JPH07328412A - Operation of gas producing equipment - Google Patents

Operation of gas producing equipment

Info

Publication number
JPH07328412A
JPH07328412A JP6128886A JP12888694A JPH07328412A JP H07328412 A JPH07328412 A JP H07328412A JP 6128886 A JP6128886 A JP 6128886A JP 12888694 A JP12888694 A JP 12888694A JP H07328412 A JPH07328412 A JP H07328412A
Authority
JP
Japan
Prior art keywords
load
gas
oxygen
plant
gas production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6128886A
Other languages
Japanese (ja)
Other versions
JP2980516B2 (en
Inventor
Masuhito Shimizu
益人 清水
Satoru Ogino
哲 荻野
Yasuhisa Nakajima
康久 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6128886A priority Critical patent/JP2980516B2/en
Publication of JPH07328412A publication Critical patent/JPH07328412A/en
Application granted granted Critical
Publication of JP2980516B2 publication Critical patent/JP2980516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To provide a load setting method capable of making an operating load changing plan for minimizing the wasteful discharge of gas, etc., and improving production efficiency in a gas producing plant such as plural oxygen plants. CONSTITUTION:A gas is produced by plural gas producing plants 1 in accordance with a gas production plan prepared by a computer 7. The gas production equipment is operated to adjust the balance between the production of gas and the necessary supply to the demand 3 by discharging the gas. The load limiting time for limiting the change of load is predetermined to operate the plants under constant load, a load change limiter to limit the load change during the determined load limiting time is provided to each of the plants, and a gas production plan satisfying the load limiting time and necessary supply is prepared by the computer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス生産プラントの運
転方法に係わり、より詳しくは少なくとも2基以上の酸
素プラントを有する酸素ガス需給系における、酸素プラ
ントに好適なガス生産設備の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a gas production plant, and more particularly to a method of operating a gas production facility suitable for an oxygen plant in an oxygen gas supply and demand system having at least two oxygen plants. .

【0002】[0002]

【従来の技術】一般に、大規模製鉄所、化学工場等酸窒
素を大量に需要する工場(以後製鉄所等と称する)で
は、工場敷地内に酸素プラント1を複数基併設すること
が一般的である。このような酸素ガス需給系の代表的な
フローを図1に示す。図1において、酸素プラント1は
周知のように図中に表示しない原料空気圧縮機、不純物
精製器、主熱交換器を経由する間に大気を圧縮、精製、
冷却して空気分離用の精溜筒へ導入する。精溜筒では精
溜原理を用いて筒頂部よりも最も沸点の低い窒素ガス
を、筒中央部からアルゴンガスを、筒下部から酸素ガス
を製品として取出し、酸素ガス送給経路2を利用して酸
素需要工場3に送給している。
2. Description of the Related Art Generally, a large-scale steel plant, a chemical plant, or a factory that demands a large amount of acid nitrogen (hereinafter referred to as a steel plant, etc.) generally has a plurality of oxygen plants 1 installed side by side. is there. A typical flow of such an oxygen gas supply and demand system is shown in FIG. In FIG. 1, an oxygen plant 1 compresses and purifies the atmosphere while passing through a raw material air compressor, an impurity purifier, and a main heat exchanger, which are not shown in the figure, as is well known.
Cool and introduce into a rectifying column for air separation. In the rectifying cylinder, nitrogen gas having the lowest boiling point is taken out from the cylinder top part, argon gas is taken out as a product from the cylinder bottom part, and oxygen gas is taken out from the bottom part as a product by using the rectification principle. It is being sent to the oxygen demand factory 3.

【0003】一般に、各酸素需要工場3のガス需要量
は、その操業計画、操業状況によって短時間のうちに大
きく変動することが普通である。これに対し、酸素プラ
ント1の負荷調整速度は極めて遅く30分〜1時間かか
るのが普通である。その変動幅も酸素送給能力に対し8
0%程度の減量が限界であり、なおかつ一旦負荷変更を
行うと空気分離用精溜筒が安定して再び負荷変更を行う
ことが出来るようになるまで通常3〜4時間程度の時間
がかかるという種々の制約がある。
In general, the gas demand amount of each oxygen demand factory 3 usually greatly fluctuates in a short time depending on its operation plan and operation condition. On the other hand, the load adjustment speed of the oxygen plant 1 is extremely slow and usually takes 30 minutes to 1 hour. The fluctuation range is 8 with respect to the oxygen supply capacity.
It is said that the limit is about 0% reduction, and that once the load is changed, it usually takes about 3 to 4 hours until the air separation rectifying cylinder can stably change the load again. There are various restrictions.

【0004】このため、このような酸素ガスの需要変動
を吸収する目的で、送給経路2にはいくつかの高圧ガス
ホルダ4が設置されて余剰ガスを貯留し、数10分単位
の短時間の需要量の変動を平滑化している。このような
酸素需要系において、酸素プラント1の送給量と酸素需
要工場3の使用量の整合をとるためには、工場の需要計
画を酸素プラント1に伝送する需要計画集計伝送機構6
を設け、酸素プラント1を計画的に運転することが必要
である。
Therefore, for the purpose of absorbing such demand fluctuations of oxygen gas, several high-pressure gas holders 4 are installed in the feed path 2 to store the excess gas, which can be stored in a short time of several tens of minutes. Fluctuations in demand are smoothed. In such an oxygen demand system, in order to match the supply amount of the oxygen plant 1 and the usage amount of the oxygen demand factory 3, the demand plan totalization transmission mechanism 6 for transmitting the factory demand plan to the oxygen plant 1
Therefore, it is necessary to operate the oxygen plant 1 in a planned manner.

【0005】一般に、酸素プラント1の運転方法として
は、酸素需要工場3より入力され、需要計画集計伝送機
構6により集計、伝送された需要計画により必要送給量
の計画を得る。そしてこの計画を少なくとも数日にわた
る長期間の変化と数時間単位の中期間の変化とに分類
し、需要量が長期的にみて変動しないと思われた区間内
の平均値を満足する酸素プラント1の基数を稼働基数と
して決定する。しかる後に、プラントの酸素送給圧力を
高圧力ガスホルダの圧力検出機構5により監視し、需要
量の中期的な変動が生じてホルダ圧力が上昇、下降傾向
になると、酸素プラント1の負荷を調整することによっ
て対応し、ホルダ圧力が上下値を越えないようにしてい
た。
Generally, as a method of operating the oxygen plant 1, the required supply amount plan is obtained from the demand plan which is input from the oxygen demand factory 3 and aggregated and transmitted by the demand plan aggregation and transmission mechanism 6. Then, this plan is categorized into long-term changes of at least several days and medium-term changes of several hours, and the oxygen plant 1 that satisfies the average value in the section where the demand does not seem to change in the long term. The cardinal number of is determined as the operating cardinal number. After that, the oxygen supply pressure of the plant is monitored by the pressure detection mechanism 5 of the high-pressure gas holder, and when the medium-term fluctuation of the demand occurs and the holder pressure tends to rise and fall, the load of the oxygen plant 1 is adjusted. The holder pressure was kept above the upper and lower limits.

【0006】このとき、酸素プラント1の運転計画を電
算機等7を用いて決定する従来の方法として次の方法が
知られている。例えば特公平1−28313号公報のよ
うに、各酸素プラント1の酸素ガス発生効率に着目し、
長期的な需要量の変動に対しては複数基の酸素プラント
の稼働、休止計画の組み合せを線型計画法で、中期的な
変動に対しては非線型計画法をもちいてプラントの負荷
調整をおこない、もっとも消費電力のすくない酸素プラ
ントの運転計画を決定する方法がある。
At this time, the following method is known as a conventional method for determining the operation plan of the oxygen plant 1 using the computer 7 or the like. For example, as in Japanese Examined Patent Publication No. 1-28313, focusing on the oxygen gas generation efficiency of each oxygen plant 1,
For long-term fluctuations in demand, a linear programming method is used to combine the operation and shutdown plans of multiple oxygen plants, and for medium-term fluctuations, non-linear planning is used to adjust the plant load. , There is a method to determine the operation plan of the oxygen plant that consumes the least power.

【0007】また、中期的な変動に対して各酸素プラン
ト毎の負荷を調整する方法としては、例えば特開平3−
199882号公報のように、エキスパートシステムを
用い、各プロセスの状態値に上限、上上限、下限、下下
限を設け、上限値を越えてから上上限を越えるまでの時
間を過去一定時間の実績状態値から予測してプラントの
制御に反映させる方法などいくつかの具体的な方法が提
案されている。
Further, as a method for adjusting the load of each oxygen plant against medium-term fluctuations, for example, Japanese Patent Laid-Open No.
As in Japanese Patent Publication No. 199882, an upper limit, an upper limit, a lower limit, and a lower limit are set in the state value of each process using an expert system, and the time from when the upper limit is exceeded to when the upper limit is exceeded is a past fixed time actual state. Several concrete methods have been proposed, such as a method of predicting from values and reflecting them in plant control.

【0008】[0008]

【発明が解決しようとする課題】前述したように、複数
基の酸素プラントの運転計画を電算機等を用いて決定す
る従来の方法においては、非線型計画法を用いたり、エ
キスパートシステムを使用するなど、計算機のプログラ
ムが複雑な計算を行う方法しかなく、現実的な短い処理
時間で酸素プラントに運転指示を出すためには、大規模
な電算機システムを必要とした。また、これらの従来の
方法においても、プラントの負荷変更制限時間を操作オ
ペレータが予め与えるなどの調整が必要であり、人間の
介入が必要なシステムである。
As described above, in the conventional method for determining the operation plan of a plurality of oxygen plants by using a computer or the like, a nonlinear programming method or an expert system is used. For example, a computer program has only a method of performing complicated calculations, and a large-scale computer system is required to issue an operation instruction to an oxygen plant in a short processing time that is realistic. Further, even in these conventional methods, it is necessary for the operator to adjust the load change limit time of the plant in advance and the system requires human intervention.

【0009】このため、大規模な電算機システムを用い
ずに複数基のプラントの負荷を変更する現実的な方法と
しては、あらかじめ最も効率の悪く、負荷変更に手間取
るプラントをベースロード基として定め、負荷変更を行
い易い順番に優先順位を固定し、この順番にプラント負
荷を変更する。固定的な計画方法が取られているのが一
般的である。
Therefore, as a practical method for changing the loads of a plurality of plants without using a large-scale computer system, a plant having the lowest efficiency and taking a lot of time to change the loads is set as a base load base. The priority is fixed in the order in which it is easy to change the load, and the plant load is changed in this order. Generally, a fixed planning method is adopted.

【0010】この場合、たとえば、下記の表1のような
送給性能をもつ3基の酸素プラント1で酸素需要工場3
へ送給している図1のような需給系において、従来の方
法により運転計画をたてる方法を図2を用いて説明す
る。以後、説明を簡単にするために、プラントの負荷よ
り最低負荷を引いた値を負荷調整可能量とし、これを用
いて説明する。すなわち、負荷を80〜100%に調整
できるプラントの負荷変更可能量は0〜20%である。
In this case, for example, the three oxygen plants 1 having the feeding performances as shown in Table 1 below are used in the oxygen demand factory 3
A method of making an operation plan by the conventional method in the demand and supply system as shown in FIG. Hereinafter, in order to simplify the description, a value obtained by subtracting the minimum load from the load of the plant will be referred to as a load adjustable amount, and this will be used for description. That is, the load changeable amount of the plant capable of adjusting the load to 80 to 100% is 0 to 20%.

【0011】[0011]

【表1】 [Table 1]

【0012】そこで、3→2→1号酸素プラント1の順
番で負荷変更順位を決めておき、図2に示すような必要
送給量が与えられた場合、3号酸素プラントを最初に7
0%負荷(図中0%)に減量したのち、2号酸素プラン
トを80%負荷(図中0%)に減量することになる。こ
の時は、負荷変更制限時間内におきるその後の需要増に
対し1,2号の負荷変更をすることができないので、不
足分の酸素を予め液化酸素タンクに貯蔵してあった液化
酸素を気化することによって送給する必要がある。3号
酸素プラントの精溜筒が安定する4時間後に100%
(図中30%)に復帰することにより気化送給は停止す
ることができる。しかしながら、液化酸素の気化送給は
寒冷の無駄づかいになり、送給コスト全体のコストアッ
プにつながる。これによるエネルギー損失は酸素プラン
ト間の発生効率差よりずっと大きい。そこでこの負荷の
増加を見込んで図3のように3号酸素プラントの負荷を
下げずにおくと、大幅なガスの放散が生じて同様に送給
コストが増大するという問題点があった。
Therefore, if the load change order is determined in the order of 3 → 2 → No. 1 oxygen plant 1 and the required feed rate as shown in FIG.
After reducing the load to 0% (0% in the figure), the No. 2 oxygen plant will be reduced to 80% load (0% in the figure). At this time, it is not possible to change the load of Nos. 1 and 2 in response to the subsequent increase in demand within the load change limit time, so the shortage of oxygen is vaporized from the liquefied oxygen that was stored in the liquefied oxygen tank in advance. Need to send by. 100% after 4 hours when the rectifying column of No. 3 oxygen plant stabilizes
By returning to (30% in the figure), vaporization and feeding can be stopped. However, vaporization and feeding of liquefied oxygen is a waste of cold, which leads to an increase in the total feeding cost. The energy loss due to this is much larger than the difference in production efficiency between oxygen plants. Therefore, if the load of the No. 3 oxygen plant is not reduced as shown in FIG. 3 in anticipation of this increase in load, there is a problem that a large amount of gas is diffused and the feeding cost is similarly increased.

【0013】本発明は、ガスの放散等の無駄をできるだ
け少なくし、生産効率を向上させるような複数基の酸素
プラントの負荷変更計画を立てることができる酸素プラ
ントの負荷設定方法を提供することを目的とする。
The present invention provides a load setting method for an oxygen plant capable of making a load change plan for a plurality of oxygen plants so as to minimize waste such as gas emission and improve production efficiency. To aim.

【0014】[0014]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明は、予め電算機により作成さ
れたガス生産計画に従って複数のガス生産プラントによ
りガスを生産し、当該生産されたガスの生産量と、需要
先への必要供給量とのバランスをガスの放散により調整
するガス生産設備の運転方法において、前記ガス生産プ
ラントを一定負荷で運転するべく、負荷の変更を制限す
る負荷制限時間を予め定めておき、当該定められた負荷
制限時間における負荷変動を制限する負荷変更制限器を
前記複数のガス生産プラントの各々に設け、前記負荷制
限時間および前記必要供給量の条件を満たすガス生産計
画を前記電算機により作成することを特徴とする。
In order to achieve such an object, the invention according to claim 1 produces gas by a plurality of gas production plants according to a gas production plan prepared in advance by a computer, and produces the gas. In a method of operating a gas production facility that adjusts the balance between the amount of produced gas and the required supply to the demand destination by means of gas diffusion, in order to operate the gas production plant at a constant load, change of load is limited. A load change limiter for limiting the load fluctuation at the predetermined load limit time is provided in each of the plurality of gas production plants, and the condition of the load limit time and the required supply amount is set. A gas production plan satisfying the above conditions is created by the computer.

【0015】請求項2の発明は、前記条件を満たしつ
つ、前記複数のガス生産プラントの負荷変更順位を変え
た複数の組み合わせを設定し、当該設定された複数の組
み合わせの中で最もガスの放散量の少ない組み合わせを
前記電算機により取得し、当該取得した組み合せに従っ
て前記ガス生産計画を当該電算機において取得すること
を特徴とする。
The invention of claim 2 sets a plurality of combinations in which the load change order of the plurality of gas production plants is changed while satisfying the above conditions, and the most gas emission among the plurality of set combinations is set. It is characterized in that a combination with a small amount is acquired by the computer, and the gas production plan is acquired by the computer according to the acquired combination.

【0016】[0016]

【作用】請求項1の発明では、ガスの生産プラントを停
止すると、一定時間後でないと、ガスの生産ができない
ことを考慮して負荷制限器により負荷制限時間だけガス
の負荷を制限する。これにより、この負荷制限時間を超
えたときに、直ちに、負荷の変更を可能とすると共に、
このような負荷制限状態の中で最も生産効率のよい運転
計画を電算機により作成する。
According to the first aspect of the present invention, when the gas production plant is stopped, the gas load is limited by the load limiter for the load limiting time in consideration of the fact that the gas cannot be produced until a fixed time elapses. This allows the load to be changed immediately when the load limit time is exceeded, and
An operation plan with the highest production efficiency in such a load limited state is created by a computer.

【0017】請求項2の発明では、実施可能な負荷変動
順位を電算機によりシミュレーションして運転計画を作
成する。
According to the second aspect of the invention, the feasible load fluctuation order is simulated by a computer to create an operation plan.

【0018】[0018]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】本発明を適用した酸素需給系を図4に示
す。図1の従来例と同様の図4の箇所には同一の符号を
付しており、説明は簡単に留める。
An oxygen supply and demand system to which the present invention is applied is shown in FIG. 4 that are the same as in the conventional example of FIG. 1 are denoted by the same reference numerals, and the description thereof will be briefly described.

【0020】図4において、酸素プラント1は原料空気
を精溜筒にて精溜し、酸素、窒素、アルゴンを分離す
る。酸素ガス送給経路2は酸素プラント1から酸素ガス
を導出して昇圧する酸素圧縮機、酸素ガス流量指示調節
機構を有し、酸素ガスを需要先に送給する。
In FIG. 4, the oxygen plant 1 rectifies raw material air in a rectifying cylinder to separate oxygen, nitrogen and argon. The oxygen gas supply path 2 has an oxygen compressor that draws out oxygen gas from the oxygen plant 1 and raises the pressure, and an oxygen gas flow rate instruction adjusting mechanism, and supplies oxygen gas to a customer.

【0021】高圧ガスホルダ4および圧力検出指示機構
5は酸素ガス送給経路2に設けられている。酸素需要計
画集計伝送機構6は酸素需要工場3の酸素需要計画を酸
素プラント1に伝送する。電算機7は上記酸素需要計画
に整合する酸素プラントの運転計画を立案する。負荷変
更制限器8は酸素プラントの負荷変更時刻を制限し、少
なくとも規定時間以上、一定負荷を維持させる。
The high pressure gas holder 4 and the pressure detection instruction mechanism 5 are provided in the oxygen gas supply path 2. The oxygen demand plan aggregation and transmission mechanism 6 transmits the oxygen demand plan of the oxygen demand factory 3 to the oxygen plant 1. The computer 7 formulates an operation plan of the oxygen plant that matches the oxygen demand plan. The load change limiter 8 limits the load change time of the oxygen plant and maintains a constant load for at least the specified time.

【0022】このような図4の酸素需給系において、予
め各酸素プラント1の負荷変更制限時間を定義してお
く。また、酸素プラント1の負荷変更を行うタイミング
は、この負荷変更制限が解除された場合と、必要送給量
が変化した場合に限定する。
In such an oxygen supply and demand system of FIG. 4, the load change limit time of each oxygen plant 1 is defined in advance. Further, the timing of changing the load of the oxygen plant 1 is limited to when the load changing restriction is released and when the required feed amount changes.

【0023】n基のプラントがとりうる全ての負荷変更
順位のケースは、nPn通りとなるので、この全てのケ
ースに対して、必要送給量と負荷変更制限を必ず満たす
ようなプラントの負荷を電算機7において設定する。電
算機7は、設定されたケースの中で最も放散量の少ない
ケースを酸素プラント1の運転計画と決定する。
Since there are nPn cases of all load change orders that can be taken by the n plants, the load of the plant that surely satisfies the necessary feed amount and the load change limit is set for all of these cases. It is set in the computer 7. The computer 7 determines the case with the smallest emission amount among the set cases as the operation plan of the oxygen plant 1.

【0024】電算機7が実行する具体的な計算手順を図
6に示す。
A concrete calculation procedure executed by the computer 7 is shown in FIG.

【0025】運転計画の作成に先立って、オペレータは
複数の酸素プラント1の負荷制限、すなわち、負荷制限
時間および負荷制限量(%で表わす)をキーボード等か
ら電算機7に入力する(S10)。
Prior to the preparation of the operation plan, the operator inputs the load limits of the plurality of oxygen plants 1, that is, the load limit time and the load limit amount (expressed in%) to the computer 7 from the keyboard or the like (S10).

【0026】次に、オペレータは、各時刻の必要供給量
を電算機7に入力する(S20)。
Next, the operator inputs the required supply amount at each time into the computer 7 (S20).

【0027】このような運転計画の作成計画に必要な初
期データが入力されると電算機7は、負荷制限時間を越
えた時点の必要供給量を満足する複数の負荷変更量を見
つける。より具体的には酸素プラント1の数により一義
的に定まる負荷変更順位の組み合わせの中の第1番目の
組み合わせを選択し、その組み合わせの順で順次に負荷
を模擬的に変更して、各時点の負荷を決定する(S3
0)。なお、このとき、各酸素プラントのガス生産量の
合計がその時点の必要供給量以上となるように条件が付
されることは言うまでもない。
When the initial data required for such an operation plan creation plan is input, the computer 7 finds a plurality of load change amounts that satisfy the required supply amount at the time when the load limit time is exceeded. More specifically, the first combination is selected from the combinations of load change orders that are uniquely determined by the number of oxygen plants 1, and the load is sequentially changed in a simulated order in the order of the combination, and each time point is changed. The load of (S3
0). At this time, it goes without saying that the conditions are added so that the total gas production amount of each oxygen plant becomes equal to or more than the required supply amount at that time.

【0028】このようにして負荷変動量が与えられて、
余剰の放散量はガス生産量から必要供給量を減算するこ
とにより算出される(S40)。
In this way, the load fluctuation amount is given,
The surplus emission amount is calculated by subtracting the required supply amount from the gas production amount (S40).

【0029】このようにして、以下、酸素プラント1の
負荷変更順位を順次に変えて、その組み合わせのガス放
散量を計算する。また、算出されたガス放散量とこれま
で算出された最小のガス放散量を比較して、全体で最小
となるガス放散量およびその変更順位の組み合わせ、負
荷変動量を検出する(S40〜S80のループ処理)。
In this way, the load change order of the oxygen plant 1 is sequentially changed, and the gas emission amount of the combination is calculated. Further, the calculated gas emission amount is compared with the minimum gas emission amount calculated so far, and the combination of the minimum gas emission amount and its change order and the load variation amount are detected (S40 to S80). Loop processing).

【0030】このようにして最小のガス放散量が得られ
るときの負荷変更順位、負荷変動量を検出すると、電算
機7はこれらのデータを用いて運転計画を作成する(S
90)。この手順は運転データが固定の従来処理と同様
であり、詳細な説明を省略する。
When the load change order and the load change amount when the minimum gas emission amount is obtained in this way are detected, the computer 7 creates an operation plan using these data (S
90). This procedure is the same as the conventional processing in which the operation data is fixed, and detailed description thereof is omitted.

【0031】図2と同様な必要送給量が与えられた場合
にこのような処理手順に従って、運転計画を作成した例
を図5に示す。本発明を適用すると、従来までの固定的
な対応とことなり、3基のプラントが取り得る6通りの
負荷変更順位の中から、2→3→1号機の順または、2
→1→3号機の負荷変更順位を選択し、0時の時点にお
いて2号酸素プラントの負荷を80%(図中0%)と
し、1号、3号プラントの負荷を維持するという運転計
画をたてる。
FIG. 5 shows an example in which an operation plan is prepared in accordance with such a processing procedure when the same required supply amount as in FIG. 2 is given. If the present invention is applied, it will be a fixed correspondence to the conventional one, and from the 6 load change orders that can be taken by 3 plants, the order of 2 → 3 → Unit 1 or 2
→ 1 → Select the load change order of Unit 3 and set the load of No. 2 oxygen plant to 80% (0% in the figure) at 0 o'clock, and maintain the load of No. 1 and 3 plants. Build

【0032】この方法によれば、0〜3時間の間酸素ガ
スが余剰になってガス放散が生じるものの、必要送給量
を必ず満たす、最も放散量の少ない運転計画とすること
ができる。これにより、従来までの負荷変更順位を固定
し、人間の判断を介在させて負荷変更を行う場合は、液
化酸素の気化送給や無駄な酸素放散、過剰な負荷変更が
行われていたのに対し、本実施例では、液の気化送給を
行わなくてよく、放散量も少なくできるという良好な結
果が得られた。
According to this method, although the oxygen gas becomes excessive for 0 to 3 hours to cause gas emission, it is possible to make an operation plan with a minimum emission amount, which always satisfies the required feed amount. As a result, when the load change order is fixed until now, and the load is changed through human judgment, vaporization and delivery of liquefied oxygen, wasteful oxygen emission, and excessive load change are performed. On the other hand, in the present example, good results were obtained in that the vaporization and feeding of the liquid did not have to be carried out, and the emission amount could be reduced.

【0033】また、本実施例では、酸素プラント1の送
給ガスを酸素ガスに限定したが、該プラントで酸素と共
に発生する窒素、アルゴン等のガスを工場に送給して使
用する場合にも同様に使用できる。さらに、酸素ガス需
要量の長期的な変動に対して、酸素プラントの稼働基数
を計画する場合に使用することも可能である。
Further, in the present embodiment, the feed gas of the oxygen plant 1 is limited to the oxygen gas, but it is also possible to feed the gas such as nitrogen and argon generated together with oxygen in the plant to the factory for use. Can be used as well. Furthermore, it can also be used when planning the operating base of an oxygen plant with respect to long-term fluctuations in oxygen gas demand.

【0034】以上、説明したように、本実施例では、複
数基の酸素プラント1の負荷変更の計画を立てるため
に、各酸素プラント1に負荷変更時間を制限する負荷変
更制限器8を設け、予め酸素プラント1の負荷変更制限
時間を定義した。また、酸素プラント1の負荷変更を行
うタイミングは、この負荷変更制限が解除された場合
と、必要送給量が変化した場合に限定した。この場合に
おいて、n基のプラントがとりうるnPn通りの負荷変
更順位のケースに対して、必要送給量と負荷変更制限を
必ず満たすようなプラントの負荷を電算機7により試行
錯誤的に設定し、最も放散量の少ないケースを酸素プラ
ント1の運転計画とする。
As described above, in this embodiment, in order to make a load change plan for a plurality of oxygen plants 1, each oxygen plant 1 is provided with the load change limiter 8 for limiting the load change time, The load change limit time of the oxygen plant 1 is defined in advance. Further, the timing of changing the load of the oxygen plant 1 is limited to the case where the load change restriction is released and the case where the required supply amount changes. In this case, for the case of nPn load change orders that can be taken by n plants, the computer 7 sets the load of the plant that satisfies the required feed rate and the load change limit by trial and error. The operation plan of the oxygen plant 1 is the case with the smallest emission amount.

【0035】これにより、従来の負荷変更順位を固定し
た従来の運転手順に比べ、過剰な放散や、送給量不足に
よる液化酸素の気化送給をおこすことがない。また、負
荷変更制限時間がプラントの実質的な負荷変更順位とな
っており、各プラント内の空気分離用精溜筒の精溜が安
定して次回の負荷変更が実施できるようになるまでプラ
ント負荷を固定するので、負荷変更回数を最小限に抑
え、空気分離用精溜筒の最適な状態での精溜分離を行う
ことができ、酸素、窒素などの製品純度をおとすことが
なく安定に運転できる。
As a result, as compared with the conventional operating procedure in which the load change order is fixed in the related art, excessive emission and vaporization and supply of liquefied oxygen due to insufficient supply are prevented. In addition, the load change time limit is the actual load change order of the plant, and until the next load change can be implemented after the rectification of the air separation rectification cylinders in each plant is stable, Since it is fixed, it is possible to minimize the number of load changes and perform rectification separation in the optimum state of the rectifying cylinder for air separation, and operate stably without reducing the product purity of oxygen, nitrogen, etc. it can.

【0036】さらに、これらにより製品ガスの分離効
率、収率の低下を抑えながら必要送給量に応じた最適な
送給量を計画することができ、複数基の酸素プラント1
の能力を有効に使用した運転を行うことができる。
Further, by these means, it is possible to plan the optimum feed amount according to the required feed amount while suppressing the reduction of the product gas separation efficiency and the yield, and it is possible to arrange a plurality of oxygen plants 1.
It is possible to drive using the ability of the.

【0037】[0037]

【発明の効果】以上、説明したように、請求項1の発明
によれば、放散量の最小とすることができるので、生産
効率を高めることができる。
As described above, according to the first aspect of the present invention, since the amount of emission can be minimized, the production efficiency can be improved.

【0038】請求項2の発明によれば、人間を介在させ
ることなく、電算機により最も生産効率の高い生産計画
を立案することができる。
According to the second aspect of the present invention, the production plan having the highest production efficiency can be drafted by the computer without human intervention.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の生産設備を模式的に示す構成図である。FIG. 1 is a configuration diagram schematically showing a conventional production facility.

【図2】運転計画の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of an operation plan.

【図3】余剰放散量を示す説明図である。FIG. 3 is an explanatory diagram showing a surplus emission amount.

【図4】本発明実施例の生産設備を示す構成図である。FIG. 4 is a configuration diagram showing a production facility according to an embodiment of the present invention.

【図5】本発明実施例の余剰放散量を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing an excess emission amount according to the embodiment of the present invention.

【図6】本発明実施例の電算機7の処理手順を示すフロ
ーチャートである。
FIG. 6 is a flowchart showing a processing procedure of the computer 7 according to the embodiment of this invention.

【符号の説明】 1 酸素プラント 2 酸素ガス送給経路 3 酸素需要工場 4 高圧ガスホルダ 5 圧力検出機構 6 需要計画集計伝送機構 7 電算機等 8 負荷変更制限器[Explanation of Codes] 1 oxygen plant 2 oxygen gas supply route 3 oxygen demand factory 4 high pressure gas holder 5 pressure detection mechanism 6 demand plan aggregation transmission mechanism 7 computer etc. 8 load change limiter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予め電算機により作成されたガス生産計
画に従って複数のガス生産プラントによりガスを生産
し、当該生産されたガスの生産量と、需要先への必要供
給量とのバランスをガスの放散により調整するガス生産
設備の運転方法において、 前記ガス生産プラントを一定負荷で運転するべく、負荷
の変更を制限する負荷制限時間を予め定めておき、 当該定められた負荷制限時間における負荷変動を制限す
る負荷変更制限器を前記複数のガス生産プラントの各々
に設け、 前記負荷制限時間および前記必要供給量の条件を満たす
ガス生産計画を前記電算機により作成することを特徴と
するガス生産設備の運転方法。
1. A gas is produced by a plurality of gas production plants according to a gas production plan created in advance by a computer, and the balance between the production amount of the produced gas and the required supply amount to the demand destination is calculated. In a method of operating a gas production facility that adjusts by diffusion, in order to operate the gas production plant at a constant load, a load limit time for limiting a change in load is set in advance, and a load fluctuation at the set load limit time is set. A load change limiter for limiting is provided in each of the plurality of gas production plants, and a gas production plan that satisfies the conditions of the load limit time and the required supply amount is created by the computer. how to drive.
【請求項2】 前記条件を満たしつつ、前記複数のガス
生産プラントの負荷変更順位を変えた複数の組み合わせ
を設定し、当該設定された複数の組み合わせの中で最も
ガスの放散量の少ない組み合わせを前記電算機により取
得し、当該取得した組み合せに従って前記ガス生産計画
を当該電算機において取得することを特徴とする請求項
1に記載のガス生産設備の運転方法。
2. A plurality of combinations in which the load changing order of the plurality of gas production plants is changed while satisfying the conditions are set, and a combination with the smallest gas emission amount among the plurality of set combinations is set. The method of operating a gas production facility according to claim 1, wherein the gas production plan is acquired by the computer, and the gas production plan is acquired by the computer according to the acquired combination.
JP6128886A 1994-06-10 1994-06-10 Operating method of gas production equipment Expired - Fee Related JP2980516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128886A JP2980516B2 (en) 1994-06-10 1994-06-10 Operating method of gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128886A JP2980516B2 (en) 1994-06-10 1994-06-10 Operating method of gas production equipment

Publications (2)

Publication Number Publication Date
JPH07328412A true JPH07328412A (en) 1995-12-19
JP2980516B2 JP2980516B2 (en) 1999-11-22

Family

ID=14995792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128886A Expired - Fee Related JP2980516B2 (en) 1994-06-10 1994-06-10 Operating method of gas production equipment

Country Status (1)

Country Link
JP (1) JP2980516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107373A1 (en) * 2008-02-29 2009-09-03 株式会社 東芝 Operation plan creatiion method and device for energy storage device
KR101431909B1 (en) * 2012-11-29 2014-08-26 주식회사 포스코아이씨티 System for Managing Gas Separating Plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107373A1 (en) * 2008-02-29 2009-09-03 株式会社 東芝 Operation plan creatiion method and device for energy storage device
US8626351B2 (en) 2008-02-29 2014-01-07 Kabushiki Kaisha Toshiba Method and device for operation scheduling for energy storage equipment
KR101431909B1 (en) * 2012-11-29 2014-08-26 주식회사 포스코아이씨티 System for Managing Gas Separating Plant

Also Published As

Publication number Publication date
JP2980516B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
EP0573140B1 (en) Real-time economic load allocation
JPH06182192A (en) Method of chemical process optimization
CN107069830A (en) Improve the method and device of wind electricity digestion capability
US5424958A (en) Real time resource allocation
US7448230B2 (en) Method of controlling liquid production utilizing an expert system controller
WO2021200118A1 (en) Optimum calculation method for energy management condition at iron mill, optimum calculation device for energy management condition at iron mill, and operational method of iron mill
JPH07328412A (en) Operation of gas producing equipment
CN110442103B (en) Operation regulation and control method, device, equipment and storage medium of production equipment
JPH02254115A (en) Method for controlling automatic distribution of converter gas
JP2003113739A (en) Operation planning system for energy supply equipment
JP2011169234A (en) Operation schedule calculation device
CN115169130A (en) Real-time optimization scheduling method and system suitable for autonomous optimization operation of thermal power plant
JPH09179603A (en) Device for determining product gas generation schedule for air separator
JPH06313605A (en) Method and apparatus for controlling operation of heat source unit
JPH08202406A (en) Operation schedule planning method for energy supply plant
JPH10220961A (en) Operation control method and operation control device for demand variation absorbing type air separating plant
JP2002081600A (en) City gas manufacturing and supplying method
CN114307219B (en) Method and equipment for rectifying and adjusting propylene rectifying tower and computer readable storage medium
US5404314A (en) Real time environmental load allocation
JPH08189759A (en) Oxygen gas generating quantity-determination for air separating device
Zhang et al. Model of balanced distribution and optimal scheduling of the oxygen system in iron and steel industry
TWI836484B (en) Prediction system for nitrogn supply and demand
JPH10228320A (en) Method and device for controlling gas feed amount
JP2002091504A (en) Parameter adjustment support device for plant monitoring and control
JP2008108130A (en) Method for optimizing energy balance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees