JPH01320514A - Control method in vapor distribution system - Google Patents

Control method in vapor distribution system

Info

Publication number
JPH01320514A
JPH01320514A JP15351988A JP15351988A JPH01320514A JP H01320514 A JPH01320514 A JP H01320514A JP 15351988 A JP15351988 A JP 15351988A JP 15351988 A JP15351988 A JP 15351988A JP H01320514 A JPH01320514 A JP H01320514A
Authority
JP
Japan
Prior art keywords
pressure
steam
vapor
flow rate
monitoring point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15351988A
Other languages
Japanese (ja)
Inventor
Keiichi Akimoto
秋本 圭一
Nanao Ishida
石田 七雄
So Tsuda
津田 宗
Teruaki Matsui
照明 松井
Fumihiko Hirose
文彦 広瀬
Takeshi Fushimi
伏見 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kawasaki Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP15351988A priority Critical patent/JPH01320514A/en
Publication of JPH01320514A publication Critical patent/JPH01320514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To attain labor saving, the reduction of vapor loss, and the stable operation of a vapor system by selecting a control mode decided in advance fitting in each monitoring point of the vapor system, a load on a vapor supply side, and the status of a user side, and performing automatic adjustment on the exit vapor flow rate of a supply facility. CONSTITUTION:The monitoring points (N1-N3) of vapor pressure, etc., are provided at pipes to plural vapor using facilities (21-23) from the vapor supply facility such as an accumulator 11, a back pressure turbine 12, and a blast boiler 13, etc. A controller 3 compares pressure values from those monitoring points with a reference value set separately, and decides the control mode based on a pressure trend and the use schedule information of the vapor using facility, and also, and the flow rate preset value of each supply facility is found by a prescribed equation by judging the status of a distribution system from the load condition of the supply facility and the fluctuation of a quantity in use at the vapor using facility side, thereby, the vapor exit flow rate of each supply facility is controlled and the fluctuation of pressure at each monitoring point can be controlled within tolerance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、蒸気使用設備の蒸気使用変動を含む蒸気バ
ランスにより、アキュムレータ(ACC)。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to an accumulator (ACC) by steam balance including steam usage fluctuations of steam usage equipment.

背圧タービン、減温減圧装置等の各蒸気供給設備の流量
設定値を算出してその各々の蒸気出口流量を自動制御す
る制御方法に関する。
The present invention relates to a control method for automatically controlling the flow rate of each steam outlet by calculating the flow rate setting value of each steam supply equipment such as a back pressure turbine and a temperature reduction and pressure reduction device.

〔従来の技術〕[Conventional technology]

従来、このような蒸気系統システムの制御は、専ら手動
により行なわれている。すなわち、運用の目安となる圧
力監視点を設け、その各圧力監視点をオペレータが目視
して各蒸気使用設備の蒸気使用変動及び蒸気提供側の背
圧タービン、減温減圧装置の負荷状態とアキュムレータ
の圧力状態とから背圧タービン、減温減圧装置、アキエ
ムレータの出口流量をすべて手動で調整するようにして
いる。
Conventionally, control of such steam system systems has been performed exclusively manually. In other words, pressure monitoring points are set up to serve as a guideline for operation, and operators can visually check each pressure monitoring point to check the steam usage fluctuations of each steam-using facility, the load status of the back pressure turbine on the steam supply side, the temperature reduction and pressure reduction equipment, and the accumulator. The back pressure turbine, temperature reduction and pressure reduction device, and outlet flow rate of the Achiemulator are all manually adjusted based on the pressure state of the system.

つまり、各圧力監視点の圧力がすべて基準圧より低けれ
ば、それに見合っただけ蒸気提供側の蒸気流量を増加さ
せ、逆に圧力監視点がすべて基準圧より高ければ、提供
側の蒸気流量を減少させる。
In other words, if the pressure at each pressure monitoring point is all lower than the standard pressure, the steam flow rate on the steam provider side is increased accordingly, and conversely, if all the pressure monitoring points are higher than the standard pressure, the steam flow rate on the provider side is decreased. let

また、各圧力監視点において上上限以上又は上下限以下
の場合には、各々に見合っただけ提供側の蒸気流量を手
動で調整する一方、蒸気使用設備の蒸気使用量予定情報
が与えられたり、蒸気使用開始、終了情報が与えられた
りした場合においても、すべてオペレータが判断して手
動で提供側の蒸気流量を調整している。
In addition, if the pressure is above the upper limit or below the upper or lower limit at each pressure monitoring point, the steam flow rate on the provider side is manually adjusted according to each pressure, and information on the steam usage schedule of the steam usage equipment is provided. Even when information on the start and end of steam usage is given, the operator makes all decisions and manually adjusts the steam flow rate on the provider side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来オペレータの手動で行なわれていた操
作はオペレータの個人差、経験により、判断および操作
が異なる。このため、手動による運用においては次のよ
うな問題点が生じる。
As described above, judgments and operations that have conventionally been performed manually by an operator differ depending on individual differences and experience of the operator. Therefore, the following problems arise in manual operation.

(イ)オペレータ負担の増大 蒸気使用設備の蒸気使用は必ずしも予定通り行なわれる
とは限らない。そのため、使用量予定情報が有る場合や
、圧力監視点圧力が上上限、下下限を越えると予測され
る場合は、常時監視操作が必要となる。また、操作量を
定量的にとらえることが困難で、監視操作にかなりの熟
練を要する。
(b) Increased burden on operators Steam usage of steam-using equipment is not always carried out as planned. Therefore, if there is usage schedule information or if the pressure at the pressure monitoring point is predicted to exceed the upper and lower limits, a constant monitoring operation is required. Furthermore, it is difficult to quantitatively capture the amount of operation, and monitoring operations require considerable skill.

(ロ)蒸気損失の問題 操作の判断がオペレータにより異なるため、操作に不都
合があった場合は各圧力監視点の圧力が許容範囲を越え
たり、各蒸気使用設備へ蒸気が安定に供給できなくなる
。そのため、これらを回避するためには例えば、制御目
標値に対しである程度余裕を見込んで操作しなければな
らない。しかし、この余裕を見込んだ操作は最適運用と
は言えず、蒸気が余った場合には放散することになるた
め、蒸気損失を招く。
(b) Steam Loss Problem Since the judgment of operation differs depending on the operator, if there is an inconvenience in operation, the pressure at each pressure monitoring point may exceed the allowable range, or steam may not be stably supplied to each steam-using equipment. Therefore, in order to avoid these, for example, it is necessary to operate with a certain amount of margin for the control target value. However, operating with this margin in mind is not optimal, and if there is excess steam, it will be dissipated, resulting in steam loss.

したがって、この発明はか\る問題点を解決するため、
オペレータの監視操作を自動化し、各圧力監視点および
蒸気提供側の負荷の状態ならびに蒸気使用設備の蒸気使
用状況に合わせて制御モードを自動的に選択し、その制
御モードに合わせてアキュムレータ、背圧タービン、減
温減圧装置を含む各蒸気供給設備の出口蒸気流量を自動
調整することにより、 (a)自動化による省力化 (b)自動化による蒸気損失の減少 (c)蒸気系統の安定運用 を図ることを目的とするものである。
Therefore, in order to solve the above problems, this invention
The operator's monitoring operation is automated, and the control mode is automatically selected according to the load status of each pressure monitoring point and the steam supply side, as well as the steam usage status of the steam usage equipment, and the accumulator and back pressure are adjusted according to the control mode. By automatically adjusting the outlet steam flow rate of each steam supply equipment, including the turbine and temperature reduction and pressure reduction equipment, we aim to (a) save labor through automation, (b) reduce steam loss through automation, and (c) ensure stable operation of the steam system. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

アキュムレータ、背圧タービン、減温減圧装置を含む個
々の蒸気供給設備から複数の蒸気使用設備へ蒸気を供給
する配管の少な(とも1箇所にその蒸気圧力を監視する
圧力監視点を設け、該監視点圧力の別途設定される基準
圧力との比較結果。
There are fewer piping systems that supply steam from individual steam supply equipment, including accumulators, back pressure turbines, and temperature reduction and depressurization equipment, to multiple steam usage equipment (a pressure monitoring point is installed at one location to monitor the steam pressure). Comparison result of point pressure with separately set reference pressure.

一定時間における圧力時系列データの積算量の増減傾向
(圧−カトレンド)および蒸気使用設備の蒸気使用予定
情報にもとづいて制御モードを決定するとともに、各蒸
気供給設備の負荷条件、蒸気使用設備側の蒸気使用量変
動から蒸気配給系統の状況を判断して各蒸気供給設備の
流量設定値を所定の演算式より求め、該演算された設定
値により各蒸気供給設備の蒸気出口流量を制御し、各監
視点圧力の圧力変動を許容範囲内に制御する。
The control mode is determined based on the increase/decrease trend in the integrated amount of pressure time series data over a certain period of time (pressure - current) and the steam usage schedule information of the steam usage equipment, and the load conditions of each steam supply equipment and the steam usage equipment side are determined. The status of the steam distribution system is judged from the fluctuations in the amount of steam used, the flow rate setting value of each steam supply equipment is determined from a predetermined calculation formula, the steam outlet flow rate of each steam supply equipment is controlled by the calculated setting value, and each Control pressure fluctuations at monitoring point pressures within an acceptable range.

〔作用〕[Effect]

各圧力監視点より現在の圧力及び現在に至る圧力トレン
ドと、蒸気使用状況とを監視して制御モードを決定する
が、この制御モードには次のちのがある。
The control mode is determined by monitoring the current pressure, the pressure trend up to the present, and the steam usage status from each pressure monitoring point, and this control mode has the following functions.

(1)各圧力監視点の圧力の各々が基準圧力以下で圧力
トレンドが減少しているときのモード(2)各圧力監視
点の圧力の各々が基準圧力以上で圧力トレンドが増加し
ているときのモード(3)蒸気使用設備の蒸気使用予定
情報が与えられているときのモード (4)蒸気使用設備で蒸気使用中である場合のモード (1)のモードでは、圧力監視点の圧力を増加させるた
めにACC出口圧力、背圧タービン、減温減圧装置の負
荷状態を判断し、ACC出口圧力が高く背圧タービン、
減温減圧装置の負荷が増加可能であれば、各々の出口流
量設定値を増加し、各圧力監視点の圧力を基準圧力と一
致させる。
(1) Mode when the pressure at each pressure monitoring point is below the reference pressure and the pressure trend is decreasing (2) When the pressure at each pressure monitoring point is above the reference pressure and the pressure trend is increasing Mode (3) Mode when steam usage schedule information of steam-using equipment is given (4) Mode when steam is being used by steam-using equipment In mode (1), the pressure at the pressure monitoring point is increased. In order to
If the load on the depressurizer can be increased, each outlet flow rate setting is increased to bring the pressure at each pressure monitoring point to match the reference pressure.

(2)のモードでは、各圧力監視点の圧力を減少させる
ためにACC出口圧力、背圧タービン、減温減圧装置の
負荷状態を判断し、ACC出口圧力が低(背圧タービン
、減温減圧装置の負荷が減少可能であれば、各々の出口
流量設定値を減じ、各圧力監視点の圧力を基準圧力と一
致させる。
In mode (2), in order to reduce the pressure at each pressure monitoring point, the load status of the ACC outlet pressure, back pressure turbine, and temperature reduction and pressure reduction device is determined, and when the ACC outlet pressure is low (back pressure turbine, temperature reduction and pressure reduction device) If the load on the device can be reduced, each outlet flow set point is reduced to bring the pressure at each pressure monitoring point to match the reference pressure.

(3)のモードでは、蒸気使用設備の蒸気使用による各
圧力監視点圧力の低下を防ぐため、ACC出口圧力、背
圧タービン、減温減圧装置の負荷状態を判断して背圧タ
ービン、減温減圧装置の負荷が増加可能であれば、各々
の出口流量設定値を増加して各圧力監視点圧力をあらか
じめ増加させる。
In mode (3), in order to prevent the pressure at each pressure monitoring point from decreasing due to the use of steam in the steam-using equipment, the load status of the ACC outlet pressure, back pressure turbine, and temperature reduction and pressure reduction device is judged, and the back pressure turbine and temperature reduction device are checked. If the load on the pressure reducer can be increased, the respective outlet flow set point is increased to pre-increase the pressure at each pressure monitoring point.

ACC圧力が低い場合は、ACC出口流量設定値を減少
させる。背圧タービンと減温減圧装置の出口流量で各圧
力監視点圧力を増加させる。
If the ACC pressure is low, reduce the ACC outlet flow set point. The pressure at each pressure monitoring point is increased by the back pressure turbine and the outlet flow rate of the decompressor.

(4)のモードでは、蒸気使用設備の蒸気使用中による
各圧力監視点圧力の低下を防ぐため、ACC出口圧力、
背圧タービン、減温減圧装置の負荷状態を判断し、背圧
タービン、減温減圧装置の負荷が増加可能であれば各々
の出口流量設定値を増加して各圧力監視点圧力の低下を
防ぎ、基準圧力に保つ。ACC圧力が高い場合は、AC
C出口流量設定値を増加させる。ACCと背圧タービン
In mode (4), in order to prevent the pressure at each pressure monitoring point from decreasing due to steam usage in the steam usage equipment, the ACC outlet pressure,
Determine the load status of the back pressure turbine and temperature reducing device, and if it is possible to increase the load on the back pressure turbine and temperature reducing device, increase the outlet flow rate setting value of each to prevent the pressure from decreasing at each pressure monitoring point. , maintain the reference pressure. If the ACC pressure is high, the AC
Increase the C outlet flow rate setpoint. ACC and back pressure turbine.

減温減圧装置の出口流量で、各圧力監視点圧力を基準圧
一定に保つ。
The pressure at each pressure monitoring point is kept constant at the standard pressure using the outlet flow rate of the decompression device.

蒸気系統の状態を判断し、」−記の4つの制御モードを
自動的に選択することにより、各制御モードに応じてA
CC,背圧タービン、減温減圧装置の出口流星操作端を
制御することにより、蒸気系統の圧力を安定に保ぢっ\
蒸気を各蒸気使用設備へ安定に供給することを可能にす
る。
By determining the state of the steam system and automatically selecting one of the four control modes listed below, A
The pressure of the steam system is kept stable by controlling the outlet of the CC, backpressure turbine, and temperature reduction/decompression device.
Enables a stable supply of steam to each steam-using facility.

〔実施例〕〔Example〕

第1図はこの発明が適用されるブラント全体を示す概要
図である。
FIG. 1 is a schematic diagram showing the entire blunt to which the present invention is applied.

こ−では、蒸気捷供側のアキエムレータ(ACC)11
、背圧タービン12、減温減圧装置としての送風ボイラ
(DPT)13と圧力監視点N。
In this case, the Akiemulator (ACC) 11 on the steam supply side
, a back pressure turbine 12, a blower boiler (DPT) 13 as a temperature and pressure reducing device, and a pressure monitoring point N.

〜N、と蒸気使用設備21〜23とが同図のように配置
されている。この系統を安定にし、かつ各蒸気使用設備
へ蒸気を安定供給するために、制御装置3は次のように
制御を行なう。
-N, and steam using equipment 21-23 are arranged as shown in the figure. In order to stabilize this system and stably supply steam to each steam-using facility, the control device 3 performs control as follows.

第2図(その1)〜第2図(その9)は制御装置の動作
を説明するためのフローチャー1・である。
FIG. 2 (Part 1) to FIG. 2 (Part 9) are flowchart 1 for explaining the operation of the control device.

まず、背圧タービン、減温減圧装置の各出口流量設定値
を求める演算式について説明する。
First, arithmetic expressions for determining the outlet flow rate settings of the back pressure turbine and the temperature reduction and pressure reduction device will be explained.

配管系の圧力変動を表わす微分方程式は、一般に次式の
如く表わされる。
A differential equation representing pressure fluctuations in a piping system is generally expressed as the following equation.

P:圧力(kg/m3) L:時間(see ) V:比体積(m/廟) ■:配管の体積(+f)()77時(T/H))ΔW:
蒸気量設定値変更量 α      Δ t ただし、 ΔP=PM Pp (現時刻の圧力PMと20分式(2
)より、設定値S■は以下の式で与えられる。
P: Pressure (kg/m3) L: Time (see) V: Specific volume (m/myo) ■: Volume of piping (+f) () 77 o'clock (T/H)) ΔW:
Steam amount set value change amount α Δt However, ΔP=PM Pp (Current time pressure PM and 20-minute formula (2
), the set value S■ is given by the following formula.

SV (k)=SV (k−1)−1−ΔW  −−−
−−−(3)(k=1.2.  ・・・、N) こうして、各蒸気供給設備の出口流量設定値が求められ
る。以下、各モード毎の動作について説明する。
SV (k)=SV (k-1)-1-ΔW ---
---(3) (k=1.2....,N) In this way, the outlet flow rate setting value of each steam supply equipment is determined. The operation in each mode will be explained below.

(1)各圧力監視点の圧力が基準以下で圧力トレンドが
減少しているとき P+(k)  :各圧力監視点圧力(ata  :絶対
圧力(kg/cmt) ) (i=1.2.3・・−:
 1分毎の時系列データ) PB、:各圧力監視点圧力(ata) ΔPB、:各圧力監視点偏差圧力(ata)の如き諸量
を考え、現時刻より例えば過去20分間のデータ(1分
毎に20個のデータ)より、Pi(k)≦PBえ一ΔP
B。
(1) When the pressure at each pressure monitoring point is below the standard and the pressure trend is decreasing: P+(k): Pressure at each pressure monitoring point (ata: absolute pressure (kg/cmt)) (i=1.2.3・・-:
Considering various quantities such as PB,: Pressure at each pressure monitoring point (ATA), ΔPB,: Deviation pressure at each pressure monitoring point (ATA), data for the past 20 minutes (1 minute) from the current time is calculated. 20 pieces of data for each), Pi(k)≦PBE1ΔP
B.

(k=1.2.・・・、20) ・・・・・・(4) Σ(1’1(k)−Pi (k−1) ) <O(圧力
トレンド)・・・・・・(5) の如く表わされる(4)、 (5)式が同時に成り立つ
場合、先に述べた演算式により設定値を算出し、この設
定値に追従するように背圧タービン、減温減圧装置、A
CC出口蒸気流量操作端を制御し、各監視圧力点圧力P
直(k)が PB、−Δr’Bム≦P五(k)  ≦PB、+ ΔP
B。
(k=1.2...., 20) ......(4) Σ(1'1(k)-Pi (k-1)) <O (pressure trend)... When equations (4) and (5) expressed as in (5) hold true at the same time, a set value is calculated using the above-mentioned arithmetic equation, and the back pressure turbine, temperature reduction and pressure reduction device, A
CC outlet steam flow rate operation end is controlled and each monitoring pressure point pressure P
Direct (k) is PB, -Δr'Bmu ≦P5(k) ≦PB, + ΔP
B.

となるようにする。なお、このときの動作を示すのが第
2図(その1)である。
Make it so that Note that FIG. 2 (part 1) shows the operation at this time.

(2)各圧力監視点の圧力が基準以上で圧力トレンドが
増加し、ているとき P i (k)≧PB+ 十ΔPB。
(2) When the pressure at each pressure monitoring point is above the standard and the pressure trend is increasing, P i (k)≧PB+ 1ΔPB.

(k=1.2.・・・、) ・・・・・・(6) ・・・・・・(7) 上記(6) 、 (7)式が同時に成り立つ場合は先に
述べた演算式より設定値を算出し、この設定値に追従す
るように背圧タービン、減温減圧装置、ACC出口蒸気
流量操作端を制御し、各監視圧力点圧力Pi(k)が PB!−ΔPBt ≦Pt(k) ≦PB五十Δr’B
直となるようにする。このときの動作を第2図(その2
)に示す。
(k=1.2....,) ......(6) ......(7) If the above equations (6) and (7) hold simultaneously, the above calculation formula A set value is calculated from the set value, and the back pressure turbine, temperature reduction and pressure reducing device, and ACC outlet steam flow rate operating end are controlled to follow this set value, and each monitored pressure point pressure Pi (k) is set to PB! −ΔPBt ≦Pt(k) ≦PB50Δr'B
Be direct. The operation at this time is shown in Figure 2 (Part 2).
).

(3)蒸気使用設備の蒸気使用予定情報が与えられてい
るとき TBN¥LMT¥(1)>TBN    ・・・・・・
(8)TBN¥LMT¥(1):背圧タービン蒸気流量
上限値 TBN:背圧タービン蒸気流量 Pacc(k)≦PBacc−ΔPBAcc     
・・・・・・(9)PAcc(k)  : A CC出
口圧力(k=1.2.・・・、20 ’)PBAcc 
 : A CC基準圧力 ΔPBAcc  : A CC基準圧力偏差DPT¥L
MT¥>DPT       ・・・・・・(10)D
PT¥LM’r:減温減圧装置蒸気流量上限DPT:減
温減圧装置蒸気流量 なる式(8) 、 (9) 、 (10)が同時に成り
立つ時、先に述べた演算式により設定値を算出し、この
設定値に追従するように背圧タービン、減温減圧装置、
ACC出口蒸気流量操作端を制御し、あらかじめ各圧力
監視圧力を増加させる。この動作を示すのが第2図(そ
の3)である。
(3) When steam usage schedule information of steam usage equipment is given TBN\LMT\(1)>TBN...
(8) TBN\LMT\(1): Back pressure turbine steam flow rate upper limit TBN: Back pressure turbine steam flow rate Pacc(k)≦PBacc-ΔPBAcc
......(9) PAcc (k): A CC outlet pressure (k = 1.2..., 20') PBAcc
: A CC reference pressure ΔPBAcc : A CC reference pressure deviation DPT¥L
MT¥>DPT ・・・・・・(10)D
PT¥LM'r: upper limit of steam flow rate in temperature and pressure reduction device DPT: steam flow rate in temperature and pressure reduction device When equations (8), (9), and (10) hold simultaneously, the set value is calculated using the above-mentioned calculation formula. Then, to follow this set value, the back pressure turbine, temperature reduction and pressure reduction device,
Control the ACC outlet steam flow operating end to increase each pressure monitoring pressure in advance. FIG. 2 (part 3) shows this operation.

(4)蒸気使用設備で蒸気使用中のときこのときは背圧
タービン、*温減圧装置の負荷状態を先の式(8) 、
 (10)で判断し、PAcc(k)≧PBAcc+Δ
PBAcc     −・・・(11)が成り立てば、
先に述べた演算式により設定値を算出し、この設定値に
追従するように背圧タービン、減温減圧装置、ACC出
口蒸気流量操作端を制御し、蒸気使用設備の蒸気使用に
よる各監視圧力点圧力の低下を防ぐようにする。その動
作を第2図(その4)に示す。
(4) When steam is being used in steam-using equipment In this case, the load condition of the back pressure turbine and *temperature decompression device is expressed by the equation (8) above.
Judging by (10), PAcc(k)≧PBAcc+Δ
PBAcc - If (11) holds, then
A set value is calculated using the above-mentioned formula, and the back pressure turbine, temperature reduction and pressure reducing device, and ACC outlet steam flow control terminal are controlled to follow this set value, and each monitoring pressure due to steam usage of the steam usage equipment is controlled. Try to prevent a drop in point pressure. The operation is shown in FIG. 2 (part 4).

(5)圧力監視点N、が上下限以下のときPLL、≧P
 、 (k)          ・・・・・・(12
)P+(k):圧力監視点Nlの圧力(k=1.2.・
・・、20)PLL、 :圧力監視点N1の圧力下下限
値が成り立ち、前記式(8) 、 (10)が成り立て
ば、先に述べた演算式により設定値を算出し、この設定
値に追従するように背圧タービン、減温減圧装置。
(5) When the pressure monitoring point N is below the upper and lower limits, PLL, ≧P
, (k) ......(12
)P+(k): Pressure at pressure monitoring point Nl (k=1.2.・
..., 20) PLL, : If the pressure lower limit value of pressure monitoring point N1 is established and the above equations (8) and (10) are established, then the set value is calculated using the above-mentioned arithmetic formula, and this set value is Back pressure turbine, temperature reduction and pressure reduction device to follow.

出口蒸気流量操作端を制御し、圧力監視点N、の圧力が PB、−ΔPBI < PI (k) < FBI+Δ
PB。
The outlet steam flow rate operating end is controlled, and the pressure at the pressure monitoring point N is PB, -ΔPBI < PI (k) < FBI+Δ
P.B.

となるようにする。この動作が第2図(その5)に示さ
れている。
Make it so that This operation is shown in FIG. 2 (part 5).

(6)圧力監視点Ntまたは圧力監視点N、が上下限以
下のとき PLL、≧Pz(k)          ・・・・・
・(13)pi、t、z :圧力監視点N2の圧力下下
限値PI(k)  :圧力監視点N、の圧力(k・1,
2.・・・、20)PLLs≧Ps(k)      
    ・・・・・・(14)Ps(k)  :圧力監
視点N3の圧力(k・1,2.・・・、20)PLL3
 :圧力監視点N、の圧力下下限値式(13) 、 (
14)のどちらか一方が成り立つ時に式(9)も成り立
てば、先の演算式よりACC出口蒸気流量設定値を算出
する一方、このときに式(8)。
(6) When pressure monitoring point Nt or pressure monitoring point N is below the upper and lower limits, PLL, ≧Pz(k)...
・(13) pi, t, z: Pressure lower limit value PI (k) of pressure monitoring point N2: Pressure (k・1,
2. ..., 20) PLLs≧Ps(k)
......(14) Ps(k): Pressure at pressure monitoring point N3 (k・1, 2..., 20) PLL3
: Pressure lower limit value formula (13) at pressure monitoring point N, (
If either one of (14) holds true and formula (9) also holds, the ACC outlet steam flow rate setting value is calculated from the previous calculation formula, and at this time, formula (8).

(10)、が成り立てば先の演算式により背圧タービン
、減温減圧装置の各出口蒸気流量設定値を算出し、この
設定値に追従するように背圧タービン、減温減圧装置、
ACC出口蒸気流量操作端を制御し PB2−ΔPBz<Pg(k)≦PBX+ΔPB。
If (10) holds true, the back pressure turbine, temperature reduction and pressure reduction device, each outlet steam flow rate setting value is calculated using the above calculation formula, and the back pressure turbine, temperature reduction and pressure reduction device,
The ACC outlet steam flow rate operating end is controlled so that PB2-ΔPBz<Pg(k)≦PBX+ΔPB.

または PB、−ΔPBff<r’x(k) <PB:l+ΔP
lhとなるようにする。このときの動作を第2図(その
6)に示す。
or PB, -ΔPBff<r'x(k) <PB:l+ΔP
Make it so that it is lh. The operation at this time is shown in FIG. 2 (part 6).

(7)圧力監視点N、が上上限以上のときPHH,<P
、(k)          ・・・・・・(15)P
HH,:圧力監視点N、の圧力上上限値Pl(k):圧
力監視点N、の圧力(k・1,2.・・・、20)が成
り立つ時に、 TBN¥I、MT¥(2)<TBN   ・・・・・・
(16)TBN¥LMT¥(2):背圧タービン蒸気流
量下限値 TBN :背圧タービン蒸気iJt量 DPT¥LMT¥(2)<DI”T   ・・・・・・
(17)DPT¥LMT¥(2)二減温減圧装置蒸気流
量下限値 DPTs減温減圧装置蒸気流量 なる(16)、(17)が同時に成り立つ時は先の演算
式により設定値を算出し、この設定値に追従するように
背圧タービン、減温減圧装置、 ACC出力蒸気流量操
作端を制御し、圧力監視点N。
(7) When pressure monitoring point N is above the upper limit, PHH, < P
,(k)...(15)P
HH,: Pressure upper limit Pl(k) of pressure monitoring point N: When pressure (k・1, 2..., 20) of pressure monitoring point N holds true, TBN\I, MT\(2) )<TBN・・・・・・
(16) TBN\LMT\(2): Lower limit of back pressure turbine steam flow rate TBN: Back pressure turbine steam iJt amount DPT\LMT\(2) <DI"T...
(17) DPT¥LMT¥(2) Lower limit value of steam flow rate for two temperature reduction and decompression devices DPTs Temperature and pressure reduction device steam flow rate When (16) and (17) hold simultaneously, calculate the set value using the above calculation formula, The back pressure turbine, temperature reduction and pressure reduction device, and ACC output steam flow rate control end are controlled to follow this set value, and the pressure monitoring point N is set.

の圧力が PB、−ΔPRI<PI(k)≦PB、+ΔPB。the pressure of PB, -ΔPRI<PI(k)≦PB, +ΔPB.

となるようにする。このときの動作を第2図(その7)
に示す。
Make it so that The operation at this time is shown in Figure 2 (Part 7).
Shown below.

(8)圧力監視点N2または圧力量視点N3が上止限値
以上のとき P HHt≦P、(k)          ・・・・
・・(18)PHH,:圧力監視点N2の圧力上上限値
Pz(k):圧力監視点N2の圧力(k=1.2.・・
・、20)P H113< P3(k)       
  ・・・・・・(19)PHH,:圧力監視点N3の
圧力」−」−限値Ps(k):圧力監視点N、の圧力(
k・1,2.・・・、20)式(18)、(19)のど
ちらか一方が成り立つ時に式(11)が成り立てば、先
の演算式よりACC出口蒸気流量設定値を算出する一方
、このときに式(16)、(17)が成り立てば、先の
演算式より背圧タービン、減温減圧装置の各出口蒸気流
量設定値を算出し、この設定値に追従するように背圧タ
ービン、減温減圧装置、ACC出口蒸気流量操作端を制
御し、 PBz−ΔPBz≦Pz(k)≦PB、+ΔPB2また
は PB3−ΔPI(、≦P 3 (k)≦PB、+ΔPR
3となるようにする。このときの動作を示すのが第2図
(その8)である。なお、第2図(その9)は同図その
1〜その8の行先を示している。
(8) When pressure monitoring point N2 or pressure amount viewpoint N3 is above the upper limit value, PHHt≦P, (k)...
... (18) PHH,: Upper pressure upper limit value Pz (k) of pressure monitoring point N2: Pressure of pressure monitoring point N2 (k = 1.2...
・, 20) P H113< P3(k)
......(19) PHH,: Pressure at pressure monitoring point N3"-"-limit value Ps(k): Pressure at pressure monitoring point N, (
k・1,2. ..., 20) If formula (11) holds when either formula (18) or (19) holds true, the ACC outlet steam flow rate set value is calculated from the previous calculation formula, and at this time, formula ( If 16) and (17) hold true, calculate the steam flow rate settings at the outlets of the back pressure turbine and temperature reducing device from the above equation, and set the back pressure turbine and temperature reducing device to follow these set values. , controls the ACC outlet steam flow rate operating end, PBz-ΔPBz≦Pz(k)≦PB, +ΔPB2 or PB3-ΔPI(, ≦P 3 (k)≦PB, +ΔPR
Make it 3. FIG. 2 (Part 8) shows the operation at this time. In addition, FIG. 2 (Part 9) shows the destinations of Parts 1 to 8 of the same figure.

第3図に具体的な制御動作例を示す。FIG. 3 shows a specific example of control operation.

すなわち、蒸気使用設備21.22.23側の使用流量
変化がそれぞれ同図(イ)、(ロ)、(ハ)の如く示さ
れるものとすると、ACCII。
That is, assuming that the usage flow rate changes on the steam usage equipment 21, 22, and 23 sides are shown as shown in (a), (b), and (c), respectively, ACCII.

背圧タービン12.DPT13の各出口流量設定値は同
図(ニ)、(ホ)、(へ)の如く示され、また圧力監視
点N+ 、Nz 、N3の圧力変化はそれぞれ同図()
)、  (チ)、(す)の如く示され、さらにACCI
Iの出口圧力変化および流量変化はそれぞれ同図(ヌ)
、(ル)の如くなり、特に圧力変動が許容範囲内に抑え
られていることがわかる。
Back pressure turbine 12. Each outlet flow rate setting value of DPT13 is shown as (d), (e), and (f) in the same figure, and the pressure changes at pressure monitoring points N+, Nz, and N3 are shown in () in the same figure, respectively.
), (ch), (su), and ACCI
The outlet pressure change and flow rate change of I are shown in the same figure (N).
, (ru), and it can be seen that especially the pressure fluctuation is suppressed within the permissible range.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、以下の効果が期待できる。 According to this invention, the following effects can be expected.

l)自動化による省力化 ■ 背圧タービン出口流量の操作 ■ 減温減圧装置出口流量の操作 ■ ACC出口流蓋の操作 (従来、手動で行われていた操作が自動化されるため省
略化が可能である。) 2)制御精度の向上 蒸気系統の圧力状態と蒸気捷供側の負荷状況より、プラ
ントモデルを用いて設定値を算出し、その設定値で蒸気
出口流量を制御するようにしたので、手動制御に比べて
精度の高い制御が可能となる。
l) Labor saving through automation ■ Operation of back pressure turbine outlet flow rate ■ Operation of temperature reduction and decompression device outlet flow rate ■ Operation of ACC outlet flow cover (operations that were previously performed manually can be omitted as they are automated) 2) Improved control accuracy A plant model is used to calculate the set value based on the pressure state of the steam system and the load state on the steam supply side, and the steam outlet flow rate is controlled using the set value. This enables more precise control than manual control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用されるプラント全体を示す概要
図、第2図(その1〜その9)はこの発明による制御動
作を説明するためのフローチャート、第3図は具体的な
制御動作例を説明するためのタイムチャートである。 符号説明 11・・・アキュムレータ(ACC)、12・・・背圧
タービン、13・・・送風ボイラ(DPT)、21〜2
3・・・蒸気使用設備、N、−N、・・・圧力監視点。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 樗2図(乙の1) 奪2図(ミ■2) !2 図 (乙の5) 第2図(ぞ■4) 第2 図(ぞ■5) 12 図(ミ016) 1F 2 vA(Kcn7) 喀2図(!O8) 虜2 図 (乙の9) @3 図 T/H
Fig. 1 is a schematic diagram showing the entire plant to which this invention is applied, Fig. 2 (parts 1 to 9) is a flowchart for explaining control operations according to the invention, and Fig. 3 is a specific example of control operations. It is a time chart for explaining. Description of symbols 11...Accumulator (ACC), 12...Back pressure turbine, 13...Blast boiler (DPT), 21-2
3...Steam usage equipment, N, -N,...Pressure monitoring point. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyohi Matsuzaki 2 drawings (Otsu No. 1) Uri 2 drawings (Mi ■ 2)! Figure 2 (Otsu no 5) Figure 2 (Zo ■4) Figure 2 (Zo ■5) 12 Figure (Mi016) 1F 2 vA (Kcn7) Figure 2 (!O8) Prisoner 2 Figure (Otsu no 9) @3 Figure T/H

Claims (1)

【特許請求の範囲】[Claims] アキュムレータ、背圧タービン、減温減圧装置を含む個
々の蒸気供給設備から複数の蒸気使用設備へ蒸気を供給
する配管の少なくとも1箇所にその蒸気圧力を監視する
圧力監視点を設け、該監視点圧力の別途設定される基準
圧力との比較結果、一定時間における圧力時系列データ
の積算量の増減傾向(圧力トレンド)および蒸気使用設
備の蒸気使用予定情報にもとづいて制御モードを決定す
るとともに、各蒸気供給設備の負荷条件、蒸気使用設備
側の蒸気使用量変動から蒸気配給系統の状況を判断して
各蒸気供給設備の流量設定値を所定の演算式より求め、
該演算された設定値により各蒸気供給設備の蒸気出口流
量を制御し、各監視点圧力の圧力変動を許容範囲内に制
御することを特徴とする蒸気配給系統における制御方法
A pressure monitoring point for monitoring the steam pressure is provided at least at one location on the piping that supplies steam from each steam supply facility including an accumulator, a back pressure turbine, and a temperature reduction/decompression device to a plurality of steam using facilities, and the pressure at the monitoring point is The control mode is determined based on the comparison result with a separately set standard pressure, the increase/decrease trend in the cumulative amount of pressure time series data over a certain period of time (pressure trend), and the steam usage schedule information of the steam usage equipment. Judging the status of the steam distribution system from the load conditions of the supply equipment and fluctuations in steam usage on the steam usage equipment side, the flow rate setting value of each steam supply equipment is determined from a predetermined calculation formula,
A control method for a steam distribution system, characterized in that the steam outlet flow rate of each steam supply facility is controlled using the calculated set value, and pressure fluctuations at each monitoring point pressure are controlled within an allowable range.
JP15351988A 1988-06-23 1988-06-23 Control method in vapor distribution system Pending JPH01320514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15351988A JPH01320514A (en) 1988-06-23 1988-06-23 Control method in vapor distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15351988A JPH01320514A (en) 1988-06-23 1988-06-23 Control method in vapor distribution system

Publications (1)

Publication Number Publication Date
JPH01320514A true JPH01320514A (en) 1989-12-26

Family

ID=15564310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15351988A Pending JPH01320514A (en) 1988-06-23 1988-06-23 Control method in vapor distribution system

Country Status (1)

Country Link
JP (1) JPH01320514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346706A (en) * 1993-06-08 1994-12-20 Kubota Corp Garbage burning device
CN103032112A (en) * 2013-01-16 2013-04-10 哈尔滨工业大学 Undisturbed steam distribution law switching method for steam turbine with linear flow change

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346706A (en) * 1993-06-08 1994-12-20 Kubota Corp Garbage burning device
CN103032112A (en) * 2013-01-16 2013-04-10 哈尔滨工业大学 Undisturbed steam distribution law switching method for steam turbine with linear flow change

Similar Documents

Publication Publication Date Title
US4526513A (en) Method and apparatus for control of pipeline compressors
US10584645B2 (en) Compressor control device, compressor control system, and compressor control method
CN103115243B (en) Control equipment and method for natural gas pipeline distribution electric control valve
KR101271378B1 (en) Method and System for Controlling A Process In A Plant
US20070186557A1 (en) Pressure control method and system to reduce gas turbine fuel supply pressure requirements
JP2008224182A (en) Operation control method of one pump system heat source facility
KR20010040699A (en) Adaptive system for predictive control of district pressure regulators
CN103946516A (en) Valve control device, gas turbine, and valve control method
US6406268B1 (en) Control of a compressor unit
JP5315080B2 (en) Operation control method for 1 pump heat source equipment
JP2001255903A (en) Process control system
JPH01320514A (en) Control method in vapor distribution system
CN114278441B (en) Gas turbine and fuel flow rate adjustment method thereof
JPH0578660B2 (en)
JP2017026292A (en) Boiler system
JPH02254115A (en) Method for controlling automatic distribution of converter gas
JPH09242507A (en) Start controller for steam turbine
US11261801B2 (en) Control device, gas compressing system, control method, and program
JPH04228808A (en) Control method for steam turbine device
JP6477268B2 (en) Flow control device, flow control system, flow control program, and flow control method
RU2656751C1 (en) Device for temperature control of the temperature controlling air of the ascent unit
RU2176100C1 (en) Method controlling flow rate and pressure of gas delivered to users
JP2937530B2 (en) Discharge pressure control device
RU2210006C2 (en) Compressor shop process control method
JPH0335922Y2 (en)