JP3958942B2 - Exhaust gas circulation system for regenerative burner - Google Patents

Exhaust gas circulation system for regenerative burner Download PDF

Info

Publication number
JP3958942B2
JP3958942B2 JP2001191496A JP2001191496A JP3958942B2 JP 3958942 B2 JP3958942 B2 JP 3958942B2 JP 2001191496 A JP2001191496 A JP 2001191496A JP 2001191496 A JP2001191496 A JP 2001191496A JP 3958942 B2 JP3958942 B2 JP 3958942B2
Authority
JP
Japan
Prior art keywords
exhaust gas
regenerative burner
pipe
gas circulation
branch pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001191496A
Other languages
Japanese (ja)
Other versions
JP2003004226A (en
Inventor
剛 田中
知至 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001191496A priority Critical patent/JP3958942B2/en
Publication of JP2003004226A publication Critical patent/JP2003004226A/en
Application granted granted Critical
Publication of JP3958942B2 publication Critical patent/JP3958942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリジェネレイティブバーナ用排気ガス循環装置に関する。さらに詳しくは、循環する排気ガスの流量制御を長期的に安定して行なうことができ、しかも流量制御機構の設備費用が安価であるリジェネレイティブバーナ用排気ガス循環装置に関する。
【0002】
【従来の技術】
連続焼鈍炉、熱処理炉などの比較的高温の加熱帯において、炉内加熱用のヒータとして、近年では省エネルギーの観点から、熱交換器を内蔵するラジアントチューブバーナが用いられている。たとえば、蓄熱型熱交換器を内蔵するリジェネレイティブラジアントチューブバーナ(以下、リジェネバーナという)は、蓄熱体を有する一対のバーナを備え、バーナを交互に燃焼させることにより、一方のバーナの燃焼によって生じる排気ガスの熱を他方のバーナの蓄熱体によって回収するものである。
【0003】
一般的なリジェネバーナは、図3に示されるように、ラジアントチューブ41と、該ラジアントチューブ41の両端に設けられた、蓄熱体43を有する一対のバーナ42と、該一対のバーナ42にそれぞれ接続された2対の燃焼空気切替弁44および排気ガス切替弁45とから構成されている。
【0004】
燃焼空気ブロア55から流量調整弁56を介して燃焼空気を供給するとともに、2対の燃焼空気切替弁44および排気ガス切替弁45を所定の時間間隔(20〜30秒程度)ごとに切り替えることにより、一方の燃焼を行なうバーナに大気および燃料ガスを導入させ、他方の燃焼していないバーナを通して排気および蓄熱を行なうことができる。
【0005】
このようなリジェネバーナは、燃焼用空気の温度を700℃以上程度まで昇温するため、チッ素酸化物(以下、NOxという)の生成が著しい。そこで、NOxの生成を低減するためには、一般に排気ガスの一部を燃焼空気または燃焼ガスに混合する方法により、火炎温度や反応速度を低下させる方法が用いられている。
【0006】
排気ガスの一部を燃焼空気または燃焼ガスに混合する方法としては、バーナの本体部分でガスまたは空気を通気させる際の吐出流れを利用する自己循環方式、および外部に排気ガス循環ブロアなどの送風手段を備えた強制循環方式がある。
【0007】
たとえば、特開昭52−14255号、特開昭56−25617号、特開平8−61657号公報などに記載された強制循環方式の排気ガス循環装置では、図3に示されるように、排気ガス切替弁45を通過する排気ガスの大部分は煙突46から炉外へ排気されるが、排気ガスの一部は、煙突46から排気ガス循環ブロア47により循環経路54へ送られる。流量調節器48では、温度センサ50、ガス流量測定器51、排気ガス流量測定器52および燃焼空気量測定器53などを用いて得られた炉温、燃焼負荷、燃焼空気量、燃焼ガス量または排気ガス循環率などのパラメータによって排ガス循環量を決定し、排気ガス調整弁49で所定の流量を得るように制御している。
【0008】
【発明が解決しようとする課題】
しかし、自己循環方式を利用する場合は、ガスまたは空気を高圧化する供給設備が高額となる。また、強制循環方式では、排気ガス循環量の調節のため、高価な流量調節弁が必要となり、また排気ガス中に含まれる煤やスケールが前記流量調節弁49の弁体やシャフトに噛み込み、前記流量調節弁49はたびたび動作不良が発生し、長期に排気ガスの流量制御を行なうことが困難であった。
【0009】
本発明はかかる問題を解消するためになされたものであり、循環する排気ガスの流量制御を長期的に安定して行なうことができ、しかも流量制御機構の設備費用が安価であるリジェネレイティブバーナ用排気ガス循環装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のリジェネレイティブバーナ用排気ガス循環装置は、リジェネレイティブバーナから排気される排気ガスを当該リジェネレイティブバーナの燃焼空気または燃焼ガス供給用配管へ循環させる循環経路を備えた、リジェネレイティブバーナから排出されるチッ素酸化物を低減するためのリジェネレイティブバーナ用排気ガス循環装置であって、
(a)前記循環経路に設けられた送風手段と、
(b)前記循環経路に設けられた、並列に並ぶ複数の分岐管からなる並列配管と、
(c)当該並列配管の分岐管のうち、少なくとも分岐管の数から1を減じた数の分岐管に設けられた、前記分岐管における排気ガスの流通を選択的に遮断する遮断手段とからなることを特徴とする。
【0011】
前記並列配管の分岐管のそれぞれが、異なる圧力損失特性を有してなるのが好ましい。
【0012】
前記並列配管の分岐管のそれぞれが、異なる配管径を有することにより、異なる圧力損失特性を有してなるのが好ましい。
【0013】
前記並列配管の分岐管のそれぞれが、当該分岐管の圧力特性の設定を変更するための手動弁を有してなるのが好ましい。
【0014】
前記遮断手段が、電気または圧縮空気により操作される遮断弁からなるのが好ましい。
【0015】
前記循環経路全体の排気ガスの流通を選択的に遮断する遮断手段をさらに備えてなるのが好ましい。
【0016】
【発明の実施の形態】
つぎに図面を参照しながら、本発明のリジェネバーナ用排気ガス循環装置をさらに詳細に説明する。図1は本発明のリジェネバーナ用排気ガス循環装置の一実施の形態を示す排気ガス循環装置を備えたリジェネバーナの全体構成を概略的に示す説明図、図2は図1の循環経路を流れる排気ガスの流量を示すグラフである。
【0017】
図1に示される本実施の形態にかかわる排気ガス循環装置を備えたリジェネバーナは、循環経路7の排気ガスの流量制御を行なうための手段として、前述の多段階の流量調節を行なう排気ガス流量調整弁49(図3参照)の代わりに並列配管11および当該並列配管11の分岐管12、13の少なくとも1つを選択的に遮断する遮断弁14を採用した点に大きな特徴があり、その他の構成については図3に示されるリジェネバーナシステムとほぼ共通している。以下、図1のリジェネバーナシステムについてさらに具体的に説明する。
【0018】
図1に示されるリジェネバーナは、ラジアントチューブ1と、該ラジアントチューブ1の両端に設けられた、蓄熱体3を有する一対のバーナ2と、該一対のバーナ2にそれぞれ接続された2対の燃焼空気切替弁4および排気ガス切替弁5とから構成されている。燃焼空気ブロア8から流量調整弁9を介して燃焼空気を供給するとともに、2対の燃焼空気切替弁4および排気ガス切替弁5を所定の時間間隔(20〜30秒程度)ごとに切り替えることにより、一方の燃焼を行なうバーナに大気および燃料ガスを導入させ、他方の燃焼していないバーナを通して排気および蓄熱を行なうことができる。
【0019】
さらに、図1に示されるように、排気ガス切替弁5を通過する排気ガスの大部分は煙突6から炉外へ排気されるが、排気ガスの一部は、循環経路7へ送られる。
【0020】
図1に示される排気ガス循環装置は、循環経路7に設けられた排気ガスを送風するための排気ガス循環ブロア10と、循環経路7に設けられた、並列に並ぶ複数の分岐管12、13からなる並列配管11と、並列配管11の分岐管12、13の少なくとも1つに設けられた、分岐管における排気ガスの流通を選択的に遮断する遮断弁14とから構成されている。
【0021】
図1において、並列配管11を構成する分岐管12、13は、それぞれに異なる配管の圧力損失特性を設定する。配管の圧力損失特性を設定する場合、たとえば、配管径を変更するのが安価で確実な流量制御を行なうことができるので好ましい。
【0022】
また、分岐管12、13のそれぞれに手動弁15を設けることにより、リジェネバーナの燃焼前に最適な圧力損失特性に設定することができる。
【0023】
さらに、並列配管11のうち少なくとも1つの分岐管12に、遮断弁14を設置しているので、流量調整器17などからの信号をかかる遮断弁14に送信して必要な排気ガス流量が得られる分岐管の遮断弁14を開けたり、または閉めたりすることができる。なお、すべての分岐管12、13に遮断弁14を設けてもよい。また、分岐管の本数も2本以上であればよく、循環量制御の精度の度合い(精度を上げれば本数が増える)に応じて適宜の本数を採用することができる。
【0024】
遮断弁14は、ON(開放)とOFF(遮断)のみの2動作だけを行なう単純な構成であるため、弁体の固着が起りにくいので、トラブルの発生頻度を減少することができる。このような遮断弁14としては、電磁弁、高圧空気操作弁などを用いることができる。
【0025】
さらに、図1に示されるように、循環経路7全体の排気ガスの流通を選択的に遮断する遮断弁16をさらに備えていれば、排気ガスの循環の開始および停止を一括して制御することができるので好ましい。
【0026】
前記遮断弁14および16の制御を行なうための流量調節器17では、温度センサ18、ガス流量測定器19および燃焼空気量測定器20などを用いて測定された炉温、燃焼負荷、燃焼空気量、燃焼ガス量または排気ガス循環率などのパラメータによって排ガス循環量を決定し、遮断弁14および16を所定の流量を得るように制御する。
【0027】
2つの遮断弁14および16の開閉制御を行なうことにより、たとえば、表1および図2のグラフに示されるように3段階の排気ガス流量調節を行なうことができる。
【0028】
【表1】

Figure 0003958942
【0029】
表1および図2に示されるように、燃焼用空気量に応じて排気ガス循環量を最適に制御することができるため、従来の排気ガス循環機構と同様に、火炎温度や反応速度を低下させてNOxの生成を低減させることが可能になる。
【0030】
【発明の効果】
本発明によれば、遮断弁を備えた分岐管を含む複数の分岐管が並列に配置された並列配管を有することにより、並列配管の分岐管それぞれの単位で排気ガスの流量を制御することができるため、従来の流量調整弁への煤やスケールの付着による問題を低減することができる。その結果、循環する排気ガスの流量制御を長期的に安定して行なうことができ、しかも流量制御機構の設備費用を安価にすることができる。
【0031】
また、並列配管の分岐管ごとに配管径を変更したり、または分岐管に燃焼前の初期調整用の手動弁を設けることにより、各分岐管ごとに最適な圧力損失特性を設定することができる。
【図面の簡単な説明】
【図1】本発明のリジェネバーナ用排気ガス循環装置の一実施の形態を示す排気ガス循環装置を備えたリジェネバーナの全体構成を概略的に示す説明図である。
【図2】図1の循環経路を流れる排気ガスの流量を示すグラフである。
【図3】従来の排気ガス循環装置を備えたリジェネバーナの全体構成を概略的に示す説明図である。
【符号の説明】
1 ラジアントチューブ
2 バーナ
3 蓄熱体
11 並列配管
12、13 分岐管
14 遮断弁
15 手動弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas circulation device for a regenerative burner. More specifically, the present invention relates to an exhaust gas circulation device for a regenerative burner that can stably control the flow rate of the exhaust gas that circulates for a long period of time, and that the equipment cost of the flow rate control mechanism is low.
[0002]
[Prior art]
In a relatively high-temperature heating zone such as a continuous annealing furnace or a heat treatment furnace, a radiant tube burner with a built-in heat exchanger is recently used as a heater for heating in the furnace from the viewpoint of energy saving. For example, a regenerative radiant tube burner (hereinafter referred to as a regenerative burner) having a built-in heat storage heat exchanger includes a pair of burners having heat storage bodies, and by burning the burners alternately, the combustion of one burner The heat of the generated exhaust gas is recovered by the heat storage body of the other burner.
[0003]
As shown in FIG. 3, the general regenerative burner is connected to a radiant tube 41, a pair of burners 42 having heat storage bodies 43 provided at both ends of the radiant tube 41, and the pair of burners 42. The two pairs of combustion air switching valve 44 and exhaust gas switching valve 45 are configured.
[0004]
By supplying combustion air from the combustion air blower 55 via the flow rate adjusting valve 56 and switching the two pairs of combustion air switching valves 44 and the exhaust gas switching valve 45 at predetermined time intervals (about 20 to 30 seconds). The air and fuel gas can be introduced into one burner that performs combustion, and exhaust and heat storage can be performed through the other non-burning burner.
[0005]
Such a regenerative burner raises the temperature of the combustion air to about 700 ° C. or higher, so that the generation of nitrogen oxide (hereinafter referred to as NOx) is remarkable. Therefore, in order to reduce the production of NOx, a method is generally used in which the flame temperature and reaction rate are reduced by a method in which a part of the exhaust gas is mixed with combustion air or combustion gas.
[0006]
As a method of mixing a part of the exhaust gas with the combustion air or the combustion gas, there are a self-circulation method using a discharge flow when the gas or air is ventilated in the main body part of the burner, and an air blower such as an exhaust gas circulation blower outside. There is a forced circulation system with means.
[0007]
For example, in the forced circulation type exhaust gas circulation device described in JP-A-52-14255, JP-A-56-25617, JP-A-8-61657, etc., as shown in FIG. Most of the exhaust gas passing through the switching valve 45 is exhausted from the chimney 46 to the outside of the furnace, but a part of the exhaust gas is sent from the chimney 46 to the circulation path 54 by the exhaust gas circulation blower 47. In the flow rate adjuster 48, the furnace temperature, combustion load, combustion air amount, combustion gas amount obtained by using the temperature sensor 50, the gas flow rate measuring device 51, the exhaust gas flow rate measuring device 52, the combustion air amount measuring device 53, etc. The exhaust gas circulation amount is determined by parameters such as the exhaust gas circulation rate, and the exhaust gas adjusting valve 49 is controlled to obtain a predetermined flow rate.
[0008]
[Problems to be solved by the invention]
However, when the self-circulation method is used, a supply facility for increasing the pressure of gas or air is expensive. Further, in the forced circulation system, an expensive flow rate control valve is required for adjusting the exhaust gas circulation amount, and soot and scale contained in the exhaust gas are bitten into the valve body and shaft of the flow rate control valve 49, The flow rate adjusting valve 49 frequently malfunctions, and it is difficult to control the flow rate of exhaust gas for a long time.
[0009]
The present invention has been made to solve such a problem. A regenerative burner that can stably control the flow rate of the exhaust gas that circulates for a long period of time and is inexpensive in equipment cost of the flow rate control mechanism. An object of the present invention is to provide an exhaust gas circulation device for use.
[0010]
[Means for Solving the Problems]
An exhaust gas circulation device for a regenerative burner according to the present invention comprises a regenerative burner provided with a circulation path for circulating exhaust gas exhausted from a regenerative burner to combustion air or a piping for supplying combustion gas of the regenerative burner. An exhaust gas circulation device for a regenerative burner for reducing nitrogen oxides discharged from a active burner,
(A) air blowing means provided in the circulation path;
(B) a parallel pipe comprising a plurality of branch pipes arranged in parallel provided in the circulation path;
(C) Among the branch pipes of the parallel pipe, at least one branch pipe obtained by subtracting 1 from the number of branch pipes is provided with blocking means for selectively blocking the flow of exhaust gas in the branch pipe. It is characterized by that.
[0011]
Each of the branch pipes of the parallel pipe preferably has different pressure loss characteristics.
[0012]
Each of the branch pipes of the parallel pipe preferably has different pressure loss characteristics by having different pipe diameters.
[0013]
Each of the branch pipes of the parallel pipe preferably has a manual valve for changing the setting of the pressure characteristic of the branch pipe.
[0014]
The shut-off means preferably comprises a shut-off valve operated by electricity or compressed air.
[0015]
It is preferable to further include a blocking means for selectively blocking the flow of exhaust gas in the entire circulation path.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the exhaust gas circulation device for a regeneration burner according to the present invention will be described in more detail with reference to the drawings. FIG. 1 is an explanatory view schematically showing the entire configuration of a regenerative burner equipped with an exhaust gas circulation device showing an embodiment of an exhaust gas circulation device for a regeneration burner of the present invention, and FIG. 2 flows through the circulation path of FIG. It is a graph which shows the flow volume of exhaust gas.
[0017]
The regenerative burner provided with the exhaust gas circulation device according to the present embodiment shown in FIG. 1 serves as the means for controlling the flow rate of the exhaust gas in the circulation path 7 and performs the above-described multistage flow rate adjustment. A major feature is that a shutoff valve 14 that selectively shuts off at least one of the parallel pipe 11 and the branch pipes 12 and 13 of the parallel pipe 11 is employed instead of the regulating valve 49 (see FIG. 3). The configuration is almost the same as the regeneration burner system shown in FIG. Hereinafter, the regeneration burner system of FIG. 1 will be described in more detail.
[0018]
The regenerative burner shown in FIG. 1 includes a radiant tube 1, a pair of burners 2 having heat storage bodies 3 provided at both ends of the radiant tube 1, and two pairs of combustions respectively connected to the pair of burners 2. The air switching valve 4 and the exhaust gas switching valve 5 are configured. By supplying combustion air from the combustion air blower 8 via the flow rate adjusting valve 9 and switching the two pairs of combustion air switching valve 4 and exhaust gas switching valve 5 at predetermined time intervals (about 20 to 30 seconds). The air and fuel gas can be introduced into one burner that performs combustion, and exhaust and heat storage can be performed through the other non-burning burner.
[0019]
Furthermore, as shown in FIG. 1, most of the exhaust gas that passes through the exhaust gas switching valve 5 is exhausted from the chimney 6 to the outside of the furnace, but a part of the exhaust gas is sent to the circulation path 7.
[0020]
An exhaust gas circulation device shown in FIG. 1 includes an exhaust gas circulation blower 10 for blowing exhaust gas provided in a circulation path 7 and a plurality of branch pipes 12 and 13 provided in the circulation path 7 and arranged in parallel. And a shutoff valve 14 that is provided in at least one of the branch pipes 12 and 13 of the parallel pipe 11 and selectively shuts off the flow of the exhaust gas in the branch pipe.
[0021]
In FIG. 1, the branch pipes 12 and 13 constituting the parallel pipe 11 set different pressure loss characteristics of the pipes. When setting the pressure loss characteristic of the pipe, for example, it is preferable to change the pipe diameter because a cheap and reliable flow control can be performed.
[0022]
Moreover, by providing the manual valve 15 in each of the branch pipes 12 and 13, it is possible to set an optimum pressure loss characteristic before the combustion of the regeneration burner.
[0023]
Further, since the shutoff valve 14 is installed in at least one branch pipe 12 of the parallel pipe 11, a signal from the flow rate regulator 17 or the like is transmitted to the shutoff valve 14 to obtain a necessary exhaust gas flow rate. The shutoff valve 14 of the branch pipe can be opened or closed. In addition, you may provide the cutoff valve 14 in all the branch pipes 12 and 13. FIG. Further, the number of branch pipes may be two or more, and an appropriate number can be adopted according to the degree of accuracy of the circulation amount control (the number increases as the accuracy increases).
[0024]
Since the shut-off valve 14 has a simple configuration that performs only two operations of ON (opening) and OFF (shut-off), the valve body is less likely to stick, and the frequency of occurrence of trouble can be reduced. As such a shut-off valve 14, an electromagnetic valve, a high-pressure air operation valve, or the like can be used.
[0025]
Further, as shown in FIG. 1, if a shutoff valve 16 for selectively shutting off the exhaust gas circulation in the entire circulation path 7 is further provided, the start and stop of exhaust gas circulation can be controlled collectively. Is preferable.
[0026]
In the flow rate regulator 17 for controlling the shutoff valves 14 and 16, the furnace temperature, the combustion load, and the combustion air amount measured using the temperature sensor 18, the gas flow rate measuring device 19, the combustion air amount measuring device 20, and the like. The exhaust gas circulation amount is determined by a parameter such as the combustion gas amount or the exhaust gas circulation rate, and the shutoff valves 14 and 16 are controlled to obtain a predetermined flow rate.
[0027]
By performing opening / closing control of the two shut-off valves 14 and 16, for example, as shown in the graph of Table 1 and FIG. 2, the exhaust gas flow rate can be adjusted in three stages.
[0028]
[Table 1]
Figure 0003958942
[0029]
As shown in Table 1 and FIG. 2, since the exhaust gas circulation amount can be optimally controlled in accordance with the combustion air amount, the flame temperature and the reaction rate are reduced as in the conventional exhaust gas circulation mechanism. Thus, NOx generation can be reduced.
[0030]
【The invention's effect】
According to the present invention, the flow rate of the exhaust gas can be controlled in units of each branch pipe of the parallel pipe by having the parallel pipe in which a plurality of branch pipes including the branch pipe provided with the shut-off valve are arranged in parallel. Therefore, problems due to adhesion of soot and scale to the conventional flow rate regulating valve can be reduced. As a result, it is possible to stably control the flow rate of the exhaust gas that circulates for a long time, and to reduce the equipment cost of the flow rate control mechanism.
[0031]
In addition, the optimal pressure loss characteristics can be set for each branch pipe by changing the pipe diameter for each branch pipe of the parallel pipe or by providing a manual valve for initial adjustment before combustion in the branch pipe. .
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an overall configuration of a regenerative burner equipped with an exhaust gas circulation device showing an embodiment of an exhaust gas circulation device for a regeneration burner of the present invention.
FIG. 2 is a graph showing the flow rate of exhaust gas flowing through the circulation path of FIG. 1;
FIG. 3 is an explanatory view schematically showing an overall configuration of a regenerative burner equipped with a conventional exhaust gas circulation device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Radiant tube 2 Burner 3 Thermal storage body 11 Parallel piping 12, 13 Branch pipe 14 Shut-off valve 15 Manual valve

Claims (6)

リジェネレイティブバーナから排気される排気ガスを当該リジェネレイティブバーナの燃焼空気または燃焼ガス供給用配管へ循環させる循環経路を備えた、リジェネレイティブバーナから排出されるチッ素酸化物を低減するためのリジェネレイティブバーナ用排気ガス循環装置であって、
(a)前記循環経路に設けられた送風手段と、
(b)前記循環経路に設けられた、並列に並ぶ複数の分岐管からなる並列配管と、
(c)当該並列配管の分岐管のうち、少なくとも分岐管の数から1を減じた数の分岐管に設けられた、前記分岐管における排気ガスの流通を選択的に遮断する遮断手段とからなるリジェネレイティブバーナ用排気ガス循環装置。
In order to reduce nitrogen oxides emitted from the regenerative burner, which has a circulation path for circulating the exhaust gas exhausted from the regenerative burner to the combustion air or the combustion gas supply pipe of the regenerative burner. An exhaust gas circulation device for a regenerative burner of
(A) air blowing means provided in the circulation path;
(B) a parallel pipe comprising a plurality of branch pipes arranged in parallel provided in the circulation path;
(C) Among the branch pipes of the parallel pipe, at least one branch pipe obtained by subtracting 1 from the number of branch pipes is provided with blocking means for selectively blocking the flow of exhaust gas in the branch pipe. Exhaust gas circulation device for regenerative burner.
前記並列配管の分岐管のそれぞれが、異なる圧力損失特性を有してなる請求項1記載のリジェネレイティブバーナ用排気ガス循環装置。The exhaust gas circulation device for a regenerative burner according to claim 1, wherein each of the branch pipes of the parallel pipe has different pressure loss characteristics. 前記並列配管の分岐管のそれぞれが、異なる配管径を有することにより、異なる圧力損失特性を有してなる請求項2記載のリジェネレイティブバーナ用排気ガス循環装置。The exhaust gas circulation device for a regenerative burner according to claim 2, wherein each of the branch pipes of the parallel pipe has a different pipe diameter, thereby having different pressure loss characteristics. 前記並列配管の分岐管のそれぞれが、当該分岐管の圧力特性の設定を変更するための手動弁を有してなる請求項2記載のリジェネレイティブバーナ用排気ガス循環装置。The regenerative burner exhaust gas circulation device according to claim 2, wherein each of the branch pipes of the parallel pipe has a manual valve for changing the setting of the pressure characteristic of the branch pipe. 前記遮断手段が、電気または圧縮空気により操作される遮断弁からなる請求項1、2、3または4記載のリジェネレイティブバーナ用排気ガス循環装置。The exhaust gas circulation device for a regenerative burner according to claim 1, 2, 3, or 4, wherein the shut-off means comprises a shut-off valve operated by electricity or compressed air. 前記循環経路全体の排気ガスの流通を選択的に遮断する遮断手段をさらに備えてなる請求項1、2、3、4または5記載のリジェネレイティブバーナ用排気ガス循環装置。The exhaust gas circulation device for a regenerative burner according to claim 1, 2, 3, 4, or 5, further comprising a blocking means for selectively blocking the flow of exhaust gas in the entire circulation path.
JP2001191496A 2001-06-25 2001-06-25 Exhaust gas circulation system for regenerative burner Expired - Fee Related JP3958942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191496A JP3958942B2 (en) 2001-06-25 2001-06-25 Exhaust gas circulation system for regenerative burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191496A JP3958942B2 (en) 2001-06-25 2001-06-25 Exhaust gas circulation system for regenerative burner

Publications (2)

Publication Number Publication Date
JP2003004226A JP2003004226A (en) 2003-01-08
JP3958942B2 true JP3958942B2 (en) 2007-08-15

Family

ID=19030109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191496A Expired - Fee Related JP3958942B2 (en) 2001-06-25 2001-06-25 Exhaust gas circulation system for regenerative burner

Country Status (1)

Country Link
JP (1) JP3958942B2 (en)

Also Published As

Publication number Publication date
JP2003004226A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US4496314A (en) Recuperator
CN109595568B (en) High-purity waste ammonia gas incinerator, system and process
JP4757596B2 (en) Thermal storage burner device and its operation method
JP3958942B2 (en) Exhaust gas circulation system for regenerative burner
CN101451767A (en) Thermal storage type energy-saving boiler and burning method thereof
JP3823403B2 (en) Radiant tube burner system and operation method thereof
JP5454914B2 (en) Water heater
JPH09229354A (en) Heating furnace, method and apparatus for controlling combustion of the same
JP6821274B2 (en) Recuperator and radiant tube type heating device
JP2001343104A (en) Heating equipment and method for operating heating furnace
JP2673640B2 (en) Hot water heater combustion control method
JP2007101129A (en) Heat storage type burner device and its operation method
JP3760392B2 (en) Regenerative burner and radiant tube burner using the regenerative burner
JP4020453B2 (en) Operating method of bell-type annealing furnace using heat storage regenerative combustion system
CN217549497U (en) SCR denitration urea pyrolysis system of power station boiler
JP3924121B2 (en) Furnace temperature control method for heat treatment furnace with regenerative burner
JP5903828B2 (en) Heating medium boiler
JP3417789B2 (en) Continuous annealing furnace
JP2584193B2 (en) Combustion system using a regenerative burner
JP3717132B2 (en) Gas burner for hot water bath type gas heater at city gas governor station
JP2003129119A (en) Method for feeding fuel gas into hot-blast stove
CN201081240Y (en) Hot air thermostat
JPH08226634A (en) Combustion control method of regenerative burner
CN116085813A (en) Combustor energy-saving device and method of RTO furnace
CN114807482A (en) Total oxygen combustion system for adjusting combustion temperature by using carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R151 Written notification of patent or utility model registration

Ref document number: 3958942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees