JP4020453B2 - Operating method of bell-type annealing furnace using heat storage regenerative combustion system - Google Patents

Operating method of bell-type annealing furnace using heat storage regenerative combustion system Download PDF

Info

Publication number
JP4020453B2
JP4020453B2 JP08026697A JP8026697A JP4020453B2 JP 4020453 B2 JP4020453 B2 JP 4020453B2 JP 08026697 A JP08026697 A JP 08026697A JP 8026697 A JP8026697 A JP 8026697A JP 4020453 B2 JP4020453 B2 JP 4020453B2
Authority
JP
Japan
Prior art keywords
combustion
bell
capacity
annealing furnace
outer cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08026697A
Other languages
Japanese (ja)
Other versions
JPH10273735A (en
Inventor
利生 嶋田
慎一 高野
克明 高原
敏明 花田
信一 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Chugai Ro Co Ltd
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, Nippon Steel Nisshin Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP08026697A priority Critical patent/JP4020453B2/en
Publication of JPH10273735A publication Critical patent/JPH10273735A/en
Application granted granted Critical
Publication of JP4020453B2 publication Critical patent/JP4020453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱再生式燃焼装置を用いたベル型焼鈍炉の操業方法に関する。
【0002】
【従来の技術】
従来、金属ストリップコイル(以下、コイル材という)を焼鈍するに際し、インナカバー内に収容したコイル材をアウタカバーに取り付けたバーナで間接加熱するベル型焼鈍炉が広く利用されてきた。一方で、省エネルギーの観点から熱効率に優れた燃焼装置として燃焼と廃熱回収を交互に繰り返す蓄熱再生式燃焼装置が注目を集めており、発明者らは蓄熱再生式燃焼装置を用いたベル型焼鈍炉を先に出願した。このベル型焼鈍炉を用いた焼鈍プロセスは、炉内を設定温度(焼鈍温度)まで昇温する加熱、この設定温度に炉内温度を保つ均熱、さらに徐冷を含む冷却の各操業期に分けられる(以下、各操業期を加熱期、均熱期、冷却期と呼ぶ)。ここで、加熱期は炉内温度を設定温度まで短時間で上昇させる必要から、バーナは100%負荷の状態で燃焼を継続する必要がある。
【0003】
しかし、均熱期は炉内温度を設定温度(焼鈍温度)に保持するのに必要な熱量を与えるものであり、図6に示すように、炉内温度を検出しながら燃焼と非燃焼を交互に繰り返す間欠的な燃焼を行うとともに、燃焼時にバーナを100%負荷の状態で運転し、非燃焼時間を漸次増加する方法が採用される。
【0004】
【発明が解決しようとする課題】
しかしながら、この操業方法によれば、バーナの近傍にあるインナカバーやコイル材が局部的に加熱されてそれらに高温域と低温域が生じる。この局部加熱状態は、アウタカバーとインナカバーの間の円筒空間に旋回気流を形成させて熱の拡散をもってしても解消できない。また、バーナが100%負荷の状態で燃焼と非燃焼を繰り返すので、局部加熱状態をさらに助長するだけなく、炉内の温度変動を極めて大きくし、インナカバーの耐久寿命を短くしている。
【0005】
そこで、本発明は、蓄熱再生式燃焼装置のもつ省エネルギーの利点を活かしながら、上述の局部加熱と炉内温度変動を最小限に留めることが可能な均熱操業方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、炉床に置かれた金属ストリップコイルをインナカバーとアウタカバーで覆い、上記インナカバーと上記アウタカバーとの間の空間に上記アウタカバーに設けた一対の蓄熱再生式燃焼装置から上記アウタカバーの接線方向に向けて縦扁平火炎を形成することによって上記インナカバー内に置かれた金属ストリップコイルを焼鈍するベル型焼鈍炉の操業方法であって、上記ベル型焼鈍炉により金属ストリップコイルを焼鈍するに際し、上記ベル型焼鈍炉の均熱操業期に、上記蓄熱再生式燃焼装置の燃焼下限容量まで均熱操業時の必要燃焼容量を連続的に制御しながら燃焼を行い、上記必要燃焼容量が上記燃焼下限容量に達するとその後は上記燃焼下限容量の状態で間欠的に燃焼を行なうものである。
【0007】
【発明の効果】
この操業方法によれば、蓄熱再生式燃焼装置は燃焼下限容量付近まで、火炎を絶やすことなく均熱操業に必要な熱量を与える。したがって、100%負荷の状態で蓄熱再生式燃焼装置を間欠的に燃焼を継続する場合に比べて、炉内の温度変動が減少する。
【0008】
次いで、蓄熱再生式燃焼装置の燃焼容量を低くした操業を行なうと、蓄熱再生式燃焼装置から噴射される燃料や空気の流速が低下して火炎の直進性は低下すると共にアウタカバーとインナカバーの間の環状空間に火炎の舞い上がりが生じて、コイル材やインナカバーの局部加熱を減少すると共に、積載したコイル材を均等に加熱できる。
【0009】
【発明の実施の形態】
以下、添付図面を参照して本発明の好適な実施形態を説明する。図1において、蓄熱再生式燃焼装置を用いたベル型焼鈍炉1は、炉床2、インナカバー3、及びアウタカバー4で構成される。処理材料であるコイル材Wは、炉床2上に積み重ね、インナカバー3さらにアウタカバー4で覆い焼鈍される。
【0010】
アウタカバー4は、下部周円の180°対称位置に一対のスリット型蓄熱再生式燃焼装置(以下、「燃焼装置」という。)7a,7bと、天井部4aにベント孔8を備えている。燃焼装置7a,7bはアウターカバー4に対してその接線方向に取り付けてあり(図2参照)、内部の縦長のヘッダ管8a,8bから燃料を面状に噴出してインナカバー3とアウタカバー4との間の空間6に縦偏平火炎(図3参照)を形成するようにしてある。なお、ベント孔8には外気が上記空間6に流入するのを防止するための逆流防止機構(例えば、逆止弁)を設けるのが好ましい。
【0011】
燃焼装置7a,7bは、燃料と空気を噴出して燃焼する機能と、非燃焼時には空間6内の排ガスを吸引してその廃熱を回収する機能を有し、これらの機能を達成するために、蓄熱媒体からなる蓄熱器9a,9bを備えている。
【0012】
燃焼装置7a,7bのヘッダ管8a,8bは、蓄熱器9a,9bを貫通する燃料分岐管12a,12bと燃料本管13により燃料供給装置14に接続されており、燃料分岐管12a,12bに開閉弁15a,15b、燃料本管13に燃料制御弁16が設けてある。
【0013】
燃焼装置7a,7bの本体には、それぞれに対応した給排気管17a,17bが接続されている。給排気管17a,17bは空気供給管18a,18bと排ガス管23a,23bに分岐している。そして、空気供給管18a,18bが空気供給本管19を介して燃焼空気供給用ブロア20に接続され、排ガス管23a,23bが排ガス本管24を介して排気ブロア25に接続されている。また、空気供給管18a,18bには開閉弁21a,21b、空気供給本管19には空気制御弁22が設けてある。同様に、排ガス管23a,23bには開閉弁26a,26b、排ガス本管24には排ガス制御弁27がそれぞれ設けてある。そして、燃料制御弁16、空気制御弁22及び排ガス制御弁27は空燃比制御装置28によりそれらの開度が調整されるようになっている。
【0014】
蓄熱再生式燃焼装置を用いたベル型焼鈍炉1の操業動作を説明する。前述のように、焼鈍炉1の焼鈍プロセスは、加熱期、均熱期及び冷却期からなる。加熱期では、燃焼装置7a,7bで交互に燃焼を繰り返すとともに、非燃焼状態にある燃焼装置7aまたは7bから排ガスを吸引排気してその廃熱を回収しながらコイル材Wを所定温度まで加熱する。
【0015】
具体的に、燃焼動作と廃熱回収動作を説明する。いま一方の燃焼装置7aで燃焼を行い、他方の燃焼装置7bで廃熱を回収するものとする。この場合、燃料配管系では、開閉弁15aを開いて燃料供給装置14から燃焼装置7aのヘッダ管8aに燃料を供給する。他方、燃料切替弁15bを閉じて燃焼装置7bへの燃料供給を遮断する。
【0016】
空気配管系では、開閉弁21aを開いて燃焼装置7aに燃焼用空気を供給する。他方、開閉弁21bを閉じて燃料装置7bへの供給を遮断する。燃焼装置7aのヘッダ管8aに供給された燃料は蓄熱器9aを通過して流入した空気と混合して燃焼し、縦偏平火炎を形成する。
【0017】
排ガス配管系では、開閉弁26bを開き、他方の開閉弁26aを閉じる。なお、排ガス制御弁27の開度を調整することにより排ガスの約80%が燃焼装置7bに吸引され、蓄熱器9bでその廃熱が回収された後、排ガスブロア25で排気される。残りの約20%の排ガスはベント孔8から外部に排気される。
【0018】
以上の動作が所定時間継続された後、次に燃焼装置7bで燃焼を行い、他方の燃焼装置7aで廃熱を回収する動作に移る。この場合、燃料配管系では、開閉弁15aを閉じて燃焼装置7aへの燃料供給を遮断し、開閉弁15bを開いて燃料供給装置14から燃焼装置7bのヘッダ管8bに燃料を供給する。一方、空気配管系では、開閉弁21aを閉じて燃焼装置7aへの空気供給を遮断し、開閉弁21bを開いて燃焼装置7bに空気を供給する。燃焼装置7bのヘッダ管8bに供給された燃料は蓄熱器9bを通過した予熱空気と混合して燃焼し、縦偏平火炎を形成する。
【0019】
排ガス配管系では、開閉弁26aを開き、他方の開閉弁26bを閉じる。同様に排ガスの約80%が燃焼装置7aに吸引され、蓄熱器9aでその廃熱が回収された後、排気ブロア25で排気される。残りの20%の排ガスはベント孔8から外部に自然に排気される。このようにして、燃焼装置7a,7bでは、燃焼動作と廃熱回収動作が所定時間ごとに交互に行われて炉内温度が設定温度まで昇温される。
【0020】
均熱期に入ると、図4に示すように、加熱期に100%負荷の状態で運転した燃焼装置7a,7bの燃焼容量を、これら燃焼装置7a、7bで定常的に火炎を形成できる燃焼下限容量付近(例えば、約20%)まで均熱操業時の必要燃焼容量に連続的に制御しながら、上述した交互燃焼を連続する。燃焼装置7a,7bの燃焼容量が燃焼下限容量付近に達すると、この燃焼下限容量付近で上述した交互燃焼を間欠的に行う。
【0021】
均熱期における必要燃焼容量及び燃焼下限容量付近での燃焼時間と非燃焼時間は、インナカバー3の内側に配置した複数の温度検出装置(図示せず)で炉内温度を検出し、この炉内温度とコイル材Wの温度がほぼ一定の値を保つように制御する。
【0022】
このように、均熱期に燃焼装置7a,7bの燃焼容量を必要燃焼容量に連続的に制御すると、実質的には、燃焼容量が低下することになり、それ故に燃焼操業中の燃焼装置から噴射される燃料と空気の流速が低下すると共にアウタカバーとインナカバーの間の環状空間に形成される旋回気流によって火炎の舞い上がりを生じる。その結果、インナカバー3の局部的加熱が防止されてその耐久寿命が延びると共に、積載された複数のコイル材Wが均等に加熱される。
【0023】
また、蓄熱再生式燃焼装置は、上述のように炉内排ガスの熱を利用して燃焼用空気を加熱するので火炎温度が高く、伝熱量は火炎温度の4乗に比例するので、低燃焼容量による火炎の舞い上がりを利用して輻射伝熱量により効率よく積層コイル材Wが均等に加熱する。
【0024】
因に、炉内にコイルWを4段重ね、最下段とその上の段のコイル材Wに対向して燃焼装置7a,7bを配置した場合、上から2段目のコイル材Wが十分加熱されないという問題、またこの2段目のコイル材Wを必要温度に加熱するために焼鈍時間が長くなるという問題があるが、本発明によれば高温の輻射熱によって各段のコイル材Wがほぼ均等に加熱されて焼鈍処理され、そのために焼鈍時間を従来に比べて短くできる。
【0025】
本発明の操業方法と図6に示す操業方法(比較例)を実施して、それぞれについてコイル材の内部にある最も高い温度点(ホットポイント)と最も低い温度点(コールドポイント)の温度差を測定した。その結果、図5に示すように、本発明の操業方法によれば、比較例よりも温度差を約5°低減できることが確認できた。また、温度差が±10°(グラフでは20°)以下の範囲に落ち着くまでの焼鈍時間が、本発明では比較例よりも約2時間早く、この時間だけ全体の焼鈍時間を短くできることを確認した。
【0026】
なお、均熱操業が終了すると、冷却操業に入る。
【図面の簡単な説明】
【図1】 本発明に係る蓄熱再生式燃焼装置を用いたベル型焼鈍炉の縦断面図とその配管系統図である。
【図2】 図1に示す焼鈍炉の横断面図である。
【図3】 焼鈍下限容量付近時の火炎状態を示す斜視図である。
【図4】 本発明にかかる操業方法を示すグラフ(横軸が時間、縦軸が燃焼装置の燃焼容量)を示す。
【図5】 本発明の操業方法と図7に示す操業方法(比較例)で処理した場合の材料温度差(コイル材におけるホットポイントとコールドポイントの温度差)を示す。
【図6】 比較例の操業方法を示すグラフである。
【符号の説明】
1…蓄熱再生式燃焼装置を用いたベル型焼鈍炉、3…インナカバー、4…アウタカバー、W…コイル材(処理材料)、6…空間、7a,7b…スリット型蓄熱再生式燃焼装置、8…ベント孔。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a bell-type annealing furnace using a heat storage regenerative combustion apparatus.
[0002]
[Prior art]
Conventionally, when annealing a metal strip coil (hereinafter referred to as a coil material), a bell-type annealing furnace that indirectly heats a coil material accommodated in an inner cover with a burner attached to an outer cover has been widely used. On the other hand, as a combustion device with excellent thermal efficiency from the viewpoint of energy saving, a heat storage regenerative combustion device that alternately repeats combustion and waste heat recovery is attracting attention, and the inventors have been developing bell-type annealing using a heat storage regenerative combustion device. I filed the furnace first. The annealing process using this bell-type annealing furnace is performed in each operation period of heating to raise the temperature in the furnace to a set temperature (annealing temperature), soaking to keep the temperature in the furnace at this set temperature, and cooling including slow cooling. (Hereinafter, each operation period is called a heating period, a soaking period, and a cooling period). Here, since it is necessary to raise the furnace temperature to the set temperature in a short time during the heating period, the burner needs to continue combustion in a state of 100% load.
[0003]
However, the soaking period gives the amount of heat necessary to maintain the furnace temperature at the set temperature (annealing temperature). As shown in FIG. 6, combustion and non-combustion are alternately performed while detecting the furnace temperature. A method is employed in which intermittent combustion is repeated repeatedly and the burner is operated at 100% load during combustion to gradually increase the non-combustion time.
[0004]
[Problems to be solved by the invention]
However, according to this operation method, the inner cover and the coil material in the vicinity of the burner are locally heated to generate a high temperature region and a low temperature region. This local heating state cannot be resolved even if the swirling airflow is formed in the cylindrical space between the outer cover and the inner cover and heat is diffused. Further, since the burner repeats combustion and non-combustion in a state of 100% load, it not only further promotes the local heating state, but also greatly increases the temperature fluctuation in the furnace and shortens the durable life of the inner cover.
[0005]
Then, this invention aims at providing the soaking | uniform-heating operation method which can keep the above-mentioned local heating and the temperature fluctuation in a furnace to the minimum, making use of the energy-saving advantage which a thermal storage regeneration combustion apparatus has. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a pair of heat storage regenerations in which a metal strip coil placed on a hearth is covered with an inner cover and an outer cover, and a space between the inner cover and the outer cover is provided on the outer cover. A bell-type annealing furnace for annealing a metal strip coil placed in the inner cover by forming a vertical flat flame from a combustion-type combustion device in a tangential direction of the outer cover, the bell-type annealing furnace When the metal strip coil is annealed by the above, during the soaking operation period of the bell-type annealing furnace, combustion is performed while continuously controlling the required combustion capacity at the soaking operation up to the combustion lower limit capacity of the heat storage regeneration combustion device. When the required combustion capacity reaches the combustion lower limit capacity, the combustion is intermittently performed in the state of the combustion lower limit capacity thereafter.
[0007]
【The invention's effect】
According to this operation method, the heat storage regenerative combustion apparatus gives the amount of heat necessary for the soaking operation without extinguishing the flame up to near the combustion lower limit capacity. Therefore, the temperature fluctuation in the furnace is reduced as compared with the case where the regenerative combustion apparatus is continuously burned intermittently in a state of 100% load.
[0008]
Next, when the operation of reducing the combustion capacity of the heat storage regenerative combustion device is performed, the flow rate of fuel and air injected from the heat storage regenerative combustion device is reduced, the straightness of the flame is reduced and the outer cover and the inner cover are reduced. A flame rises in the annular space, and local heating of the coil material and the inner cover is reduced, and the loaded coil material can be heated evenly.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. In FIG. 1, a bell-type annealing furnace 1 using a regenerative combustion apparatus includes a hearth 2, an inner cover 3, and an outer cover 4. The coil material W, which is a treatment material, is stacked on the hearth 2 and is covered and annealed with the inner cover 3 and the outer cover 4.
[0010]
The outer cover 4 includes a pair of slit-type heat storage regenerative combustion devices (hereinafter referred to as “combustion devices”) 7a and 7b and a vent hole 8 in the ceiling portion 4a at a 180 ° symmetrical position of the lower circumferential circle. The combustion devices 7a and 7b are attached to the outer cover 4 in a tangential direction (see FIG. 2), and the fuel is jetted in a planar shape from the vertically long header pipes 8a and 8b, and the inner cover 3 and the outer cover 4 A vertical flat flame (see FIG. 3) is formed in the space 6 between the two. The vent hole 8 is preferably provided with a backflow prevention mechanism (for example, a check valve) for preventing outside air from flowing into the space 6.
[0011]
In order to achieve these functions, the combustion devices 7a and 7b have a function of injecting and burning fuel and air, and a function of sucking exhaust gas in the space 6 and recovering waste heat during non-combustion. The heat accumulators 9a and 9b made of a heat storage medium are provided.
[0012]
The header pipes 8a and 8b of the combustion devices 7a and 7b are connected to the fuel supply device 14 by fuel branch pipes 12a and 12b passing through the regenerators 9a and 9b and the fuel main pipe 13, and are connected to the fuel branch pipes 12a and 12b. A fuel control valve 16 is provided in the on-off valves 15 a and 15 b and the fuel main pipe 13.
[0013]
Supply / exhaust pipes 17a and 17b are connected to the main bodies of the combustion devices 7a and 7b, respectively. The supply / exhaust pipes 17a and 17b are branched into air supply pipes 18a and 18b and exhaust gas pipes 23a and 23b. The air supply pipes 18 a and 18 b are connected to the combustion air supply blower 20 through the air supply main pipe 19, and the exhaust gas pipes 23 a and 23 b are connected to the exhaust blower 25 through the exhaust gas main pipe 24. The air supply pipes 18a and 18b are provided with on-off valves 21a and 21b, and the air supply main pipe 19 is provided with an air control valve 22. Similarly, the exhaust gas pipes 23a and 23b are provided with on-off valves 26a and 26b, and the exhaust gas main pipe 24 is provided with an exhaust gas control valve 27, respectively. The fuel control valve 16, the air control valve 22, and the exhaust gas control valve 27 are adjusted in opening by an air-fuel ratio control device 28.
[0014]
The operation of the bell-type annealing furnace 1 using the heat storage regenerative combustion apparatus will be described. As described above, the annealing process of the annealing furnace 1 includes a heating period, a soaking period, and a cooling period. In the heating period, combustion is alternately repeated in the combustion devices 7a and 7b, and the coil material W is heated to a predetermined temperature while exhaust gas is sucked and exhausted from the combustion device 7a or 7b in a non-combustion state and the waste heat is recovered. .
[0015]
Specifically, the combustion operation and the waste heat recovery operation will be described. It is assumed that combustion is performed by one combustion device 7a and waste heat is recovered by the other combustion device 7b. In this case, in the fuel piping system, the on-off valve 15a is opened and fuel is supplied from the fuel supply device 14 to the header pipe 8a of the combustion device 7a. On the other hand, the fuel switching valve 15b is closed to shut off the fuel supply to the combustion device 7b.
[0016]
In the air piping system, the on-off valve 21a is opened to supply combustion air to the combustion device 7a. On the other hand, the on-off valve 21b is closed to cut off the supply to the fuel device 7b. The fuel supplied to the header pipe 8a of the combustion device 7a is mixed with the air that has passed through the heat accumulator 9a and burned to form a vertical flat flame.
[0017]
In the exhaust gas piping system, the on-off valve 26b is opened and the other on-off valve 26a is closed. Incidentally, by adjusting the opening degree of the exhaust gas control valve 27, about 80% of the exhaust gas is sucked into the combustion device 7b, the waste heat is recovered by the heat accumulator 9b, and then exhausted by the exhaust gas blower 25. The remaining about 20% of the exhaust gas is exhausted to the outside through the vent hole 8.
[0018]
After the above operation is continued for a predetermined time, the combustion device 7b then performs combustion, and the other combustion device 7a moves to an operation of recovering waste heat. In this case, in the fuel piping system, the on-off valve 15a is closed to shut off the fuel supply to the combustion device 7a, and the on-off valve 15b is opened to supply fuel from the fuel supply device 14 to the header pipe 8b of the combustion device 7b. On the other hand, in the air piping system, the on-off valve 21a is closed to shut off the air supply to the combustion device 7a, and the on-off valve 21b is opened to supply air to the combustion device 7b. The fuel supplied to the header pipe 8b of the combustion device 7b is mixed with the preheated air that has passed through the heat accumulator 9b and burned to form a vertical flat flame.
[0019]
In the exhaust gas piping system, the on-off valve 26a is opened and the other on-off valve 26b is closed. Similarly, about 80% of the exhaust gas is sucked into the combustion device 7a, the waste heat is recovered by the heat accumulator 9a, and then exhausted by the exhaust blower 25. The remaining 20% of the exhaust gas is naturally exhausted from the vent hole 8 to the outside. In this manner, in the combustion devices 7a and 7b, the combustion operation and the waste heat recovery operation are alternately performed every predetermined time, and the furnace temperature is raised to the set temperature.
[0020]
When entering the soaking period, as shown in FIG. 4, the combustion capacity of the combustion apparatuses 7a and 7b operated at a 100% load in the heating period can be used to form a flame in a steady manner with these combustion apparatuses 7a and 7b. The alternate combustion described above is continued while continuously controlling the required combustion capacity during the soaking operation to near the lower limit capacity (for example, about 20%). When the combustion capacity of the combustion devices 7a and 7b reaches near the combustion lower limit capacity, the above-described alternate combustion is intermittently performed near the combustion lower limit capacity.
[0021]
The required combustion capacity in the soaking period and the combustion time and non-combustion time in the vicinity of the lower combustion limit capacity are detected by detecting the temperature in the furnace with a plurality of temperature detection devices (not shown) arranged inside the inner cover 3. Control is performed so that the internal temperature and the temperature of the coil material W are maintained at substantially constant values.
[0022]
As described above, when the combustion capacity of the combustion devices 7a and 7b is continuously controlled to the required combustion capacity in the soaking period, the combustion capacity is substantially reduced, and therefore from the combustion device during the combustion operation. As the flow rate of the injected fuel and air decreases, the swirling airflow formed in the annular space between the outer cover and the inner cover causes the flame to rise. As a result, local heating of the inner cover 3 is prevented and the durability life thereof is extended, and the plurality of loaded coil members W are evenly heated.
[0023]
In addition, as described above, the regenerative combustion apparatus heats the combustion air using the heat of the exhaust gas in the furnace, so the flame temperature is high and the amount of heat transfer is proportional to the fourth power of the flame temperature. The laminated coil material W is efficiently heated evenly by the amount of radiant heat transfer using the rise of the flame caused by.
[0024]
For example, when the coils W are stacked in four stages in the furnace, and the combustion devices 7a and 7b are arranged facing the coil material W in the lowermost stage and the upper stage, the coil material W in the second stage from the top is sufficiently heated. However, according to the present invention, the coil material W at each stage is substantially evenly distributed by the high-temperature radiant heat. The annealing time is shortened as compared with the prior art.
[0025]
The operation method of the present invention and the operation method (comparative example) shown in FIG. 6 are carried out, and the temperature difference between the highest temperature point (hot point) and the lowest temperature point (cold point) inside the coil material is determined for each. It was measured. As a result, as shown in FIG. 5, according to the operation method of the present invention, it was confirmed that the temperature difference could be reduced by about 5 ° compared to the comparative example. Further, it was confirmed that the annealing time until the temperature difference was settled within a range of ± 10 ° (20 ° in the graph) or less was about 2 hours earlier than the comparative example in the present invention, and the entire annealing time could be shortened by this time. .
[0026]
When the soaking operation is completed, the cooling operation is started.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a bell-type annealing furnace using a regenerative combustion apparatus according to the present invention and a piping system diagram thereof.
FIG. 2 is a cross-sectional view of the annealing furnace shown in FIG.
FIG. 3 is a perspective view showing a flame state near the annealing lower limit capacity.
FIG. 4 is a graph showing the operation method according to the present invention (the horizontal axis represents time, and the vertical axis represents the combustion capacity of the combustion apparatus).
FIG. 5 shows a material temperature difference (temperature difference between a hot point and a cold point in a coil material) when the operation method of the present invention and the operation method (comparative example) shown in FIG. 7 are used.
FIG. 6 is a graph showing an operation method of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bell type annealing furnace using heat storage regenerative combustion apparatus, 3 ... Inner cover, 4 ... Outer cover, W ... Coil material (processing material), 6 ... Space, 7a, 7b ... Slit type heat storage regenerative combustion apparatus, 8 ... Vent hole.

Claims (1)

炉床に置かれた金属ストリップコイルをインナカバーとアウタカバーで覆い、上記インナカバーと上記アウタカバーとの間の空間に上記アウタカバーに設けた一対の蓄熱再生式燃焼装置から上記アウタカバーの接線方向に向けて縦扁平火炎を形成することによって上記インナカバー内に置かれた金属ストリップコイルを焼鈍するベル型焼鈍炉の操業方法であって、
上記ベル型焼鈍炉により金属ストリップコイルを焼鈍するに際し、上記ベル型焼鈍炉の均熱操業期に、上記蓄熱再生式燃焼装置の燃焼下限容量まで均熱操業時の必要燃焼容量を連続的に制御しながら燃焼を行い、上記必要燃焼容量が上記燃焼下限容量に達するとその後は上記燃焼下限容量の状態で間欠的に燃焼を行なう蓄熱再生式燃焼装置を用いたベル型焼鈍炉の操業方法。
A metal strip coil placed on the hearth is covered with an inner cover and an outer cover, and a pair of heat storage regenerative combustion devices provided on the outer cover in a space between the inner cover and the outer cover toward a tangential direction of the outer cover. A bell-type annealing furnace operating method for annealing a metal strip coil placed in the inner cover by forming a vertical flat flame,
When annealing the metal strip coil with the bell-type annealing furnace, continuously control the required combustion capacity during the soaking operation up to the lower limit combustion capacity of the regenerative combustion apparatus during the soaking operation of the bell-type annealing furnace. and while the combustion, the when required combustion capacity reaches the lower flammable limit capacity then performs intermittently the combustion state of the combustion limit capacity, operating method of the bell furnace using a regenerative regenerative combustion apparatus.
JP08026697A 1997-03-31 1997-03-31 Operating method of bell-type annealing furnace using heat storage regenerative combustion system Expired - Fee Related JP4020453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08026697A JP4020453B2 (en) 1997-03-31 1997-03-31 Operating method of bell-type annealing furnace using heat storage regenerative combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08026697A JP4020453B2 (en) 1997-03-31 1997-03-31 Operating method of bell-type annealing furnace using heat storage regenerative combustion system

Publications (2)

Publication Number Publication Date
JPH10273735A JPH10273735A (en) 1998-10-13
JP4020453B2 true JP4020453B2 (en) 2007-12-12

Family

ID=13713511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08026697A Expired - Fee Related JP4020453B2 (en) 1997-03-31 1997-03-31 Operating method of bell-type annealing furnace using heat storage regenerative combustion system

Country Status (1)

Country Link
JP (1) JP4020453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279157B2 (en) * 2001-07-19 2013-09-04 中外炉工業株式会社 Bell-type annealing furnace provided with regenerative alternating combustion apparatus and combustion method thereof
DE102006028712B4 (en) * 2006-06-20 2012-02-02 Otto Junker Gmbh Billet heating furnace and method of billet heating
KR100745123B1 (en) 2007-03-14 2007-08-02 대교엔지니어링(주) Elevating type annealing furnce

Also Published As

Publication number Publication date
JPH10273735A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP4020453B2 (en) Operating method of bell-type annealing furnace using heat storage regenerative combustion system
KR100267455B1 (en) Heat fluid generating furnace
JPH064171Y2 (en) Radiant chives
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
CN208155050U (en) A kind of novel high-efficient energy-saving crucible furnace
JPH09287013A (en) Device for utilizing heat in hot stove
JP2002115836A (en) Regenerative exhaust gas processing unit
JP3044286B2 (en) Continuous annealing furnace
JP5279157B2 (en) Bell-type annealing furnace provided with regenerative alternating combustion apparatus and combustion method thereof
JP2777097B2 (en) Bell-type annealing furnace with regenerative combustion system
JP3473060B2 (en) Muffle furnace
KR101472851B1 (en) method for manufacturing steel plate
JPH07318050A (en) Combustion system using heat storage burner
JP2777096B2 (en) Operating method of cover type annealing furnace
JP3924121B2 (en) Furnace temperature control method for heat treatment furnace with regenerative burner
JP3747481B2 (en) Combustion control device in regenerative burner device
JP2002039684A (en) Heat treatment device and method thereof
JPH0225549A (en) Cast ingot continuous heating furnace
JPH10273736A (en) Slow cooling operation of bell type annealing furnace using heat-storage regenerating type combustion device
JP3958942B2 (en) Exhaust gas circulation system for regenerative burner
JPH09111350A (en) Continuous heating furnace and operation thereof
JPH0132305B2 (en)
JP3852212B2 (en) Billet heating method
JP2000160234A (en) Method for recovering air for cooling skid pipe
JP3007275B2 (en) NOx control method for regenerative combustion burner system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees