体を内蔵して蓄熱体とバーナとを一
体化したものを2基組合せ、一対のバーナを交互に燃焼
させて燃焼を停止している方のバーナ及び蓄熱体を通し
て燃焼ガスを排出し得るものも採用可能である。一対の
バーナの蓄熱体・バーナスロートには例えば四方弁など
を介して空気供給系と排気系とが接続され、四方弁の切
り替えによって空気供給系か排気系のいずれかに選択的
に接続される。そして、一方のバーナには蓄熱体を通し
て空気の供給を図る一方、他方のバーナからは蓄熱体を
通して燃焼ガスの排出を図るように設けられる。また、
燃料の供給も例えば三方弁などを用いて、一対のバーナ
に交互に供給される。
Further, not only the combustion air but also the fuel may be switched at the same time so that a pair of burners are alternately burned and exhausted through the regenerator of the burner which is not burning. For example, although not shown, two burner bodies each having a built-in heat storage body and an integrated heat storage body and a burner are combined, and a pair of burners are alternately burned to stop combustion. It is also possible to employ a burner and a heat storage body capable of discharging combustion gas. The heat storage body / burner throat of the pair of burners is connected to an air supply system and an exhaust system via, for example, a four-way valve, and selectively connected to either the air supply system or the exhaust system by switching the four-way valve. . Then, one burner is provided so as to supply air through the heat storage body, while the other burner is provided so as to discharge combustion gas through the heat storage body. Also,
The fuel is also supplied alternately to the pair of burners using, for example, a three-way valve.

【0032】[0032]

【発明の効果】以上の説明より明らかなように本発明の
小型貫流ボイラは、燃焼ガスの一部が水管群の裏側の流
路を通過してから再び上方の連通口より燃焼室内に流入
するようにしたので、ふく射伝熱と対流伝熱とに使われ
て温度が下がったガスでバーナ焚き口付近の火炎及び燃
焼ガスが希釈されて温度が下げられ、局部高温度域を発
生させずに全体的に燃焼室内の燃焼ガス温度を上げるこ
とができる。そこで、燃焼室熱負荷量を大きくしてボイ
ラの小型化を可能とする。また、水管内を流れるボイラ
水は内側の伝熱面で火炎および燃焼ガスからの輻射伝熱
によって加熱される一方、外側の伝熱面で水管群と燃焼
室炉壁との間の流路を流れる燃焼ガスからの対流熱伝達
によって加熱される。このため、従来と同じ大きさの燃
焼室であっても、同じ蒸気量を得る場合には、従来のボ
イラに比べてコンパクトかつ安価にでき、また同じ広さ
の伝熱面面積を有する場合には従来のボイラよりも蒸気
量を増大させることが可能となる。
As is apparent from the above description, in the small once-through boiler of the present invention, a part of the combustion gas passes through the flow passage on the back side of the water pipe group and then flows into the combustion chamber from the upper communication port again. As a result, the flame and combustion gas near the burner firing port are diluted by the gas whose temperature has been lowered used for radiative heat transfer and convective heat transfer, and the temperature is lowered without generating a local high temperature range. Overall, the temperature of the combustion gas in the combustion chamber can be raised. Therefore, it is possible to reduce the boiler size by increasing the heat load of the combustion chamber. Further, the boiler water flowing in the water pipe is heated by the heat transfer from the flame and the radiant heat from the combustion gas on the inner heat transfer surface, and the flow path between the water pipe group and the combustion chamber furnace wall is heated on the outer heat transfer surface. It is heated by convective heat transfer from the flowing combustion gases. Therefore, even if the combustion chamber is the same size as the conventional one, if the same amount of steam is obtained, it can be made more compact and cheaper than the conventional boiler, and if it has the same heat transfer surface area. Makes it possible to increase the amount of steam compared to conventional boilers.

【0033】更に、水管群と燃焼室炉壁との間の流路を
経て再び燃焼室内へ流入する燃焼ガスの一部が燃焼室内
に噴射される燃焼用空気に随伴されて燃焼ガスの容量を
増大させるので、燃焼室が深くても、火炎の浮き上がり
を防いで燃焼室の底部まで燃焼ガスを到達させて燃焼室
の縦方向に均一に加熱する。しかも、このとき燃焼ガス
の再循環によって低NOx化が図られる。また、燃焼室
内と水管の背部の流路とを循環する燃焼ガスの量の増大
は、流路の入口側と出口側とでの温度差を小さくするの
で、水管への伝熱量を大きくでき、同じ蒸気量を得る場
合の伝熱面面積を小さくできる。
Further, a part of the combustion gas flowing into the combustion chamber again through the flow path between the water tube group and the combustion chamber furnace wall is accompanied by the combustion air injected into the combustion chamber to increase the volume of the combustion gas. Even when the combustion chamber is deep, the flame is prevented from rising and the combustion gas reaches the bottom of the combustion chamber to uniformly heat the combustion chamber in the vertical direction. Moreover, at this time, the NOx can be reduced by recirculating the combustion gas. Further, an increase in the amount of combustion gas that circulates in the combustion chamber and the flow passage at the back of the water pipe reduces the temperature difference between the inlet side and the outlet side of the flow passage, so the amount of heat transfer to the water pipe can be increased, The heat transfer surface area can be reduced when the same amount of steam is obtained.

【0034】加えて、本発明によれば、燃焼排ガスの熱
が蓄熱体において回収され、比較的低温で燃焼排ガスを
大気中に排気する一方、回収熱を利用して燃焼用空気を
高温に予熱して再び燃焼室内へ戻すことができるので、
熱収支がよい上に、少ない燃料でも蒸気を発生させ、従
来に比べてランニングコストを大幅に低減できる。
In addition, according to the present invention, the heat of the combustion exhaust gas is recovered in the heat storage body and the combustion exhaust gas is exhausted to the atmosphere at a relatively low temperature, while the recovered heat is used to preheat the combustion air to a high temperature. And then back into the combustion chamber again,
In addition to having a good heat balance, steam can be generated even with a small amount of fuel, and running costs can be greatly reduced compared to conventional cases.

【0035】また、請求項2の発明の場合、燃料を切り
替えずに燃焼排ガスと燃焼用空気の流れを切り替えるだ
けで燃焼を途切らせることがないので、燃焼室内の圧力
変動や温度分布のむらが少なくなる。
Further, in the case of the second aspect of the invention, since combustion is not interrupted only by switching the flow of the combustion exhaust gas and the combustion air without switching the fuel, pressure fluctuations and temperature distribution irregularities in the combustion chamber occur. Less.

【0036】更に、請求項3の本発明のボイラの場合、
燃焼用空気を燃料ノズルの周囲で円周方向に回転するよ
うに場所を移して供給し、火炎が燃焼室内を円周方向に
回転するようにしたので、燃焼室を均一に加熱すること
ができる。火炎位置が頻繁に移り変わるために燃焼室内
でのヒートパターンをより均一化でき、加熱むらが少な
くなる。
Further, in the case of the boiler of the present invention according to claim 3,
Combustion air is supplied to the fuel nozzle in such a manner that it rotates in a circumferential direction around the fuel nozzle, and the flame rotates in a circumferential direction in the combustion chamber, so that the combustion chamber can be uniformly heated. . Since the flame position changes frequently, the heat pattern in the combustion chamber can be made more uniform, and uneven heating can be reduced.

【0037】また、本発明のボイラにおいて、一対のバ
ーナを短時間に交互に切り替えて燃焼させる場合、火炎
位置が頻繁に移り変わるために燃焼室内でのヒートパタ
ーンをより均一化でき、加熱むらを少なくできるので、
火炉熱負荷の変動が小さく水管内におけるボイラ水の状
態が均一となり、局部的に蒸気のみの状態となって水管
が破損するようなことがない。
Further, in the boiler of the present invention, when a pair of burners are alternately switched for a short time for combustion, the flame position changes frequently, so that the heat pattern in the combustion chamber can be made more uniform, and uneven heating can be reduced. Because you can
The fluctuation of the heat load of the furnace is small, and the state of the boiler water in the water pipe is uniform, and there is no possibility that the water pipe is locally damaged and the water pipe is damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の小型貫流ボイラの一実施例を示す中央
縦断面図である。
FIG. 1 is a central longitudinal sectional view showing an embodiment of a small once-through boiler of the present invention.

【図2】図1の小型貫流ボイラに用いられている蓄熱型
バーナシステムの切替手段の原理図である。
FIG. 2 is a principle diagram of a switching means of a heat storage type burner system used in the small once-through boiler of FIG.

【図3】本発明の小型貫流ボイラの水管の一実施例を示
す展開図である。
FIG. 3 is a development view showing an embodiment of a water pipe of the small once-through boiler of the present invention.

【図4】水管の他の実施例を示す展開図である。FIG. 4 is a development view showing another embodiment of the water pipe.

【図5】図1の実施例において使用される蓄熱型バーナ
システムにおいて火炎が円周方向に回転する動作(A)
〜(C)の説明図である。
5 is an operation (A) in which the flame rotates in the circumferential direction in the heat storage type burner system used in the embodiment of FIG.
It is explanatory drawing of- (C).

【図6】従来のボイラの燃焼室の横断面図である。FIG. 6 is a cross-sectional view of a combustion chamber of a conventional boiler.

【図7】従来のボイラの燃焼室に蓄熱型バーナシステム
を適用した場合を示す縦断面図である。
FIG. 7 is a vertical sectional view showing a case where a heat storage type burner system is applied to a combustion chamber of a conventional boiler.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 炉体 3 燃焼室壁面 4 水管 10 上連通口 11 下連通口 12 流路 20 蓄熱型バーナシステム 21 燃料ノズル 22 蓄熱体 24 切替手段 41 燃焼用空気供給系 42 燃料供給系 43 排気系 A 燃焼用空気 C 燃焼ガス E 排ガス F 燃料 1 Combustion Chamber 2 Furnace Body 3 Combustion Chamber Wall Surface 4 Water Pipe 10 Upper Communication Port 11 Lower Communication Port 12 Flow Path 20 Thermal Storage Burner System 21 Fuel Nozzle 22 Thermal Storage 24 Switching Means 41 Combustion Air Supply System 42 Fuel Supply System 43 Exhaust System A Combustion air C Combustion gas E Exhaust gas F Fuel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三谷 和久 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuhisa Mitani 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室の周壁に水管を設置してその中を
ボイラ水が流れるようにした小型貫流ボイラにおいて、
蓄熱体を通して燃焼用空気の供給及び燃焼ガスの排出を
行いかつ前記蓄熱体に対する燃焼ガス及び燃焼用空気の
流れを相対的に切替えて燃焼ガスの熱で加熱された蓄熱
体を通して燃焼用空気を供給するようにした蓄熱型バー
ナシステムを前記燃焼室に少なくとも1システム以上配
置し、前記水管群を燃焼室壁面から離して設置し前記水
管群の背面と燃焼室壁面との間に流路を形成する一方、
前記水管群の上端と下端部分に隣り合う水管の間に燃焼
ガスが通過する連通口をそれぞれ形成して燃焼ガスの一
部が水管群の裏側の前記流路を通過するように設け、燃
焼ガスの一部が下方の前記連通口より前記流路に流入し
て上昇し上方の前記連通口より再度燃焼室内に流入する
ようにしたことを特徴とする小型貫流ボイラ。
1. A small once-through boiler in which a water pipe is installed on a peripheral wall of a combustion chamber so that boiler water flows through the water pipe.
The combustion air is supplied and the combustion gas is discharged through the heat storage body, and the flows of the combustion gas and the combustion air relative to the heat storage body are relatively switched to supply the combustion air through the heat storage body heated by the heat of the combustion gas. At least one heat storage type burner system configured as described above is disposed in the combustion chamber, and the water pipe group is installed away from the combustion chamber wall surface to form a flow path between the back surface of the water pipe group and the combustion chamber wall surface. on the other hand,
A communication port through which combustion gas passes is formed between the water pipes adjacent to the upper and lower end portions of the water pipe group, and a part of the combustion gas is provided so as to pass through the flow path on the back side of the water pipe group. A small once-through boiler, characterized in that a part of the above flows into the flow path from the lower communication port, rises, and then flows into the combustion chamber again from the upper communication port.
【請求項2】 前記蓄熱型バーナシステムは燃料を切り
替えずに連続的に同じ燃料ノズルから噴射し、蓄熱体に
対する燃焼排ガス及び燃焼用空気の流れを相対的に切り
替えるようにしたものであることを特徴とする請求項1
記載の小型貫流ボイラ。
2. The regenerative burner system is configured to continuously inject fuel from the same fuel nozzle without switching fuel and relatively switch the flow of combustion exhaust gas and combustion air with respect to the heat storage body. Claim 1 characterized by
The small once-through boiler described.
【請求項3】 蓄熱型バーナシステムは周方向に3室以
上に均等に区画され各室内を軸方向に流体が通過可能と
した蓄熱体と、この蓄熱体の中心を貫通して前記燃焼室
内に燃料を直接噴射する燃料ノズルと、燃焼用空気供給
系に接続される給気室と燃焼ガス排気系に接続される排
気室とを有する出入口手段と、この出入口手段と蓄熱体
との間に介在されて蓄熱体と出入口手段との間を遮断す
る一方、連続的あるいは間欠的に回転して出入口手段の
排気室と給気室とを3室以上に区画された蓄熱体のいず
れかの区画に重複させずに順次連通させる切替手段とか
ら構成され、前記燃焼室内に燃料を連続的に噴射すると
共にその周りに高温の燃焼用空気を前記蓄熱体から前記
燃焼室内に噴射箇所を周方向に移しながら直接噴射する
ことを特徴とする請求項2記載の小型貫流ボイラ。
3. A regenerator type burner system is divided into three or more chambers in the circumferential direction evenly and allows a fluid to pass through each chamber in the axial direction, and a heat accumulator which penetrates the center of the regenerator into the combustion chamber. An inlet / outlet unit having a fuel nozzle for directly injecting fuel, an air supply chamber connected to a combustion air supply system, and an exhaust chamber connected to a combustion gas exhaust system, and the inlet / outlet unit interposed between the heat storage body The heat storage body and the inlet / outlet means are shut off while rotating continuously or intermittently so that the exhaust chamber and the air supply chamber of the inlet / outlet means are divided into any of the three or more heat storage bodies. It is composed of a switching means that sequentially communicates without overlapping, and continuously injects fuel into the combustion chamber and moves high-temperature combustion air around the combustion chamber from the heat storage body to the combustion chamber in the circumferential direction. While the contract is characterized by direct injection The small once-through boiler according to claim 2.
【請求項4】 前記蓄熱型バーナシステムは蓄熱体を各
々装備した一対のバーナを短時間に交互に燃焼させて燃
焼していない方のバーナの蓄熱体を経て排気させること
を特徴とする請求項1記載の小型貫流ボイラ。
4. The regenerative burner system is characterized in that a pair of burners, each equipped with a regenerator, are burned alternately in a short time and exhausted via the regenerator of the unburned burner. The small once-through boiler described in 1.
JP8011639A 1996-01-26 1996-01-26 Small-sized once-through boiler Pending JPH09203501A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8011639A JPH09203501A (en) 1996-01-26 1996-01-26 Small-sized once-through boiler
EP97300450A EP0786624A3 (en) 1996-01-26 1997-01-24 Small once-through boiler
US08/788,544 US5791299A (en) 1996-01-26 1997-01-24 Small once-through boiler
KR1019970002143A KR100215577B1 (en) 1996-01-26 1997-01-25 Small once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011639A JPH09203501A (en) 1996-01-26 1996-01-26 Small-sized once-through boiler

Publications (1)

Publication Number Publication Date
JPH09203501A true JPH09203501A (en) 1997-08-05

Family

ID=11783523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011639A Pending JPH09203501A (en) 1996-01-26 1996-01-26 Small-sized once-through boiler

Country Status (4)

Country Link
US (1) US5791299A (en)
EP (1) EP0786624A3 (en)
JP (1) JPH09203501A (en)
KR (1) KR100215577B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044611A (en) * 2001-03-12 2001-06-05 백지환 Boiler to greatest regenarate capacity by the round type rotor
CN103697450A (en) * 2013-11-29 2014-04-02 山西新聚星锅炉有限公司 Thermal-storing chamber boiler

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101737B (en) * 1996-10-24 1998-08-14 Pipemasters Oy Ltd Regulating exhaust boiler
US6071116A (en) * 1997-04-15 2000-06-06 American Air Liquide, Inc. Heat recovery apparatus and methods of use
US6273180B1 (en) * 1998-12-23 2001-08-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'eploitation Des Procedes Georges Claude Heat exchanger for preheating an oxidizing gas
JP2004197970A (en) * 2002-12-16 2004-07-15 Miura Co Ltd Low-nox combustion method, and device thereof
KR100764903B1 (en) 2004-09-07 2007-10-09 김병두 Construction of a furnace of a pulverized coal boiler for power station
CN1831426A (en) * 2005-03-10 2006-09-13 三井巴布科克能源公司 Supercritical downshot boiler
JP5119720B2 (en) * 2007-04-20 2013-01-16 三浦工業株式会社 boiler
JP4946594B2 (en) * 2007-04-20 2012-06-06 三浦工業株式会社 boiler
TW200946838A (en) * 2008-03-04 2009-11-16 Ihi Corp Heating apparatus
US9513003B2 (en) * 2010-08-16 2016-12-06 Purpose Company Limited Combustion apparatus, method for combustion control, board, combustion control system and water heater
WO2012083451A1 (en) * 2010-12-23 2012-06-28 Novelis Inc. Reverse flow regenerative apparatus and method
US20120204814A1 (en) * 2011-02-15 2012-08-16 General Electric Company Pulse Detonation Combustor Heat Exchanger
CN105180422B (en) * 2015-07-13 2018-05-04 芜湖鸣人热能设备有限公司 Double storied boiler
SI3040638T1 (en) * 2015-07-23 2018-06-29 Hoval Aktiengesellschaft Heat transfer pipe and boiler comprising one such heat transfer pipe
EP3722671B1 (en) * 2019-04-11 2021-10-06 Hertwich Engineering GmbH Method for the continuous firing of combustion chambers with at least three regenerative burners
KR102445167B1 (en) * 2021-04-06 2022-09-20 최성환 Boiler capable of simultaneous use of Hot Water and Heating Water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509834A (en) * 1967-09-27 1970-05-05 Inst Gas Technology Incinerator
US3529579A (en) * 1969-04-24 1970-09-22 Leon Jacques Wanson Multitubular boiler
JPS5822803A (en) * 1981-08-01 1983-02-10 三浦工業株式会社 Multitubular type once-through boiler
FR2589986B1 (en) * 1985-11-13 1988-09-02 Charbonnages De France VERTICAL COMBUSTION CHAMBER FOR PULVERIZED COAL BOILER
WO1993005343A1 (en) * 1991-09-02 1993-03-18 Nippon Furnace Kogyo Kabushiki Kaisha Boiler
JPH0735301A (en) * 1993-05-20 1995-02-07 Ebara Corp Compact-type energy saving boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044611A (en) * 2001-03-12 2001-06-05 백지환 Boiler to greatest regenarate capacity by the round type rotor
CN103697450A (en) * 2013-11-29 2014-04-02 山西新聚星锅炉有限公司 Thermal-storing chamber boiler

Also Published As

Publication number Publication date
EP0786624A2 (en) 1997-07-30
US5791299A (en) 1998-08-11
KR100215577B1 (en) 1999-08-16
KR970059652A (en) 1997-08-12
EP0786624A3 (en) 2000-03-01

Similar Documents

Publication Publication Date Title
JPH09203501A (en) Small-sized once-through boiler
KR100254128B1 (en) Regenerative type burner and storage type heat exchanging system available therefor
EP0404259A1 (en) Laminated heat exchanger structure for a domestic heating device
KR102506012B1 (en) Structure for preventing combustion heat loss of heat exchanger
JP3322470B2 (en) Thermal storage type low NOx burner
JP2001248917A (en) Indirect hot air generator
EP0604157B1 (en) Apparatus for combustion in a pipestill heater
JP3668546B2 (en) Air circulation type tube heating equipment
RU2495328C1 (en) Heat exchange device of thermal units with tubular elements
KR100583819B1 (en) Self regenerative type single radiant tube burner
JP3325105B2 (en) Immersion tube heating type molten aluminum insulation furnace
JP3720905B2 (en) Industrial furnace combustion equipment
JP2002221091A (en) Exhaust gas boiler and combustion method in exhaust gas boiler
JP3557010B2 (en) Heat storage device
KR101116174B1 (en) Combustion chamber lower hopper heat-exchanger of fluidized bed combustion chamber boiler
JP3563753B2 (en) Heating method and apparatus for tubular heating furnace
KR100355706B1 (en) Heat exchanger for boiler
JP3726381B2 (en) Steam boiler
RU2379594C1 (en) Hot water boiler
RU32580U1 (en) Heating system
JPH10169970A (en) Fluid heating apparatus
KR920004210Y1 (en) Boiler
KR20200016110A (en) Heat exchanger
JPH07167423A (en) Combustion controlling method for combustion heater
JP2009041878A (en) Heat exchanger and heating cooker using the same