JP2017206726A - Waste heat recovery apparatus and waste heat recovery method - Google Patents

Waste heat recovery apparatus and waste heat recovery method Download PDF

Info

Publication number
JP2017206726A
JP2017206726A JP2016098545A JP2016098545A JP2017206726A JP 2017206726 A JP2017206726 A JP 2017206726A JP 2016098545 A JP2016098545 A JP 2016098545A JP 2016098545 A JP2016098545 A JP 2016098545A JP 2017206726 A JP2017206726 A JP 2017206726A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
temperature
flow rate
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098545A
Other languages
Japanese (ja)
Other versions
JP6595403B2 (en
Inventor
圭一郎 泊
Keiichiro Tomari
圭一郎 泊
高橋 和雄
Kazuo Takahashi
和雄 高橋
織田 剛
Takeshi Oda
剛 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016098545A priority Critical patent/JP6595403B2/en
Publication of JP2017206726A publication Critical patent/JP2017206726A/en
Application granted granted Critical
Publication of JP6595403B2 publication Critical patent/JP6595403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery apparatus capable of managing temperature of preheated combustion air while suppressing a decrease in an energy efficiency.SOLUTION: An apparatus for recovering a waste heat from a heating furnace for heating a steel material is provided that comprises: a heat exchanger for preheating a combustion air supplied to the heating furnace; a waste heat recovery boiler for recovering a sensible heat of a waste gas discharged from the heating furnace; a first waste gas flow path that connects the heating furnace and heat exchanger together; a second waste gas flow path that connects the heat exchanger and the waste heat recovery boiler together; a bypass flow path that bypasses the heat exchanger and connects the heating furnace and the waste heat recovery boiler together; a thermometer for measuring a temperature of the combustion air after passing through the heat exchanger; and a mechanism for adjusting a flow rate of the waste gas that is flowed to the bypass path such that a temperature measured by the thermometer is equal to or lower than a predetermined temperature. It is preferred that the apparatus for recovering a waste heat from a heating furnace further comprises a mechanism for adjusting a flow rate of the waste gas which is flowed to the first waste gas flow path based on measurement result of the thermometer.SELECTED DRAWING: Figure 1

Description

本発明は、排熱回収装置及び排熱回収方法に関する。   The present invention relates to an exhaust heat recovery apparatus and an exhaust heat recovery method.

熱延工場等ではスラブやビレット等の鋼材を連続式又はバッチ式の加熱炉で加熱した後に熱間圧延が行われる。また、厚板工場等では厚板等の鋼材を連続式又はバッチ式の熱処理炉で加熱した後、熱処理が行われる。例えば厚板工場において厚板を製造する場合、連続式鋳造機で鋳造されたスラブが、台車等により搬送され、加熱炉の手前でストックヤードに一時的に保管される。この保管中にスラグの温度は最大で室温(約25℃)まで低下する。このため、このスラブは熱処理スケジュールに応じ順次ストックヤードから加熱炉に装入され、1200℃程度の温度まで加熱された後、圧延機へ送られ圧延処理される。   In a hot rolling factory or the like, hot rolling is performed after heating a steel material such as a slab or billet in a continuous or batch heating furnace. In a thick plate factory or the like, a steel material such as a thick plate is heated in a continuous or batch heat treatment furnace, and then heat treatment is performed. For example, when manufacturing a thick plate in a thick plate factory, a slab cast by a continuous casting machine is transported by a carriage or the like and temporarily stored in a stock yard in front of a heating furnace. During this storage, the temperature of the slag decreases to a maximum of room temperature (about 25 ° C.). For this reason, this slab is sequentially charged from a stock yard into a heating furnace according to a heat treatment schedule, heated to a temperature of about 1200 ° C., and then sent to a rolling mill for rolling.

このような加熱炉としては、スラブを装入側から抽出側まで搬送するウォーキングビーム式の搬送装置が配設され、この搬送装置の経路の上下に配設された複数のバーナーにより燃料ガスを燃焼させてスラブを加熱する加熱炉が公知である。上記バーナーには燃焼空気用ブロワにより燃焼用空気が供給され、燃料ガスが燃焼される。燃料ガスの燃焼後の排ガスは、加熱炉の装入端部である炉尻から炉尻煙道を通り煙突へ送られ外部へ排気される。この加熱炉から排気される排ガスの顕熱は、リジェネバーナーやレキュペレーター等の熱交換器によりその一部が回収されて燃焼用空気の予熱に利用されるが、大半は煙突から排気される。従って、例えばレキュペレーターが付属した加熱炉のエネルギー効率は50%程度に留まる。   As such a heating furnace, a walking beam type conveying device for conveying the slab from the charging side to the extracting side is disposed, and the fuel gas is burned by a plurality of burners disposed above and below the path of the conveying device. A heating furnace that heats the slab is known. Combustion air is supplied to the burner by a combustion air blower, and fuel gas is combusted. The exhaust gas after the combustion of the fuel gas is sent from the furnace bottom, which is the charging end of the heating furnace, to the chimney through the furnace bottom flue and exhausted to the outside. Part of the sensible heat of the exhaust gas exhausted from this heating furnace is recovered by a heat exchanger such as a regenerative burner or a recuperator and used for preheating combustion air, but most is exhausted from the chimney. . Therefore, for example, the energy efficiency of a heating furnace with a recuperator is only about 50%.

このエネルギー効率を向上させるために、排熱回収ボイラが設置され、熱交換器を通過した排ガスがこの排熱回収ボイラへ送られるように構成された熱回収システムが提案されている(特開平4−311533号公報、及び特開2012−242029号公報参照)。この従来の熱回収システムは、加熱炉の燃焼用空気の予熱に利用された排ガスから顕熱を蒸気として回収することで、エネルギー効率を向上させている。   In order to improve the energy efficiency, a heat recovery system is proposed in which an exhaust heat recovery boiler is installed and exhaust gas that has passed through a heat exchanger is sent to the exhaust heat recovery boiler (Japanese Patent Laid-Open No. 4). No.-311533 and JP2012-242029). This conventional heat recovery system improves energy efficiency by recovering sensible heat as steam from exhaust gas used for preheating combustion air in a heating furnace.

ところで、加熱炉からの排ガス温度が高い場合、予熱後の燃焼用空気の温度が例えばこの燃焼用空気をバーナーへ供給する燃焼用空気流量調整弁の耐熱上限温度を超過し、調整弁の劣化や破損を引き起こすおそれがある。このため、予熱後の燃焼用空気の温度を上記耐熱上限温度以下とするような管理が必要とされる。このような管理の方法として、熱交換器に流入する排ガスを冷却する方法が提案されている(特開2002−81641号公報参照)。この方法では熱交換器に供給する排ガスの温度を下げることで予熱後の燃焼用空気の温度が耐熱上限温度以下となるように管理する。   By the way, when the temperature of the exhaust gas from the heating furnace is high, the temperature of the combustion air after preheating exceeds, for example, the heat resistance upper limit temperature of the combustion air flow rate adjustment valve that supplies this combustion air to the burner, May cause damage. For this reason, the management which makes the temperature of the combustion air after preheating below the said heat-resistant upper limit temperature is required. As such a management method, a method of cooling the exhaust gas flowing into the heat exchanger has been proposed (see Japanese Patent Application Laid-Open No. 2002-81641). In this method, by controlling the temperature of the exhaust gas supplied to the heat exchanger, the temperature of the combustion air after preheating is controlled to be equal to or lower than the heat resistant upper limit temperature.

しかし、上記従来の熱回収システムでは、加熱炉の燃焼用空気の予熱に利用された排ガスから顕熱を回収するので、上述のような管理が行われると、排熱回収ボイラに供給される排ガスの温度も低下する。このため、上記従来の熱回収システムを用いて上記従来の燃焼用空気の温度管理を行うと、排熱回収ボイラの熱回収率が低下し、エネルギー効率が低下する。   However, in the above conventional heat recovery system, sensible heat is recovered from the exhaust gas used for preheating the combustion air of the heating furnace. Therefore, when the above management is performed, the exhaust gas supplied to the exhaust heat recovery boiler The temperature of the also decreases. For this reason, when the temperature management of the conventional combustion air is performed using the conventional heat recovery system, the heat recovery rate of the exhaust heat recovery boiler is decreased, and the energy efficiency is decreased.

特開平4−311533号公報Japanese Patent Laid-Open No. 4-31533 特開2012−242029号公報JP 2012-242029 A 特開2002−81641号公報JP 2002-81641 A

本発明は、上述のような事情に基づいてなされたものであり、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる排熱回収装置及び排熱回収方法の提供を目的とする。   The present invention has been made based on the above circumstances, and provides an exhaust heat recovery apparatus and an exhaust heat recovery method capable of managing the temperature of combustion air after preheating while suppressing a decrease in energy efficiency. Objective.

上記課題を解決するためになされた発明は、鋼材を加熱する加熱炉から排熱を回収する装置であって、上記加熱炉に供給される燃焼用空気を予熱する熱交換器と、上記加熱炉から排出される排ガスの顕熱を回収する排熱回収ボイラと、上記加熱炉及び上記熱交換器を接続する第1排ガス流路と、上記熱交換器及び上記排熱回収ボイラを接続する第2排ガス流路と、上記熱交換器を迂回し、かつ上記加熱炉及び上記排熱回収ボイラを接続するバイパス流路と、上記熱交換器通過後の上記燃焼用空気の温度を測定する温度計と、上記温度計により測定される温度が所定温度以下となるように、上記バイパス流路へ流す排ガスの流量を調整する機構とを備える。   The invention made to solve the above-mentioned problems is an apparatus for recovering exhaust heat from a heating furnace for heating a steel material, a heat exchanger for preheating combustion air supplied to the heating furnace, and the heating furnace An exhaust heat recovery boiler that recovers sensible heat of the exhaust gas discharged from the exhaust gas, a first exhaust gas passage that connects the heating furnace and the heat exchanger, and a second exhaust gas that connects the heat exchanger and the exhaust heat recovery boiler. An exhaust gas channel, a bypass channel that bypasses the heat exchanger and connects the heating furnace and the exhaust heat recovery boiler, and a thermometer that measures the temperature of the combustion air after passing through the heat exchanger; And a mechanism for adjusting the flow rate of the exhaust gas flowing through the bypass flow path so that the temperature measured by the thermometer is equal to or lower than a predetermined temperature.

当該排熱回収装置は、熱交換器を迂回するバイパス流路を備える。また、当該排熱回収装置は、熱交換器通過後の上記燃焼用空気の温度を測定する温度計の測定結果に基づき上記バイパス流路へ流す排ガスの流量を調整する機構を備える。当該排熱回収装置は、この調整機構により燃焼用空気に供給される排ガスの流量を抑制することで、予熱後の燃焼用空気の温度を管理できる。予熱後の燃焼用空気の温度を管理する方法としては、予熱される空気の流量を実際に燃焼用空気に使用される空気量よりも多くすることで管理する方法も考えられる。しかし、この方法では燃焼用空気として使用されなかった空気は放散されるため、この放散される空気の予熱エネルギーが無駄となる。これに対し、当該排熱回収装置は、予熱に必要とされる量の排ガス及び燃焼用空気を熱交換器へ供給するので、予熱エネルギーの無駄が少ない。また、当該排熱回収装置は、予熱に使用されない排ガスをバイパス流路を経て排熱回収ボイラへ供給するため、排ガスの温度が低下し難い。このため、当該排熱回収装置は、排熱回収ボイラの熱回収効率の低下を抑止できる。従って、当該排熱回収装置は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。   The exhaust heat recovery apparatus includes a bypass flow path that bypasses the heat exchanger. In addition, the exhaust heat recovery apparatus includes a mechanism that adjusts the flow rate of the exhaust gas flowing through the bypass flow path based on the measurement result of a thermometer that measures the temperature of the combustion air after passing through the heat exchanger. The exhaust heat recovery apparatus can manage the temperature of the combustion air after preheating by suppressing the flow rate of the exhaust gas supplied to the combustion air by this adjustment mechanism. As a method of managing the temperature of the combustion air after preheating, a method of managing by controlling the flow rate of the preheated air to be larger than the amount of air actually used for the combustion air is also conceivable. However, in this method, air that has not been used as combustion air is dissipated, so that the preheating energy of the dissipated air is wasted. On the other hand, the exhaust heat recovery apparatus supplies the exhaust gas and combustion air in an amount required for preheating to the heat exchanger, so that waste of preheating energy is small. Moreover, since the exhaust heat recovery apparatus supplies exhaust gas that is not used for preheating to the exhaust heat recovery boiler via the bypass channel, the temperature of the exhaust gas is unlikely to decrease. For this reason, the said exhaust heat recovery apparatus can suppress the fall of the heat recovery efficiency of an exhaust heat recovery boiler. Therefore, the exhaust heat recovery apparatus can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

上記温度計の測定結果に基づき、上記第1排ガス流路へ流す排ガスの流量を調整する機構をさらに備えるとよい。このように上記第1排ガス流路へ流す排ガスの流量を調整する機構をさらに備えることで、熱交換器に供給する排ガスの流量を精度よく調整できる。従って、加熱炉のエネルギー効率がさらに高められる。   A mechanism for adjusting the flow rate of the exhaust gas flowing into the first exhaust gas flow path may be further provided based on the measurement result of the thermometer. Thus, by further providing a mechanism for adjusting the flow rate of the exhaust gas flowing through the first exhaust gas passage, the flow rate of the exhaust gas supplied to the heat exchanger can be accurately adjusted. Therefore, the energy efficiency of the heating furnace is further increased.

上記熱交換器通過前の上記燃焼用空気の温度を測定する温度計と、上記熱交換器通過前の排ガス温度を測定する温度計と、上記熱交換器で予熱する燃焼用空気の流量を測定する流量計と、上記熱交換器を通過する排ガスの流量を測定する流量計とをさらに備えるとよい。このように上記測定器を備えることで、熱交換器の熱回収率の予測が可能となり、バイパス流路へ流す排ガスの流量の調整精度が向上する。   A thermometer that measures the temperature of the combustion air before passing through the heat exchanger, a thermometer that measures the exhaust gas temperature before passing through the heat exchanger, and a flow rate of combustion air that is preheated by the heat exchanger And a flow meter for measuring the flow rate of the exhaust gas passing through the heat exchanger. By providing the measuring device as described above, the heat recovery rate of the heat exchanger can be predicted, and the adjustment accuracy of the flow rate of the exhaust gas flowing into the bypass channel is improved.

上記熱交換器通過後の排ガス温度を測定する温度計をさらに備えるとよい。このように上記温度計を備えることで、熱交換器の熱回収率の予測精度がさらに高まり、バイパス流路へ流す流量の調整精度がさらに向上する。   A thermometer for measuring the exhaust gas temperature after passing through the heat exchanger may be further provided. By providing the thermometer in this way, the accuracy of predicting the heat recovery rate of the heat exchanger is further increased, and the accuracy of adjusting the flow rate flowing to the bypass channel is further improved.

上記課題を解決するためになされた別の発明は、鋼材を加熱する加熱炉から排熱を回収する方法であって、上記加熱炉に供給される燃焼用空気を予熱する熱交換器と、上記加熱炉から排出される排ガスの顕熱を回収する排熱回収ボイラと、上記加熱炉及び上記熱交換器を接続する第1排ガス流路と、上記熱交換器及び上記排熱回収ボイラを接続する第2排ガス流路と、上記熱交換器を迂回し、かつ上記加熱炉及び上記排熱回収ボイラを接続するバイパス流路とを備える排熱回収装置を用い、上記熱交換器通過後の上記燃焼用空気の温度を測定する工程と、上記測定温度が所定温度以下となるように、上記バイパス流路へ流す排ガスの流量を調整する工程とを備える。   Another invention made to solve the above problems is a method for recovering exhaust heat from a heating furnace for heating a steel material, the heat exchanger preheating combustion air supplied to the heating furnace, and the above An exhaust heat recovery boiler that recovers sensible heat of the exhaust gas discharged from the heating furnace, a first exhaust gas passage that connects the heating furnace and the heat exchanger, and the heat exchanger and the exhaust heat recovery boiler are connected. The combustion after passing through the heat exchanger, using a waste heat recovery device comprising a second exhaust gas flow path and a bypass flow path that bypasses the heat exchanger and connects the heating furnace and the exhaust heat recovery boiler A step of measuring the temperature of the working air, and a step of adjusting the flow rate of the exhaust gas flowing through the bypass flow path so that the measured temperature becomes a predetermined temperature or less.

当該排熱回収方法では、上記排熱回収装置を用い、バイパス流路へ流す排ガスの流量を調整することで、予熱後の燃焼用空気の温度を管理できる。また、当該排熱回収方法では、バイパス流路を経て排熱回収ボイラへ供給される排ガスの温度が低下し難い。従って、当該排熱回収方法は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。   In the exhaust heat recovery method, the temperature of the combustion air after preheating can be managed by adjusting the flow rate of the exhaust gas flowing to the bypass flow path using the exhaust heat recovery device. Further, in the exhaust heat recovery method, the temperature of the exhaust gas supplied to the exhaust heat recovery boiler via the bypass channel is unlikely to decrease. Therefore, the exhaust heat recovery method can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

以上説明したように、本発明の排熱回収装置及び本発明の排熱回収方法は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。   As described above, the exhaust heat recovery apparatus of the present invention and the exhaust heat recovery method of the present invention can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

本発明の一実施形態の加熱装置を示す模式図である。It is a schematic diagram which shows the heating apparatus of one Embodiment of this invention. 本発明の一実施形態の排熱回収方法を示すフロー図である。It is a flowchart which shows the waste heat recovery method of one Embodiment of this invention. 図2の排ガス流量調整工程のステップを示すフロー図である。It is a flowchart which shows the step of the waste gas flow rate adjustment process of FIG.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1に示す加熱装置は、加熱炉100と、本発明の一実施形態の排熱回収装置1とを主に備える。   The heating apparatus shown in FIG. 1 mainly includes a heating furnace 100 and an exhaust heat recovery apparatus 1 according to an embodiment of the present invention.

<加熱炉>
加熱炉100は、搬送装置101により加熱炉本体102の装入口に装入された鋼材を所定温度まで加熱し、加熱炉本体102の抽出口から鋼材を抽出する。具体的には、加熱炉本体102は、燃料ガス流路(不図示)から供給される燃料ガスを燃焼用空気流路103から供給される燃焼用空気と混合してバーナーにより燃焼し、その燃焼ガスを用いて鋼材を加熱する。
<Heating furnace>
The heating furnace 100 heats the steel material charged into the charging port of the heating furnace main body 102 by the transfer device 101 to a predetermined temperature, and extracts the steel material from the extraction port of the heating furnace main body 102. Specifically, the heating furnace main body 102 mixes fuel gas supplied from a fuel gas flow path (not shown) with combustion air supplied from the combustion air flow path 103 and burns it with a burner. The steel is heated using gas.

加熱炉100としては、公知の加熱炉を用いることができる。公知の加熱炉としては、例えばウォーキングビーム式の搬送装置101が配設され、鋼材が加熱炉本体102の装入側端部から抽出側端部まで移動する間に鋼材を加熱する加熱炉を挙げることができる。この加熱炉100では、鋼材の上下に配設された複数のバーナーで燃料ガスを燃焼させ、装入側から順に予熱帯、加熱帯及び均熱帯で鋼材の温度を制御する。具体的には、上記加熱炉100は、急速な加熱によって歪みが生じないように予熱帯で比較的低い温度上昇速度で鋼材を加熱した後、加熱帯で目標の温度となるように比較的高い温度上昇速度で鋼材を加熱し、均熱帯で温度むらを解消するように緩やかに鋼材を加熱する。   A known heating furnace can be used as the heating furnace 100. As a known heating furnace, for example, a walking beam type conveying device 101 is provided, and a heating furnace that heats a steel material while the steel material moves from the loading side end of the heating furnace main body 102 to the extraction side end is exemplified. be able to. In the heating furnace 100, the fuel gas is burned by a plurality of burners disposed above and below the steel material, and the temperature of the steel material is controlled in the pre-tropics, the heating zone, and the soaking zone in order from the charging side. Specifically, the heating furnace 100 is relatively high so as to reach a target temperature in the heating zone after heating the steel material at a relatively low temperature increase rate in the pretropical zone so that distortion is not caused by rapid heating. The steel material is heated at a rate of temperature rise, and the steel material is heated gently so as to eliminate temperature unevenness in the soaking zone.

上記燃焼用空気流路103は、上記予熱帯、加熱帯及び均熱帯にそれぞれ独立して燃焼用空気を供給できるように3つに分岐している。また、上記分岐の下流側の3つの流路にそれぞれ燃焼用空気流量調整弁104が配設されている。この燃焼用空気流量調整弁104により、加熱炉100は、予熱帯、加熱帯及び均熱帯ごとにバーナーへ供給する燃焼用空気の流量を調整し、鋼材の加熱を制御できる。   The combustion air flow path 103 is branched into three so that combustion air can be supplied independently to the pre-tropical zone, the heating zone, and the soaking zone. Further, combustion air flow rate adjustment valves 104 are disposed in the three flow paths downstream of the branch. With this combustion air flow rate adjustment valve 104, the heating furnace 100 can control the heating of the steel material by adjusting the flow rate of the combustion air supplied to the burner for each of the pretropical zone, the heating zone, and the soaking zone.

鋼材の加熱後の温度としては、特に限定されないが、例えば1100℃以上1300℃以下とできる。また、上記燃料ガスとしては、特に限定されないが、例えばコークス炉ガス(Cガス)、コークス炉ガスと高炉ガスとの混合ガス(Mガス)等を用いることができる。   Although it does not specifically limit as temperature after heating a steel material, For example, it can be set as 1100 degreeC or more and 1300 degrees C or less. The fuel gas is not particularly limited, and for example, coke oven gas (C gas), mixed gas of coke oven gas and blast furnace gas (M gas), or the like can be used.

加熱炉100は、鋼材の加熱に用いられた後の燃焼ガス、すなわち排ガスを排出する。この加熱炉100からの排ガスの排出口は、加熱炉本体102の装入口側に配設することが好ましい。上記排出口を装入口側に配設することで、燃焼ガスの流れる方向と鋼材の搬送方向とが対向するので、鋼材を効率的に加熱することができる。この排ガスの温度は、燃料ガスの燃焼条件等により決まるが、例えば500℃以上900℃以下である。また、排ガスの流量は、燃料ガスの燃焼条件等により決まるが、例えば10000Nm/h以上50000Nm/h以下である。 The heating furnace 100 discharges the combustion gas after being used for heating the steel material, that is, the exhaust gas. The exhaust port for exhaust gas from the heating furnace 100 is preferably disposed on the loading side of the heating furnace body 102. By disposing the discharge port on the loading side, the direction in which the combustion gas flows and the conveying direction of the steel material are opposed to each other, so that the steel material can be efficiently heated. The temperature of the exhaust gas is determined by the combustion conditions of the fuel gas, and is, for example, 500 ° C. or higher and 900 ° C. or lower. Further, the flow rate of the exhaust gas is determined by the combustion condition of the fuel gas, but is, for example, 10000 Nm 3 / h or more and 50000 Nm 3 / h or less.

加熱炉100で加熱される鋼材の量(流量)としては、操業条件等に依存して決まるが、例えば100t/h以上250t/h以下とできる。   The amount (flow rate) of the steel material heated in the heating furnace 100 is determined depending on the operation conditions and the like, but can be, for example, 100 t / h or more and 250 t / h or less.

<排熱回収装置>
当該排熱回収装置1は、加熱炉100に付属して用いられる。当該排熱回収装置1は、熱交換器11、排熱回収ボイラ12、及び煙突13を主に備える。また、当該排熱回収装置1は、上記加熱炉100及び上記熱交換器11を接続する第1排ガス流路14aと、上記熱交換器11及び上記排熱回収ボイラ12を接続する第2排ガス流路14bと、上記熱交換器11を迂回し、上記加熱炉100及び上記排熱回収ボイラ12を接続するバイパス流路15とを備える。
<Exhaust heat recovery device>
The exhaust heat recovery apparatus 1 is attached to the heating furnace 100 and used. The exhaust heat recovery apparatus 1 mainly includes a heat exchanger 11, an exhaust heat recovery boiler 12, and a chimney 13. The exhaust heat recovery apparatus 1 includes a first exhaust gas flow path 14a that connects the heating furnace 100 and the heat exchanger 11, and a second exhaust gas flow that connects the heat exchanger 11 and the exhaust heat recovery boiler 12. A path 14b and a bypass channel 15 that bypasses the heat exchanger 11 and connects the heating furnace 100 and the exhaust heat recovery boiler 12 are provided.

また、当該排熱回収装置1は、上記第2排ガス流路14bに配設される排ガス流量調整弁16を備える。また、当該排熱回収装置1は、上記バイパス流路15に配設されるバイパス流量調整弁17を備える。この排ガス流量調整弁16及びバイパス流量調整弁17が排ガスの流量を調整する機構を構成する。   Further, the exhaust heat recovery apparatus 1 includes an exhaust gas flow rate adjustment valve 16 disposed in the second exhaust gas flow path 14b. In addition, the exhaust heat recovery apparatus 1 includes a bypass flow rate adjustment valve 17 disposed in the bypass flow path 15. The exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17 constitute a mechanism for adjusting the flow rate of the exhaust gas.

当該排熱回収装置1は、燃焼用空気流路103の熱交換器11と加熱炉本体102との間に温度計18aを備える。この温度計18aは、熱交換器11を通過した後の上記燃焼用空気の温度T1を測定する。上記温度計18aの配設位置としては、排ガス流量の調整精度の観点から燃焼用空気流量調整弁104の上流側が好ましい。   The exhaust heat recovery apparatus 1 includes a thermometer 18 a between the heat exchanger 11 and the heating furnace main body 102 of the combustion air flow path 103. The thermometer 18a measures the temperature T1 of the combustion air after passing through the heat exchanger 11. The arrangement position of the thermometer 18a is preferably on the upstream side of the combustion air flow rate adjustment valve 104 from the viewpoint of the accuracy of adjusting the exhaust gas flow rate.

また、当該排熱回収装置1は、燃焼用空気流路103の熱交換器11より上流側に温度計18bを備える。この温度計18bは、熱交換器11を通過する前の上記燃焼用空気の温度T2を測定する。上記温度計18bの配設位置は、特に限定されないが、排ガス流量の調整精度の観点から熱交換器11の燃焼用空気取入口に近接するとよい。   Further, the exhaust heat recovery apparatus 1 includes a thermometer 18 b on the upstream side of the heat exchanger 11 in the combustion air flow path 103. The thermometer 18b measures the temperature T2 of the combustion air before passing through the heat exchanger 11. The arrangement position of the thermometer 18b is not particularly limited, but may be close to the combustion air intake of the heat exchanger 11 from the viewpoint of the accuracy of adjusting the exhaust gas flow rate.

また、当該排熱回収装置1は、第1排ガス流路14aに温度計18cを備える。この温度計18cは、熱交換器11を通過する前の排ガス温度T3を測定する。上記温度計18cの配設位置は、特に限定されないが、排ガス流量の調整精度の観点から熱交換器11の排ガス取入口に近接するとよい。   Further, the exhaust heat recovery apparatus 1 includes a thermometer 18c in the first exhaust gas flow path 14a. The thermometer 18c measures the exhaust gas temperature T3 before passing through the heat exchanger 11. The arrangement position of the thermometer 18c is not particularly limited, but may be close to the exhaust gas intake port of the heat exchanger 11 from the viewpoint of the accuracy of adjusting the exhaust gas flow rate.

また、当該排熱回収装置1は、第2排ガス流路14bに温度計18dを備える。この温度計18dは、熱交換器11を通過した後の排ガス温度T4を測定する。上記温度計18dの配設位置は、バイパス流路15を流れる排ガスの影響を避けるため、バイパス流路15が第2排ガス流路14bに合流する位置よりも上流側である。   Further, the exhaust heat recovery apparatus 1 includes a thermometer 18d in the second exhaust gas flow path 14b. This thermometer 18d measures the exhaust gas temperature T4 after passing through the heat exchanger 11. The disposition position of the thermometer 18d is upstream of the position where the bypass flow path 15 joins the second exhaust gas flow path 14b in order to avoid the influence of the exhaust gas flowing through the bypass flow path 15.

また、当該排熱回収装置1は、熱交換器11で予熱する上記燃焼用空気の流量Q1を測定する流量計19aを備える。上記流量計19aの配設位置は、燃焼用空気流路103の途中である。上記流量計19aの配設位置は、燃焼用空気流路103の熱交換器11より上流側とすることもできるし、燃焼用空気流路103の熱交換器11より下流側とすることもできる。なお、図1では、上記流量計19aは、燃焼用空気流路103の熱交換器11より上流側に配設されている。   In addition, the exhaust heat recovery apparatus 1 includes a flow meter 19a that measures the flow rate Q1 of the combustion air preheated by the heat exchanger 11. The arrangement position of the flow meter 19 a is in the middle of the combustion air flow path 103. The arrangement position of the flow meter 19a can be upstream of the heat exchanger 11 in the combustion air flow path 103, or can be downstream of the heat exchanger 11 in the combustion air flow path 103. . In FIG. 1, the flow meter 19 a is disposed upstream of the heat exchanger 11 in the combustion air flow path 103.

また、当該排熱回収装置1は、熱交換器11を通過する排ガスの流量Q2を測定する流量計19bを備える。上記流量計19bの配設位置は、第1排ガス流路14aの途中、又は第2排ガス流路14bの途中である。また、上記流量計19bの配設位置は、バイパス流路15を流れる排ガスの影響を避けるため、バイパス流路15が第1排ガス流路14aから分岐する位置よりも下流側であり、かつバイパス流路15が第2排ガス流路14bに合流する位置よりも上流側である。なお、図1では上記流量計19bは、第2排ガス流路14bの途中に配設されている。   The exhaust heat recovery apparatus 1 also includes a flow meter 19b that measures the flow rate Q2 of the exhaust gas that passes through the heat exchanger 11. The arrangement position of the flow meter 19b is in the middle of the first exhaust gas passage 14a or in the second exhaust gas passage 14b. The flow meter 19b is disposed at a position downstream of the position where the bypass flow path 15 branches from the first exhaust gas flow path 14a in order to avoid the influence of the exhaust gas flowing through the bypass flow path 15, and the bypass flow It is upstream from the position where the passage 15 joins the second exhaust gas passage 14b. In FIG. 1, the flow meter 19b is disposed in the middle of the second exhaust gas passage 14b.

また、当該排熱回収装置1は、上記測定器の測定結果に基づき上記排ガス流量調整弁16及びバイパス流量調整弁17の開閉量を調整する制御機構20を備える。   Further, the exhaust heat recovery apparatus 1 includes a control mechanism 20 that adjusts the open / close amounts of the exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17 based on the measurement result of the measuring instrument.

(熱交換器)
熱交換器11は、燃焼用空気流路103の途中に配設され、加熱炉100のバーナーに供給する燃焼用空気を予熱する。具体的には、熱交換器11は、加熱炉100から排気される排ガスのうち上記第1排ガス流路14aを介して熱交換器11に供給される排ガスと燃焼用空気流路103を介して熱交換器11に供給される燃焼用空気との間で熱交換を行うことで燃焼用空気を予熱する。
(Heat exchanger)
The heat exchanger 11 is disposed in the middle of the combustion air flow path 103 and preheats the combustion air supplied to the burner of the heating furnace 100. Specifically, the heat exchanger 11 includes the exhaust gas supplied from the heating furnace 100 to the heat exchanger 11 via the first exhaust gas passage 14 a and the combustion air passage 103. The combustion air is preheated by exchanging heat with the combustion air supplied to the heat exchanger 11.

熱交換器11としては、燃焼用空気を予熱できる限り特に限定されないが、例えば公知のレキュペレーターやリジェネバーナー等を用いることができる。   The heat exchanger 11 is not particularly limited as long as the combustion air can be preheated. For example, a known recuperator or regenerative burner can be used.

熱交換器11での予熱後の燃焼用空気の温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、熱交換器11での予熱後の燃焼用空気の温度の上限としては、700℃が好ましく、600℃がより好ましい。上記熱交換器11での予熱後の燃焼用空気の温度が上記下限未満であると、熱交換器11での熱回収率が低いため、エネルギー効率が低下するおそれがある。逆に、上記熱交換器11での予熱後の燃焼用空気の温度が上記上限を超えると、この燃焼用空気が通過する燃焼用空気流量調整弁104等に熱による劣化や破損が生じるおそれがある。   As a minimum of the temperature of the combustion air after preheating in heat exchanger 11, 150 ° C is preferred and 200 ° C is more preferred. On the other hand, the upper limit of the temperature of the combustion air after preheating in the heat exchanger 11 is preferably 700 ° C, more preferably 600 ° C. If the temperature of the combustion air after preheating in the heat exchanger 11 is less than the lower limit, the heat recovery rate in the heat exchanger 11 is low, and the energy efficiency may be reduced. Conversely, if the temperature of the combustion air after preheating in the heat exchanger 11 exceeds the upper limit, the combustion air flow rate adjusting valve 104 or the like through which the combustion air passes may be deteriorated or damaged by heat. is there.

(排熱回収ボイラ)
排熱回収ボイラ12は、熱交換器11で予熱に利用され、上記第2排ガス流路14bを介して供給される排ガス、及び上記加熱炉100からバイパス流路15を介して供給される排ガスの顕熱を回収する。
(Exhaust heat recovery boiler)
The exhaust heat recovery boiler 12 is used for preheating in the heat exchanger 11 and supplies exhaust gas supplied via the second exhaust gas passage 14b and exhaust gas supplied from the heating furnace 100 via the bypass passage 15. Recover sensible heat.

上記排熱回収ボイラ12としては、供給された排ガスの熱エネルギーを利用して、飽和蒸気(スチーム)を製造する公知の排熱回収ボイラを用いることができる。   The exhaust heat recovery boiler 12 may be a known exhaust heat recovery boiler that produces saturated steam (steam) using the thermal energy of the supplied exhaust gas.

(煙突)
煙突13は、排熱回収ボイラ12の下流側に位置し、排熱回収ボイラ12と煙道21により接続されている。上記排熱回収ボイラ12で利用された排ガスは、煙道21を通りこの煙突13から外部へ排出される。
(chimney)
The chimney 13 is located downstream of the exhaust heat recovery boiler 12 and is connected to the exhaust heat recovery boiler 12 by a flue 21. The exhaust gas used in the exhaust heat recovery boiler 12 passes through the flue 21 and is discharged from the chimney 13 to the outside.

(排ガス流路)
第1排ガス流路14aは、上記加熱炉100から排出される排ガスを、予熱ガスとして上記熱交換器11に供給する流路である。また、第2排ガス流路14bは、上記熱交換器11を通過した排ガスを上記排熱回収ボイラ12へ供給する流路である。
(Exhaust gas flow path)
The first exhaust gas channel 14a is a channel for supplying the exhaust gas discharged from the heating furnace 100 to the heat exchanger 11 as a preheating gas. The second exhaust gas flow path 14 b is a flow path for supplying the exhaust gas that has passed through the heat exchanger 11 to the exhaust heat recovery boiler 12.

(バイパス流路)
バイパス流路15は、上記第1排ガス流路14aの熱交換器11の上流側から分岐している。また、上記バイパス流路15は、上記熱交換器11を迂回し、熱交換器11の下流側、かつ上記排熱回収ボイラ12の上流側で上記第2排ガス流路14bに合流している。
当該排熱回収装置1は、上記バイパス流路15により、上記加熱炉100から排出される排ガスを、上記熱交換器11を迂回させ、かつ上記排熱回収ボイラ12へ供給することができる。
(Bypass channel)
The bypass flow path 15 is branched from the upstream side of the heat exchanger 11 of the first exhaust gas flow path 14a. The bypass flow path 15 bypasses the heat exchanger 11 and joins the second exhaust gas flow path 14b on the downstream side of the heat exchanger 11 and the upstream side of the exhaust heat recovery boiler 12.
The exhaust heat recovery apparatus 1 can bypass the heat exchanger 11 and supply the exhaust gas discharged from the heating furnace 100 to the exhaust heat recovery boiler 12 by the bypass flow path 15.

(流量調整弁)
排ガス流量調整弁16は、上記熱交換器11に供給する排ガスの流量を主に調整する。また、バイパス流量調整弁17は、上記バイパス流路15に流す排ガスの流量、すなわち上記熱交換器11に供給しない排ガスの流量を調整する。上記排ガス流量調整弁16及びバイパス流量調整弁17の開閉量を調整することで、当該排熱回収装置1は、熱交換器11に供給する排ガスの流量及び上記バイパス流路15へ流す排ガスの流量を精度よく調整することができる。なお、この開閉量の調整は、後述する制御機構20により行われる。
(Flow control valve)
The exhaust gas flow rate adjustment valve 16 mainly adjusts the flow rate of exhaust gas supplied to the heat exchanger 11. Further, the bypass flow rate adjusting valve 17 adjusts the flow rate of exhaust gas flowing through the bypass flow path 15, that is, the flow rate of exhaust gas not supplied to the heat exchanger 11. By adjusting the opening / closing amounts of the exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17, the exhaust heat recovery device 1 can control the exhaust gas flow rate supplied to the heat exchanger 11 and the exhaust gas flow rate flowing to the bypass flow path 15. Can be adjusted with high accuracy. The opening / closing amount is adjusted by a control mechanism 20 described later.

上記排ガス流量調整弁16及びバイパス流量調整弁17としては、特に限定されないが、例えば公知のダンパ等を用いることができる。   The exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17 are not particularly limited. For example, a known damper or the like can be used.

上記排ガス流量調整弁16は、バイパス流路15が第2排ガス流路14bに合流する位置よりも上流側に配設される。   The exhaust gas flow rate adjusting valve 16 is disposed on the upstream side of the position where the bypass flow channel 15 joins the second exhaust gas flow channel 14b.

また、バイパス流量調整弁17は、上記バイパス流路15に供給する排ガスを遮断できるとよい。このようにバイパス流量調整弁17により上記バイパス流路15に供給する排ガスを遮断することで、当該排熱回収装置1は、排ガスの全量を熱交換器11に供給することができる。このため、排ガスの全量を熱交換器11に供給しても燃焼用空気流量調整弁104の劣化や破損を引き起こすおそれがない場合、排ガスの全量を熱交換器11に供給することで、エネルギー効率を高められる。   Further, the bypass flow rate adjustment valve 17 may be capable of blocking the exhaust gas supplied to the bypass flow path 15. The exhaust heat recovery apparatus 1 can supply the exhaust gas to the heat exchanger 11 by shutting off the exhaust gas supplied to the bypass flow path 15 by the bypass flow rate adjusting valve 17 in this way. For this reason, if there is no possibility of causing deterioration or breakage of the combustion air flow rate adjustment valve 104 even if the entire amount of exhaust gas is supplied to the heat exchanger 11, energy efficiency is obtained by supplying the entire amount of exhaust gas to the heat exchanger 11. Can be enhanced.

(測定器)
当該排熱回収装置1は、上述の温度計及び流量計により、熱交換器11を通過した後の上記燃焼用空気の温度T1、熱交換器11を通過する前の上記燃焼用空気の温度T2、熱交換器11を通過する前の排ガス温度T3、熱交換器11を通過した後の排ガス温度T4、熱交換器11で予熱する燃焼用空気の流量Q1、及び熱交換器11を通過する排ガスの流量Q2を測定できる。上記測定器の測定結果は、後述する制御機構20に送られる。
(Measuring instrument)
The exhaust heat recovery apparatus 1 uses the above-described thermometer and flow meter to measure the temperature T1 of the combustion air after passing through the heat exchanger 11, and the temperature T2 of the combustion air before passing through the heat exchanger 11. The exhaust gas temperature T3 before passing through the heat exchanger 11, the exhaust gas temperature T4 after passing through the heat exchanger 11, the flow rate Q1 of combustion air preheated in the heat exchanger 11, and the exhaust gas passing through the heat exchanger 11 Can be measured. The measurement result of the measuring device is sent to the control mechanism 20 described later.

上記温度計としては、例えば公知の放射温度計等を用いることができる。また、上記流量計としては、例えば公知の電磁流量計等を用いることができる。   As said thermometer, a well-known radiation thermometer etc. can be used, for example. Moreover, as said flow meter, a well-known electromagnetic flow meter etc. can be used, for example.

<制御機構>
制御機構20は、上記測定器の測定結果に基づき、上記排ガス流量調整機構すなわち上記排ガス流量調整弁16及びバイパス流量調整弁17を用いて、熱交換器11を通過した後の上記燃焼用空気の温度が所定温度以下となるように上記バイパス流路15へ流す排ガスの流量を調整する。具体的には、上記制御機構20は、熱交換器11を通過した後の上記燃焼用空気の温度T1が所定温度を超えた場合、排ガス流量調整弁16及びバイパス流量調整弁17の開閉量を調整する。
<Control mechanism>
The control mechanism 20 uses the exhaust gas flow rate adjustment mechanism, that is, the exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17, based on the measurement result of the measuring device, to control the combustion air after passing through the heat exchanger 11. The flow rate of the exhaust gas flowing to the bypass flow path 15 is adjusted so that the temperature is equal to or lower than a predetermined temperature. Specifically, when the temperature T1 of the combustion air after passing through the heat exchanger 11 exceeds a predetermined temperature, the control mechanism 20 controls the opening / closing amounts of the exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17. adjust.

上記所定温度は、燃焼用空気流路103のうち予熱後の燃焼用空気が通過する部分の耐熱上限温度により適宜決定される。上記所定温度は、例えば燃焼用空気流量調整弁104の耐熱上限温度とでき、500℃以上700℃以下とできる。   The predetermined temperature is appropriately determined according to the heat-resistant upper limit temperature of the portion of the combustion air flow path 103 through which the preheated combustion air passes. The predetermined temperature can be, for example, the heat-resistant upper limit temperature of the combustion air flow rate adjustment valve 104, and can be 500 ° C. or more and 700 ° C. or less.

また、予熱後の上記燃焼用空気の温度は、加熱炉100のエネルギー効率の観点から上記所定温度以下で、大きいほどよい。すなわち、予熱後の上記燃焼用空気の温度が上記所定温度となるように上記バイパス流路15へ流す排ガスの流量を調整するとよい。ここで、「所定温度になる」とは、厳密に所定温度となることに加えて、所定温度の近傍、例えば所定温度との差が10℃以内の温度となることも含む概念である。   In addition, the temperature of the combustion air after preheating is preferably lower than the predetermined temperature from the viewpoint of energy efficiency of the heating furnace 100 and higher. That is, it is preferable to adjust the flow rate of exhaust gas flowing through the bypass passage 15 so that the temperature of the combustion air after preheating becomes the predetermined temperature. Here, “becomes a predetermined temperature” is a concept including not only strictly a predetermined temperature but also the vicinity of the predetermined temperature, for example, a temperature within 10 ° C. of the difference from the predetermined temperature.

<排熱回収方法>
当該排熱回収方法は、図1に示す排熱回収装置1を用いて、加熱炉100から排熱を回収する。当該排熱回収方法は、図2に示すように測定工程(S1)と、排ガス流量調整工程(S2)とを備える。
<Exhaust heat recovery method>
The exhaust heat recovery method recovers exhaust heat from the heating furnace 100 using the exhaust heat recovery apparatus 1 shown in FIG. As shown in FIG. 2, the exhaust heat recovery method includes a measurement step (S1) and an exhaust gas flow rate adjustment step (S2).

(測定工程)
測定工程S1では、上述の4つの温度計及び2つの流量計により燃焼用空気の温度、排ガスの温度、及び排ガスの流量を測定する。具体的には、測定工程S1では、以下の4つの温度及び2つの流量が測定される。また、以下の合計6つの測定結果は、制御機構20に送られる。
(1)熱交換器11を通過した後の上記燃焼用空気の温度T1
(2)熱交換器11を通過する前の上記燃焼用空気の温度T2
(3)熱交換器11を通過する前の排ガス温度T3
(4)熱交換器11を通過した後の排ガス温度T4
(5)熱交換器11で予熱する燃焼用空気の流量Q1
(6)熱交換器11を通過する排ガスの流量Q2
(Measurement process)
In the measurement step S1, the temperature of combustion air, the temperature of exhaust gas, and the flow rate of exhaust gas are measured by the above-described four thermometers and two flow meters. Specifically, in the measurement step S1, the following four temperatures and two flow rates are measured. In addition, the following six measurement results are sent to the control mechanism 20.
(1) Temperature T1 of the combustion air after passing through the heat exchanger 11
(2) Temperature T2 of the combustion air before passing through the heat exchanger 11
(3) Exhaust gas temperature T3 before passing through the heat exchanger 11
(4) Exhaust gas temperature T4 after passing through the heat exchanger 11
(5) Flow rate Q1 of combustion air preheated by the heat exchanger 11
(6) Flow rate Q2 of exhaust gas passing through the heat exchanger 11

(排ガス流量調整工程)
排ガス流量調整工程S2では、熱交換器11を通過した後の上記燃焼用空気の温度T1が所定温度以下となるように、制御機構20が上記バイパス流路15へ流す排ガスの流量を調整する。以下、上記所定温度をT0として説明する。
(Exhaust gas flow rate adjustment process)
In the exhaust gas flow rate adjustment step S2, the control mechanism 20 adjusts the flow rate of the exhaust gas that flows to the bypass flow path 15 so that the temperature T1 of the combustion air after passing through the heat exchanger 11 is equal to or lower than a predetermined temperature. Hereinafter, the predetermined temperature will be described as T0.

この排ガス流量調整工程S2は、例えば図3に示すフローを用いて行うことができる。上記排ガス流量調整工程S2は、比較ステップS21と、熱効率算出ステップS22と、排ガス流量決定ステップS23と、流量調整弁調整ステップS24と、温度及び流量測定ステップS25とを備える。   This exhaust gas flow rate adjusting step S2 can be performed using, for example, the flow shown in FIG. The exhaust gas flow rate adjustment step S2 includes a comparison step S21, a thermal efficiency calculation step S22, an exhaust gas flow rate determination step S23, a flow rate adjustment valve adjustment step S24, and a temperature and flow rate measurement step S25.

まず、比較ステップS21で、制御機構20は所定温度T0と熱交換器11を通過した後の上記燃焼用空気の温度T1との比較を行う。温度T1が温度T0以下であれば、排ガス流量調整を行わず終了する。一方、温度T1が温度T0を超えている場合、温度効率算出ステップS22に進む。   First, in comparison step S21, the control mechanism 20 compares the predetermined temperature T0 with the temperature T1 of the combustion air after passing through the heat exchanger 11. If the temperature T1 is equal to or lower than the temperature T0, the process ends without adjusting the exhaust gas flow rate. On the other hand, when the temperature T1 exceeds the temperature T0, the process proceeds to the temperature efficiency calculation step S22.

熱効率算出ステップS22では、制御機構20は熱交換器11の温度効率φを下記式(1)に従って計算する。

Figure 2017206726
ここで温度T1、T2、T3及びT4の単位は[K]である。 In the thermal efficiency calculation step S22, the control mechanism 20 calculates the temperature efficiency φ of the heat exchanger 11 according to the following equation (1).
Figure 2017206726
Here, the units of the temperatures T1, T2, T3, and T4 are [K].

次に、排ガス流量決定ステップS23で、制御機構20は上記温度効率φを用い、下記式(2)に従って、T1=T0となるような熱交換器11を通過する排ガスの流量Q2newを計算する。この式(2)は、熱交換器11を境界としたエネルギー保存式を解くことにより、導出することができる。

Figure 2017206726
ここで、Cp−airは空気の比熱[J/kg/K]を意味し、Cp−exは排ガスの比熱[J/kg/K]を意味する。また、燃焼用空気の流量Q1及び排ガスの流量Q2newの単位は、[Nm/h]である。 Next, in the exhaust gas flow rate determination step S23, the control mechanism 20 calculates the flow rate Q2 new of the exhaust gas that passes through the heat exchanger 11 such that T1 = T0 according to the following equation (2) using the temperature efficiency φ. . This equation (2) can be derived by solving an energy conservation equation with the heat exchanger 11 as a boundary.
Figure 2017206726
Here, C p-air means the specific heat of air [J / kg / K], and C p-ex means the specific heat of exhaust gas [J / kg / K]. The unit of the flow rate Q1 of combustion air and the flow rate Q2 new of exhaust gas is [Nm 3 / h].

次に、流量調整弁調整ステップS24で、制御機構20は、上記熱交換器11を通過する排ガスの流量がQ2newとなるように上記バイパス流路15へ流す排ガスの流量を調整する。具体的には、制御機構20は排ガス流量調整弁16及びバイパス流量調整弁17の開閉量を調整する。 Next, in the flow rate adjusting valve adjustment step S24, the control mechanism 20 adjusts the flow rate of the exhaust gas flowing through the bypass passage 15 so that the flow rate of the exhaust gas passing through the heat exchanger 11 becomes Q2 new . Specifically, the control mechanism 20 adjusts the opening / closing amounts of the exhaust gas flow rate adjustment valve 16 and the bypass flow rate adjustment valve 17.

その後、温度及び流量測定ステップS25で、制御機構20は、熱交換器11を通過した後の上記燃焼用空気の温度T1、熱交換器11を通過する前の上記燃焼用空気の温度T2、熱交換器11を通過する前の排ガス温度T3、熱交換器11を通過した後の排ガス温度T4、熱交換器11で予熱する燃焼用空気の流量Q1、及び熱交換器11を通過する排ガスの流量Q2を測定し、測定結果を更新する。   Thereafter, in the temperature and flow rate measurement step S25, the control mechanism 20 detects the temperature T1 of the combustion air after passing through the heat exchanger 11, the temperature T2 of the combustion air before passing through the heat exchanger 11, and the heat. The exhaust gas temperature T3 before passing through the exchanger 11, the exhaust gas temperature T4 after passing through the heat exchanger 11, the flow rate Q1 of combustion air preheated in the heat exchanger 11, and the exhaust gas flow rate passing through the heat exchanger 11 Q2 is measured and the measurement result is updated.

制御機構20は、この更新された測定結果に基づき、比較ステップS21で温度T1が温度T0以下となるまで、上述の5つのステップを繰り返し行う。   Based on the updated measurement result, the control mechanism 20 repeats the above five steps until the temperature T1 becomes equal to or lower than the temperature T0 in the comparison step S21.

なお、測定工程(S1)及び排ガス流量調整工程(S2)は、所定の時間間隔をおいて繰り返し行われるとよい。このように繰り返し行うことで、鋼材の加熱中に燃焼用空気の温度T1が超えた場合であっても、上記燃焼用空気の温度が所定温度以下となるように上記バイパス流路15へ流す排ガス流量を調整できる。上記時間間隔としては、特に限定されないが、例えば10分以上30分以下とできる。   The measurement step (S1) and the exhaust gas flow rate adjustment step (S2) may be performed repeatedly at predetermined time intervals. By repeatedly performing in this way, even if the temperature T1 of the combustion air exceeds during the heating of the steel material, the exhaust gas that flows to the bypass passage 15 so that the temperature of the combustion air becomes a predetermined temperature or less The flow rate can be adjusted. Although it does not specifically limit as said time interval, For example, it can be 10 minutes or more and 30 minutes or less.

<利点>
当該排熱回収装置1は、熱交換器11を迂回するバイパス流路15を備える。また、当該排熱回収装置1は、熱交換器11を通過後の上記燃焼用空気の温度を測定する温度計18aの測定結果に基づき上記バイパス流路15へ流す排ガスの流量を調整する機構を備える。当該排熱回収装置1は、この調整機構により燃焼用空気に供給される排ガスの流量を抑制することで、予熱後の燃焼用空気の温度を管理できる。また、当該排熱回収装置1は、予熱に必要とされる量の排ガス及び燃焼用空気を熱交換器11へ供給するので、予熱エネルギーの無駄が少ない。また、当該排熱回収装置1は、予熱に使用されない排ガスをバイパス流路15を経て排熱回収ボイラ12へ供給するため、排ガスの温度が低下し難い。このため、当該排熱回収装置1は、排熱回収ボイラ12の熱回収効率の低下を抑止できる。従って、当該排熱回収装置1は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。
<Advantages>
The exhaust heat recovery apparatus 1 includes a bypass channel 15 that bypasses the heat exchanger 11. Further, the exhaust heat recovery apparatus 1 has a mechanism for adjusting the flow rate of the exhaust gas flowing through the bypass passage 15 based on the measurement result of the thermometer 18a that measures the temperature of the combustion air after passing through the heat exchanger 11. Prepare. The exhaust heat recovery apparatus 1 can manage the temperature of the combustion air after preheating by suppressing the flow rate of the exhaust gas supplied to the combustion air by this adjustment mechanism. Further, the exhaust heat recovery apparatus 1 supplies the exhaust gas and combustion air in amounts necessary for preheating to the heat exchanger 11, so that preheating energy is not wasted. In addition, since the exhaust heat recovery apparatus 1 supplies exhaust gas that is not used for preheating to the exhaust heat recovery boiler 12 via the bypass passage 15, the temperature of the exhaust gas is unlikely to decrease. For this reason, the exhaust heat recovery apparatus 1 can suppress a decrease in the heat recovery efficiency of the exhaust heat recovery boiler 12. Therefore, the exhaust heat recovery apparatus 1 can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

また、当該排熱回収装置1は、熱交換器11を通過した後の上記燃焼用空気の温度T1、熱交換器11を通過する前の上記燃焼用空気の温度T2、熱交換器11を通過する前の排ガス温度T3、熱交換器11を通過した後の排ガス温度T4、熱交換器11で予熱する燃焼用空気の流量Q1、及び熱交換器11を通過する排ガスの流量Q2を測定できる。従って、当該排熱回収装置1は、バイパス流路15へ流す排ガスの流量の調整精度が高い。   The exhaust heat recovery apparatus 1 passes through the heat exchanger 11 after passing through the heat exchanger 11, the combustion air temperature T <b> 2 before passing through the heat exchanger 11, and the heat exchanger 11. The exhaust gas temperature T3 before passing, the exhaust gas temperature T4 after passing through the heat exchanger 11, the flow rate Q1 of combustion air preheated in the heat exchanger 11, and the exhaust gas flow rate Q2 passing through the heat exchanger 11 can be measured. Therefore, the exhaust heat recovery apparatus 1 has high adjustment accuracy of the flow rate of the exhaust gas flowing to the bypass flow path 15.

また、本発明の排熱回収方法は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。   Further, the exhaust heat recovery method of the present invention can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

[その他の実施形態]
本発明の排熱回収装置は、上記実施形態に限定されるものではない。
[Other Embodiments]
The exhaust heat recovery apparatus of the present invention is not limited to the above embodiment.

上記実施形態では、当該排熱回収装置が4つの温度計と2つの流量計とを備える場合を説明したが、熱交換器を通過した後の排ガス温度T4を測定する温度計は省略することができる。   In the above embodiment, the case where the exhaust heat recovery apparatus includes four thermometers and two flow meters has been described. However, the thermometer for measuring the exhaust gas temperature T4 after passing through the heat exchanger may be omitted. it can.

上記温度計を省略する場合、排ガス流量調整工程の熱効率算出ステップでは、熱効率として、下記式(3)に示す熱交換器の熱回収率ηを用いる。

Figure 2017206726
When the thermometer is omitted, in the thermal efficiency calculation step of the exhaust gas flow rate adjustment step, the heat recovery rate η of the heat exchanger shown in the following formula (3) is used as the thermal efficiency.
Figure 2017206726

また、排ガス流量調整工程の排ガス流量決定ステップでは、上記熱回収率ηを用い、下記式(4)に従って熱交換器を通過する排ガスの流量Q2newを計算する。

Figure 2017206726
Further, in the exhaust gas flow rate determination step of the exhaust gas flow rate adjustment step, the flow rate Q2 new of the exhaust gas passing through the heat exchanger is calculated according to the following formula (4) using the heat recovery rate η.
Figure 2017206726

また、当該排熱回収装置は、熱交換器を通過する前の上記燃焼用空気の温度T2を測定する温度計、熱交換器を通過する前の排ガス温度T3を測定する温度計、熱交換器で予熱する燃焼用空気の流量Q1を測定する流量計、及び熱交換器を通過する排ガスの流量Q2を測定する流量計を、さらに省略することができる。つまり、当該排熱回収装置は、測定器として熱交換器を通過した後の上記燃焼用空気の温度T1を測定する温度計のみを備える構成としてもよい。   The exhaust heat recovery apparatus includes a thermometer for measuring the temperature T2 of the combustion air before passing through the heat exchanger, a thermometer for measuring the exhaust gas temperature T3 before passing through the heat exchanger, and a heat exchanger. The flow meter for measuring the flow rate Q1 of the combustion air to be preheated in the above and the flow meter for measuring the flow rate Q2 of the exhaust gas passing through the heat exchanger can be further omitted. That is, the exhaust heat recovery apparatus may include only a thermometer that measures the temperature T1 of the combustion air after passing through the heat exchanger as a measuring device.

測定器を熱交換器通過後の上記燃焼用空気の温度を測定する温度計のみとする場合、排ガス流量調整工程は、例えば以下のステップにより行うことができる。まず、制御機構が所定温度T0と熱交換器を通過した後の上記燃焼用空気の温度T1との比較を行う。温度T1が温度T0以下であれば、排ガス流量調整を行わず終了する。一方、温度T1が温度T0を超えている場合、制御機構は、あらかじめ定められた所定量だけ、熱交換器を通過する排ガスの流量が減少するように排ガス流量調整弁及びバイパス流量調整弁の開閉量を調整する。上記所定量としては、例えば調整前に熱交換器を通過する排ガス流量の5体積%以上10体積%以下の量とできる。その後、制御機構は、熱交換器を通過した後の上記燃焼用空気の温度T1を測定し、測定結果を更新する。制御機構は、この更新された測定結果に基づき、温度T1が温度T0以下となるまで、上述のステップを繰り返し行う。   When only the thermometer that measures the temperature of the combustion air after passing through the heat exchanger is used as the measuring device, the exhaust gas flow rate adjusting step can be performed by the following steps, for example. First, the control mechanism compares the predetermined temperature T0 with the temperature T1 of the combustion air after passing through the heat exchanger. If the temperature T1 is equal to or lower than the temperature T0, the process ends without adjusting the exhaust gas flow rate. On the other hand, when the temperature T1 exceeds the temperature T0, the control mechanism opens and closes the exhaust gas flow rate adjustment valve and the bypass flow rate adjustment valve so that the flow rate of the exhaust gas passing through the heat exchanger is reduced by a predetermined amount. Adjust the amount. The predetermined amount can be, for example, an amount of 5% by volume to 10% by volume of the exhaust gas flow rate that passes through the heat exchanger before adjustment. Thereafter, the control mechanism measures the temperature T1 of the combustion air after passing through the heat exchanger, and updates the measurement result. Based on the updated measurement result, the control mechanism repeats the above steps until the temperature T1 becomes equal to or lower than the temperature T0.

また、上記実施形態では、排ガス流量調整工程の比較ステップで、熱交換器を通過した後の上記燃焼用空気の温度T1が所定温度T0以下であれば、排ガス流量調整を行わず終了する場合を説明したが、上記燃焼用空気の温度T1が所定温度T0以下であっても、排ガス流量調整を行ってもよい。このように上記燃焼用空気の温度T1が所定温度T0以下である場合にも排ガス流量調整を行うことで、熱交換器の熱回収率が高められるので、エネルギー効率がさらに高まる。   Further, in the above embodiment, in the comparison step of the exhaust gas flow rate adjustment process, if the temperature T1 of the combustion air after passing through the heat exchanger is equal to or lower than the predetermined temperature T0, the process may be terminated without adjusting the exhaust gas flow rate. As described above, the exhaust gas flow rate may be adjusted even if the temperature T1 of the combustion air is equal to or lower than the predetermined temperature T0. As described above, even when the temperature T1 of the combustion air is equal to or lower than the predetermined temperature T0, the heat recovery rate of the heat exchanger can be increased by adjusting the exhaust gas flow rate, so that the energy efficiency is further increased.

上記燃焼用空気の温度T1が所定温度T0以下である場合、排ガス流量調整は、例えば上記燃焼用空気の温度T1が所定温度T0に近づくように行える。具体的には、上記燃焼用空気の温度T1が所定温度T0を超えた場合と同様に、制御機構が熱効率算出ステップ、排ガス流量決定ステップ、流量調整弁調整ステップ、及び温度及び流量測定ステップを行うとよい。なお、熱効率算出ステップ、及び排ガス流量決定ステップでは、上記燃焼用空気の温度T1が所定温度T0を超えた場合と同じ式を用いることができる。また、排ガス流量決定ステップで計算される排ガスの流量Q2newが加熱炉から排出される排ガスの流量を超えることがあるが、その場合は、Q2newは、加熱炉から排出される排ガスの全流量とするとよい。 When the temperature T1 of the combustion air is equal to or lower than the predetermined temperature T0, the exhaust gas flow rate can be adjusted, for example, so that the temperature T1 of the combustion air approaches the predetermined temperature T0. Specifically, as in the case where the temperature T1 of the combustion air exceeds a predetermined temperature T0, the control mechanism performs a thermal efficiency calculation step, an exhaust gas flow rate determination step, a flow rate adjustment valve adjustment step, and a temperature and flow rate measurement step. Good. In the thermal efficiency calculation step and the exhaust gas flow rate determination step, the same equation as that when the temperature T1 of the combustion air exceeds the predetermined temperature T0 can be used. Further, the exhaust gas flow rate Q2 new calculated in the exhaust gas flow rate determination step may exceed the exhaust gas flow rate discharged from the heating furnace. In this case, Q2 new is the total flow rate of the exhaust gas discharged from the heating furnace. It is good to do.

また、制御機構の安定性を考慮して、上記所定温度T0より低い第2の所定温度T10未満である場合に、上記燃焼用空気の温度T1が上記第2の所定温度T10以上となるように、制御機構が上記バイパス流路へ流す排ガスの流量を調整してもよい。   In consideration of the stability of the control mechanism, when the temperature is lower than the second predetermined temperature T10 lower than the predetermined temperature T0, the temperature T1 of the combustion air is equal to or higher than the second predetermined temperature T10. The control mechanism may adjust the flow rate of the exhaust gas flowing to the bypass flow path.

上記実施形態では、排ガス流量調整弁が第2排ガス流路に配設される場合を説明したが、排ガス流量調整弁は第1排ガス流路に配設してもよい。   In the above embodiment, the case where the exhaust gas flow rate adjustment valve is disposed in the second exhaust gas flow channel has been described. However, the exhaust gas flow rate adjustment valve may be disposed in the first exhaust gas flow channel.

また、排ガス流量調整弁は省略することもできる。排ガス流量調整弁を省略する場合は、制御機構は、バイパス流量調整弁のみの開閉量を調整することで、熱交換器通過後の上記燃焼用空気の温度が所定温度以下となるように、上記バイパス流路へ流す排ガスの流量を調整する。   Further, the exhaust gas flow rate adjustment valve can be omitted. When the exhaust gas flow rate adjustment valve is omitted, the control mechanism adjusts the opening / closing amount of only the bypass flow rate adjustment valve so that the temperature of the combustion air after passing through the heat exchanger becomes a predetermined temperature or less. Adjust the flow rate of the exhaust gas flowing to the bypass channel.

以上説明したように、本発明の排熱回収装置及び本発明の排熱回収方法は、エネルギー効率の低下を抑止しつつ、予熱後の燃焼用空気の温度を管理できる。   As described above, the exhaust heat recovery apparatus of the present invention and the exhaust heat recovery method of the present invention can manage the temperature of the combustion air after preheating while suppressing a decrease in energy efficiency.

1 排熱回収装置
11 熱交換器
12 排熱回収ボイラ
13 煙突
14a 第1排ガス流路
14b 第2排ガス流路
15 バイパス流路
16 排ガス流量調整弁
17 バイパス流量調整弁
18a、18b、18c、18d 温度計
19a、19b 流量計
20 制御機構
21 煙道
100 加熱炉
101 搬送装置
102 加熱炉本体
103 燃焼用空気流路
104 燃焼用空気流量調整弁
DESCRIPTION OF SYMBOLS 1 Waste heat recovery apparatus 11 Heat exchanger 12 Waste heat recovery boiler 13 Chimney 14a 1st exhaust gas flow path 14b 2nd exhaust gas flow path 15 Bypass flow path 16 Exhaust gas flow rate adjustment valve 17 Bypass flow rate adjustment valve 18a, 18b, 18c, 18d Temperature Total 19a, 19b Flow meter 20 Control mechanism 21 Flue 100 Heating furnace 101 Transfer device 102 Heating furnace main body 103 Combustion air flow path 104 Combustion air flow rate adjustment valve

Claims (5)

鋼材を加熱する加熱炉から排熱を回収する装置であって、
上記加熱炉に供給される燃焼用空気を予熱する熱交換器と、
上記加熱炉から排出される排ガスの顕熱を回収する排熱回収ボイラと、
上記加熱炉及び上記熱交換器を接続する第1排ガス流路と、
上記熱交換器及び上記排熱回収ボイラを接続する第2排ガス流路と、
上記熱交換器を迂回し、かつ上記加熱炉及び上記排熱回収ボイラを接続するバイパス流路と、
上記熱交換器通過後の上記燃焼用空気の温度を測定する温度計と、
上記温度計により測定される温度が所定温度以下となるように、上記バイパス流路へ流す排ガスの流量を調整する機構と
を備える排熱回収装置。
An apparatus for recovering exhaust heat from a heating furnace that heats steel,
A heat exchanger for preheating combustion air supplied to the heating furnace;
An exhaust heat recovery boiler that recovers sensible heat of the exhaust gas discharged from the heating furnace;
A first exhaust gas flow path connecting the heating furnace and the heat exchanger;
A second exhaust gas flow path connecting the heat exchanger and the exhaust heat recovery boiler;
A bypass flow path that bypasses the heat exchanger and connects the heating furnace and the exhaust heat recovery boiler;
A thermometer for measuring the temperature of the combustion air after passing through the heat exchanger;
A mechanism for adjusting a flow rate of exhaust gas flowing through the bypass flow path so that a temperature measured by the thermometer is equal to or lower than a predetermined temperature.
上記温度計の測定結果に基づき、上記第1排ガス流路へ流す排ガスの流量を調整する機構をさらに備える請求項1に記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 1, further comprising a mechanism for adjusting a flow rate of exhaust gas flowing through the first exhaust gas passage based on a measurement result of the thermometer. 上記熱交換器通過前の上記燃焼用空気の温度を測定する温度計と、
上記熱交換器通過前の排ガス温度を測定する温度計と、
上記熱交換器で予熱する燃焼用空気の流量を測定する流量計と、
上記熱交換器を通過する排ガスの流量を測定する流量計と
をさらに備える請求項1又は請求項2に記載の排熱回収装置。
A thermometer for measuring the temperature of the combustion air before passing through the heat exchanger;
A thermometer for measuring the exhaust gas temperature before passing through the heat exchanger;
A flow meter for measuring the flow rate of combustion air preheated by the heat exchanger;
The exhaust heat recovery apparatus according to claim 1, further comprising: a flow meter that measures a flow rate of the exhaust gas that passes through the heat exchanger.
上記熱交換器通過後の排ガス温度を測定する温度計をさらに備える請求項3に記載の排熱回収装置。   The exhaust heat recovery apparatus according to claim 3, further comprising a thermometer that measures an exhaust gas temperature after passing through the heat exchanger. 鋼材を加熱する加熱炉から排熱を回収する方法であって、
上記加熱炉に供給される燃焼用空気を予熱する熱交換器と、
上記加熱炉から排出される排ガスの顕熱を回収する排熱回収ボイラと、
上記加熱炉及び上記熱交換器を接続する第1排ガス流路と、
上記熱交換器及び上記排熱回収ボイラを接続する第2排ガス流路と、
上記熱交換器を迂回し、かつ上記加熱炉及び上記排熱回収ボイラを接続するバイパス流路と
を備える排熱回収装置を用い、
上記熱交換器通過後の上記燃焼用空気の温度を測定する工程と、
上記測定温度が所定温度以下となるように、上記バイパス流路へ流す排ガスの流量を調整する工程と
を備える排熱回収方法。
A method for recovering waste heat from a heating furnace for heating steel,
A heat exchanger for preheating combustion air supplied to the heating furnace;
An exhaust heat recovery boiler that recovers sensible heat of the exhaust gas discharged from the heating furnace;
A first exhaust gas flow path connecting the heating furnace and the heat exchanger;
A second exhaust gas flow path connecting the heat exchanger and the exhaust heat recovery boiler;
Using a waste heat recovery device that bypasses the heat exchanger and includes a bypass passage that connects the heating furnace and the waste heat recovery boiler,
Measuring the temperature of the combustion air after passing through the heat exchanger;
Adjusting the flow rate of the exhaust gas flowing to the bypass flow path so that the measured temperature is equal to or lower than a predetermined temperature.
JP2016098545A 2016-05-17 2016-05-17 Waste heat recovery device and waste heat recovery method Active JP6595403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098545A JP6595403B2 (en) 2016-05-17 2016-05-17 Waste heat recovery device and waste heat recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098545A JP6595403B2 (en) 2016-05-17 2016-05-17 Waste heat recovery device and waste heat recovery method

Publications (2)

Publication Number Publication Date
JP2017206726A true JP2017206726A (en) 2017-11-24
JP6595403B2 JP6595403B2 (en) 2019-10-23

Family

ID=60416240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098545A Active JP6595403B2 (en) 2016-05-17 2016-05-17 Waste heat recovery device and waste heat recovery method

Country Status (1)

Country Link
JP (1) JP6595403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912241A (en) * 2020-07-14 2020-11-10 来安县华阳玻璃制品有限公司 Glass furnace waste gas waste heat utilization equipment
KR102299852B1 (en) * 2021-06-16 2021-09-09 주식회사 엘시스 A wire rod lead patenting process system having waste heat recovery function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912241A (en) * 2020-07-14 2020-11-10 来安县华阳玻璃制品有限公司 Glass furnace waste gas waste heat utilization equipment
KR102299852B1 (en) * 2021-06-16 2021-09-09 주식회사 엘시스 A wire rod lead patenting process system having waste heat recovery function

Also Published As

Publication number Publication date
JP6595403B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6423102B2 (en) Industrial furnace and its heat utilization method
JP6595403B2 (en) Waste heat recovery device and waste heat recovery method
JP2010002079A (en) Boiler and control method of boiler
JP6323286B2 (en) Exhaust heat recovery equipment for heating furnace and exhaust heat recovery method for heating furnace
JP2017072312A (en) Superheating device
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JP4757596B2 (en) Thermal storage burner device and its operation method
JP7005537B2 (en) How to preheat the fluid upstream of the furnace
JP3078434B2 (en) Heating equipment and heating method using the same
JP2013083384A (en) Operation method and device of multitubular heat exchanger in fluidized incinerator system
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2936449B2 (en) Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
JP5696641B2 (en) Cooling method of air preheater in heating furnace
JP4395994B2 (en) Rapid heating method of ladle using regenerative burner
JP2017141493A (en) Heating apparatus for steel material
JP2020180719A (en) Heat pipe type exhaust heat recovery facility and hot stove facility equipped therewith
CN111850211B (en) Off-line drying method of hot blast stove
JP6820126B1 (en) Hot water generation method
JP5495378B2 (en) Method and apparatus for purging exhaust gas piping
JP4903083B2 (en) Combustion control method for regenerative burner furnace
KR101377645B1 (en) Heat exchanging apparatus of reheating furnacie and controlling method thereof
JP5976585B2 (en) Heating furnace and heating furnace control method
JP3958942B2 (en) Exhaust gas circulation system for regenerative burner
JP2010196132A (en) Method for controlling temperature in furnace width direction in heating furnace having heat storage type burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150