JP2017101841A - Furnace temperature control method for heating furnace and furnace temperature control device - Google Patents

Furnace temperature control method for heating furnace and furnace temperature control device Download PDF

Info

Publication number
JP2017101841A
JP2017101841A JP2015233190A JP2015233190A JP2017101841A JP 2017101841 A JP2017101841 A JP 2017101841A JP 2015233190 A JP2015233190 A JP 2015233190A JP 2015233190 A JP2015233190 A JP 2015233190A JP 2017101841 A JP2017101841 A JP 2017101841A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
control
furnace temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233190A
Other languages
Japanese (ja)
Other versions
JP6341188B2 (en
Inventor
桑原 雅人
Masahito Kuwabara
雅人 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015233190A priority Critical patent/JP6341188B2/en
Publication of JP2017101841A publication Critical patent/JP2017101841A/en
Application granted granted Critical
Publication of JP6341188B2 publication Critical patent/JP6341188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively operate a continuous burner and a regenerative burner to achieve a target temperature while suppressing consumption of fuel in one control band.SOLUTION: A furnace temperature control method for a heating furnace controls the furnace temperature T by choosing one of single control for operating the continuous burner 2 only and combination control for operating both of the continuous burner 2 and the regenerative burner 3 based on a total amount Q of a fuel flow amount to be supplied to one control band Z1 or the furnace temperature T, in one control band Z1.SELECTED DRAWING: Figure 3

Description

本発明は、工業用の加熱炉に好適な加熱炉の炉温制御方法および炉温制御装置に関する。   The present invention relates to a furnace temperature control method and a furnace temperature control device for a heating furnace suitable for an industrial heating furnace.

一般的な連続式加熱炉は、複数の制御帯(例えば予熱帯、加熱帯、均熱帯)を有し、一の制御帯には、通常、連続式バーナまたは蓄熱式バーナのいずれか一種のバーナが装備される。そして、一の制御帯においては、単一種のバーナによる燃料流量制御の下で、炉温が目標温度になるようにバーナの燃焼量を調整して炉温を制御している。例えば特許文献1、2には、加熱炉内の熱バランスを計算し、各制御帯での燃焼量を決定する技術が開示されている。   A general continuous furnace has a plurality of control zones (for example, pre-tropical zone, heating zone, soaking zone), and one control zone is usually a burner of either a continuous burner or a regenerative burner. Is equipped. In one control zone, the furnace temperature is controlled by adjusting the combustion amount of the burner so that the furnace temperature becomes the target temperature under fuel flow control by a single type of burner. For example, Patent Literatures 1 and 2 disclose techniques for calculating the heat balance in the heating furnace and determining the combustion amount in each control zone.

特開2011−162804号公報JP 2011-162804 A 特開2007−308777号公報JP 2007-308777 A

しかし、特許文献1、2に記載の技術のように、熱バランスから各バーナの燃料流量を決定する場合、一般的な加熱炉に比べて計算負荷が高く、また、サイズや装入・抽出温度が異なる被加熱材が炉内にあると、計算精度が低くなって燃料を過剰に消費する可能性がある。
また、一の制御帯における従来の炉温制御技術は、一の制御帯に連続式バーナを装備している場合であっても、あるいは、一の制御帯に蓄熱式バーナを装備している場合であっても、単一種のバーナによる燃料流量制御の下でバーナの燃焼量を調整して炉温を制御する点は同様であり、これら二種のバーナそれぞれの長所を十分に生かす上で未だ検討の余地が残されている。
However, as in the techniques described in Patent Documents 1 and 2, when determining the fuel flow rate of each burner from the heat balance, the calculation load is higher than that of a general heating furnace, and the size and charging / extraction temperature are also high. If there is a material to be heated in the furnace, the calculation accuracy becomes low and fuel may be consumed excessively.
Also, the conventional furnace temperature control technology in one control zone is a case where a continuous burner is equipped in one control zone, or a heat storage type burner is equipped in one control zone However, the point that the furnace temperature is controlled by adjusting the burner combustion amount under the control of the fuel flow rate with a single type of burner is the same, and the advantages of each of these two types of burners are still fully utilized. There is room for consideration.

すなわち、蓄熱式バーナは、燃焼と排気とを交互に繰り返す交番燃焼が可能であり、蓄熱体に排気熱を蓄えることにより、連続式バーナよりも高効率な燃焼が可能である。しかし、パイロットバーナを有しない蓄熱式バーナは、別途にメインパーナを点火する必要があり、通常のバーナと比較して導入コストがかさむという問題がある。一方、パイロットバーナを有する連続式バーナは連続的に燃焼可能なので、炉温の状態によらずに燃焼状態を管理できるが、燃焼効率の点では蓄熱式バーナに劣るという問題がある。
そこで、本発明は、このような問題点に着目してなされたものであって、連続式バーナと蓄熱式バーナとの効果的な運用により、一の制御帯での消費燃料を抑制しつつ目標炉温を達成し得る加熱炉の炉温制御方法および炉温制御装置を提供することを課題とする。
That is, the regenerative burner is capable of alternating combustion in which combustion and exhaust are alternately repeated, and by storing the exhaust heat in the heat accumulator, combustion can be performed more efficiently than the continuous burner. However, a regenerative burner that does not have a pilot burner needs to ignite the main burner separately, and there is a problem that the introduction cost is higher than that of a normal burner. On the other hand, since a continuous burner having a pilot burner can be burned continuously, the combustion state can be managed regardless of the state of the furnace temperature, but there is a problem that it is inferior to a heat storage burner in terms of combustion efficiency.
Therefore, the present invention has been made paying attention to such problems, and the target can be achieved while suppressing fuel consumption in one control zone by effective operation of the continuous burner and the heat storage burner. It is an object of the present invention to provide a furnace temperature control method and a furnace temperature control device for a heating furnace capable of achieving the furnace temperature.

[発明1]
上記課題を解決するために、本発明の一態様に係る加熱炉の炉温制御方法は、独立して炉温を制御可能な複数の制御帯を備え、前記複数の制御帯のうちの一の制御帯に、パイロットバーナを有して連続的に燃焼可能な連続式バーナと、パイロットバーナを有しないで燃焼と排気とを交互に繰り返す交番燃焼が可能な蓄熱式バーナとが設置された加熱炉の炉温を制御する方法であって、前記一の制御帯において、前記一の制御帯に供給すべき燃料流量の総流量Qまたは炉温Tに基づいて、前記連続式バーナのみを稼働させる単独制御および前記連続式バーナと前記蓄熱式バーナとを共に稼働させる併用制御のいずれか一方を選択して炉温を制御することを特徴とする。
[Invention 1]
In order to solve the above problems, a furnace temperature control method for a heating furnace according to an aspect of the present invention includes a plurality of control zones capable of independently controlling the furnace temperature, and one of the plurality of control zones is provided. A heating furnace in which a continuous burner having a pilot burner capable of continuous combustion and a regenerative burner capable of alternating combustion that alternately repeats combustion and exhaust without having a pilot burner are installed in the control zone The method of controlling the furnace temperature of the above-mentioned, wherein in the one control zone, only the continuous burner is operated based on the total flow rate Q or the furnace temperature T of the fuel flow rate to be supplied to the one control zone. The furnace temperature is controlled by selecting either one of the control and the combined control for operating the continuous burner and the heat storage burner together.

[発明2]
ここで、本発明の一態様に係る加熱炉の炉温制御方法において、炉温Tが燃料の自己着火する第一管理温度T1未満の場合には、前記単独制御により炉温を制御することは好ましい。
[Invention 2]
Here, in the furnace temperature control method for a heating furnace according to one aspect of the present invention, when the furnace temperature T is lower than the first management temperature T1 at which the fuel self-ignites, the furnace temperature is controlled by the single control. preferable.

[発明3]
また、本発明の一態様に係る加熱炉の炉温制御方法において、炉温Tが前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、第一管理流量Q1未満の場合(Q<ΣA+ΣC)には、前記単独制御により炉温を制御し、第一管理流量Q1以上の場合(Q≧ΣA+ΣC)には、前記併用制御により炉温を制御することは好ましい。但し、第一管理流量Q1とは、連続式バーナの総燃料流量の最小値ΣAと蓄熱式バーナの総燃料流量の最小値ΣCとの和である。
[Invention 3]
Further, in the furnace temperature control method for a heating furnace according to one aspect of the present invention, the total flow rate of fuel to be supplied to the one control zone when the furnace temperature T exceeds the first management temperature T1. When Q is less than the first management flow rate Q1 (Q <ΣA + ΣC), the furnace temperature is controlled by the single control, and when Q is greater than the first management flow rate Q1 (Q ≧ ΣA + ΣC), the furnace is controlled by the combined control. It is preferable to control the temperature. However, the first management flow rate Q1 is the sum of the minimum value ΣA of the total fuel flow rate of the continuous burner and the minimum value ΣC of the total fuel flow rate of the regenerative burner.

[発明4]
また、本発明の一態様に係る加熱炉の炉温制御方法において、炉温が前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、前記第一管理流量Q1以上第二管理流量Q2未満の場合(ΣA+ΣC<Q<ΣA+ΣD)には、前記併用制御として、前記連続式バーナの燃料流量を最小値Aで燃焼させつつ、前記蓄熱式バーナの燃料流量をその最小値Cから最大値Dの範囲で制御する第一の併用制御により炉温を制御することは好ましい。但し、第二管理流量Q2とは、連続式バーナの総燃料流量の最小値ΣAと蓄熱式バーナの燃料流量の最大値ΣDとの和である。
[Invention 4]
In the furnace temperature control method for a heating furnace according to an aspect of the present invention, the total flow rate Q of the fuel flow rate to be supplied to the one control zone when the furnace temperature exceeds the first management temperature T1. However, when the first management flow rate Q1 is less than the second management flow rate Q2 (ΣA + ΣC <Q <ΣA + ΣD), as the combined control, the fuel flow rate of the continuous burner is burned at the minimum value A and the heat storage It is preferable to control the furnace temperature by the first combined control that controls the fuel flow rate of the burner in the range from the minimum value C to the maximum value D. However, the second management flow rate Q2 is the sum of the minimum value ΣA of the total fuel flow rate of the continuous burner and the maximum value ΣD of the fuel flow rate of the regenerative burner.

[発明5]
また、本発明の一態様に係る加熱炉の炉温制御方法において、炉温が前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、前記第二管理流量Q2以上である場合には、前記併用制御として、前記蓄熱式バーナの燃料流量を最大値Dで燃焼させつつ、前記連続式バーナの燃料流量をその最小値Aから最大値Bの範囲で制御する第二の併用制御により炉温を制御することは好ましい。
[Invention 5]
In the furnace temperature control method for a heating furnace according to an aspect of the present invention, the total flow rate Q of the fuel flow rate to be supplied to the one control zone when the furnace temperature exceeds the first management temperature T1. However, when the second control flow rate Q2 or more, as the combined control, the fuel flow rate of the regenerative burner is burned at the maximum value D, and the fuel flow rate of the continuous burner is maximized from its minimum value A. It is preferable to control the furnace temperature by the second combined control that is controlled within the range of the value B.

[発明6]
また、本発明の一態様に係る加熱炉の炉温制御方法において、前記加熱炉が炉温の目標温度TUに達する前の昇温過程にあっては、炉温が前記第一管理温度T1を超え且つ前記目標温度TU未満の第二管理温度T2に達するまでは、前記単独制御により炉温を制御し、前記加熱炉が前記昇温過程にある場合に、炉温が前記第二管理温度T2を超えたときには、前記併用制御により炉温を制御し、前記加熱炉が炉温の目標温度TU自体を下げる降温過程にあっては、炉温が前記第一管理温度T1に達するまでは、前記併用制御により炉温を制御し、炉温が前記第一管理温度T1未満になったときには、前記単独制御により炉温を制御することは好ましい。
[Invention 6]
Further, in the furnace temperature control method for a heating furnace according to an aspect of the present invention, in the temperature rising process before the heating furnace reaches the target temperature TU of the furnace temperature, the furnace temperature is the first management temperature T1. The furnace temperature is controlled by the single control until reaching the second management temperature T2 that exceeds the target temperature TU and is lower than the target temperature TU. When the heating furnace is in the temperature raising process, the furnace temperature is the second management temperature T2. When the temperature is exceeded, the furnace temperature is controlled by the combined control, and in the temperature lowering process in which the heating furnace lowers the target temperature TU itself of the furnace temperature, until the furnace temperature reaches the first management temperature T1, It is preferable to control the furnace temperature by the combined control and to control the furnace temperature by the single control when the furnace temperature becomes lower than the first management temperature T1.

[発明7]
また、上記課題を解決するために、本発明の一態様に係る加熱炉の炉温制御装置は、独立して炉温を制御可能な複数の制御帯を備え、前記複数の制御帯のうちの一の制御帯に、パイロットバーナを有して連続的に燃焼可能な連続式バーナと、パイロットバーナを有しないで燃焼と排気とを交互に繰り返す交番燃焼が可能な蓄熱式バーナとが設置された加熱炉の炉温を制御する炉温制御装置であって、前記一の制御帯内の炉温を検出する炉温計と、前記連続式バーナの燃料流量を検出する連続式バーナ用流量計と、前記蓄熱式バーナの燃料流量を検出する蓄熱式バーナ用流量計と、前記炉温計、連続式バーナ用流量計および蓄熱式バーナ用流量計の検出値が入力されるとともに、前記一の制御帯での前記連続式バーナと前記蓄熱式バーナの燃焼状態および燃料流量を制御可能な制御部とを備え、前記制御部は、前記一の制御帯に供給すべき燃料流量の総流量Qまたは炉温Tに基づいて、前記連続式バーナのみを稼働させる単独制御および前記連続式バーナと前記蓄熱式バーナとを共に稼働させる併用制御のいずれか一方を選択して炉温を制御することを特徴とする。
[Invention 7]
Moreover, in order to solve the said subject, the furnace temperature control apparatus of the heating furnace which concerns on 1 aspect of this invention is equipped with the several control zone which can control a furnace temperature independently, Of these control zones, In one control zone, a continuous burner with a pilot burner capable of continuous combustion and a regenerative burner capable of alternating combustion that alternately repeats combustion and exhaust without a pilot burner were installed. A furnace temperature control device for controlling the furnace temperature of the heating furnace, the furnace temperature meter for detecting the furnace temperature in the one control zone, the flow meter for the continuous burner for detecting the fuel flow rate of the continuous burner, , A heat storage burner flow meter for detecting a fuel flow rate of the heat storage burner, and detection values of the furnace thermometer, continuous burner flow meter, and heat storage burner flow meter are input and the one control Combustion of the continuous burner and the regenerative burner in a belt And a control unit capable of controlling the fuel flow rate, and the control unit operates only the continuous burner based on the total flow rate Q or the furnace temperature T of the fuel flow rate to be supplied to the one control zone. Furnace temperature is controlled by selecting either single control or combined control for operating both the continuous burner and the heat storage burner together.

[発明8]
ここで、本発明の一態様に係る加熱炉の炉温制御装置において、前記制御部は、炉温Tが燃料の自己着火する第一管理温度T1未満の場合には、前記単独制御により炉温を制御することは好ましい。
[Invention 8]
Here, in the furnace temperature control apparatus for a heating furnace according to an aspect of the present invention, the controller controls the furnace temperature by the independent control when the furnace temperature T is lower than the first management temperature T1 at which the fuel self-ignites. It is preferable to control.

[発明9]
また、本発明の一態様に係る加熱炉の炉温制御装置において、前記制御部は、炉温Tが前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、第一管理流量Q1未満の場合(Q<ΣA+ΣC)には、前記単独制御により炉温を制御し、第一管理流量Q1以上の場合(Q≧ΣA+ΣC)には、前記併用制御により炉温を制御することは好ましい。上記のように、第一管理流量Q1とは、連続式バーナの総燃料流量の最小値ΣAと蓄熱式バーナの総燃料流量の最小値ΣCとの和である。
[Invention 9]
Moreover, in the furnace temperature control apparatus for a heating furnace according to one aspect of the present invention, the control unit should supply the one control zone when the furnace temperature T exceeds the first management temperature T1. When the total flow rate Q of the fuel flow rate is less than the first management flow rate Q1 (Q <ΣA + ΣC), the furnace temperature is controlled by the single control, and when it is equal to or higher than the first management flow rate Q1 (Q ≧ ΣA + ΣC), It is preferable to control the furnace temperature by the combined control. As described above, the first management flow rate Q1 is the sum of the minimum value ΣA of the total fuel flow rate of the continuous burner and the minimum value ΣC of the total fuel flow rate of the regenerative burner.

[発明10]
また、本発明の一態様に係る加熱炉の炉温制御装置において、前記制御部は、炉温が前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、前記第一管理流量Q1以上第二管理流量Q2未満の場合には、前記併用制御として、前記連続式バーナの燃料流量を最小値Aで燃焼させつつ、前記蓄熱式バーナの燃料流量をその最小値Cから最大値Dの範囲で制御する第一の併用制御により炉温を制御することは好ましい。上記のように、第二管理流量Q2とは、連続式バーナの総燃料流量の最小値ΣAと蓄熱式バーナの総燃料流量の最大値ΣDとの和である。
[Invention 10]
Further, in the furnace temperature control device for a heating furnace according to one aspect of the present invention, the control unit is a fuel to be supplied to the one control zone when the furnace temperature exceeds the first management temperature T1. When the total flow rate Q of the flow rate is not less than the first management flow rate Q1 and less than the second management flow rate Q2, the regenerative burner is burned with the fuel flow rate of the continuous burner at the minimum value A as the combined control. It is preferable to control the furnace temperature by the first combined control for controlling the fuel flow rate in the range from the minimum value C to the maximum value D. As described above, the second management flow rate Q2 is the sum of the minimum value ΣA of the total fuel flow rate of the continuous burner and the maximum value ΣD of the total fuel flow rate of the regenerative burner.

[発明11]
また、本発明の一態様に係る加熱炉の炉温制御装置において、前記制御部は、炉温が前記第一管理温度T1を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量Qが、前記第二管理流量Q2以上である場合には、前記併用制御として、前記蓄熱式バーナの燃料流量を最大値Dで燃焼させつつ、前記連続式バーナの燃料流量をその最小値Aから最大値Bの範囲で制御する第二の併用制御により炉温を制御することは好ましい。
[Invention 11]
Further, in the furnace temperature control device for a heating furnace according to one aspect of the present invention, the control unit is a fuel to be supplied to the one control zone when the furnace temperature exceeds the first management temperature T1. When the total flow rate Q of the flow rate is equal to or greater than the second control flow rate Q2, as the combined control, the fuel flow rate of the regenerative burner is burned at the maximum value D, and the fuel flow rate of the continuous burner is It is preferable to control the furnace temperature by the second combined control that is controlled in the range of the minimum value A to the maximum value B.

[発明12]
また、本発明の一態様に係る加熱炉の炉温制御装置において、前記制御部は、前記加熱炉が炉温の目標温度TUに達する前の昇温過程にあっては、炉温が前記第一管理温度T1を超え且つ前記目標温度TU未満の第二管理温度T2に達するまでは、前記単独制御により炉温を制御し、前記加熱炉が前記昇温過程にある場合に、炉温が前記第二管理温度T2を超えたときには、前記併用制御により炉温を制御し、前記加熱炉が炉温の目標温度TU自体を下げる降温過程にあっては、炉温が前記第一管理温度T1に達するまでは、前記併用制御により炉温を制御し、炉温が前記第一管理温度T1未満になったときには、前記単独制御により炉温を制御することは好ましい。
[Invention 12]
Further, in the furnace temperature control apparatus for a heating furnace according to an aspect of the present invention, the control unit is configured so that the furnace temperature is the first temperature in the heating process before the heating furnace reaches the target temperature TU of the furnace temperature. The furnace temperature is controlled by the single control until it reaches the second management temperature T2 that exceeds the one management temperature T1 and less than the target temperature TU, and when the heating furnace is in the temperature rising process, the furnace temperature is When the temperature exceeds the second management temperature T2, the furnace temperature is controlled by the combined control. When the heating furnace lowers the target temperature TU itself of the furnace temperature, the furnace temperature becomes the first management temperature T1. Until the temperature reaches, the furnace temperature is controlled by the combined control, and when the furnace temperature becomes lower than the first management temperature T1, the furnace temperature is preferably controlled by the single control.

本発明によれば、一の制御帯に、パイロットバーナを有して連続的に燃焼可能な連続式バーナと、パイロットバーナを有しないで燃焼と排気とを交互に繰り返す交番燃焼が可能な蓄熱式バーナとを設置しており、一の制御帯に供給すべき燃料流量の総流量または炉温に基づいて、連続式バーナのみを稼働させる単独制御および連続式バーナと蓄熱式バーナとを共に稼働させる併用制御のいずれか一方を選択して炉温を制御するので、連続式バーナと蓄熱式バーナとの効果的な運用により、一の制御帯での消費燃料を抑制しつつ目標炉温を達成できる。   According to the present invention, in one control zone, a continuous burner having a pilot burner and capable of continuous combustion, and a regenerative type capable of alternating combustion that alternately repeats combustion and exhaust without having a pilot burner. A burner is installed, and based on the total flow rate of the fuel flow to be supplied to one control zone or the furnace temperature, independent control that operates only the continuous burner and the continuous burner and the regenerative burner are operated together. Since either one of the combined control is selected and the furnace temperature is controlled, the target furnace temperature can be achieved while suppressing the fuel consumption in one control zone by the effective operation of the continuous burner and the regenerative burner. .

本発明の一態様に係る炉温制御装置を備える加熱炉の一実施形態の模式図であり、同図(a)はその正面図、(b)は平面図である。It is a schematic diagram of one Embodiment of a heating furnace provided with the furnace temperature control apparatus which concerns on 1 aspect of this invention, The figure (a) is the front view, (b) is a top view. 炉温制御装置の構成を説明するブロック図である。It is a block diagram explaining the structure of a furnace temperature control apparatus. 炉温制御装置が実行する炉温制御処理のフローチャートである。It is a flowchart of the furnace temperature control process which a furnace temperature control apparatus performs. 炉温制御装置が実行する炉温制御処理のフローチャートである。It is a flowchart of the furnace temperature control process which a furnace temperature control apparatus performs. 炉温制御処理に基づく炉温制御の一例を示すグラフであり、横軸は時間、縦軸は炉温を示す。It is a graph which shows an example of the furnace temperature control based on a furnace temperature control process, a horizontal axis shows time and a vertical axis | shaft shows furnace temperature.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. The drawings are schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of components. Etc. are not specified in the following embodiments.

図1に示すように、この工業用の加熱炉10は、複数の制御帯Z1、Z2、Z3を有する(同図(b)参照)。本実施形態の例は、スラブ、ビレット、ブル−ム等の被加熱材Sをウォーキングビーム(不図示)等の搬送装置により搬送し、被加熱材Sを抽出目標温度に加熱して下流側の圧延機等に送出する連続式加熱炉である。
本実施形態の加熱炉10は、複数の制御帯として、被加熱材Sの搬送方向Hに沿って上流側から順に、予熱帯Z1と、加熱帯Z2と、均熱帯Z3とを有する。なお、上流側となる予熱帯Z1には装入口10aが設けられ、下流側の均熱帯Z3には抽出口10bが設けられている。
各制御帯Z1、Z2、Z3には、複数のバーナが適所に設けられており、各制御帯Z1、Z2、Z3は、独立に炉温制御可能になっている。なお、本実施形態では、各制御帯Z1、Z2、Z3は、1つの帯(ゾーン)で形成されているが、複数の帯から構成してもよい。
As shown in FIG. 1, this industrial heating furnace 10 has a plurality of control zones Z1, Z2, and Z3 (see FIG. 1B). In the example of the present embodiment, the heated material S such as slab, billet, and bloom is conveyed by a conveying device such as a walking beam (not shown), and the heated material S is heated to the extraction target temperature to be downstream. This is a continuous heating furnace that is sent to a rolling mill or the like.
The heating furnace 10 of this embodiment has the pre-tropical zone Z1, the heating zone Z2, and the soaking zone Z3 in order from the upstream side along the conveyance direction H of the to-be-heated material S as a some control zone. In addition, the pre-tropical zone Z1 on the upstream side is provided with an inlet 10a, and the soaking zone Z3 on the downstream side is provided with an extraction port 10b.
Each control zone Z1, Z2, Z3 is provided with a plurality of burners at appropriate positions, and each control zone Z1, Z2, Z3 can be independently controlled in furnace temperature. In the present embodiment, each of the control zones Z1, Z2, and Z3 is formed by one zone (zone), but may be constituted by a plurality of zones.

本実施形態では、図1に示すように、予熱帯Z1には、パイロットバーナを有する複数の連続式バーナ2と、パイロットバーナを有しない複数の蓄熱式バーナ(リジェネバーナ)3とが併設されている。また、下流側の加熱帯Z2と均熱帯Z3とには、複数の連続式バーナ2が適所にそれぞれ設けられている。各制御帯Z2、Z3の連続式バーナ2は、炉内に燃焼ガスをフレ−ムとなして供給し、排ガスは予熱帯Z1側に流れて不図示の煙道から煙突を経て大気中に放出される。
蓄熱式バーナ3は、バーナ本体と蓄熱体とを備える交番燃焼式バーナである。本実施形態の例では、対向する2つの蓄熱式バーナ3を一対として使用して、燃焼と排ガス吸引を交互に繰り返すように構成されている。各蓄熱式バーナ3は、排ガスを吸引する際に蓄熱体に排ガスの熱を蓄積させ、この蓄積した熱を燃料とともに供給する空気(燃焼用空気)の予熱に利用することにより、燃焼用空気を昇温させて熱効率を向上することができる。これに対し、連続式バーナ2は、蓄熱体を備えておらず交番燃焼を行わない通常のバーナである。連続式バーナ2は、パイロットバーナを有するので連続的に燃焼可能であり、炉温の状態によらずに燃焼状態を管理できる。
In the present embodiment, as shown in FIG. 1, a plurality of continuous burners 2 having pilot burners and a plurality of regenerative burners (regenerative burners) 3 having no pilot burners are provided in the pre-tropical zone Z1. Yes. Further, a plurality of continuous burners 2 are respectively provided at appropriate positions in the downstream heating zone Z2 and the soaking zone Z3. The continuous burner 2 in each of the control zones Z2 and Z3 supplies the combustion gas as a frame into the furnace, and the exhaust gas flows to the pre-tropical Z1 side and is released into the atmosphere via a chimney (not shown) through a chimney. Is done.
The heat storage burner 3 is an alternating combustion burner including a burner body and a heat storage body. In the example of the present embodiment, the two regenerative burners 3 facing each other are used as a pair, and combustion and exhaust gas suction are alternately repeated. Each regenerative burner 3 accumulates the heat of the exhaust gas in the heat storage body when the exhaust gas is sucked, and uses the accumulated heat for preheating the air (combustion air) supplied together with the fuel. The temperature can be raised to improve thermal efficiency. On the other hand, the continuous burner 2 is a normal burner that does not include a heat storage body and does not perform alternating combustion. Since the continuous burner 2 has a pilot burner, it can burn continuously and can manage the combustion state regardless of the furnace temperature state.

以下、上記予熱帯Z1についてより詳しく説明する。
図1に示すように、予熱帯Z1には、炉の上部中央等の適所に炉温計1が設けられており、炉温計1により随時の炉温が測定可能になっている。また、予熱帯Z1の各連続式バーナ2と各蓄熱式バーナ3には、図示を省略する燃料配管に、流量計と、燃料供給量を調整可能な調整弁とがそれぞれ付設されており、各連続式バーナ2と各蓄熱式バーナ3の随時の燃料流量が流量計により測定可能になっている。
図2に示すように、炉温計1で測定された随時の炉温情報と、各連続式バーナ2と各蓄熱式バーナ3の随時の燃料流量情報とは、予熱帯Z1を独立に炉温制御可能な制御部5に入力される。制御部5は、炉温制御処理を実行し、随時の炉温情報と燃料流量情報とに基づいて、予熱帯Z1の炉温Tが目標温度TU(例えば1000℃)になるように、各連続式バーナ2と各蓄熱式バーナ3の調整弁により燃料流量を制御して炉温Tを制御可能になっている。
Hereinafter, the pre-tropical zone Z1 will be described in more detail.
As shown in FIG. 1, the pre-tropical zone Z1 is provided with a furnace thermometer 1 at an appropriate place such as the upper center of the furnace, and the furnace thermometer 1 can measure the furnace temperature at any time. In addition, each continuous burner 2 and each regenerative burner 3 of the pre-tropical Z1 are provided with a fuel pipe (not shown), a flow meter, and an adjustment valve capable of adjusting the fuel supply amount. The fuel flow at any time of the continuous burner 2 and each regenerative burner 3 can be measured by a flow meter.
As shown in FIG. 2, the furnace temperature information measured by the furnace thermometer 1 and the fuel flow information of each continuous burner 2 and each regenerative burner 3 at any given time independently indicate the pre-tropical zone Z1. It is input to the control unit 5 that can be controlled. The control unit 5 executes the furnace temperature control process, and each continuous time so that the furnace temperature T of the pre-tropical zone Z1 becomes the target temperature TU (for example, 1000 ° C.) based on the furnace temperature information and the fuel flow rate information at any time. The furnace temperature T can be controlled by controlling the fuel flow rate with the regulating valves of the type burner 2 and each heat storage type burner 3.

詳しくは、制御部5は、以下不図示の、演算およびシステム全体を制御するCPUと、炉温制御処理を含む制御プログラム等のデータを所定領域に予め格納している記憶装置およびROMと、記憶装置およびROM等から読み出したデータやCPUの演算過程で必要な演算結果を格納するためのRAMと、表示装置、入力装置およびデータベース等を含む外部装置並びに加熱炉10全体を管理する上位コンピュータに対してデータの入出力を媒介するインターフェースとを備えて構成され、これらは、データを転送するための信号線であるバスで相互にかつデータ授受可能に接続されている。   Specifically, the control unit 5 includes a CPU (not shown) that controls the calculation and the entire system, a storage device and a ROM that store data such as a control program including a furnace temperature control process in a predetermined area, RAM for storing data read from the apparatus and ROM, and calculation results required in the calculation process of the CPU, external devices including a display device, an input device, a database, etc., and a host computer for managing the entire heating furnace 10 And an interface that mediates data input / output, and these are connected to each other via a bus that is a signal line for transferring data so that data can be exchanged.

制御部5は、加熱炉10全体を管理する上位コンピュータからの予熱帯Z1の目標温度TUを設定する制御指令に応じて炉温制御処理を実行する。制御部5で炉温制御処理が実行されると、図3に示すように、まずステップS11に移行して、上記炉温計1からの炉温情報、各連続式バーナ2と各蓄熱式バーナ3からの燃料流量情報をそれぞれ取得してステップS12に移行する。ステップS12では、炉温Tが第一管理温度T1(例えば760℃)に達している否かを判定する。ここで、第一管理温度T1は、燃料の自己発火点以上の温度が予め設定されている。   The control unit 5 executes a furnace temperature control process according to a control command for setting the target temperature TU of the pre-tropical zone Z1 from a host computer that manages the heating furnace 10 as a whole. When the controller 5 performs the furnace temperature control process, as shown in FIG. 3, first, the process proceeds to step S11, where the furnace temperature information from the furnace thermometer 1, each continuous burner 2, and each regenerative burner. The fuel flow rate information from 3 is acquired, and the process proceeds to step S12. In step S12, it is determined whether or not the furnace temperature T has reached a first management temperature T1 (for example, 760 ° C.). Here, as the first management temperature T1, a temperature equal to or higher than the self-ignition point of the fuel is set in advance.

炉温Tが第一管理温度T1未満であれば(No)ステップS14に移行し、炉温Tが第一管理温度T1以上であれば(Yes)ステップS13に移行する。ステップS13では、炉温が第二管理温度T2(例えば800℃)に達している否かを判定する。第二管理温度T2は、蓄熱式バーナ3を安全かつ安定して燃焼させるために、蓄熱式バーナ3の点火点と消火点との間に温度域を設定するものであり、目標温度TU(例えば1000℃)未満の温度であって、第一管理温度T1に対して例えば40℃〜100℃高い温度(つまり、本実施形態の例であれば800℃〜860℃)に予め設定されている。   If the furnace temperature T is lower than the first management temperature T1 (No), the process proceeds to step S14. If the furnace temperature T is equal to or higher than the first management temperature T1 (Yes), the process proceeds to step S13. In step S13, it is determined whether or not the furnace temperature has reached a second management temperature T2 (for example, 800 ° C.). The second management temperature T2 sets a temperature range between the ignition point and the extinguishing point of the heat storage burner 3 in order to burn the heat storage burner 3 safely and stably, and a target temperature TU (for example, The temperature is lower than 1000 ° C., and is set in advance to, for example, 40 ° C. to 100 ° C. higher than the first management temperature T1 (that is, 800 ° C. to 860 ° C. in the example of this embodiment).

炉温Tが第二管理温度T2未満であれば(No)ステップS14に移行し、ステップS14では、連続式バーナ2のみによって炉温を制御(以下、「単独制御」ともいう)してステップS11に処理を戻す。炉温が第二管理温度T2以上であれば(Yes)ステップS15に移行する。
ステップS15では、炉温Tが目標温度TUに達している否かを判定する。目標温度TUに達していれば(Yes)ステップS17に移行し、そうでなければ(No)ステップS16に移行し、ステップS16では、連続式バーナ2と蓄熱式バーナ3とを併用して炉温を制御(以下、「併用制御」ともいう)してステップS17に移行する。
If the furnace temperature T is lower than the second management temperature T2 (No), the process proceeds to step S14. In step S14, the furnace temperature is controlled only by the continuous burner 2 (hereinafter also referred to as “independent control”), and step S11 is performed. Return processing to. If the furnace temperature is equal to or higher than the second management temperature T2 (Yes), the process proceeds to step S15.
In step S15, it is determined whether or not the furnace temperature T has reached the target temperature TU. If the target temperature TU has been reached (Yes), the process proceeds to step S17. If not (No), the process proceeds to step S16. In step S16, the continuous burner 2 and the regenerative burner 3 are used in combination. (Hereinafter also referred to as “combination control”), and the process proceeds to step S17.

ここで、本実施形態では、制御部5は、連続式バーナ2と蓄熱式バーナ3とを併用する併用制御を実行するに際し、以下に示す表1、表2の条件に基づいて、連続式バーナ2の燃料流量と蓄熱式バーナ3の燃料流量とを設定している。   Here, in the present embodiment, the control unit 5 performs the continuous control using the continuous burner 2 and the heat storage burner 3 together, based on the conditions shown in Tables 1 and 2 below. 2 and the fuel flow rate of the regenerative burner 3 are set.

Figure 2017101841
Figure 2017101841

Figure 2017101841
Figure 2017101841

表1は、各バーナ単体における燃料流量の上限と下限について、連続式バーナ2単体における燃料流量の最小値がA、最大値がBであり、蓄熱式バーナ3単体における燃料流量の最小値がC、最大値がDであることを示している。なお、各バーナ単体における燃料流量の最小値とは、各バーナの安定した燃焼状態の維持に必要な最小の燃料流量をいう。
また、各バーナ単体における燃料流量の最大値とは、各バーナの安定した燃焼状態を維持し得る範囲での最大の燃料流量をいう。そして、表2は、各バーナの燃料流量を表1に示す上限と下限にした場合に、予熱帯Z1に供給すべき総流量Qを、各連続式バーナ2と各蓄熱式バーナ3とにどのように振り分けるかを示している。
Table 1 shows that the upper and lower limits of the fuel flow rate in each burner unit are A, the minimum value of the fuel flow rate in the continuous burner 2 unit is A, the maximum value is B, and the minimum value of the fuel flow rate in the regenerative burner unit 3 is C. , The maximum value is D. Note that the minimum value of the fuel flow rate in each burner means the minimum fuel flow rate necessary for maintaining a stable combustion state of each burner.
Further, the maximum value of the fuel flow rate in each burner means the maximum fuel flow rate within a range where a stable combustion state of each burner can be maintained. Table 2 shows the total flow rate Q to be supplied to the pre-tropical zone Z1 for each continuous burner 2 and each regenerative burner 3 when the fuel flow rate of each burner is set to the upper limit and the lower limit shown in Table 1. It shows how to distribute.

すなわち、併用制御時において、予熱帯Z1に供給すべき総流量Qが、複数の連続式バーナ2の総燃料流量の最小値ΣAと複数の蓄熱式バーナ3の燃料流量の最小値ΣCとの和(以下、「第一管理流量Q1」ともいう)よりも小さい場合(Q<ΣA+ΣC)には、制御部5は、蓄熱式バーナ3は稼働させずに、連続式バーナ2のみを用いて、各連続式バーナ2の燃料流量を最小値Aから最小値A+C(但し、蓄熱式バーナ3の燃料流量の最小値Cは、連続式バーナ2の燃料流量の最大値Bよりも小さい)の範囲で燃焼させる単独制御を実行する。   That is, during combined control, the total flow rate Q to be supplied to the pre-tropical zone Z1 is the sum of the minimum value ΣA of the total fuel flow rate of the plurality of continuous burners 2 and the minimum value ΣC of the fuel flow rate of the plurality of regenerative burners 3 (Hereinafter, also referred to as “first management flow rate Q1”) (Q <ΣA + ΣC), the control unit 5 does not operate the regenerative burner 3 and uses only the continuous burner 2, Combustion in the range of the fuel flow rate of the continuous burner 2 from the minimum value A to the minimum value A + C (however, the minimum value C of the fuel flow rate of the regenerative burner 3 is smaller than the maximum value B of the fuel flow rate of the continuous burner 2) The single control to be executed is executed.

また、併用制御時において、供給すべき燃料流量の総流量Qが、第一管理流量Q1以上(Q1=ΣA+ΣC≦Q)、且つ、複数の連続式バーナ2の総燃料流量の最小値ΣAと複数の蓄熱式バーナ3の総燃料流量の最大値ΣDとの和(以下、「第二管理流量Q2」ともいう)よりも小さい場合(Q<ΣA+ΣD=Q2)には、制御部5は、各連続式バーナ2の燃料流量を最小値Aに維持しつつ、各蓄熱式バーナ3の燃料流量を、その最小値Cから最大値Dの範囲で燃焼させる第一の併用制御を実行する。
また、併用制御時において、供給すべき燃料流量の総流量Qが、第二管理流量Q2以上である場合(Q2=ΣA+ΣD≦Q)には、制御部5は、各蓄熱式バーナ3の燃料流量を最大値Dに維持しつつ、各連続式バーナ2の燃料流量を、その最小値Aから最大値Bの範囲で燃焼させる第二の併用制御を実行する。
Further, during the combined control, the total flow rate Q of the fuel flow to be supplied is equal to or higher than the first management flow rate Q1 (Q1 = ΣA + ΣC ≦ Q), and the minimum value ΣA of the total fuel flow rates of the plurality of continuous burners 2 When the sum of the total fuel flow rate of the regenerative burner 3 is smaller than the sum (hereinafter also referred to as “second control flow rate Q2”) (Q <ΣA + ΣD = Q2), the control unit 5 While maintaining the fuel flow rate of the burner 2 at the minimum value A, the first combined control for burning the fuel flow rate of each heat storage burner 3 in the range from the minimum value C to the maximum value D is executed.
Further, in the combined control, when the total flow rate Q of the fuel flow to be supplied is equal to or higher than the second management flow rate Q2 (Q2 = ΣA + ΣD ≦ Q), the control unit 5 controls the fuel flow rate of each regenerative burner 3. Is maintained at the maximum value D, and the second combined control for burning the fuel flow rate of each continuous burner 2 in the range from the minimum value A to the maximum value B is executed.

ステップS17では、加熱炉10全体を管理する上位コンピュータからの新たな制御指令の有無を監視する。つまり、制御指令が上記目標温度TUに維持されていれば(No)ステップS11に処理を戻す。これに対し、炉を降温させて炉温Tを降温目標値TDとする新たな制御指令が入力されていれば(Yes)処理を戻し、図4に示す炉温降温処理に移行する。
制御部5で炉温降温処理が実行されると、図4に示すように、まずステップS21に移行して、上記炉温計1からの炉温情報、各連続式バーナ2と各蓄熱式バーナ3からの燃料流量情報をそれぞれ取得してステップS22に移行する。ステップS22では、降温中の炉温Tが第一管理温度T1に達している否かを判定し、第一管理温度T1に達していれば(Yes)ステップS25に移行し、そうでなければ(No)ステップS23に移行する。
In step S17, the presence or absence of a new control command from the host computer that manages the entire heating furnace 10 is monitored. That is, if the control command is maintained at the target temperature TU (No), the process returns to step S11. On the other hand, if a new control command for lowering the furnace temperature and setting the furnace temperature T to the target temperature drop value TD has been input (Yes), the process is returned and the process proceeds to the furnace temperature lowering process shown in FIG.
When the furnace temperature cooling process is executed by the control unit 5, as shown in FIG. 4, first, the process proceeds to step S21, where the furnace temperature information from the furnace thermometer 1, each continuous burner 2 and each regenerative burner are transferred. The fuel flow rate information from 3 is acquired, and the process proceeds to step S22. In step S22, it is determined whether or not the furnace temperature T during the temperature decrease has reached the first management temperature T1, and if it has reached the first management temperature T1 (Yes), the process proceeds to step S25, otherwise ( No) Move to step S23.

ステップS23では、連続式バーナ2の燃料流量を最小値Aに設定し、続くステップS24では、炉温Tを降温目標値TDとすべく、蓄熱式バーナ3の燃料流量を目標流量に減少させて処理をステップS21に戻す。ステップS25では、連続式バーナ2の単独制御により炉温Tを降温目標値TDとすべく、蓄熱式バーナ3を消火し、連続式バーナ2の燃料流量を目標流量に減少させてステップS26に移行する。ステップS26では、炉温Tが降温目標値TDに達したか否かを判定し、降温目標値TDに達したならば(Yes)処理を戻し、そうでなければ(No)ステップS25に戻って降温目標値TDに達するまで、連続式バーナ2の燃料流量を目標流量に減少させる単独制御を続行する。   In step S23, the fuel flow rate of the continuous burner 2 is set to the minimum value A, and in the subsequent step S24, the fuel flow rate of the regenerative burner 3 is decreased to the target flow rate so that the furnace temperature T becomes the target temperature drop value TD. The process returns to step S21. In step S25, the regenerative burner 3 is extinguished and the fuel flow rate of the continuous burner 2 is reduced to the target flow rate so that the furnace temperature T is set to the target temperature drop TD by independent control of the continuous burner 2, and the flow proceeds to step S26. To do. In step S26, it is determined whether or not the furnace temperature T has reached the target temperature decrease value TD. If the target temperature decrease value TD has been reached (Yes), the process is returned; otherwise (No), the process returns to step S25. The independent control for reducing the fuel flow rate of the continuous burner 2 to the target flow rate is continued until the temperature drop target value TD is reached.

次に、上記加熱炉10の動作および作用効果について説明する。
この加熱炉10は、複数の制御帯として、独立に炉温制御可能な予熱帯Z1、加熱帯Z2および均熱帯Z3を有し、被加熱材Sを搬送装置により搬送方向Hに沿って搬送し、被加熱材Sを抽出目標温度に加熱して下流側の圧延機等に送出する。
この加熱炉10によれば、加熱帯Z2や均熱帯Z3からの燃焼排ガスの流れにより、予熱帯Z1の炉温を他の制御帯Z2、Z3よりも高く設定できる。そのため、被加熱材Sが予熱帯Z1で急速に加熱され、加熱帯Z2に向けて熱的条件がほぼ均一化されるため生産性が向上する。そして、加熱炉10の各制御帯Z1、Z2、Z3毎に、各制御帯のバ−ナの燃焼量を制御して、各制御帯の炉温を所定温度に調整するので、加熱炉10全体として所望の炉内温度パタ−ンに制御できる。そのため、炉内温度分布のバラツキが少なく被加熱材Sの均熱性が良い。
Next, the operation and effect of the heating furnace 10 will be described.
This heating furnace 10 has a pre-tropical zone Z1, a heating zone Z2, and a soaking zone Z3 that can independently control the furnace temperature as a plurality of control zones, and conveys the material to be heated S along the conveyance direction H by a conveyance device. The heated material S is heated to the extraction target temperature and sent to a downstream rolling mill or the like.
According to this heating furnace 10, the furnace temperature of the pretropical zone Z1 can be set higher than the other control zones Z2 and Z3 by the flow of the combustion exhaust gas from the heating zone Z2 and the soaking zone Z3. Therefore, the material to be heated S is rapidly heated in the pre-tropical zone Z1, and the thermal conditions are almost uniformed toward the heating zone Z2, so that the productivity is improved. And, for each control zone Z1, Z2, Z3 of the heating furnace 10, the combustion amount of the burner in each control zone is controlled, and the furnace temperature in each control zone is adjusted to a predetermined temperature. It can be controlled to a desired furnace temperature pattern. Therefore, there is little variation in the temperature distribution in the furnace, and the heat uniformity of the material to be heated S is good.

そして、この加熱炉10によれば、複数の制御帯Z1、Z2、Z3のうちの一の制御帯である予熱帯Z1に、連続式バーナ2と蓄熱式バーナ3とを併設しており、予熱帯Z1の制御部5は、予熱帯Z1に供給すべき燃料流量の総流量Qまたは炉温Tに基づいて、連続式バーナ2のみを稼働させる単独制御および連続式バーナ2と蓄熱式バーナ3とを共に稼働させる併用制御のいずれか一方を選択して炉温Tを制御するので、連続式バーナ2と蓄熱式バーナ3との効果的な運用により、予熱帯Z1での消費燃料を抑制しつつ目標炉温を達成することができる。   According to the heating furnace 10, the continuous burner 2 and the regenerative burner 3 are provided side by side in the pre-tropical zone Z1, which is one of the plurality of control zones Z1, Z2, and Z3. The control unit 5 of the tropical zone Z1 is a single control that operates only the continuous burner 2 based on the total flow rate Q or the furnace temperature T of the fuel flow to be supplied to the pre-tropical zone Z1, and the continuous burner 2 and the regenerative burner 3 Since the furnace temperature T is controlled by selecting either one of the combined control for operating both of them, the effective operation of the continuous burner 2 and the regenerative burner 3 suppresses fuel consumption in the pretropical zone Z1. The target furnace temperature can be achieved.

すなわち、図5において、加熱炉10全体を管理する上位コンピュータから、予熱帯Z1の目標温度TUを設定する制御指令がP0の時点で出力されたとき、制御部5は、上述した炉温制御処理を実行する。P0の時点では、炉温Tが第一管理温度T1未満なので、連続式バーナ2のみを稼働させる単独制御により昇温が開始される。
このように、この加熱炉10によれば、炉温Tが燃料の自己着火する第一管理温度T1(例えば760℃)未満の場合には、連続式バーナ2のみを用いて炉温Tを制御するため、燃料の自己着火が困難な炉温のときは、パイロットバーナを有する連続式バーナ2のみを用いて燃焼させるので、未燃を発生させることなく確実に燃料を燃焼させることができる。
That is, in FIG. 5, when a control command for setting the target temperature TU of the pre-tropical zone Z1 is output from the host computer that manages the entire heating furnace 10 at the time point P0, the control unit 5 performs the furnace temperature control process described above. Execute. Since the furnace temperature T is lower than the first management temperature T1 at the time P0, the temperature rise is started by the single control that operates only the continuous burner 2.
Thus, according to the heating furnace 10, when the furnace temperature T is lower than the first management temperature T1 (for example, 760 ° C.) at which the fuel self-ignites, the furnace temperature T is controlled using only the continuous burner 2. Therefore, at the furnace temperature at which it is difficult to self-ignite the fuel, combustion is performed using only the continuous burner 2 having the pilot burner, so that the fuel can be reliably burned without generating unburned fuel.

特に、図5に示すように、本実施形態では、昇温時には、炉温Tが第一管理温度T1以上となるP1の時点を超えた場合であっても、炉温Tが第二管理温度T2に達するP2の時点までは単独制御により昇温される。
つまり、目標温度TUに向けて炉温Tを昇温する際には、炉温計1の測定値が第二管理温度T2未満の場合には、第一管理温度T1を超えても、連続式バーナ2の燃焼のみによって炉温が制御され、炉温Tが第二管理温度T2を超えたときに蓄熱式バーナ3の使用を開始する。そのため、この加熱炉10によれば、装入口10aの開閉等で予熱帯Z1の炉温Tが変動した際も、蓄熱式バーナ3が点火・消火を繰り返すチャタリング動作を起こすことなく、安定してバーナの流量および炉温を制御しつつ単独制御から併用制御に移行することができる。
In particular, as shown in FIG. 5, in this embodiment, at the time of temperature increase, even if the furnace temperature T exceeds the time point P1 at which the furnace temperature T is equal to or higher than the first management temperature T1, the furnace temperature T is the second management temperature. The temperature is raised by independent control until the point of P2 when T2 is reached.
That is, when the furnace temperature T is raised toward the target temperature TU, if the measured value of the furnace thermometer 1 is lower than the second management temperature T2, the continuous type even if it exceeds the first management temperature T1. When the furnace temperature is controlled only by the combustion of the burner 2 and the furnace temperature T exceeds the second management temperature T2, the use of the regenerative burner 3 is started. Therefore, according to this heating furnace 10, even when the furnace temperature T of the pre-tropical zone Z1 fluctuates due to opening / closing of the charging port 10a, the regenerative burner 3 does not cause a chattering operation that repeats ignition and extinguishing, and can be stably performed. It is possible to shift from single control to combined control while controlling the flow rate of the burner and the furnace temperature.

そして、この加熱炉10によれば、炉温Tが第二管理温度T2を超えたときに、予熱帯Z1を目標温度TUに維持する制御指令が出力されている間(図5でのP2〜P4)は、表2に示した流量管理に基づく併用制御に移行する。すなわち、流量管理に基づく併用制御は、表2に示したように、予熱帯Z1に供給すべき燃料流量の総流量Qが、第一管理流量Q1未満の場合(Q<ΣA+ΣC)には、連続式バーナ2のみを用いた単独制御により炉温を制御する。
また、予熱帯Zに供給すべき燃料流量の総流量Qが、第一管理流量Q1以上第二管理流量Q2未満の場合(ΣA+ΣC≦Q<ΣA+ΣD)には、各連続式バーナ2の燃料流量を最小値Aで燃焼させつつ、各蓄熱式バーナ3の燃料流量をその最小値Cから最大値Dの範囲で制御する第一の併用制御により炉温Tを制御する。
And according to this heating furnace 10, when the furnace temperature T exceeds 2nd management temperature T2, while the control command which maintains the pre-tropical zone Z1 at the target temperature TU is output (P2 in FIG. 5). P4) shifts to the combined control based on the flow rate management shown in Table 2. In other words, the combined control based on the flow rate management is continuous as shown in Table 2 when the total flow rate Q of the fuel flow to be supplied to the pre-tropical zone Z1 is less than the first management flow rate Q1 (Q <ΣA + ΣC). The furnace temperature is controlled by independent control using only the type burner 2.
Further, when the total flow rate Q of the fuel flow to be supplied to the pre-tropical zone Z is not less than the first management flow rate Q1 and less than the second management flow rate Q2 (ΣA + ΣC ≦ Q <ΣA + ΣD), the fuel flow rate of each continuous burner 2 is set. While burning at the minimum value A, the furnace temperature T is controlled by the first combined control for controlling the fuel flow rate of each regenerative burner 3 in the range from the minimum value C to the maximum value D.

さらに、予熱帯Zに供給すべき燃料流量の総流量Qが、第二管理流量Q2以上である場合(ΣA+ΣD≦Q)には、各蓄熱式バーナ3の燃料流量を最大値Dで燃焼させつつ、各連続式バーナ2の燃料流量をその最小値Aから最大値Bの範囲で制御する第二の併用制御により炉温Tを制御する。換言すれば、蓄熱式バーナ3の燃料流量が最大値Dに達したら、連続式バーナ2の燃料流量を増加して、炉温Tが目標温度TUになるように制御する。
この炉温制御により、この加熱炉10によれば、パイロットバーナを有しない蓄熱式バーナ3を、常に燃料の自己発火点以上で使用することになり、且つ、各バーナが燃焼に必要な最小流量を常に確保しつつ稼働させることができる。そのため、安全かつ安定した燃焼による炉温制御が可能となり、また、効率の良い蓄熱式バーナ3を優先して使用することができるため、最小限の燃料流量により炉温Tが目標温度TUとなるように制御することができる。
Further, when the total flow rate Q of the fuel flow rate to be supplied to the pre-tropical zone Z is equal to or higher than the second management flow rate Q2 (ΣA + ΣD ≦ Q), the fuel flow rate of each regenerative burner 3 is burned at the maximum value D. The furnace temperature T is controlled by the second combined control for controlling the fuel flow rate of each continuous burner 2 in the range from the minimum value A to the maximum value B. In other words, when the fuel flow rate of the regenerative burner 3 reaches the maximum value D, the fuel flow rate of the continuous burner 2 is increased so that the furnace temperature T becomes the target temperature TU.
By this furnace temperature control, according to this heating furnace 10, the regenerative burner 3 having no pilot burner is always used above the fuel self-ignition point, and the minimum flow rate required for each burner to burn. Can be operated while always ensuring. Therefore, the furnace temperature can be controlled by safe and stable combustion, and the efficient heat storage burner 3 can be used with priority, so the furnace temperature T becomes the target temperature TU with the minimum fuel flow rate. Can be controlled.

その後、P4の時点にて、加熱炉10全体を管理する上位コンピュータから、予熱帯Z1を降温させる新たな目標温度TDを設定する制御指令が出力されたときは、目標温度自体を下げる降温過程にあっては、第一管理温度T1に達するP5の時点までは、上述した併用制御により炉温Tを降温させるように制御し、炉温Tが第一管理温度T1未満になったときには、単独制御により炉温を制御する。
この例では、P5の時点以降は、降温時の目標温度TDに達するP6の時点まで単独制御により降温される。つまり、炉温が低下し、炉温Tが第一管理温度T1未満になると、蓄熱式バーナ3を消火して、連続式バーナ2のみによって炉温計1の測定値が降温目標値となるように制御部5が制御する。これにより、降温時において、装入口10aの開閉などで炉温Tが変動しても、蓄熱式バーナ3の点火・消火を繰り返すことがなく、安定して炉温を制御することができる。
Thereafter, when a control command for setting a new target temperature TD for lowering the temperature of the pre-tropical zone Z1 is output from the host computer that manages the entire heating furnace 10 at the time point P4, the temperature lowering process is performed to lower the target temperature itself. In this case, until the time point P5 when the temperature reaches the first management temperature T1, control is performed so that the furnace temperature T is lowered by the above-described combined control. When the furnace temperature T becomes lower than the first management temperature T1, independent control is performed. To control the furnace temperature.
In this example, after the time point P5, the temperature is lowered by independent control until the time point P6 when the temperature reaches the target temperature TD at the time of temperature drop. That is, when the furnace temperature decreases and the furnace temperature T becomes lower than the first management temperature T1, the regenerative burner 3 is extinguished so that the measured value of the furnace thermometer 1 becomes the target temperature drop value only by the continuous burner 2. The control unit 5 controls. As a result, even when the furnace temperature T fluctuates due to opening / closing of the charging port 10a or the like when the temperature is lowered, the ignition / extinguishing of the regenerative burner 3 is not repeated and the furnace temperature can be controlled stably.

以上説明したように、この加熱炉10によれば、予熱帯Z1の全ての燃焼過程において、炉温Tが、燃料の自己着火が困難な第一管理温度T1未満では、パイロットバーナを有する連続式バーナ2のみを用いて燃焼し、燃料が自己着火する第一管理温度T1以上のときは、パイロットバーナを有しない蓄熱式バーナ3を適宜に併用して燃焼させるので、未燃を発生させることなく確実に燃料を燃焼させることができる。
また、この加熱炉10によれば、炉温Tが第一管理温度T1以上のとき、連続式バーナと蓄熱式バーナとを併用時には、効率の劣る連続式バーナ2の燃料流量を最小値Aで燃焼しつつ、効率の良い蓄熱式バーナ3の燃料流量の調整により炉温を調整し、その後、蓄熱式バーナ3が最大流量Dに達すると、連続式バーナ2の燃料流量の調整により、炉温Tを制御するので、連続式バーナ2および蓄熱式バーナ3の効果的な運用により、最低限の流量で目標の炉温に制御することができる。
As described above, according to the heating furnace 10, in all combustion processes of the pre-tropical zone Z1, when the furnace temperature T is lower than the first control temperature T1 where it is difficult to self-ignite the fuel, the continuous type having a pilot burner is used. When only the burner 2 is used for combustion and the temperature is equal to or higher than the first control temperature T1 at which the fuel self-ignites, the regenerative burner 3 having no pilot burner is appropriately used in combination and burned without causing unburned Fuel can be burned reliably.
Further, according to the heating furnace 10, when the furnace temperature T is equal to or higher than the first management temperature T1, the fuel flow rate of the continuous burner 2 having low efficiency is set to the minimum value A when the continuous burner and the heat storage burner are used in combination. The furnace temperature is adjusted by adjusting the fuel flow rate of the efficient regenerative burner 3 while burning. After that, when the regenerative burner 3 reaches the maximum flow rate D, the furnace temperature is adjusted by adjusting the fuel flow rate of the continuous burner 2. Since T is controlled, the target furnace temperature can be controlled at a minimum flow rate by effective operation of the continuous burner 2 and the regenerative burner 3.

さらに、この加熱炉10によれば、第一管理温度T1と目標温度TUとの間に第二管理温度T2を設定し、昇温時には、炉温Tが第二管理温度T2以上になったときから蓄熱式バーナ3を使用し、降温時には、炉温が第一管理温度T1以下のときに、蓄熱式バーナ3の使用を停止するので、扉の開閉等で炉温Tが変動した際も、蓄熱式バーナ3が点火・消火を繰り返すチャタリング動作を起こすことがなく、安定してバーナの流量および炉温を制御できる。
また、この加熱炉10によれば、連続式バーナ2の燃料流量が、連続式バーナ2の必要最小流量Aと蓄熱式バーナ3の必要最小流量Cとを加算した流量以上になったときに蓄熱式バーナ3を点火するので、連続式バーナ2のみによる単独制御から連続式バーナ2と蓄熱式バーナ3とによる併用制御に移行する際においても、各バーナが安定して燃焼を継続するのに必要な最小流量を確保して、安全かつ安定した炉温制御が可能である。
Furthermore, according to this heating furnace 10, when the second management temperature T2 is set between the first management temperature T1 and the target temperature TU, and the temperature rises, the furnace temperature T becomes equal to or higher than the second management temperature T2. Since the use of the heat storage burner 3 is stopped when the furnace temperature is equal to or lower than the first control temperature T1, when the furnace temperature T changes due to opening / closing of the door, etc. The regenerative burner 3 does not cause a chattering operation that repeats ignition and extinguishing, and the flow rate and furnace temperature of the burner can be controlled stably.
Further, according to the heating furnace 10, heat storage is performed when the fuel flow rate of the continuous burner 2 becomes equal to or higher than the flow rate obtained by adding the required minimum flow rate A of the continuous burner 2 and the required minimum flow rate C of the regenerative burner 3. Since the type burner 3 is ignited, it is necessary for each burner to continue combustion stably even when shifting from single control using only the continuous type burner 2 to combined control using the continuous type burner 2 and the heat storage type burner 3. A safe and stable furnace temperature control is possible by ensuring a minimum flow rate.

なお、本発明に係る加熱炉の炉温制御方法および炉温制御装置は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能であることは勿論である。
例えば、本発明に係る加熱炉の炉温制御方法および炉温制御装置は、連続式バーナと蓄熱式バーナとが一の制御帯に設置された加熱炉であれば適用可能である。よって、例えば加熱炉として、上記実施形態に示した連続式加熱炉に限らず、圧延加熱炉、鍛造炉、熱処理炉、溶解炉、焼成炉、脱臭炉等の比較的に高温の炉に好適に採用することができる。
Note that the furnace temperature control method and furnace temperature control apparatus for a heating furnace according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. It is.
For example, the furnace temperature control method and furnace temperature control apparatus for a heating furnace according to the present invention can be applied to any heating furnace in which a continuous burner and a regenerative burner are installed in one control zone. Thus, for example, the heating furnace is not limited to the continuous heating furnace shown in the above embodiment, but is suitable for a relatively high temperature furnace such as a rolling heating furnace, a forging furnace, a heat treatment furnace, a melting furnace, a firing furnace, and a deodorizing furnace. Can be adopted.

また、本発明は、新しく設置する加熱炉に対しては勿論、既設の加熱炉の改造や増設時にも適用できる。
つまり、連続式バーナのみを設置した既設の加熱炉に蓄熱式バーナを増設する場合や、設備スペースの制約から、一つの制御帯に蓄熱式バーナと連続式バーナとを設置しなくてはならない場合等に好適に採用できる。このような既設の加熱炉の改造や増設時において、一の制御帯を所期の炉温に管理するべく、各々のバーナを流量制御する必要がある。しかし、背景技術で説明したように、従来の技術であれば、蓄熱式バーナと比べて効率の劣る連続式バーナを過剰に燃焼すれば、使用する燃料が多くなってしまうという問題がある。また、連続式バーナを設置した加熱炉に、蓄熱式バーナを増設する場合に、設備スペースの制約から、パイロットバーナの設置が困難な場合があり、このような場合には、燃料の自己着火により蓄熱式バーナを点火しなくてはならないことになる。
Further, the present invention can be applied not only to a newly installed heating furnace but also to remodeling or adding an existing heating furnace.
In other words, when adding a regenerative burner to an existing heating furnace with only a continuous burner installed, or when it is necessary to install a regenerative burner and a continuous burner in one control zone due to equipment space constraints It can employ | adopt suitably. When such an existing heating furnace is remodeled or expanded, it is necessary to control the flow rate of each burner in order to manage one control zone at a desired furnace temperature. However, as explained in the background art, if the conventional technique is excessively combusted with a continuous burner that is inferior to the heat storage burner, there is a problem that the amount of fuel used increases. In addition, when adding a regenerative burner to a heating furnace with a continuous burner, it may be difficult to install a pilot burner due to equipment space constraints. The regenerative burner must be ignited.

これに対し、本発明に係る加熱炉の炉温制御方法および炉温制御装置は、一の制御帯において、一の制御帯に供給すべき燃料流量の総流量Qまたは炉温Tに基づいて、連続式バーナ2のみを稼働させる単独制御および連続式バーナ2と蓄熱式バーナ3とを共に稼働させる併用制御のいずれか一方を選択して炉温Tを制御できるので、既設の加熱炉の改造や増設時にも、連続式バーナおよび蓄熱式バーナの効果的な運用により、一の制御帯での消費燃料を抑制しつつ目標炉温を達成できるのである。   On the other hand, the furnace temperature control method and furnace temperature control apparatus for a heating furnace according to the present invention are based on the total flow rate Q or the furnace temperature T of the fuel flow rate to be supplied to one control zone in one control zone. The furnace temperature T can be controlled by selecting either the independent control for operating only the continuous burner 2 or the combined control for operating the continuous burner 2 and the heat storage burner 3 together. Even at the time of expansion, the target furnace temperature can be achieved while suppressing fuel consumption in one control zone by effective operation of the continuous burner and the regenerative burner.

1 炉温計
2 連続式バーナ
3 蓄熱式バーナ
5 制御部
10 加熱炉
Z1 予熱帯(一の制御帯)
Z2 加熱帯(制御帯)
Z3 均熱帯(制御帯)
T1 第一管理温度
T2 第二管理温度
TU 目標温度
Q 総流量
Q1 第一管理流量(Q1=ΣA+ΣC)
Q2 第二管理流量(Q2=ΣA+ΣD)
DESCRIPTION OF SYMBOLS 1 Furnace thermometer 2 Continuous burner 3 Regenerative burner 5 Control part 10 Heating furnace Z1 Pre-tropical zone (one control zone)
Z2 Heating zone (control zone)
Z3 Soaking zone (control zone)
T1 First management temperature T2 Second management temperature TU Target temperature Q Total flow Q1 First management flow (Q1 = ΣA + ΣC)
Q2 Second management flow rate (Q2 = ΣA + ΣD)

Claims (12)

独立して炉温を制御可能な複数の制御帯を備え、前記複数の制御帯のうちの一の制御帯に、パイロットバーナを有して連続的に燃焼可能な連続式バーナと、パイロットバーナを有しないで燃焼と排気とを交互に繰り返す交番燃焼が可能な蓄熱式バーナとが設置された加熱炉の炉温を制御する方法であって、
前記一の制御帯において、前記一の制御帯に供給すべき燃料流量の総流量または炉温に基づいて、前記連続式バーナのみを稼働させる単独制御および前記連続式バーナと前記蓄熱式バーナとを共に稼働させる併用制御のいずれか一方を選択して炉温を制御することを特徴とする加熱炉の炉温制御方法。
A plurality of control zones capable of independently controlling the furnace temperature, one of the plurality of control zones having a pilot burner and a continuous burner capable of continuous combustion; and a pilot burner A method of controlling the furnace temperature of a heating furnace in which a regenerative burner capable of alternating combustion that repeats combustion and exhaust gas alternately without being installed,
In the one control zone, based on the total flow rate or the furnace temperature of the fuel flow to be supplied to the one control zone, the single control for operating only the continuous burner and the continuous burner and the heat storage burner A furnace temperature control method for a heating furnace, wherein the furnace temperature is controlled by selecting either one of the combined control for operating together.
炉温が燃料の自己着火する第一管理温度未満の場合には、前記単独制御により炉温を制御する請求項1に記載の加熱炉の炉温制御方法。   The furnace temperature control method for a heating furnace according to claim 1, wherein when the furnace temperature is lower than a first management temperature at which the fuel self-ignites, the furnace temperature is controlled by the single control. 炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、第一管理流量未満の場合には、前記単独制御により炉温を制御し、第一管理流量以上の場合には、前記併用制御により炉温を制御する請求項2に記載の加熱炉の炉温制御方法。
但し、第一管理流量とは、連続式バーナの総燃料流量の最小値と蓄熱式バーナの総燃料流量の最小値との和である。
When the furnace temperature exceeds the first management temperature and the total flow rate of fuel to be supplied to the one control zone is less than the first management flow rate, the furnace temperature is controlled by the single control. And the furnace temperature control method of the heating furnace of Claim 2 which controls a furnace temperature by the said combined control when it is more than a 1st management flow rate.
However, the first management flow rate is the sum of the minimum value of the total fuel flow rate of the continuous burner and the minimum value of the total fuel flow rate of the regenerative burner.
炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、前記第一管理流量以上第二管理流量未満の場合には、前記併用制御として、前記連続式バーナの燃料流量を最小値で燃焼させつつ、前記蓄熱式バーナの燃料流量をその最小値から最大値の範囲で制御する第一の併用制御により炉温を制御する請求項3に記載の加熱炉の炉温制御方法。
但し、第二管理流量とは、連続式バーナの総燃料流量の最小値と蓄熱式バーナの燃料流量の最大値との和である。
When the furnace temperature exceeds the first management temperature, and the total flow rate of the fuel flow to be supplied to the one control zone is not less than the first management flow rate and less than the second management flow rate, the combined use As a control, the furnace temperature is controlled by a first combined control for controlling the fuel flow rate of the regenerative burner within the range from the minimum value to the maximum value while burning the fuel flow rate of the continuous burner at a minimum value. 4. A furnace temperature control method for a heating furnace as described in 3.
However, the second management flow rate is the sum of the minimum value of the total fuel flow rate of the continuous burner and the maximum value of the fuel flow rate of the regenerative burner.
炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、前記第二管理流量以上である場合には、前記併用制御として、前記蓄熱式バーナの燃料流量を最大値で燃焼させつつ、前記連続式バーナの燃料流量をその最小値から最大値の範囲で制御する第二の併用制御により炉温を制御する請求項4に記載の加熱炉の炉温制御方法。   When the furnace temperature exceeds the first management temperature and the total flow rate of the fuel flow to be supplied to the one control zone is equal to or higher than the second management flow rate, The furnace temperature is controlled by the second combined control for controlling the fuel flow rate of the continuous burner from the minimum value to the maximum value while burning the fuel flow rate of the regenerative burner at the maximum value. A furnace temperature control method for a heating furnace. 前記加熱炉が炉温の目標温度に達する前の昇温過程にあっては、炉温が前記第一管理温度を超え且つ前記目標温度未満の第二管理温度に達するまでは、前記単独制御により炉温を制御し、
前記加熱炉が前記昇温過程にある場合に、炉温が前記第二管理温度を超えたときには、前記併用制御により炉温を制御し、
前記加熱炉が炉温の目標温度自体を下げる降温過程にあっては、炉温が前記第一管理温度に達するまでは、前記併用制御により炉温を制御し、炉温が前記第一管理温度未満になったときには、前記単独制御により炉温を制御する請求項2〜5のいずれか一項に記載の加熱炉の炉温制御方法。
In the heating process before the heating furnace reaches the target temperature of the furnace temperature, until the furnace temperature exceeds the first management temperature and reaches the second management temperature lower than the target temperature, the independent control is performed. Control the furnace temperature,
When the heating furnace is in the temperature raising process, when the furnace temperature exceeds the second management temperature, the furnace temperature is controlled by the combined control,
When the heating furnace is in the process of lowering the target temperature itself, the furnace temperature is controlled by the combined control until the furnace temperature reaches the first management temperature, and the furnace temperature is the first management temperature. The furnace temperature control method for a heating furnace according to any one of claims 2 to 5, wherein when the temperature becomes less than, the furnace temperature is controlled by the single control.
独立して炉温を制御可能な複数の制御帯を備え、前記複数の制御帯のうちの一の制御帯に、パイロットバーナを有して連続的に燃焼可能な連続式バーナと、パイロットバーナを有しないで燃焼と排気とを交互に繰り返す交番燃焼が可能な蓄熱式バーナとが設置された加熱炉の炉温を制御する炉温制御装置であって、
前記一の制御帯内の炉温を検出する炉温計と、前記連続式バーナの燃料流量を検出する連続式バーナ用流量計と、前記蓄熱式バーナの燃料流量を検出する蓄熱式バーナ用流量計と、前記炉温計、連続式バーナ用流量計および蓄熱式バーナ用流量計の検出値が入力されるとともに、前記一の制御帯での前記連続式バーナと前記蓄熱式バーナの燃焼状態および燃料流量を制御可能な制御部とを備え、
前記制御部は、前記一の制御帯に供給すべき燃料流量の総流量または炉温に基づいて、前記連続式バーナのみを稼働させる単独制御および前記連続式バーナと前記蓄熱式バーナとを共に稼働させる併用制御のいずれか一方を選択して炉温を制御することを特徴とする炉温制御装置。
A plurality of control zones capable of independently controlling the furnace temperature, one of the plurality of control zones having a pilot burner and a continuous burner capable of continuous combustion; and a pilot burner A furnace temperature control device for controlling the furnace temperature of a heating furnace in which a regenerative burner capable of alternating combustion that alternately repeats combustion and exhaust without having,
A furnace thermometer that detects the furnace temperature in the one control zone, a flow meter for the continuous burner that detects the fuel flow rate of the continuous burner, and a flow rate for the regenerative burner that detects the fuel flow rate of the regenerative burner And the detected values of the furnace thermometer, the flow meter for the continuous burner and the flow meter for the regenerative burner are input, and the combustion state of the continuous burner and the regenerative burner in the one control zone, and A control unit capable of controlling the fuel flow rate,
The control unit operates both the continuous burner and the regenerative burner independently based on a single control for operating only the continuous burner based on the total flow rate of the fuel flow to be supplied to the one control zone or the furnace temperature. A furnace temperature control device that controls the furnace temperature by selecting any one of the combination control to be performed.
前記制御部は、炉温が燃料の自己着火する第一管理温度未満の場合には、前記単独制御により炉温を制御する請求項7に記載の炉温制御装置。   The furnace temperature control device according to claim 7, wherein the controller controls the furnace temperature by the single control when the furnace temperature is lower than a first management temperature at which the fuel self-ignites. 前記制御部は、炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、第一管理流量未満の場合には、前記単独制御により炉温を制御し、第一管理流量以上の場合には、前記併用制御により炉温を制御する請求項8に記載の炉温制御装置。
但し、第一管理流量とは、連続式バーナの総燃料流量の最小値と蓄熱式バーナの総燃料流量の最小値との和である。
When the furnace temperature exceeds the first management temperature and the total flow rate of the fuel flow to be supplied to the one control zone is less than the first management flow rate, the control unit performs the single control. The furnace temperature control apparatus according to claim 8, wherein the furnace temperature is controlled by the control, and the furnace temperature is controlled by the combined control when the flow rate is equal to or higher than the first management flow rate.
However, the first management flow rate is the sum of the minimum value of the total fuel flow rate of the continuous burner and the minimum value of the total fuel flow rate of the regenerative burner.
前記制御部は、炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、前記第一管理流量以上第二管理流量未満の場合には、前記併用制御として、前記連続式バーナの燃料流量を最小値で燃焼させつつ、前記蓄熱式バーナの燃料流量をその最小値から最大値の範囲で制御する第一の併用制御により炉温を制御する請求項9に記載の炉温制御装置。
但し、第二管理流量とは、連続式バーナの総燃料流量の最小値と蓄熱式バーナの総燃料流量の最大値との和である。
The control unit is a case where the furnace temperature exceeds the first management temperature, and the total flow rate of the fuel flow to be supplied to the one control zone is not less than the first management flow rate and less than the second management flow rate. In the combined control, the furnace temperature is controlled by the first combined control in which the fuel flow rate of the regenerative burner is controlled within the range from the minimum value to the maximum value while the fuel flow rate of the continuous burner is burned at the minimum value. The furnace temperature control apparatus of Claim 9 which controls.
However, the second management flow rate is the sum of the minimum value of the total fuel flow rate of the continuous burner and the maximum value of the total fuel flow rate of the regenerative burner.
前記制御部は、炉温が前記第一管理温度を超えた場合であって、前記一の制御帯に供給すべき燃料流量の総流量が、前記第二管理流量以上である場合には、前記併用制御として、前記蓄熱式バーナの燃料流量を最大値で燃焼させつつ、前記連続式バーナの燃料流量をその最小値から最大値の範囲で制御する第二の併用制御により炉温を制御する請求項10に記載の炉温制御装置。   When the furnace temperature exceeds the first management temperature and the total flow rate of the fuel flow to be supplied to the one control zone is equal to or higher than the second management flow rate, As the combined control, the furnace temperature is controlled by the second combined control that controls the fuel flow rate of the continuous burner from the minimum value to the maximum value while burning the fuel flow rate of the regenerative burner at the maximum value. Item 15. The furnace temperature control device according to Item 10. 前記制御部は、前記加熱炉が炉温の目標温度に達する前の昇温過程にあっては、炉温が前記第一管理温度を超え且つ前記目標温度未満の第二管理温度に達するまでは、前記単独制御により炉温を制御し、
前記加熱炉が前記昇温過程にある場合に、炉温が前記第二管理温度を超えたときには、前記併用制御により炉温を制御し、
前記加熱炉が炉温の目標温度自体を下げる降温過程にあっては、炉温が前記第一管理温度に達するまでは、前記併用制御により炉温を制御し、炉温が前記第一管理温度未満になったときには、前記単独制御により炉温を制御する請求項8〜11のいずれか一項に記載の炉温制御装置。
In the temperature raising process before the heating furnace reaches the target temperature of the furnace temperature, the control unit is configured to wait until the furnace temperature exceeds the first management temperature and reaches a second management temperature lower than the target temperature. The furnace temperature is controlled by the single control,
When the heating furnace is in the temperature raising process, when the furnace temperature exceeds the second management temperature, the furnace temperature is controlled by the combined control,
When the heating furnace is in the process of lowering the target temperature itself, the furnace temperature is controlled by the combined control until the furnace temperature reaches the first management temperature, and the furnace temperature is the first management temperature. The furnace temperature control device according to any one of claims 8 to 11, wherein when the temperature becomes less than, the furnace temperature is controlled by the single control.
JP2015233190A 2015-11-30 2015-11-30 Furnace temperature control method and furnace temperature control apparatus for heating furnace Expired - Fee Related JP6341188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015233190A JP6341188B2 (en) 2015-11-30 2015-11-30 Furnace temperature control method and furnace temperature control apparatus for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233190A JP6341188B2 (en) 2015-11-30 2015-11-30 Furnace temperature control method and furnace temperature control apparatus for heating furnace

Publications (2)

Publication Number Publication Date
JP2017101841A true JP2017101841A (en) 2017-06-08
JP6341188B2 JP6341188B2 (en) 2018-06-13

Family

ID=59016721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233190A Expired - Fee Related JP6341188B2 (en) 2015-11-30 2015-11-30 Furnace temperature control method and furnace temperature control apparatus for heating furnace

Country Status (1)

Country Link
JP (1) JP6341188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017501A (en) * 2018-01-09 2019-07-16 宝山钢铁股份有限公司 A kind of control method improving heat storage tank efficiency of combustion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120171A (en) * 1993-10-25 1995-05-12 Nkk Corp Method of operating heating oven including heat storage alternate combustion burner system
JPH08270915A (en) * 1995-04-04 1996-10-18 Chugai Ro Co Ltd Operating method of heat storage type regenerating combustion system
JPH09111350A (en) * 1995-10-19 1997-04-28 Nkk Corp Continuous heating furnace and operation thereof
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
EP1209432A2 (en) * 2000-11-23 2002-05-29 IFT S.r.l. Continuous kiln particularly for ceramic articles
JP2003194328A (en) * 2001-12-26 2003-07-09 Tokyo Gas Co Ltd Burning method for regenerative burner and regenerative burner
JP2008255396A (en) * 2007-04-03 2008-10-23 Nippon Steel Engineering Co Ltd Operating method for heating furnace having regenerative burner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120171A (en) * 1993-10-25 1995-05-12 Nkk Corp Method of operating heating oven including heat storage alternate combustion burner system
JPH08270915A (en) * 1995-04-04 1996-10-18 Chugai Ro Co Ltd Operating method of heat storage type regenerating combustion system
JPH09111350A (en) * 1995-10-19 1997-04-28 Nkk Corp Continuous heating furnace and operation thereof
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
EP1209432A2 (en) * 2000-11-23 2002-05-29 IFT S.r.l. Continuous kiln particularly for ceramic articles
JP2003194328A (en) * 2001-12-26 2003-07-09 Tokyo Gas Co Ltd Burning method for regenerative burner and regenerative burner
JP2008255396A (en) * 2007-04-03 2008-10-23 Nippon Steel Engineering Co Ltd Operating method for heating furnace having regenerative burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017501A (en) * 2018-01-09 2019-07-16 宝山钢铁股份有限公司 A kind of control method improving heat storage tank efficiency of combustion
CN110017501B (en) * 2018-01-09 2020-05-19 宝山钢铁股份有限公司 Control method for improving combustion efficiency of heat storage tank

Also Published As

Publication number Publication date
JP6341188B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
TW201009258A (en) Control system, program for control system, method for controlling combustion, and boiler system
KR101386053B1 (en) Apparatus and method of combustion exhaust control in regenerative reheating furnace
JP6423102B2 (en) Industrial furnace and its heat utilization method
CN111878845B (en) Pipe wall temperature uniformity optimization control method for W-shaped flame boiler at starting stage
JP6341188B2 (en) Furnace temperature control method and furnace temperature control apparatus for heating furnace
JP5343935B2 (en) Boiler system
JP2006349281A (en) Continuous heating furnace and method for controlling its combustion
CN104805277B (en) Temperature control method for pulse-type slab heating furnace
CN103782101A (en) Heat medium boiler
JP2013234847A (en) Boiler system
KR101038116B1 (en) apparatus and method of furnace pressure control in regenerative reheating furnace
JP2013139966A (en) Method and device for automatically controlling nox in heating furnace
JP5365438B2 (en) Burner combustion control device and burner combustion control method
JP6540658B2 (en) System and method for adjusting exhaust gas supply amount of regenerative combustion burner
JP2017206726A (en) Waste heat recovery apparatus and waste heat recovery method
JP5707975B2 (en) Heating furnace operation method
JP2007270210A (en) Gas supplying system in steel mill
JP5696641B2 (en) Cooling method of air preheater in heating furnace
JP2746011B2 (en) Heating furnace combustion control method
JP6115093B2 (en) Boiler system
JP4605082B2 (en) Method for producing metal material using a plurality of continuous heating furnaces
JP7156227B2 (en) Furnace pressure control device and furnace pressure control method for continuous heating furnace
KR102144172B1 (en) Apparatus and method for controlling combustion of blast furnace for optimization
JP2012097947A (en) Heating medium boiler multi-can installation system
JP2017048974A (en) Heating medium boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R150 Certificate of patent or registration of utility model

Ref document number: 6341188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees