JPH02254115A - Method for controlling automatic distribution of converter gas - Google Patents

Method for controlling automatic distribution of converter gas

Info

Publication number
JPH02254115A
JPH02254115A JP7384789A JP7384789A JPH02254115A JP H02254115 A JPH02254115 A JP H02254115A JP 7384789 A JP7384789 A JP 7384789A JP 7384789 A JP7384789 A JP 7384789A JP H02254115 A JPH02254115 A JP H02254115A
Authority
JP
Japan
Prior art keywords
gas
converter
amount
mixed
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7384789A
Other languages
Japanese (ja)
Other versions
JPH0826384B2 (en
Inventor
Toshiaki Goto
後藤 俊彰
Yoichi Hanji
判治 洋一
Nobuo Nakamura
信夫 中村
Toshiro Yamada
俊郎 山田
Tomio Terasaki
富雄 寺崎
Takamichi Suzuki
孝通 鈴木
Tetsuya Koide
哲也 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
JFE Engineering Corp
Original Assignee
Fuji Electric Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7384789A priority Critical patent/JPH0826384B2/en
Publication of JPH02254115A publication Critical patent/JPH02254115A/en
Publication of JPH0826384B2 publication Critical patent/JPH0826384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To miniaturize the equipment and to prevent loss of gas and lowering of power generating efficiency by controlling automatically distribution of converter gas for supplying into mixed gas producing equipment and power generating equipment together with blast furnace gas and coke oven gas according to the generating condition thereof. CONSTITUTION:By-product gases of the blast furnace 1, coke oven 2 and converter 3 are supplied into the power generating equipment 5 and the mixed gas producing equipment 6. Then, the generating condition of the above converter gas is assumed with a control system (computer) 9 based on informations in operational condition of the converter 3. From this generating condition and discharging condition, storing level in a converter gas holder 4c is assumed and the discharge of the converter gas is controlled within the range of the upper and lower limits thereof. Further, according to the storing level of holders 4a, 4b for blast furnace gas and coke oven gas, the discharge of the converter gas into the mixed gas producing equipment 6 is controlled. The quantity to be impossible to treat to this is supplied into the power generating equipment 5 and controlled. By this method, the distribution of the converter gas is controlled automatically and labor saving and miniaturization of the gas holder are obtd. and also the useless discharge of the by-product gas and the efficiency lowering of the power generating equipment, etc., are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉ガスの自動配分制御方法に関するもので
あり、更に詳しくは、少なくとも高炉で副生される高炉
ガスとコークス炉で副生されるコクス炉ガスと転炉で副
生きれる転炉ガスとを供給されて混合ガスを製造する混
合ガス製造設O1なと、少なくとも前記転炉ガスを吸収
することができる発電設備と、に対して前記転炉におい
て副生きれた転炉ガスをバッファとしての転炉ガスホル
ダに一旦蓄えた後、配分して払い出す転炉ガスの払い出
し系における転炉ガスの自動配分制御方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for automatically controlling the distribution of converter gas, and more specifically, the present invention relates to a method for automatically controlling the distribution of converter gas, and more specifically, at least the distribution of blast furnace gas by-produced in a blast furnace and by-produced in a coke oven. A mixed gas production facility O1 that produces a mixed gas by being supplied with cox oven gas and converter gas that can be used as an auxiliary gas in a converter, and a power generation facility that can absorb at least the converter gas. The present invention relates to an automatic converter gas distribution control method in a converter gas dispensing system in which converter gas subliminated in the converter is once stored in a converter gas holder as a buffer and then distributed and discharged.

〔従来の技術〕[Conventional technology]

従来、このような転炉ガスの配分調整作業は、オペレー
タが転炉の作業計画(つまり転炉ガスの発生予測状況)
及び高炉ガス、コークス炉ガス転炉ガスのバッファとし
ての各ガスホルダにおけるガス貯蔵レベルの状況、混合
ガス製造設備で製造される混合ガスの量、発電設備へ供
給される各ガス量などのプロセスデークを、デイスプレ
ィ装置としてのCRTや計器類から目視で判断しながら
、各ガスの需給バランスを考慮しつつ、各ガスホルダの
ガス貯蔵レベルを上下限値以内に保つよう、混合ガス製
造設備行き転炉ガス流量と発電設備行き転炉ガス流量を
勘と経験により手動で調整していた。
Conventionally, such converter gas distribution adjustment work was done by the operator based on the converter work plan (in other words, the predicted status of converter gas generation).
Process data such as the status of gas storage levels in each gas holder as a buffer for blast furnace gas, coke oven gas and converter gas, the amount of mixed gas produced by mixed gas production equipment, and the amount of each gas supplied to power generation equipment. The flow rate of converter gas to the mixed gas production equipment is determined visually from the CRT as a display device and instruments, taking into account the supply and demand balance of each gas, and keeping the gas storage level of each gas holder within the upper and lower limits. The converter gas flow rate to the power generation equipment was manually adjusted based on intuition and experience.

[発明が解決しようとする課題] しかしながら、」二記手動による調整方法によるのでは
、転炉ガス発生が転炉吹錬時のみという間欠的なもので
あり、ガスの貯蔵バッファとしてのホルダの容量がコス
トの関係で小さい場合には、ガス流量がホルダ容量に比
して大きいので、ある程度光を見通してホルダからガス
を払出す、あるいは需要にそなえて貯めておく、という
ことをしないと、ホルダ内のガス貯蔵レベルがその上下
限をオーバーすることがある。
[Problems to be Solved by the Invention] However, with the manual adjustment method described in Section 2, converter gas is generated only intermittently during converter blowing, and the capacity of the holder as a gas storage buffer is limited. If the gas flow rate is small due to cost reasons, the gas flow rate is large compared to the holder capacity, so the holder cannot be used unless the gas is discharged from the holder with a certain degree of visibility or stored in preparation for demand. The gas storage level within the tank may exceed its upper and lower limits.

更に、操業時に諸般の事情から転炉吹錬の予定変更が頻
繁に行なわれることがあって転炉ガス発生の予測が正確
には立たないこと、また混合ガス製造設備行き転炉ガス
の流量を変更することは、該設備につながっている高炉
ガス、コークス炉ガスの各ホルダのガス貯蔵レベルにも
影響を及はずのでこれも勘案しなげればならないこと、
また、発電所行きの流量はその操業効率低下を防くため
、出来るだけ一定に保たなければならないこと、などの
制約があるため、これらと関連ずけて各ガスの需給バラ
ンス調整を行なわなければならない。
Furthermore, due to various circumstances during operation, the schedule for converter blowing is frequently changed, making it difficult to accurately predict converter gas generation. Changes should also have an impact on the gas storage levels of the blast furnace gas and coke oven gas holders connected to the equipment, so this must also be taken into consideration;
Additionally, there are constraints such as the need to keep the flow rate to the power plant as constant as possible to prevent a drop in operating efficiency, so the supply and demand balance for each gas must be adjusted in conjunction with these constraints. Must be.

すなわち、このような転炉ガスの払い出し系においては
、非常に多くの情報(転炉操業計画、吹錬実績、高炉ガ
ス、コークス炉ガス、転炉ガスの各ホルダのガス貯蔵レ
ベル、及び該レベルの推移状況、高炉ガス、コークス炉
ガス、混合ガスの使用状況及びその予測1発電所の負荷
状態など)に依存して瞬時に判断して、転炉ガスの総払
出量とその配分を決定する必要がある上、その決定方法
も複雑であるため以下のような問題点があった。
In other words, in such a converter gas discharging system, a very large amount of information (converter operation plan, blowing results, gas storage level of each holder for blast furnace gas, coke oven gas, and converter gas, The total amount of converter gas to be discharged and its distribution are determined by making instantaneous judgments based on the trends in blast furnace gas, coke oven gas, mixed gas usage status, and predictions (1) of the load status of the power plant, etc. Not only is this necessary, but the method for determining it is also complicated, leading to the following problems.

(イ)判断の基礎とすべき情報量が多い上に、ガス貯蔵
ハ、/ファとしてのガスホルダの容量がコストの関係で
小さい場合乙こは、判断に費ずことのできる時間が短く
、またその頻度も高いのでオペレータにかかる負担が大
きい。
(b) When there is a large amount of information to be used as a basis for judgment, and the capacity of the gas holder for gas storage is small due to cost considerations, the time available for making judgments is short, and Since the frequency is high, the burden placed on the operator is large.

(ロ)オペレータによって判断レベルに差があるので、
その判断内容のばらつきと誤りによる調整不良で、副生
ガスのロス(放散)、あるいは発電所行きの流量の変更
回数増による効率低下、を招くことがある。
(b) Since there are differences in the level of judgment depending on the operator,
Improper adjustment due to variations in the content of the judgment and errors can lead to loss (dissipation) of by-product gas or a decrease in efficiency due to an increase in the number of changes in the flow rate to the power plant.

本発明の目的は、上述の如き問題点を解決し、オペレー
タにかける負担が少な(、省力化ができると共に、各ガ
スホルダの容量が小さくてもガス貯蔵レベルの上下限突
破がなく、副生ガスの無駄な放散や発電設備の効率低下
環を招くことのない転炉ガスの自動配分制御方法を提供
することにある。
The purpose of the present invention is to solve the above-mentioned problems, reduce the burden on the operator (and save labor), and prevent the gas storage level from exceeding the upper and lower limits even if the capacity of each gas holder is small. An object of the present invention is to provide an automatic distribution control method for converter gas that does not cause wasteful dissipation of gas or reduce the efficiency of power generation equipment.

〔課題を解決するための手段〕[Means to solve the problem]

」二記目的達成のため、本発明では、少なくとも高炉で
副生される高炉ガスとコークス炉で副生されるコークス
炉ガスと転炉で副生される転炉ガスとを供給されて混合
ガスを製造する混合ガス製造設備と、少なくとも転炉ガ
スを吸収することのできる発電設備と、に対して前記転
炉において副生された転炉ガスをバッファとしての転炉
ガスホルダに一旦蓄えた後、配分して払い出す転炉ガス
の払い出し系において、転炉ガスの自動配分制御を実行
するコンピュータを鍋えた。
In order to achieve the second object, the present invention provides a mixed gas that is supplied with at least blast furnace gas by-produced in a blast furnace, coke oven gas by-produced in a coke oven, and converter gas by-produced in a converter. After once storing the converter gas by-produced in the converter in a converter gas holder as a buffer, We installed a computer to automatically control the distribution of converter gas in the system for distributing and discharging converter gas.

〔作用〕[Effect]

該コンピュータは、転炉の操業に関する情報を与えられ
て該転炉から副生される転炉ガスの発生状況を予測し、
予測したその発生状況と現在の転炉ガス払い出し状況と
から転炉ガスホルダのガス貯蔵レベルの変動を予測し、
予測した転炉ガスホルダのガス貯蔵レベルが予め定めた
一L下限を突破しない範囲で、しかも払い出される転炉
ガス量がなるべく一定に維持されるように調整し、前記
発電設備へ払い出される転炉ガス量は現状を維持すると
して、前記混合ガス製造設備へ払い出される転炉ガス量
を調整した結果として、該混合ガス製造設備へ高炉ガス
を供給する高炉ガスホルダのガス貯蔵レベルと、前記混
合ガス製造設備へコークス炉ガスを供給するコークスガ
スホルダのガス貯蔵レベルと、がどう変動するかを予測
し、予測した両ガスホルダのガス貯蔵レベルが予め定め
た上下限を突破しない範囲で、しかも前記混合ガス製造
設備へ払い出される転炉ガスの混入上下限値を突破しな
いように、前記混合ガス製造設備へ払い出される転炉ガ
ス量を調整し、前記転炉ガスホルダから払い出される転
炉ガス総払出量に対して前記混合ガス製造設備へ払い出
される転炉ガス量では対処不可能な量を前記発電設備へ
払い出される転炉ガス量で調整する。
The computer is given information regarding the operation of the converter and predicts the generation status of converter gas by-produced from the converter,
The system predicts fluctuations in the gas storage level of the converter gas holder based on the predicted occurrence situation and the current converter gas dispensing situation,
Adjustment is made so that the predicted gas storage level of the converter gas holder does not exceed the predetermined lower limit of 1 L and the amount of converter gas to be discharged is maintained as constant as possible, and the converter gas is discharged to the power generation equipment. Assuming that the current amount is maintained, as a result of adjusting the amount of converter gas discharged to the mixed gas production equipment, the gas storage level of the blast furnace gas holder that supplies blast furnace gas to the mixed gas production equipment and the mixed gas production equipment It predicts how the gas storage level of the coke gas holder that supplies coke oven gas to the coke oven gas holder will fluctuate, and the mixed gas production equipment The amount of converter gas discharged to the mixed gas production equipment is adjusted so that the mixed gas discharged to the converter gas does not exceed the upper and lower mixing limits, and the amount of converter gas discharged from the converter gas holder is adjusted to The amount that cannot be handled by the amount of converter gas delivered to the mixed gas production equipment is adjusted by the amount of converter gas delivered to the power generation equipment.

以下、若干具体的に説明する。This will be explained in some detail below.

まず転炉の吹錬時刻の予測は、転炉の作業計画を基Qこ
現在の吹錬実績情報によって予定修正を実行して実情に
近いものとする。例えば吹錬開始予定時刻の直前になっ
ても吹錬準備信号が入らない場合には、吹錬予定時刻を
後方修正する。また全く予定外の時間に実際に吹錬が開
始された場合、予定外の吹錬を行ったと判断して転炉ガ
スの発生量を追加して考慮する。あるいは吹錬は開始し
たが、なかなかガス回収が始まらない場合は、ガスの発
生しない吹錬と判断し、転炉ガスの発生量を予定してい
た分だけ減らずことを実行する。
First, the prediction of the blowing time of the converter is made based on the converter work plan and the schedule is revised based on the current blowing performance information to make it close to the actual situation. For example, if the blowing preparation signal is not received even just before the scheduled blowing start time, the blowing scheduled time is adjusted backward. Furthermore, if blowing actually starts at a completely unscheduled time, it is determined that unscheduled blowing has been performed, and the amount of converter gas generated is additionally taken into consideration. Alternatively, if blowing has started but gas recovery does not start, it is determined that blowing is not generating gas and the amount of converter gas generated is not reduced by the planned amount.

次に予測した転炉ガス回収予定時間や現在のホルダのガ
ス貯蔵レベル、ガス払出量を基に出来るだけ一定のガス
払出量で、転炉ガスホルダのガス貯蔵レベルが許容範囲
内に入るような払出量を算出する。その基本的な考え方
を以下に示す。
Next, based on the predicted converter gas collection time, the current gas storage level of the holder, and the gas discharge amount, the gas discharge amount is as constant as possible, and the gas storage level of the converter gas holder is within the allowable range. Calculate the amount. The basic idea is shown below.

Q i nをガス回収量、Q o u Lをガス払出量
、tI 。
Q in is the gas recovery amount, Q o u L is the gas discharge amount, and tI.

を成る時点におけるホルダのガス貯蔵レベル、H,。1
を次の時点におけるホルダのガス貯蔵レベル、Il、を
ホルダの」二限しベル、I”’i+−をボルダの下限レ
ベル、11.を現在のボルダにおけるガス貯蔵レベル、
とする。すると、近似的に次の式が成立する。
The gas storage level of the holder at a time, H,. 1
is the gas storage level of the holder at the next point in time, Il is the upper limit of the holder, I"'i+- is the lower limit level of the boulder, 11. is the current gas storage level of the boulder,
shall be. Then, approximately the following formula holds true.

めようとしていることから HL ≦ H2S HH HL  ≦  Ho−ト Σ  (Qi、−0,、、、
)   ≦  トIllΣQ、7は既に予測した回収時
刻により与えられるので求めるQ。uLは すなわち 現在のホルダのガス貯蔵レベルをH8を法準にすれば、
Hi=H,+Σ(0,i、、−Q、ut)となり、iの
時のホルダ内ガス貯蔵し・ベルを上下限内に納これでQ
。++1は一定にして(ΣQouLは直線)上式をなる
べく長時間満足させるようなQ。utを求める。
From what we are trying to achieve, HL ≦ H2S HH HL ≦ Ho-to Σ (Qi, -0, ,,
) ≦ IllΣQ, 7 is given by the already predicted collection time, so Q is calculated. uL is, in other words, if the current holder gas storage level is set to H8 as the legal standard,
Hi = H, +Σ(0, i, , -Q, ut), and the gas is stored in the holder at i and the bell is within the upper and lower limits.
. Q is such that ++1 is constant (ΣQouL is a straight line) and the above equation is satisfied for as long as possible. Find ut.

このときの上下限値は可変値とし、設備の物理的な上限
1下限を二対して、その時の?R合ガス使用量及び発電
設備行きの転炉ガス流量によっである値だけ余裕を見込
んで設定する。例えば発電設備jテきの流量がゼロでな
い場合、発電設備のボイラ及びタービンの特性上、急激
に流量をゼロとはできないので、その間にレベルが下が
る量、ずなわら、次式で示される発電設備行きガスを力
、トするまでに流れでしま・うガスftQ、、。。
The upper and lower limits at this time are variable values, and the physical upper and lower limits of the equipment are set to 2 to determine the current value. It is set by allowing a certain amount of margin depending on the amount of R combined gas used and the flow rate of converter gas to the power generation equipment. For example, if the flow rate of the power generation equipment is not zero, due to the characteristics of the boiler and turbine of the power generation equipment, the flow rate cannot be suddenly reduced to zero. The gas flowing to the equipment is cut off by the flow before it is turned on, ftQ. .

但し、(IPS・・・・・・現在の発電設備行き流量t
1・・・・・・変更対応時間 γ ・・・・・流量調節弁の開度変化率たけ余裕を見る
(設備の物理的な下限にこれだけ加算する)。
However, (IPS...Current flow rate t to power generation equipment
1...Change response time γ...Check the margin for the opening change rate of the flow rate control valve (add this amount to the physical lower limit of the equipment).

次に算出されたガス払出量を混合ガス製造設備行きと、
発電設備行きに配分するが、この時まず発電設備行き転
炉ガス流量は現状を維持することを前提に混合ガス製造
設備行きの転炉ガス流量を現状より増加させようとして
いるか、減少させようとしているか、ということ、その
時の高炉ガス及びコークス炉ガスのホルダのガス貯蔵レ
ベルとその推移状況を見て、今調整しようとしている混
合ガス製造設備行き転炉ガス流量が、高炉ガス及びコー
クス炉ガスのホルダのガス貯蔵レベル状況を悪化さゼな
い1頃向かどうか判断して、混合ガス製造設備行きの流
量を決定する。
Next, the calculated gas payout amount is sent to the mixed gas production facility,
At this time, the converter gas flow rate destined for the power generation equipment will be maintained at the current level, and if the converter gas flow rate destined for the mixed gas production equipment is going to be increased or decreased from the current level. By looking at the gas storage levels in the blast furnace gas and coke oven gas holders and their trends, the flow rate of converter gas going to the mixed gas production facility, which is currently being adjusted, is The flow rate to the mixed gas production equipment is determined by determining whether the gas storage level of the holder is about 1 without deteriorating.

さらに変更後の流量が、その時の混合ガス使用量および
混合ガス製造設備行き高炉ガス、コークス炉ガス流量の
上下限値を考慮して混合ガスの熱量指数(ウォソヘイン
デンクス)を一定に保つ様にして求まる混合ガス製造設
備行きの転炉ガス混入上下限値以内かどうかを見て、上
下限値をオーバする分については発電設備行きの流量変
更で対応することとする。
Furthermore, the flow rate after the change will be such that the calorific index of the mixed gas remains constant, taking into account the amount of mixed gas used at that time and the upper and lower limits of the flow rates of blast furnace gas and coke oven gas to the mixed gas production equipment. It will be checked whether the mixed gas content of the converter gas destined for the mixed gas production equipment is within the upper and lower limits determined by the above, and the amount exceeding the upper and lower limits will be dealt with by changing the flow rate to the power generation equipment.

(実施例〕 第1図は本発明の一実施例を説明するための製銑製鋼−
貫製鉄所全体の概略構成を示すブロック図である。
(Example) FIG.
FIG. 1 is a block diagram showing a schematic configuration of the entire steelworks.

同図において、1は高炉ガスを副生ずる高炉、2はコー
クスガスを副生ずるコークス炉、3は転炉ガスを副生ず
る転炉、4aは高炉ガスを貯蔵するバッファとしてのガ
スホルダ、4bはコークス炉ガスを貯蔵するバッファと
してのガスホルダ、4cは転炉ガスを貯蔵するバッファ
としてのガスホルダ、5は高炉ガス、コークス炉ガス、
転炉ガスを供給されて電力を発電する自家用発電設備、
6は高炉ガス、コークス炉ガス、転炉ガスを供給されて
その混合ガスを製造する混合ガス製造設備、7は高炉ガ
スやコークス炉ガスを単味で(つまり単味ガスとして)
供給されて使用する工場、8は(lI合ガスを供給され
て使用する工場、9は制御ソステム(コンピュータ)、
12は他システム、103〜10cはそれぞれ自家用発
電設備へ供給される副生ガスの流量調節弁、lla〜l
lcはそれぞれ混合ガス製造設備へ供給される副生ガス
の流量調節弁、である。
In the figure, 1 is a blast furnace that produces blast furnace gas as a by-product, 2 is a coke oven that produces coke gas as a by-product, 3 is a converter that produces converter gas as a by-product, 4a is a gas holder as a buffer for storing blast furnace gas, and 4b is a coke oven. A gas holder as a buffer for storing gas, 4c a gas holder as a buffer for storing converter gas, 5 blast furnace gas, coke oven gas,
Private power generation equipment that generates electricity by being supplied with converter gas,
6 is a mixed gas production facility that is supplied with blast furnace gas, coke oven gas, and converter gas to produce a mixed gas; 7 is a mixed gas production facility that uses blast furnace gas or coke oven gas as a single gas (in other words, as a single gas)
8 is a factory that is supplied with and uses lI gas, 9 is a control system (computer),
12 is another system, 103 to 10c are flow rate control valves for by-product gas supplied to private power generation equipment, respectively, lla to l.
lc is a flow rate control valve for the by-product gas supplied to the mixed gas production equipment.

第1図に見られるように、製銑製鋼−貫製鉄所では、高
炉1、コークス炉2、転炉3により各々副生ガス(高炉
ガス、コークス炉ガス、転炉ガス)が発生され、その各
々は副生ガス貯蔵及び変動吸収用のへソファとしてのガ
スホルダ4a  4b4cを経由し、工場7、自家用発
電設備5及び混合ガス製造設備6へ供給される。また混
合ガス製造設備6において混合されたガス(必要に応じ
て窒素ガスも混合される)は混合ガス使用工場8へ供給
される。混合ガス製造設備6では、ある指数(ウォンへ
インデックス)及び圧力が一定となる様、混合制御を行
っており、混合ガスの使用量及び転炉ガスの供給子〇こ
より高炉ガス及びコークス炉ガスの混合される量が制御
されている。
As shown in Figure 1, in the iron and steel making and steel works, byproduct gases (blast furnace gas, coke oven gas, converter gas) are generated by the blast furnace 1, coke oven 2, and converter 3. Each gas is supplied to the factory 7, private power generation equipment 5, and mixed gas production equipment 6 via gas holders 4a, 4b, and 4c, which serve as a sofa for storing by-product gases and absorbing fluctuations. Further, the gas mixed in the mixed gas production facility 6 (nitrogen gas is also mixed as required) is supplied to the mixed gas usage factory 8. Mixed gas production equipment 6 performs mixing control so that a certain index (Wonhe index) and pressure are constant, and the amount of mixed gas used and the supply of converter gas are controlled by the blast furnace gas and coke oven gas. The amount mixed is controlled.

ここで、転炉3において、発生される転炉ガスは、他シ
ステム12からの情報、つまり転炉3における操業計画
、吹錬′$備信号、吹錬開始信号等の情報及び転炉ガス
、高炉ガス、コークス炉ガスの各ホルダ4a〜4Cのガ
ス貯蔵レベル、混合ガスの工場8における使用量、混合
ガス製造設備6行きの各ガス量、自家用発電設置5行き
の各ガス量等の情報をもとに、制御システム9にて演算
が行なわれ、自家用発電段wi5及び混合ガス製造設備
6へ配分する転炉ガスの流量が決定され、自動配分され
る。
Here, the converter gas generated in the converter 3 includes information from other systems 12, that is, information such as the operation plan in the converter 3, the blowing '$ preparation signal, the blowing start signal, etc., and the converter gas, Information such as the gas storage level of each holder 4a to 4C for blast furnace gas and coke oven gas, the amount of mixed gas used in the factory 8, the amount of each gas going to the mixed gas production equipment 6, the amount of each gas going to the private power generation installation 5, etc. Based on this, calculations are performed in the control system 9, and the flow rate of the converter gas to be distributed to the private power generation stage wi5 and the mixed gas production equipment 6 is determined and automatically distributed.

即ち他システム12というのは、転炉3における操業予
定情報を記憶している上位コンピュータや、転炉3の至
近操業情報や実績情報等を収集している更に別のコンピ
ュータ等の全体を含むもので、これらを−括して示した
ものである。
In other words, the other systems 12 include a host computer that stores operation schedule information for the converter 3, and another computer that collects nearby operation information, performance information, etc. of the converter 3. These are shown collectively.

第2図は第1図における制御システム(コンピュータ)
9の具体例を示す説明図である。
Figure 2 shows the control system (computer) in Figure 1.
FIG. 9 is an explanatory diagram showing a specific example of No. 9;

第2図において、−料ま情報の流れ、に)は計算手順の
流れを示している まず、他システム12より、各種信号情報F1(転炉3
における吹錬の実績情報等)、各種フィールドデータF
3(混合ガス製造設備6や自家用発電設備5へ供給され
ている各ガスの流量現在値、各ガスホルダのガス貯蔵レ
ベルの現在値等)や転炉操業計画情報F2(転炉の操業
予定を示す情報等)を貰う。また転炉操業計画情報F2
は、操業を行っていくうえで変更となることが多いので
(例えば操業実績は計画に対して遅れているとか、実際
的な実務情報)、オペレータが変更になった計画を至近
操業情報F4として入力する。
In FIG. 2, - Flow of converter information) shows the flow of the calculation procedure. First, various signal information F1 (Converter 3
), various field data F
3 (current flow rate of each gas supplied to the mixed gas production equipment 6 and private power generation equipment 5, current value of gas storage level of each gas holder, etc.) and converter operation plan information F2 (indicating the operation schedule of the converter) information, etc.) Also, converter operation plan information F2
Since there are many changes that occur during operations (for example, actual operating results are behind the plan, practical information), the operator records the changed plans as the latest operation information F4. input.

次に、ステップS1において、各種信号情報F1や転炉
操業計画情報F2および至近操業情報F4を基に、転炉
3における吹錬スケジュールの予測を行う。
Next, in step S1, a blowing schedule in the converter 3 is predicted based on the various signal information F1, the converter operation plan information F2, and the nearby operation information F4.

次にステップS2において、転炉ガスホルダ4Cにおけ
るガス貯蔵レベルの変動を考慮して、このガス貯蔵レベ
ルがなるべく長時間にわたって転炉ガスホルダ4Cにお
けるレベルの上下限値を突破しないようにするためには
転炉ガスホルダ4Cからのガス払出量をどのようにすれ
ばよいかを計算する。
Next, in step S2, in consideration of fluctuations in the gas storage level in the converter gas holder 4C, in order to prevent the gas storage level from exceeding the upper and lower limits of the level in the converter gas holder 4C for as long as possible, Calculate how much gas should be discharged from the furnace gas holder 4C.

次にステップS3において、ステップS2の計算結果に
基づき混合ガス製造設備6へ供給する転炉ガスLDGの
量を算出する。ここでは、まず自家用発電設備5へ払い
出される転炉ガス量は現状を維持するとして、混合ガス
製造設備6へ払い出される転炉ガス量を算出する。次に
、その時の混合ガス使用量に対して混合ガス製造設備へ
供給される転炉ガスLDGの量を決めると、それによっ
 G て高炉]からガスホルダ4aを介して供給される高炉ガ
スBFGと、コークス炉2からガスホルダ4bを介して
供給されるコークス炉ガスCOGとの各種が決まるので
、その結果両ガスホルダのガス貯蔵レベルが予め決めた
上下限を突破しないように混合ガス製造設備6へ払い出
す転炉ガス量を求める。更に、混合ガス使用量などによ
って求まる混合ガス製造設備6へ払い出すことのできる
転炉ガス混入量の上下限値を突破しないように調整する
Next, in step S3, the amount of converter gas LDG to be supplied to the mixed gas production equipment 6 is calculated based on the calculation result of step S2. Here, first, the amount of converter gas delivered to the mixed gas production equipment 6 is calculated, assuming that the current amount of converter gas delivered to the private power generation equipment 5 is maintained. Next, by determining the amount of converter gas LDG to be supplied to the mixed gas production equipment with respect to the amount of mixed gas used at that time, the amount of blast furnace gas BFG supplied from the blast furnace via the gas holder 4a, Various types of coke oven gas COG supplied from the coke oven 2 via the gas holder 4b are determined, and as a result, the gas storage level in both gas holders is discharged to the mixed gas production equipment 6 so as not to exceed the predetermined upper and lower limits. Find the converter gas amount. Furthermore, adjustment is made so that the upper and lower limits of the amount of mixed gas mixed in the converter that can be delivered to the mixed gas production equipment 6, determined by the amount of mixed gas used, etc., are not exceeded.

次にステップS4で、ステップS2で求めた転炉ガスホ
ルダ4cからの払出量に対してステップS3で求めた混
合ガス製造設備6へ払い出す転炉ガス量だけでは対処で
きない量がある場合は自家用発電設!a5へ払い出す転
炉ガス量を変更して対応するように調整する。
Next, in step S4, if there is an amount that cannot be handled by the amount of converter gas discharged from the converter gas holder 4c determined in step S2 and the amount of converter gas discharged to the mixed gas production equipment 6 determined in step S3, private power generation is performed. Set up! Adjust accordingly by changing the amount of converter gas discharged to a5.

その後、制御及びガイダンスのステップS5において、
そのような流量調整量をデイスプレィDISP2におい
て画面表示してオペレータの参考に供する。
After that, in step S5 of control and guidance,
Such flow rate adjustment amount is displayed on the display DISP2 for the operator's reference.

また混合ガス製造設備6へ供給する転炉ガスLDGの流
量調整量に従って流量調整信号を調節弁11cに送り、
その通りに混合ガス製造設備6へ供給される転炉ガスL
DGの流量を調節する。同様に、自家用発電設備5へ供
給する転炉ガスLDGの流量調整量に従って流量調整信
号を調節弁10Cに送り、その通りに自家用発電設(#
5へ供給される転炉ガスLDGの流量を調節する。
Further, a flow rate adjustment signal is sent to the control valve 11c in accordance with the flow rate adjustment amount of the converter gas LDG to be supplied to the mixed gas production equipment 6,
Converter gas L is supplied to the mixed gas production equipment 6 accordingly.
Adjust the flow rate of DG. Similarly, a flow rate adjustment signal is sent to the control valve 10C according to the flow rate adjustment amount of converter gas LDG to be supplied to the private power generation facility 5, and the private power generation facility (#
The flow rate of converter gas LDG supplied to 5 is adjusted.

〔発明の効果〕〔Effect of the invention〕

この発明によれば以下の如き効果を期待することができ
る。
According to this invention, the following effects can be expected.

(イ)自動化により作業(操作)が一元化され、調整不
良による副生ガスのロス(放散)や、発電設備行き流量
の変更頻度大による効率低下の防止が可能である。
(b) Automation centralizes work (operation), making it possible to prevent loss (dissipation) of byproduct gas due to poor adjustment and reduction in efficiency due to frequent changes in the flow rate to power generation equipment.

(ロ)ガス貯蔵設備としてのガスホルダの小型化による
低コスト化が可能となる(ホルダ容量を小さくして、要
するロスI・を低減することができる)。
(b) It is possible to reduce costs by downsizing the gas holder as a gas storage facility (by reducing the holder capacity, it is possible to reduce the required loss I).

(ハ)自動化による省力化が可能である。すなわち、従
来オペレータが行っていた出鋼順予定の監視、高炉ガス
、コークス炉ガス、転炉ガス各ホルダの状況監視、混合
ガス使用量監視、発電設備行き各ガス量の監視と操作、
混合ガス製造設備行き転炉ガス流量の監視と操作、など
が自動化されるため、省力化が可能となる。
(c) Labor saving is possible through automation. In other words, monitoring of the order of steel tapping, which was previously performed by operators, monitoring of the status of blast furnace gas, coke oven gas, and converter gas holders, monitoring of mixed gas consumption, monitoring and operation of the amount of each gas going to power generation equipment,
Monitoring and operation of the converter gas flow rate to the mixed gas production equipment are automated, making it possible to save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための製銑製鋼−
貫製鉄所全体の概略構成を示すブロック図、第2図は第
1図における制御システ1、(コンピュータ)9の具体
例を示す説明図、である。 符号の説明 1・・・高炉、2・・・コークス炉、3・転炉、4a4
b、4c・・・ガスホルダ、5・・自家用発電設備、6
・・・混合ガス製造設備、7・・・単味ガス使用工場、
8・・・混合ガス使用工場、9・・・制御システム(コ
ンピュータ)、10a〜10c・・・流量調節弁、11
a−11c・・・流量調節弁、12・・・他システム。 代理人 弁理士 並 木 貼 夫 代理人 弁理士 松 崎   清 ■
Fig. 1 is a diagram showing an example of iron making and steel production for explaining an embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of the entire steelworks. FIG. 2 is an explanatory diagram showing a specific example of the control system 1 and (computer) 9 in FIG. 1. Explanation of symbols 1... Blast furnace, 2... Coke oven, 3. Converter, 4a4
b, 4c...Gas holder, 5...Private power generation equipment, 6
...Mixed gas production equipment, 7..Factory using single gas,
8... Factory using mixed gas, 9... Control system (computer), 10a to 10c... Flow rate control valve, 11
a-11c...flow control valve, 12...other systems. Agent: Patent Attorney Namiki Tsukio Agent: Patent Attorney Kiyoshi Matsuzaki■

Claims (1)

【特許請求の範囲】[Claims] 1)少なくとも高炉で副生される高炉ガスとコークス炉
で副生されるコークス炉ガスと転炉で副生される転炉ガ
スとを供給されて混合ガスを製造する混合ガス製造設備
と、少なくとも前記転炉ガスを吸収することができる発
電設備と、に対して前記転炉において副生された転炉ガ
スをバッファとしての転炉ガスホルダに一旦蓄えた後、
配分して払い出す転炉ガスの払い出し系において、転炉
の操業に関する情報を与えられて該転炉から副生される
転炉ガスの発生状況を予測する段階と、予測したその発
生状況と現在の転炉ガス払い出し状況とから転炉ガスホ
ルダのガス貯蔵レベルの変動を予測する段階と、予測し
た転炉ガスホルダのガス貯蔵レベルが予め定めた上下限
を突破しない範囲で、しかも払い出される転炉ガス量が
なるべく一定に維持されるように調整する段階と、前記
発電設備へ払い出される転炉ガス量は現状を維持すると
して、前記混合ガス製造設備へ払い出される転炉ガス量
を調整した結果として、該混合ガス製造設備へ高炉ガス
を供給する高炉ガスホルダのガス貯蔵レベルと、前記混
合ガス製造設備へコークス炉ガスを供給するコークスガ
スホルダのガス貯蔵レベルと、がどう変動するかを予測
する段階と、予測した両ガスホルダのガス貯蔵レベルが
予め定めた上下限を突破しない範囲で、しかも前記混合
ガス製造設備へ払い出される転炉ガスの混入上下限値を
突破しないように、前記混合ガス製造設備へ払い出され
る転炉ガス量を調整する段階と、前記転炉ガスホルダか
ら払い出される転炉ガス総払出量に対して前記混合ガス
製造設備へ払い出される転炉ガス量では対処不可能な量
を前記発電設備へ払い出される転炉ガス量で調整する段
階と、から成ることを特徴とする転炉ガスの自動配分制
御方法。
1) A mixed gas production facility for producing a mixed gas by being supplied with at least blast furnace gas by-produced in a blast furnace, coke oven gas by-produced in a coke oven, and converter gas by-produced in a converter; power generation equipment capable of absorbing the converter gas, and once the converter gas by-produced in the converter is stored in a converter gas holder as a buffer;
In a system for distributing and discharging converter gas, there is a stage in which information regarding the operation of the converter is given to predict the generation status of converter gas as a by-product from the converter, and the predicted generation status and current status. The step of predicting the fluctuation in the gas storage level of the converter gas holder from the converter gas dispensing status of adjusting the amount of converter gas to be kept as constant as possible, and assuming that the current amount of converter gas delivered to the power generation equipment is maintained, as a result of adjusting the amount of converter gas delivered to the mixed gas production equipment, predicting how the gas storage level of a blast furnace gas holder that supplies blast furnace gas to the mixed gas production equipment and the gas storage level of a coke gas holder that supplies coke oven gas to the mixed gas production equipment will change; Dispense to the mixed gas production equipment within a range in which the predicted gas storage level of both gas holders does not exceed predetermined upper and lower limits, and in such a manner that the mixed gas to be delivered to the mixed gas production equipment does not exceed the upper and lower mixing limits. adjusting the amount of converter gas to be delivered to the mixed gas production equipment, and sending an amount to the power generation equipment that cannot be handled by the amount of converter gas delivered to the mixed gas production equipment with respect to the total amount of converter gas delivered from the converter gas holder. A method for automatically controlling the distribution of converter gas, comprising the steps of adjusting the amount of converter gas discharged.
JP7384789A 1989-03-28 1989-03-28 Automatic distribution control method for converter gas Expired - Fee Related JPH0826384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7384789A JPH0826384B2 (en) 1989-03-28 1989-03-28 Automatic distribution control method for converter gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7384789A JPH0826384B2 (en) 1989-03-28 1989-03-28 Automatic distribution control method for converter gas

Publications (2)

Publication Number Publication Date
JPH02254115A true JPH02254115A (en) 1990-10-12
JPH0826384B2 JPH0826384B2 (en) 1996-03-13

Family

ID=13529947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7384789A Expired - Fee Related JPH0826384B2 (en) 1989-03-28 1989-03-28 Automatic distribution control method for converter gas

Country Status (1)

Country Link
JP (1) JPH0826384B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223413A (en) * 1990-01-29 1991-10-02 Kawasaki Steel Corp Controlling method for operation of converter gas in ironworks
KR20020034454A (en) * 2000-11-02 2002-05-09 이구택 Method of operating in a gas holder of converter
JP2007270210A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Gas supplying system in steel mill
JP2010196786A (en) * 2009-02-25 2010-09-09 Nippon Steel Corp Operation method of gas holder and gas holder device
US20160348196A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works
JP2017002330A (en) * 2015-06-04 2017-01-05 Jfeスチール株式会社 Converter gas collection device and converter gas collection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113913A1 (en) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Plant network for steelmaking and process for operating the plant network
DE102013113950A1 (en) 2013-12-12 2015-06-18 Thyssenkrupp Ag Plant network for steelmaking and process for operating the plant network

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223413A (en) * 1990-01-29 1991-10-02 Kawasaki Steel Corp Controlling method for operation of converter gas in ironworks
KR20020034454A (en) * 2000-11-02 2002-05-09 이구택 Method of operating in a gas holder of converter
JP2007270210A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Gas supplying system in steel mill
JP2010196786A (en) * 2009-02-25 2010-09-09 Nippon Steel Corp Operation method of gas holder and gas holder device
US20160348196A1 (en) * 2013-12-12 2016-12-01 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works
US10697032B2 (en) * 2013-12-12 2020-06-30 Thyssenkrupp Ag Method for generating synthesis gas in conjunction with a smelting works
JP2017002330A (en) * 2015-06-04 2017-01-05 Jfeスチール株式会社 Converter gas collection device and converter gas collection method

Also Published As

Publication number Publication date
JPH0826384B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
US6745109B2 (en) Power generator controller
US9946242B2 (en) Operation schedule optimizing device, method, and program with determination of whether to request user approval
JPH02254115A (en) Method for controlling automatic distribution of converter gas
JP2006050730A (en) Operation plan creating method and apparatus of supply capability
CN105785760A (en) Annealing furnace clean circulation water hardness automatic control system and method thereof
IE20180220A1 (en) A control panel device for a water service reservoir
WO2021210290A1 (en) Energy supply/demand operation guidance device and method for energy supply/demand operation in ironworks
EP4075349A1 (en) Maintenance assistance system
JPH08143134A (en) Sintered ore carriage plan control system
JP2019049221A (en) Device and method for controlling the number of pumps
JP3797953B2 (en) Thermal power plant control device, operation support system, and operation support service method
CN105242545A (en) Process-batch-model-based prediction method of oxygen flow rate for converter
JP2006002958A (en) Oxygen gas supply and demand system
JPH07328412A (en) Operation of gas producing equipment
JP3550931B2 (en) Gas supply amount control method
Kronberger et al. Latest generation sinter process optimization systems
JPH0566485B2 (en)
CN104214081B (en) Air compressor set hybrid control method
JPH01320514A (en) Control method in vapor distribution system
JPH0844403A (en) Method for adjusting energy demand and supply
JP2008041301A (en) Liquid raw material fuel supply system to fuel cell system
JPH10220961A (en) Operation control method and operation control device for demand variation absorbing type air separating plant
JPH07180694A (en) Supply pressure control method of industrial air
JPS582563B2 (en) Gas utilization method in integrated pig steel process
CN115198040A (en) Coal injection amount control method, device, equipment and storage medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees