JP2007270210A - Gas supplying system in steel mill - Google Patents

Gas supplying system in steel mill Download PDF

Info

Publication number
JP2007270210A
JP2007270210A JP2006095487A JP2006095487A JP2007270210A JP 2007270210 A JP2007270210 A JP 2007270210A JP 2006095487 A JP2006095487 A JP 2006095487A JP 2006095487 A JP2006095487 A JP 2006095487A JP 2007270210 A JP2007270210 A JP 2007270210A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
converter
converter gas
furnace gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006095487A
Other languages
Japanese (ja)
Other versions
JP4742948B2 (en
Inventor
Isao Mori
功 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006095487A priority Critical patent/JP4742948B2/en
Publication of JP2007270210A publication Critical patent/JP2007270210A/en
Application granted granted Critical
Publication of JP4742948B2 publication Critical patent/JP4742948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas supplying system in a steel mill with which discharging of converter gas is unnecessary in the steel mill. <P>SOLUTION: The gas supplying system 100 in the steel mill, as the converter gas system, is provided with; converter gas upstream side piping 12 for transporting the converter gas from the converter 11; a converter gas holder 14; converter gas downstream side piping 15 for supplying the converter gas to a converter gas combustion facility 17; a combustion exhausting tower 13; and a blower 16. This system as a blast furnace gas system, is provided with: blast furnace gas upstream side piping 22 for transporting the blast furnace gas from the blast furnace 21; a blast furnace gas holder 24; blast furnace gas downstream side piping 25 for supplying the blast furnace gas to a blast furnace gas using facility 27; and a calory meter 26. In this system as a communicating system, communicating piping 31 for communicating the downstream side position from the blower 16 in the converter gas downstream side piping 15 and the upstream side position from the calory meter 26 in the blast furnace gas downstream side piping 25 are installed, and in the communicating piping 31, a flowing rate adjusting valve 32 and a flowing rate meter 33 are installed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製鉄所内ガス供給システム、特に、製鉄所において発生する転炉ガスを利用するための製鉄所内ガス供給システムに関するものである。   The present invention relates to an in-house gas supply system, and more particularly to an in-house gas supply system for using converter gas generated in an iron works.

製鉄所において鉄や鋼(銑鉄や鉄鋼に同じ)を製造する際に発生する高炉ガスや転炉ガス等(以下、まとめて「副生ガス」と称する場合がある)は、同じく製鉄所において、発電、コークス炉の加熱や鋼を圧延する際の加熱に利用されている。そして、副生ガスの発生量と副生ガスの利用量とが同期しない場合に対応するため、副生ガス毎に所定量をストックするための副生ガスホルダ(高炉ガスホルダ、転炉ガスホルダ等)が設置されている。しかしながら、複数の転炉の吹錬が重なった場合には、転炉ガスホルダではストックしきれないことになり、大気中への放散を余儀なくされていた。   Blast furnace gas, converter gas, etc. (hereinafter collectively referred to as “by-product gas”) generated when iron and steel (same as pig iron and steel) are produced in steelworks are also the same in steelworks. It is used for power generation, heating of coke ovens and heating when rolling steel. And in order to cope with the case where the amount of by-product gas generated and the amount of by-product gas used are not synchronized, a by-product gas holder (a blast furnace gas holder, a converter gas holder, etc.) for stocking a predetermined amount for each by-product gas is provided. is set up. However, when the blowing of multiple converters overlapped, the converter gas holder could not be stocked and was forced to be released into the atmosphere.

そこで、高炉ガスと転炉ガスとコークスガスとを混合する混合ガス製造設備と、混合ガスを使用(燃焼)する混合ガス使用設備と、転炉ガスを使用(燃焼)する発電設備と、が設置されている製鉄所において、発電設備行きの転炉ガス流量を維持することを前提に、予め、吹錬タイミング等から副生ガスの経時的な発生量を予測して、混合ガス使用設備行きの転炉ガス流量を加減する発明が開示されている(例えば、特許文献1参照)。
特開平2−254115号公報(第4−5頁、第1図)
Therefore, a mixed gas production facility that mixes blast furnace gas, converter gas, and coke gas, a mixed gas facility that uses (combusts) the mixed gas, and a power generation facility that uses (burns) the converter gas are installed. Assuming that the converter gas flow rate to the power generation facility is maintained at the steelworks, the amount of by-product gas generated over time is predicted in advance from the blowing timing, etc. An invention for adjusting the converter gas flow rate is disclosed (for example, see Patent Document 1).
JP-A-2-254115 (page 4-5, FIG. 1)

したがって、前記特許文献1に開示された発明によると、転炉ガスの放散を不要にするだけでなく、副生ガスホルダを小さくすることができる等の顕著な効果を奏するものの、かかる発明は、混合ガスをガス発電設備に使用しているため、単位発熱量が変化した場合には、(あ)火炎温度の上昇によって燃焼器(バーナ)近傍の温度が上昇し、該温度上昇による機器の溶損や熱損傷等、(い)燃焼速度が変化することによる燃焼の不安定等、の問題が残る。   Therefore, according to the invention disclosed in the above-mentioned Patent Document 1, not only does the conversion of the converter gas become unnecessary, but also the by-product gas holder can be made small. Since gas is used for gas power generation equipment, if the unit calorific value changes, (a) the temperature near the combustor (burner) rises due to the rise in flame temperature, and the equipment is damaged due to the temperature rise. (I) Combustion instability due to changes in combustion speed, such as heat damage, remain.

本発明は上記に鑑みて発明されたものであって、転炉ガスの放散を抑制し、かつ発電設備の燃焼器(バーナ)等の機器損傷の防止や効率的な燃焼を可能とする製鉄所内ガス供給システムを提供することを目的とする。   The present invention has been invented in view of the above, and suppresses the diffusion of converter gas, and prevents damage to equipment such as a combustor (burner) of a power generation facility and enables efficient combustion in an ironworks. An object is to provide a gas supply system.

(1)本発明の製鉄所内ガス供給システムは、製鉄所における複数の転炉から発生する転炉ガスを貯蔵する転炉ガスホルダと、
該転炉ガスホルダから前記転炉ガスを転炉ガス燃焼設備に供給する転炉ガス配管と、
前記製鉄所における高炉から発生する高炉ガスを貯蔵する高炉ガスホルダと、
該高炉ガスホルダから前記高炉ガスを高炉ガス使用設備に供給する高炉ガス配管と、
前記転炉ガス配管と前記高炉ガス配管とを連通して前記転炉ガスを前記高炉ガスに添加するための連通配管と、を有する。
(1) The steel plant gas supply system of the present invention includes a converter gas holder for storing converter gas generated from a plurality of converters in the steel plant,
A converter gas pipe for supplying the converter gas from the converter gas holder to a converter gas combustion facility;
A blast furnace gas holder for storing blast furnace gas generated from a blast furnace in the steel works,
Blast furnace gas piping for supplying the blast furnace gas from the blast furnace gas holder to the blast furnace gas use facility;
A communication pipe for communicating the converter gas pipe and the blast furnace gas pipe to add the converter gas to the blast furnace gas.

(2)また、前記連通配管に、添加される前記転炉ガスの流量を調整する流量調整弁と、添加される前記転炉ガスの流量を測定する流量計と、が設置され、
前記高炉ガス配管の前記連通配管との連通部より下流の位置に、前記転炉ガスが添加された後の前記高炉ガスの発熱量を測定するカロリ計が設置されていることを特徴とする。
(2) Further, a flow rate adjusting valve that adjusts the flow rate of the added converter gas and a flow meter that measures the flow rate of the added converter gas are installed in the communication pipe,
A calorimeter for measuring the calorific value of the blast furnace gas after the converter gas is added is installed at a position downstream of a communication portion of the blast furnace gas pipe with the communication pipe.

(3)また、前記転炉ガスが添加された後の前記高炉ガスの発熱量の増加割合が、前記転炉ガスが添加される前の前記高炉ガスの発熱量に対して、10%以下であることを特徴とする。   (3) The rate of increase in the calorific value of the blast furnace gas after the converter gas is added is 10% or less with respect to the calorific value of the blast furnace gas before the converter gas is added. It is characterized by being.

(4)また、前記複数の転炉のうち少なくとも2基の転炉の吹錬が重なった場合に、前記転炉ガスが前記高炉ガスに添加されることを特徴とする。   (4) The converter gas is added to the blast furnace gas when the blowing of at least two converters of the plurality of converters overlaps.

したがって、本発明の製鉄所内ガス供給システムは以下の効果を奏する。
(i)転炉ガスを高炉ガスに添加するための連通配管を有するから、特別な混合ガス製造設備を設置することなく転炉ガスの放散を防止することができる。
Therefore, the steelworks gas supply system of the present invention has the following effects.
(I) Since the communication pipe for adding the converter gas to the blast furnace gas is provided, it is possible to prevent the converter gas from being diffused without installing a special mixed gas production facility.

(ii)また、転炉ガスが添加された後の高炉ガス(以下、「添加高炉ガス」と称す)の発熱量を測定するカロリ計が設置されているから、添加高炉ガスの発熱量が管理され、特別な混合ガス使用設備を設置することなく、添加高炉ガスを使用することができる。   (Ii) In addition, a calorimeter is installed to measure the calorific value of the blast furnace gas (hereinafter referred to as “added blast furnace gas”) after the converter gas is added, so the calorific value of the added blast furnace gas is controlled. The added blast furnace gas can be used without installing a special mixed gas use facility.

(iii)また、添加高炉ガスの発熱量の増加割合が10%以下であるから、高炉ガスを使用する設備において、添加高炉ガスを使用(燃焼)することができる。   (Iii) Moreover, since the increasing rate of the calorific value of the added blast furnace gas is 10% or less, the added blast furnace gas can be used (combusted) in the facility using the blast furnace gas.

(iv)少なくとも2基の転炉の吹錬が重なった場合に、転炉ガスが高炉ガスに添加されるから、転炉ガスホルダを小さくすることができる。   (Iv) Since the converter gas is added to the blast furnace gas when the blowing of at least two converters overlaps, the converter gas holder can be made small.

図1は本発明の実施の形態に係る製鉄所内ガス供給システムを模式的に説明する構成図である。図1において、製鉄所内ガス供給システム100は、転炉ガス系として、製鉄所における第1転炉11a、第2転炉11b・・・(以下まとめて「転炉11」と称す)から発生する転炉ガスを輸送するための転炉ガス上流配管12と、転炉ガス上流配管12を経由して輸送された転炉ガスを貯蔵する転炉ガスホルダ14と、転炉ガスホルダ14から転炉ガスを転炉ガス燃焼設備(たとえば、圧延工場等の加熱炉)17に供給する転炉ガス下流配管(以下、単に「転炉ガス配管」と称する場合がある)15と、転炉ガス上流配管12に連通し過剰な転炉ガスを大気中に放散する燃焼放散塔13と、転炉ガス下流配管15に設置されて転炉ガスを送るブロア16と、を有している。   FIG. 1 is a configuration diagram for schematically explaining a gas supply system in an ironworks according to an embodiment of the present invention. In FIG. 1, a steel plant gas supply system 100 is generated as a converter gas system from a first converter 11a, a second converter 11b (hereinafter collectively referred to as “converter 11”) in the steel plant. Converter gas upstream pipe 12 for transporting the converter gas, converter gas holder 14 for storing the converter gas transported via the converter gas upstream pipe 12, and converter gas from the converter gas holder 14 A converter gas downstream pipe (hereinafter sometimes simply referred to as “converter gas pipe”) 15 supplied to a converter gas combustion facility (for example, a heating furnace of a rolling mill or the like) 17, and a converter gas upstream pipe 12 It has a combustion stripping tower 13 for dissipating excess converter gas into the atmosphere, and a blower 16 installed in the converter gas downstream pipe 15 for sending the converter gas.

また、高炉ガス系として、製鉄所における第1高炉21a、第2高炉21b・・・(以下まとめて「高炉21」と称す)から発生する高炉ガスを輸送するための高炉ガス上流配管22と、高炉ガス上流配管22を経由して輸送された高炉ガスを貯蔵する高炉ガスホルダ24と、高炉ガスホルダ24から高炉ガスを高炉ガス使用設備(たとえば、発電所)27に供給する高炉ガス下流配管25と、高炉ガス下流配管25に設置されたカロリ計26と、を有している。
さらに、連通系として、転炉ガス下流配管15のブロア16よりも下流の位置と、高炉ガス下流配管25のカロリ計26よりも上流の位置とを連通する、連通配管31が設置され、連通配管31には流量調整弁32と流量計33とが設置されている。
Further, as a blast furnace gas system, a blast furnace gas upstream pipe 22 for transporting blast furnace gas generated from a first blast furnace 21a, a second blast furnace 21b (hereinafter collectively referred to as “blast furnace 21”) in an iron works, A blast furnace gas holder 24 for storing the blast furnace gas transported via the blast furnace gas upstream pipe 22, a blast furnace gas downstream pipe 25 for supplying the blast furnace gas from the blast furnace gas holder 24 to a blast furnace gas use facility (for example, a power plant) 27, And a calorimeter 26 installed in the blast furnace gas downstream pipe 25.
Further, as a communication system, a communication pipe 31 is provided, which communicates a position downstream of the blower 16 of the converter gas downstream pipe 15 and a position upstream of the calorimeter 26 of the blast furnace gas downstream pipe 25. A flow control valve 32 and a flow meter 33 are installed at 31.

したがって、転炉ガスを高炉ガスに添加することができるから、吹錬が重なった場合であっても転炉ガスの放散を防止することができる。
また、カロリ計26によって、添加高炉ガスの発熱量を測定しながら、連通配管31に設置された流量調整弁32を調整(制御)することができるから、高炉ガス使用設備27において使用可能な発熱量の範囲内に添加高炉ガスの発熱量を治めることが可能になる。よって、高炉ガス使用設備27では、転炉ガスを使用したときの、同一の燃焼器(バーナや燃焼空気配管等)での対応が可能となる。
Therefore, since the converter gas can be added to the blast furnace gas, it is possible to prevent the converter gas from being diffused even when the blowing is overlapped.
Further, the calorimeter 26 can adjust (control) the flow rate adjustment valve 32 installed in the communication pipe 31 while measuring the calorific value of the added blast furnace gas. It becomes possible to control the heating value of the added blast furnace gas within the range of the amount. Therefore, in the blast furnace gas using facility 27, it is possible to cope with the same combustor (burner, combustion air piping, etc.) when the converter gas is used.

(実施例)
図2および図3、本発明の実施の形態に係る製鉄所内ガス供給システムの実施例を説明する、図2は定常運転時、図3は非定常運転時であって、それぞれ(a)は吹錬動作図、(b)は転炉ガス発生経過図、(c)は転炉ガスホルダ貯蔵量経過図である。
なお、転炉ガスホルダ14の容量は7万m3で、4基の転炉(第1転炉11a、第2転炉11b、第3転炉11c、第4転炉11d)から転炉ガスが流入する。また、高炉ガスホルダ24の容量は15万m3である。
(Example)
FIG. 2 and FIG. 3 illustrate an example of an in-house gas supply system according to an embodiment of the present invention. FIG. 2 is a steady operation, FIG. 3 is an unsteady operation, (B) is a converter gas generation progress diagram, (c) is a converter gas holder storage amount progress diagram.
The converter gas holder 14 has a capacity of 70,000 m 3 , and converter gas is supplied from four converters (first converter 11a, second converter 11b, third converter 11c, and fourth converter 11d). Inflow. The capacity of the blast furnace gas holder 24 is 150,000 m 3 .

(定常運転時)
図2の(a)において、4基の転炉11の吹錬時間はそれぞれ20分であって、順次5分間づつラップして稼働しているから、時間当たり4チャージの吹錬が実行されている。
図2の(b)において、1基だけの単独吹錬のとき、69千Nm3/Hの転炉ガスが発生し、2基の吹錬がラップしたとき、138千Nm3/Hの転炉ガスが発生し、平均すると87千Nm3/Hになっている。
(During steady operation)
In FIG. 2 (a), the blowing time of the four converters 11 is 20 minutes each, and since the operation is carried out by wrapping sequentially for 5 minutes, four charges per hour are blown. Yes.
In (b) of FIG. 2, when only one unit is blown alone, a converter gas of 69,000 Nm 3 / H is generated, and when two units are wrapped, 138,000 Nm 3 / H is converted. furnace gas is generated, which is an average for the 87 thousand Nm 3 / H.

図2の(c)において、1基だけの単独吹錬の間は、転炉ガスの発生量よりも転炉ガス使用設備17への払出量のほうが多いため、転炉ガスホルダの貯蔵量は単調に減少している。一方、2基の吹錬がラップしたとき、転炉ガスの発生量の方が転炉ガス使用設備17への払出量より多いため、転炉ガスホルダの貯蔵量は単調に増加している。このとき、貯蔵量が5万m3を超えるものの、容量7万m3に到達することはない。すなわち、5分間程度のラップによる転炉ガス発生量の変動は転炉ガスホルダ14の容量内で吸収することができる。 In FIG. 2 (c), during the single blowing of only one unit, the amount of discharge to the converter gas using equipment 17 is larger than the amount of converter gas generated, so the storage amount of the converter gas holder is monotonous. Has decreased. On the other hand, when the two blows are wrapped, the amount of converter gas generated is larger than the amount discharged to the converter gas use facility 17, and therefore the storage amount of the converter gas holder monotonously increases. At this time, although the storage amount exceeds 50,000 m 3 , the capacity does not reach 70,000 m 3 . That is, the fluctuation of the converter gas generation amount due to the lap for about 5 minutes can be absorbed within the capacity of the converter gas holder 14.

(非定常運転時)
図3の(a)は、吹錬開始時刻がバラつき、ラップ時間が10分で、時間当たり5.25チャージあるいは5.50チャージの吹錬が実行されている。かかるバラつきは、高炉での出銑遅れや、転炉で設備トラブル等による。
図3の(b)において、1基だけの単独吹錬のとき、69千Nm3/Hの転炉ガスが発生し、2基の吹錬がラップしたとき、138千Nm3/Hの転炉ガスが発生し、しかも、2基の吹錬が長時間に及ぶため、平均すると121千Nm3/Hあるいは127千Nm3/Hの転炉ガスが発生している。
図3の(c)において、前記のように転炉ガスの平均発生量が転炉ガス使用設備17への払出量よりも多くなるため、転炉ガスホルダ14の貯蔵量は増大し、容量である7万m3に到達している。このとき、流量調整弁32を開け、転炉ガスが高炉ガスに添加されているから、転炉ガスの放散が防止されている。
(Unsteady operation)
In FIG. 3 (a), the blowing start time varies, the lap time is 10 minutes, and 5.25 charge or 5.50 charge blowing is performed per hour. Such variations are due to delays in tapping in the blast furnace and equipment troubles in the converter.
In FIG. 3 (b), when only one unit is blown alone, a converter gas of 69,000 Nm 3 / H is generated, and when two units are wrapped, 138,000 Nm 3 / H is converted. Furnace gas is generated, and furthermore, since the two blowing operations take a long time, an average of 121 thousand Nm 3 / H or 127 thousand Nm 3 / H converter gas is generated.
In FIG. 3C, since the average amount of converter gas generated is larger than the amount discharged to the converter gas use facility 17 as described above, the storage amount of the converter gas holder 14 is increased and is the capacity. It has reached 70,000 m 3 . At this time, since the flow rate adjusting valve 32 is opened and the converter gas is added to the blast furnace gas, the converter gas is prevented from being diffused.

すなわち、高炉ガス使用設備27に1279千Nm3/Hの高炉ガスが供給されていたところ、その約3%に相当する37千Nm3/Hの転炉ガスが添加されているから、高炉ガス使用設備27には1316(=1279+37)千Nm3/Hの添加高炉ガスが供給されることになる。なお、転炉ガスの発熱量は2000kcal/Nm3で、高炉ガスの発熱量は800kcal/Nm3であるから、かかる添加による添加高炉ガスの発熱量は834kcal/Nm3になる。
高炉ガス使用設備27は、高炉ガス単独使用のとき、1023百万kcal/H(1279千Nm3/H×800kcal/Nm3)の発熱量であったものが、添加高炉ガス使用により、1097百万kcal/H(1316Nm3/H×834kcal/Nm3)の発熱量に、約7.3%増大したことになる。
That is, since 129,000 Nm 3 / H blast furnace gas was supplied to the blast furnace gas use facility 27, 37,000 Nm 3 / H converter gas corresponding to about 3% of the blast furnace gas was added. the use facility 27 will be 1316 (= 1279 + 37) thousand added blast furnace gas Nm 3 / H is supplied. Incidentally, the heating value of the converter gas is 2000 kcal / Nm 3, since the calorific value of the blast furnace gas is 800 kcal / Nm 3, the heating value of added blast furnace gas by such addition will 834kcal / Nm 3.
The blast furnace gas use facility 27 had a calorific value of 1023 million kcal / H (1279000 Nm 3 / H × 800 kcal / Nm 3 ) when the blast furnace gas was used alone. This is an increase of about 7.3% to a calorific value of 10,000 kcal / H (1316 Nm 3 / H × 834 kcal / Nm 3 ).

すなわち、添加高炉ガスの発熱量の増加が10%以下に抑えられているから、高炉ガス使用設備27における燃焼器の溶損が防止されと共に、効率的な燃焼が可能となり、また、供給されるガス量も増大するから、高炉ガス使用設備27の出力(たとえば、発電量)が増大する。   That is, the increase in the calorific value of the added blast furnace gas is suppressed to 10% or less, so that the combustor in the blast furnace gas using facility 27 is prevented from being melted and efficiently combusted and supplied. Since the gas amount also increases, the output (for example, power generation amount) of the blast furnace gas using facility 27 increases.

本発明は以上であるから、製鉄所において、転炉ガスの放散を防止する製鉄所内ガス供給システムとして広く利用することができる。   Since the present invention is as described above, it can be widely used as a gas supply system in a steelworks for preventing the diffusion of converter gas in steelworks.

本発明の実施の形態に係る製鉄所内ガス供給システムを説明する模式構成図。The schematic block diagram explaining the steel supply gas supply system which concerns on embodiment of this invention. 図1に示す製鉄所内ガス供給システムの実施例を説明する吹錬動作図等(定常運転時)。The blowing operation figure etc. (at the time of steady operation) explaining the Example of the gas supply system in a steelworks shown in FIG. 図1に示す製鉄所内ガス供給システムの実施例を説明する吹錬動作図等(非定常運転時)。The blowing operation figure etc. explaining the Example of the gas supply system in a steelworks shown in FIG. 1 (at the time of unsteady operation).

符号の説明Explanation of symbols

11 転炉
12 転炉ガス上流配管
13 燃焼放散塔
14 転炉ガスホルダ
15 転炉ガス下流配管
16 ブロア
17 転炉ガス使用設備
21 高炉
22 高炉ガス上流配管
24 高炉ガスホルダ
25 高炉ガス下流配管
26 カロリ計
27 高炉ガス使用設備
31 連通配管
32 流量調整弁
33 流量計
DESCRIPTION OF SYMBOLS 11 Converter 12 Converter gas upstream piping 13 Combustion / dissipation tower 14 Converter gas holder 15 Converter gas downstream piping 16 Blower 17 Converter gas use equipment 21 Blast furnace 22 Blast furnace gas upstream piping 24 Blast furnace gas holder 25 Blast furnace gas downstream piping 26 Calorimeter 27 Blast furnace gas use equipment 31 Communication piping 32 Flow control valve 33 Flow meter

Claims (4)

製鉄所における複数の転炉から発生する転炉ガスを貯蔵する転炉ガスホルダーと、
該転炉ガスホルダーから前記転炉ガスを転炉ガス燃焼設備に供給する転炉ガス配管と、
前記製鉄所における高炉から発生する高炉ガスを貯蔵する高炉ガスホルダーと、
該高炉ガスホルダーから前記高炉ガスを高炉ガス燃焼設備に供給する高炉ガス配管と、
前記転炉ガス配管と前記高炉ガス配管とを連通して前記転炉ガスを前記高炉ガスに添加するための連通配管と、を有する製鉄所内ガス供給システム。
A converter gas holder for storing converter gas generated from a plurality of converters in an ironworks;
A converter gas pipe for supplying the converter gas to the converter gas combustion facility from the converter gas holder;
A blast furnace gas holder for storing blast furnace gas generated from a blast furnace in the steel works,
Blast furnace gas piping for supplying the blast furnace gas from the blast furnace gas holder to a blast furnace gas combustion facility;
A gas supply system in a steelworks, comprising: a communication pipe for communicating the converter gas pipe and the blast furnace gas pipe to add the converter gas to the blast furnace gas.
前記連通配管に、添加される前記転炉ガスの流量を調整する流量調整弁と、添加される前記転炉ガスの流量を測定する流量計と、が設置され、
前記高炉ガス配管の前記連通配管との連通部より下流の位置に、前記転炉ガスが添加された後の前記高炉ガスの発熱量を測定するカロリ計が設置されていることを特徴とする請求項1記載の製鉄所内ガス供給システム。
A flow rate adjusting valve for adjusting the flow rate of the added converter gas and a flow meter for measuring the flow rate of the added converter gas are installed in the communication pipe,
The calorimeter for measuring the calorific value of the blast furnace gas after the converter gas is added is installed at a position downstream of a communication portion of the blast furnace gas pipe with the communication pipe. Item 2. A steel supply gas supply system according to item 1.
前記転炉ガスが添加された後の前記高炉ガスの発熱量の増加割合が、前記転炉ガスが添加される前の前記高炉ガスの発熱量に対して、10%以下であることを特徴とする請求項1または2記載の製鉄所内ガス供給システム。   The increase rate of the calorific value of the blast furnace gas after the converter gas is added is 10% or less with respect to the calorific value of the blast furnace gas before the converter gas is added. The steelworks gas supply system according to claim 1 or 2. 前記複数の転炉のうち少なくとも2基の転炉の吹錬が重なった場合に、前記転炉ガスが前記高炉ガスに添加されることを特徴とする請求項1乃至3の何れかに記載の製鉄所内ガス供給システム。
The converter gas according to any one of claims 1 to 3, wherein the converter gas is added to the blast furnace gas when blowing of at least two converters of the plurality of converters overlaps. Gas supply system in steelworks.
JP2006095487A 2006-03-30 2006-03-30 Gas supply system in steelworks Active JP4742948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095487A JP4742948B2 (en) 2006-03-30 2006-03-30 Gas supply system in steelworks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095487A JP4742948B2 (en) 2006-03-30 2006-03-30 Gas supply system in steelworks

Publications (2)

Publication Number Publication Date
JP2007270210A true JP2007270210A (en) 2007-10-18
JP4742948B2 JP4742948B2 (en) 2011-08-10

Family

ID=38673313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095487A Active JP4742948B2 (en) 2006-03-30 2006-03-30 Gas supply system in steelworks

Country Status (1)

Country Link
JP (1) JP4742948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193766B1 (en) 2010-08-30 2012-10-23 현대제철 주식회사 Method for heating value stabilizing of blast furnace gas
JP2014201816A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Mixed gas flow rate control method of converter gas
CN114134265A (en) * 2021-11-30 2022-03-04 天津市新天钢联合特钢有限公司 Converter and blast furnace gas supply method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254115A (en) * 1989-03-28 1990-10-12 Nkk Corp Method for controlling automatic distribution of converter gas
JPH08261399A (en) * 1995-03-22 1996-10-11 Nippon Steel Corp Parallel operation device and control method for gas holder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254115A (en) * 1989-03-28 1990-10-12 Nkk Corp Method for controlling automatic distribution of converter gas
JPH08261399A (en) * 1995-03-22 1996-10-11 Nippon Steel Corp Parallel operation device and control method for gas holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193766B1 (en) 2010-08-30 2012-10-23 현대제철 주식회사 Method for heating value stabilizing of blast furnace gas
JP2014201816A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Mixed gas flow rate control method of converter gas
CN114134265A (en) * 2021-11-30 2022-03-04 天津市新天钢联合特钢有限公司 Converter and blast furnace gas supply method

Also Published As

Publication number Publication date
JP4742948B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP2014109276A (en) System and method for operating gas turbine in turndown mode
KR101386053B1 (en) Apparatus and method of combustion exhaust control in regenerative reheating furnace
JP6256710B2 (en) Oxygen blast furnace operation method
JP2010223222A (en) System and method for reintroducing combustion bypass flow of gas turbine
JP4742948B2 (en) Gas supply system in steelworks
JP2012112551A (en) Coal and biomass co-combustion apparatus
US7232542B2 (en) Preheating cold blast air of a blast furnace for tempering the hot blast temperature
JP5524502B2 (en) Coke dry fire extinguishing equipment and operation method thereof
JP2015206559A (en) Fuel control method and fuel control device of blast furnace gas boiler
JP6588021B2 (en) A system that uses residual heat to carry out electrochemical reactions
JP5203421B2 (en) melting furnace
JP5552786B2 (en) Method for stopping operation of coal-fired boiler equipment and its operation stop device
JP2007101128A (en) Heat storage type burner device and its operation method
JP2014169825A (en) Fuel control method under blast furnace open ceiling in blast furnace gas-fired boiler and fuel control device
JP2003129119A (en) Method for feeding fuel gas into hot-blast stove
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
JP2011252666A (en) Burner device, combustion method of burner, and control memory for the same
JP2010216728A (en) Method of controlling switching of fuel in boiler and boiler device
JP5183605B2 (en) Low calorie gas fired gas turbine system and method of operating the system
JP2012107292A (en) Combustion control apparatus of hot blast stove, and combustion control method of hot blast stove
JP6365553B2 (en) Power adjustment method
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
JP2001026816A (en) Operation of continuous heating furnace
JP6341188B2 (en) Furnace temperature control method and furnace temperature control apparatus for heating furnace
CN103740873A (en) Blast furnace ironmaking system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250