JP3513226B2 - How to handle explosives and explosives - Google Patents

How to handle explosives and explosives

Info

Publication number
JP3513226B2
JP3513226B2 JP21370294A JP21370294A JP3513226B2 JP 3513226 B2 JP3513226 B2 JP 3513226B2 JP 21370294 A JP21370294 A JP 21370294A JP 21370294 A JP21370294 A JP 21370294A JP 3513226 B2 JP3513226 B2 JP 3513226B2
Authority
JP
Japan
Prior art keywords
explosives
temperature
alkali
reaction
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21370294A
Other languages
Japanese (ja)
Other versions
JPH0859383A (en
Inventor
正和 立石
信明 村上
勇 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21370294A priority Critical patent/JP3513226B2/en
Publication of JPH0859383A publication Critical patent/JPH0859383A/en
Application granted granted Critical
Publication of JP3513226B2 publication Critical patent/JP3513226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不要となった火薬、爆薬
類の安全な処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for safely treating unnecessary explosives and explosives.

【0002】[0002]

【従来の技術】従来、不要になった火薬、爆薬類は少量
ずつ燃焼、爆発させる燃焼、爆発法で処理されている
が、この方法の場合は作業員が常に危険に曝されてお
り、騒音や振動の問題もあった。そこでこれらの問題を
少しでも解決する方法として、超臨界水中で酸化分解す
る超臨界水酸化法や、アルカリ溶液中で加水分解を起こ
させるアルカリ加水分解法等が提案されている。超臨界
水酸化法は短時間で処理可能であるが酸化剤が必要であ
るため、装置材の腐食が問題で装置の内面を金ライニン
グするなど装置が高価になる欠点があった。また、アル
カリ加水分解法は分解速度が遅く、装置が大容量になる
欠点があった。
2. Description of the Related Art Conventionally, unnecessary explosives and explosives are burned in small amounts and treated by an explosive combustion method. However, in this method, workers are constantly exposed to danger and noise. There was also a problem of vibration. Therefore, as a method for solving these problems, a supercritical water oxidation method of oxidative decomposition in supercritical water and an alkali hydrolysis method of causing hydrolysis in an alkaline solution have been proposed. Although the supercritical water oxidation method can be processed in a short time, it requires an oxidizing agent, so that there is a problem in that the equipment is expensive due to corrosion of the equipment material and gold lining of the inner surface of the equipment. Further, the alkali hydrolysis method has a drawback that the decomposition rate is slow and the apparatus has a large capacity.

【0003】[0003]

【発明が解決しようとする課題】前記のように火薬、爆
薬類は水中で加熱すると徐々に酸化あるいは加水分解し
てより安全な物質に変化することが知られている。しか
し実用的な速度で分解してやるためには臨界温度以上の
超臨界水中で処理するか、酸素、過酸化水素、オゾンな
どの酸化剤あるいはアルカリを添加する必要があった。
しかもこの超臨界水酸化法では400〜600℃の温度
で処理するため火薬、爆薬類の自己分解温度以上とな
り、火薬、爆薬類が局部的に急激に分解して爆発事故を
起こす恐れがあるとともに装置材料の腐食の面から金を
ライニングするなどの必要があった。また、酸化剤を用
いる方法では、やはり腐食の面から金ライニングなどが
必要となり装置が高価となっていた。また、アルカリ加
水分解法では火薬、爆薬類の自己分解温度よりも低い温
度の水中で処理することができるが、分解反応速度が遅
く、実用的な方法ではなかった。
As described above, it is known that explosives and explosives are gradually oxidized or hydrolyzed when heated in water and converted into safer substances. However, in order to decompose it at a practical rate, it was necessary to treat it in supercritical water at a critical temperature or higher, or to add an oxidizing agent such as oxygen, hydrogen peroxide, or ozone, or an alkali.
Moreover, since this supercritical water oxidation process is carried out at a temperature of 400 to 600 ° C., it becomes higher than the self-decomposition temperature of explosives and explosives, and explosives and explosives may locally decompose rapidly and cause an explosion accident. It was necessary to line gold with respect to the corrosion of equipment materials. In addition, the method using an oxidizing agent also requires a gold lining or the like from the viewpoint of corrosion, and the apparatus is expensive. In addition, the alkaline hydrolysis method can be carried out in water at a temperature lower than the self-decomposition temperature of explosives and explosives, but the decomposition reaction rate is slow, which is not a practical method.

【0004】さらに、従来の爆発処理では爆発力(破壊
力)及び爆発音が大きく、また不発の恐れもあり人財に
全く影響を及ぼさない人気のない小島あるいはへんぴか
つ広大なスペースが選ばれるが、スペース上、法的規制
からも爆薬処理量には限界があり、また爆薬処理作業に
は高度な技術能力を必要とし、危険度の高い割にはリス
クの大きい処理作業として認知され、処理作業は殆ど実
施されていないのが現状である。本発明は、前記のよう
な従来技術の不具合点を改善して装置材料の腐食を防止
するとともに、急激な火薬、爆薬類の分解を防止するこ
とができ、より安全でしかも騒音、振動などの公害問題
のない火薬、爆薬類の処理方法を提供しようとするもの
である。
Further, in the conventional explosive treatment, an unpopular small island or a spacious and spacious space is selected, which has a large explosive force (destructive force) and an explosive sound, and there is also a fear of misfire, which does not affect human resources at all. However, due to space and legal regulations, there is a limit to the amount of explosives that can be processed, and explosives work requires a high level of technical capability. Is currently not implemented. The present invention is capable of preventing the corrosion of the equipment materials by improving the problems of the prior art as described above, and preventing the explosives and explosives from being rapidly decomposed. It aims to provide a method for treating explosives and explosives that does not cause pollution problems.

【0005】[0005]

【課題を解決するための手段】本発明は火薬、爆薬類
を、反応促進剤として珪酸アルカリ塩又はアルミン酸ア
ルカリ塩を添加したアルカリ溶液中で該溶液の臨界温度
以下の温度に加熱して加水分解することを特徴とする火
薬、爆薬類の処理方法及び火薬、爆薬類を臨界温度以下
でpHを適正に調整したアルカリ溶液中で加熱して加水
分解させたのち、燃焼させることを特徴とする火薬、爆
薬類の処理方法である。
According to the present invention, a powdered explosive or explosive is hydrolyzed by heating it to a temperature below the critical temperature of the solution in an alkaline solution containing an alkali silicate salt or an aluminate aluminate salt as a reaction accelerator. A method of treating explosives and explosives characterized by decomposing, heating explosives and hydrolyzing the explosives in an alkaline solution whose pH is appropriately adjusted at a critical temperature or lower to hydrolyze, and then burning. It is a method of treating explosives and explosives.

【0006】本発明で対象とする火薬、爆薬類は、無煙
火薬、黒色火薬等の火薬類、及びTNT(トリニトロト
ルエン)などのニトロ化合物、RDX(トリメチレント
リニトロアミン)などのニトロアミン化合物、ニトログ
リセリンなどの硝酸エステル化合物などを含む爆薬類あ
るいはこれらの混合物である。本発明の第1及び第2の
方法はこれらの火薬、爆薬類について、不要となったも
の、製造過程で不良品として生じるものなどの廃火薬、
爆薬類を、アルカリ溶液中で加水分解処理するものであ
って、反応促進剤として珪酸アルカリ塩又はアルミン酸
アルカリ塩を添加し、溶液の臨界温度以下の温度に加熱
して加水分解することを特徴としている。本発明の第3
の方法は火薬、爆薬類を臨界温度以下でpHを適正に調
整したアルカリ溶液中で加熱して爆発危険性のない中間
生成物まで加水分解させたのち、その中間生成物を燃焼
することを特徴としている。
The explosives and explosives to which the present invention is applicable include smokeless explosives, explosives such as black explosives, nitro compounds such as TNT (trinitrotoluene), nitramine compounds such as RDX (trimethylenetrinitroamine), and nitro compounds. Explosives containing nitrate ester compounds such as glycerin and the like, or a mixture thereof. The first and second methods of the present invention use these explosives and explosives as waste explosives such as those that are no longer needed or that are generated as defective products in the manufacturing process,
Explosives are hydrolyzed in an alkaline solution, characterized by adding an alkali silicate salt or an aluminate aluminate salt as a reaction accelerator, and heating the solution to a temperature below the critical temperature for hydrolysis. I am trying. Third of the present invention
The method is characterized by heating explosives and explosives in an alkaline solution whose pH is properly adjusted below the critical temperature to hydrolyze intermediate products that have no danger of explosion, and then burning the intermediate products. I am trying.

【0007】本発明の第1及び第2の方法で使用するア
ルカリ溶液としては、水酸化ナトリウム、水酸化カリウ
ムなどナトリウム塩あるいはカリウム塩の水溶液が好ま
しい。反応促進剤として添加する珪酸アルカリ塩又はア
ルミン酸アルカリ塩としては珪酸ナトリウム、珪酸カリ
ウム、アルミン酸ナトリウム、アルミン酸カリウムなど
のナトリウム塩、カリウム塩が好ましい。珪酸アルカリ
塩又はアルミン酸アルカリ塩の添加量はアルカリ溶液中
での濃度が10〜1000ppmが好ましく、さらに好
ましくは50〜500ppmとなるようにする。添加量
が10ppm以上では反応促進効果が大きく、また、1
000ppmまでは添加による影響が効果的である。1
50℃で4時間反応させた分解試験の1例では、50p
pmの添加で無添加の場合の分解率の2倍以上の分解率
が得られ、珪酸アルカリ塩又はアルミン酸アルカリ塩1
00ppm、200ppm、500ppmの添加では前
者の場合、それぞれ50ppm添加の場合の1.11
倍、1.23倍及び1.28倍、後者の場合それぞれ5
0ppm添加の場合の1.08倍、1.21倍及び1.
27倍の分解率となっており、添加量の増加に対する分
解率の向上幅は大きくないのでこれらアルカリ塩の添加
量は最高1000ppm程度で十分である。
The alkaline solution used in the first and second methods of the present invention is preferably an aqueous solution of sodium salt or potassium salt such as sodium hydroxide or potassium hydroxide. As the alkali silicate salt or alkali aluminate salt added as a reaction accelerator, sodium salts such as sodium silicate, potassium silicate, sodium aluminate and potassium aluminate, and potassium salts are preferable. The amount of alkali silicate or alkali aluminate added is preferably 10 to 1000 ppm, more preferably 50 to 500 ppm, in the alkaline solution. If the addition amount is 10 ppm or more, the reaction promoting effect is large, and
The effect of addition is effective up to 000 ppm. 1
In one example of the decomposition test in which the reaction was performed at 50 ° C. for 4 hours, 50 p
When pm is added, a decomposition rate more than twice that obtained when no pm is added is obtained, and alkali silicate or alkali aluminate 1
In the case of the addition of 00 ppm, 200 ppm, and 500 ppm, the former case and in the case of addition of 50 ppm, respectively, 1.11
2 times, 1.23 times and 1.28 times, respectively 5 in the latter case
1.08 times, 1.21 times, and 1.
The decomposition rate is 27 times, and the improvement rate of the decomposition rate with respect to the increase of the addition amount is not so large, so that the addition amount of these alkali salts is about 1000 ppm at maximum.

【0008】アルカリ溶液のpHは10〜12の範囲と
するのが好ましい。pHが10以上では加水分解反応が
速く、またpHが12以下では装置の腐食の問題が生じ
にくい。加水分解反応の温度は150℃以上とするのが
好ましく、温度が150℃以上になると反応速度が速く
なりより実用的である。また、温度が溶液の臨界温度以
下であれば装置の腐食や火薬、爆薬類の急激な分解の恐
れが小さいので、温度はアルカリ溶液の臨界温度(アル
カリ水溶液の場合で約374℃)以下、好ましくは35
0℃以下とするのがよい。
The pH of the alkaline solution is preferably in the range of 10-12. When the pH is 10 or more, the hydrolysis reaction is fast, and when the pH is 12 or less, the problem of corrosion of the apparatus is unlikely to occur. The temperature of the hydrolysis reaction is preferably 150 ° C. or higher, and when the temperature is 150 ° C. or higher, the reaction rate becomes faster, which is more practical. Further, if the temperature is below the critical temperature of the solution, there is little risk of corrosion of the equipment and rapid decomposition of explosives and explosives, so the temperature is below the critical temperature of the alkaline solution (about 374 ° C in the case of alkaline aqueous solution), preferably Is 35
The temperature is preferably 0 ° C or lower.

【0009】本発明の第1及び第2の方法の好ましい態
様として次の(1)〜(3)を含むものである。 (1)珪酸アルカリ塩又はアルミン酸アルカリ塩の添加
量を、アルカリ溶液中での濃度が10〜1000ppm
となるようにし、pHを10〜12に調整したアルカリ
溶液中で加水分解する。 (2)加水分解温度を150〜350℃で行う。 (3)珪酸アルカリ塩又はアルミン酸アルカリ塩の添加
量を、アルカリ溶液中での濃度が10〜1000ppm
となるようにし、pHを10〜12に調整したアルカリ
溶液中で150〜350℃の温度に加熱して加水分解す
る。
Preferred embodiments of the first and second methods of the present invention include the following (1) to (3). (1) The concentration of the silicic acid alkali salt or aluminate alkali salt is 10 to 1000 ppm in the alkaline solution.
And is hydrolyzed in an alkaline solution whose pH is adjusted to 10 to 12. (2) The hydrolysis temperature is 150 to 350 ° C. (3) The concentration of the silicic acid alkali salt or aluminate alkali salt is 10 to 1000 ppm in the alkaline solution.
Then, it is heated to a temperature of 150 to 350 ° C. in an alkaline solution whose pH is adjusted to 10 to 12 to cause hydrolysis.

【0010】本発明の第3の方法で使用するアルカリ溶
液としては、第1の方法で使用するアルカリ溶液と同じ
ものが使用しうる。本発明の第3の方法は火薬、爆薬類
をアルカリ溶液中に分散あるいは溶解させたのち、臨界
温度以下で加熱して加水分解し燃焼することによって装
置材料の腐食を防止するとともに、火薬、爆薬類の急激
な分解を防止して安全に火薬類を処理しようとするもの
である。
The alkaline solution used in the third method of the present invention may be the same as the alkaline solution used in the first method. The third method of the present invention is to disperse or dissolve explosives and explosives in an alkaline solution, and then to heat and hydrolyze and burn them at a critical temperature or lower to prevent corrosion of equipment materials, and to prevent explosives and explosives. It aims to prevent explosive decomposition of chemicals and to process explosives safely.

【0011】[0011]

【作用】[Action]

(第1及び第2の方法の作用):火薬、爆薬類は単に水
中で加熱しただけでは分解の進行は遅く、アルカリを加
えて加水分解するか、酸化剤を加えて酸化分解する必要
がある。600℃、370気圧の超臨界水中では過剰の
過酸化水素の存在下で数秒〜数分の反応時間で火薬、爆
薬類はその98〜99.99%が分解するが、温度、圧
力が低下すると反応速度が低下し、例えば200℃、1
5気圧では99%以上分解するのに数10〜数100時
間の反応時間が必要になる。一方アルカリ溶液中での加
水分解についてもほぼ同様の反応時間が必要である。こ
れに対して珪酸アルカリ塩又はアルミン酸塩を添加した
アルカリ溶液中では、珪酸アルカリ塩又はアルミン酸ア
ルカリ塩が触媒として働くため、同一温度、同一圧力下
における珪酸アルカリ塩又はアルミン酸アルカリ塩無添
加のアルカリ溶液中での反応に比較して反応時間が数分
の1で済み、火薬、爆薬類の自己分解温度以下の反応温
度でも数分〜数10時間の反応時間で火薬、爆薬類を分
解することが可能となる。また、反応温度と圧力が水の
臨界温度、臨界圧力以下であること、及び酸化剤を必要
としないことから、一般の圧力容器に使用されているス
テンレスのような材料が使用できるという利点もある。
(Operations of the first and second methods): Explosives and explosives are slowly decomposed by simply heating them in water, and it is necessary to hydrolyze them by adding an alkali or oxidatively decompose them by adding an oxidizing agent. . In supercritical water at 600 ° C and 370 atm, 98 to 99.99% of explosives and explosives decompose in the presence of excess hydrogen peroxide in a reaction time of several seconds to several minutes, but when the temperature and pressure decrease The reaction rate decreases, for example, 200 ° C, 1
At 5 atm, a reaction time of several tens to several hundreds of hours is required to decompose 99% or more. On the other hand, almost the same reaction time is required for hydrolysis in an alkaline solution. On the other hand, in an alkaline solution containing silicate alkali salt or aluminate salt, silicate alkali salt or aluminate salt acts as a catalyst, so no alkali silicate salt or aluminate salt is added at the same temperature and pressure. The reaction time is only a fraction of the reaction time in alkaline solutions, and even at a reaction temperature below the autolysis temperature of explosives and explosives, explosives and explosives are decomposed within a reaction time of several minutes to several tens of hours. It becomes possible to do. Further, since the reaction temperature and pressure are below the critical temperature and critical pressure of water and no oxidizing agent is required, there is an advantage that a material such as stainless steel used for general pressure vessels can be used. .

【0012】(第3の方法の作用):火薬、爆薬類の水
中、アルカリ溶液中の完全分解は上記第1及び第2の方
法の作用で述べたとおりであるが、アルカリ溶液中での
加水分解では反応時間が短時間の場合、爆発危険性の少
ない中間生成物、例えばトルエン、アルデヒド類が生じ
る。このものはそのまゝでは廃棄できないが、本発明の
第2の方法ではこれらの中間生成物をアルカリ溶液中の
短時間の加水分解によって生成させ、これらの中間生成
物を燃焼させることによって火薬、爆薬類の安全処理を
可能にしたものである。すなわち、本発明の第1及び第
2の方法は加水分解によって火薬、爆薬類を完全に加水
分解して処理するのに対し、本発明の第3の方法は短時
間の加水分解処理と燃焼法を組合わせて火薬、爆薬類を
処理するものである。
(Operation of the third method): The complete decomposition of explosives and explosives in water or an alkaline solution is as described in the operations of the first and second methods, but the hydrolysis in the alkaline solution is performed. When the reaction time is short in the decomposition, intermediate products with low explosion risk such as toluene and aldehydes are produced. Although it cannot be disposed of as such, in the second method of the present invention, these intermediate products are produced by short-time hydrolysis in an alkaline solution, and by burning these intermediate products, explosive powder, It enables the safe handling of explosives. That is, the first and second methods of the present invention completely hydrolyze and process explosives and explosives by hydrolysis, whereas the third method of the present invention is a short-time hydrolysis treatment and combustion method. Is used in combination to process explosives and explosives.

【0013】[0013]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples.

【0014】(例1)火薬、爆薬類の代表的なものとし
てTNT(トリニトロトルエン)を選び、本発明の方
法、比較のための酸化剤を使用した酸化分解法、珪酸ア
ルカリ塩又はアルミン酸アルカリ塩を使用しないアルカ
リ加水分解法の3種類の処理方法による分解試験を行っ
た。試験は各処理方法につき、表1に示す組成の試験液
を小型圧力容器に入れ、200℃、250℃、300℃
及び400℃の4段階の温度条件で加熱することによっ
て行った。圧力はいずれも飽和圧力下で行った。なお、
本発明法及びアルカリ加水分解法については、反応の進
行につれpHが低下するので、逐次水酸化ナトリウムを
補給してpHを約11に保持した。反応の進行状況は、
各反応条件毎に、所定時間毎に反応液を採取し、高速液
体クロマトグラフィー及びイオンクロマトグラフィーに
よりTNTの残留量及び硝酸イオンの生成量を分析する
ことにより調べた。
(Example 1) TNT (trinitrotoluene) was selected as a representative of explosives and explosives, and the method of the present invention, an oxidative decomposition method using an oxidizing agent for comparison, an alkali silicate salt or an alkaline aluminate was selected. A decomposition test was carried out by three types of treatment methods, that is, an alkaline hydrolysis method without using a salt. For each treatment method, the test solution having the composition shown in Table 1 was placed in a small pressure vessel, and the temperature was 200 ° C, 250 ° C, 300 ° C.
And 400 ° C. in four stages of temperature conditions. All pressures were performed under saturated pressure. In addition,
In the method of the present invention and the alkaline hydrolysis method, the pH decreases as the reaction progresses, so sodium hydroxide was replenished successively to maintain the pH at about 11. The progress of the reaction is
The reaction solution was sampled at predetermined time intervals under each reaction condition, and the residual amount of TNT and the amount of nitrate ion produced were analyzed by high performance liquid chromatography and ion chromatography.

【0015】[0015]

【表1】 [Table 1]

【0016】各試験条件について、99%以上の分解率
が得られるまでの反応時間を表2に示す。表2の結果か
ら、本発明の方法によれば臨界温度以下の温度でも反応
の進行は速く、珪酸ナトリウムを添加しないアルカリ加
水分解法に比較して約1/4の所要時間で99%以上の
分解率が得られることがわかる。また、本発明の方法は
爆発の危険性は無く、酸化剤は不要のため装置の腐食の
恐れも少ない。なお、TNTのほかにトリニトロアニソ
ールのようなニトロ化合物、トリメチレントリニトロア
ミンのようなニトロアミン化合物、ニトログリセリンの
ような硝酸エステル化合物あるいはこれらの混合物につ
いても同様の結果が得られた。
Table 2 shows the reaction time until a decomposition rate of 99% or more was obtained under each test condition. From the results of Table 2, according to the method of the present invention, the progress of the reaction is fast even at a temperature below the critical temperature, and it is 99% or more in the time required for about 1/4 as compared with the alkali hydrolysis method in which sodium silicate is not added. It can be seen that the decomposition rate can be obtained. In addition, the method of the present invention has no risk of explosion, and there is little risk of corrosion of the device because no oxidizing agent is required. Similar results were obtained with a nitro compound such as trinitroanisole, a nitroamine compound such as trimethylenetrinitroamine, a nitrate ester compound such as nitroglycerin, or a mixture thereof in addition to TNT.

【0017】[0017]

【表2】 [Table 2]

【0018】(例2)TNTの分解に本発明の第3の方
法を適用した例を表3に示す。比較例としてTNTを過
酸化水素を酸化剤とした酸化分解法及びアルカリ(水酸
化ナトリウム)溶液のみによる加水分解法で処理した場
合の処理温度と99%以上の分解率を得るまでの反応時
間も併せて表3に示す。本発明の第3の方法及び比較例
のアルカリ溶液のみによる加水分解法とも、pHが10
以下では処理効率が劣り、pHが12以上ではアルカリ
腐食のおそれがあるため、pHは10〜12の範囲に調
整することが好ましいので、こゝで両方法ともpH:1
1で行った。また比較例の過酸化水素を酸化剤とする比
較例における過酸化水素の添加量はTNTをCO2 、H
2 O及びNO3 に酸化するに必要な量の10倍量とし
た。
(Example 2) Table 3 shows an example in which the third method of the present invention was applied to the decomposition of TNT. As a comparative example, the treatment temperature and the reaction time until a decomposition rate of 99% or more are obtained when TNT is treated by an oxidative decomposition method using hydrogen peroxide as an oxidizing agent and a hydrolysis method using only an alkali (sodium hydroxide) solution. It is also shown in Table 3. Both the third method of the present invention and the hydrolysis method using only the alkaline solution of the comparative example have a pH of 10
The treatment efficiency is poor below, and alkali corrosion may occur at pH 12 or above. Therefore, it is preferable to adjust the pH within the range of 10-12.
I went in 1. In addition, in the comparative example using hydrogen peroxide as an oxidizing agent in the comparative example, the addition amount of hydrogen peroxide was TNT of CO 2 , H.
The amount was 10 times the amount required to oxidize to 2 O and NO 3 .

【0019】[0019]

【表3】 [Table 3]

【0020】試験は小型圧力容器を用いて圧力容器内で
試験液を加温し、時間毎に試験液を取出して高速液体ク
ロマトグラフィー及びイオンクロマトグラフィーにてT
NTの残留量、硝酸イオンの生成量、中間生成物の量を
分析した。
In the test, a small pressure vessel is used to heat the test solution in the pressure vessel, the test solution is taken out every time, and the test solution is analyzed by high performance liquid chromatography and ion chromatography.
The amount of residual NT, the amount of nitrate ions produced, and the amount of intermediate products were analyzed.

【0021】この結果から判るように本発明の第3の方
法によれば臨界温度以下の温度でも200℃以上で5時
間以内にTNT火薬を爆発危険性の少ない中間生成物ま
で分解することができ、生成した中間生成物は燃焼され
てCO2 、NOx、H2 Oに分解されるので、他の方法
に比して処理時間を短縮することができた。
As can be seen from these results, according to the third method of the present invention, it is possible to decompose the TNT explosive into an intermediate product having a low explosion risk within 5 hours at a temperature of 200 ° C. or higher even at a temperature below the critical temperature. Since the produced intermediate product is burned and decomposed into CO 2 , NOx, and H 2 O, the treatment time can be shortened as compared with other methods.

【0022】なお、この例ではTNTのみについて説明
したが、他のニトロ化合物、ニトロアミン化合物、硝酸
エステル化合物の単独物質でも、これらの混合物でも、
ほゞ同等の効果が得られることを確認した。
Although only TNT has been described in this example, other nitro compounds, nitramine compounds, nitric acid ester compounds alone or in a mixture thereof may be used.
It was confirmed that almost the same effect was obtained.

【0023】[0023]

【発明の効果】本発明の方法によれば、不要になった火
薬、爆薬類あるいは製造過程で不良品として生じる火
薬、爆薬類を、従来技術の超臨界温度以上での酸化分解
法あるいはアルカリ加水分解法における高い反応温度に
よる急激な反応や腐食の問題がなく、比較的短時間で、
安全に処理することができる。
According to the method of the present invention, unnecessary explosives, explosives, or explosives or explosives generated as defective products in the manufacturing process can be treated by the oxidative decomposition method or alkali hydrolysis at a temperature higher than the supercritical temperature of the prior art. There is no problem of rapid reaction or corrosion due to high reaction temperature in the decomposition method, and in a relatively short time,
It can be safely processed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−143771(JP,A) 特開 昭50−97574(JP,A) 特表 平9−500058(JP,A) 特表 平5−504379(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09B 3/00 A62D 3/00 C06B 21/00 - 49/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-54-143771 (JP, A) JP-A-50-97574 (JP, A) JP-A-9-500058 (JP, A) JP-A-5- 504379 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B09B 3/00 A62D 3/00 C06B 21/00-49/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 火薬、爆薬類を、反応促進剤として珪酸
アルカリ塩を添加した水酸化ナトリウムおよび/または
水酸化カリウム水溶液中で該溶液の臨界温度以下の温度
に加熱して加水分解することを特徴とする火薬、爆薬類
の処理方法。
1. A powder of explosives and explosives as a reaction accelerator, silicic acid.
Sodium hydroxide and / or alkali salt added
A method for treating explosives and explosives, which comprises heating in an aqueous solution of potassium hydroxide to a temperature not higher than the critical temperature of the solution for hydrolysis.
【請求項2】 火薬、爆薬類を、反応促進剤としてアル
ミン酸アルカリ塩を添加したアルカリ溶液中で該溶液の
臨界温度以下の温度に加熱して加水分解することを特徴
とする火薬、爆薬類の処理方法。
2. Explosives and explosives, characterized in that they are hydrolyzed by heating explosives or explosives in an alkaline solution containing an alkali aluminate salt as a reaction accelerator at a temperature below the critical temperature of the solution. Processing method.
【請求項3】 請求項1または2に記載の処理方法にお
いて、前記反応促進剤を含むとともにpHが10〜12
に調整されたアルカリ水溶液中で、前記アルカリ水溶液
の臨界温度以下に加熱する方法を用いて前記火薬、爆薬
類を加水分解したのち、さらに燃焼することを特徴とす
る火薬、爆薬類の処理方法。
3. The processing method according to claim 1 or 2.
And containing the reaction accelerator and having a pH of 10 to 12
In an alkaline aqueous solution adjusted to
The explosive and explosive using the method of heating below the critical temperature of
A method of treating explosives and explosives , which comprises hydrolyzing the compounds and then further burning them.
JP21370294A 1994-06-06 1994-09-07 How to handle explosives and explosives Expired - Fee Related JP3513226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21370294A JP3513226B2 (en) 1994-06-06 1994-09-07 How to handle explosives and explosives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-123391 1994-06-06
JP12339194 1994-06-06
JP21370294A JP3513226B2 (en) 1994-06-06 1994-09-07 How to handle explosives and explosives

Publications (2)

Publication Number Publication Date
JPH0859383A JPH0859383A (en) 1996-03-05
JP3513226B2 true JP3513226B2 (en) 2004-03-31

Family

ID=26460342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21370294A Expired - Fee Related JP3513226B2 (en) 1994-06-06 1994-09-07 How to handle explosives and explosives

Country Status (1)

Country Link
JP (1) JP3513226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126199B2 (en) * 2009-10-23 2013-01-23 ダイキン工業株式会社 fuse
CN108655157B (en) * 2018-05-10 2019-05-07 西安交通大学 It is a kind of for changing the detoxification treatment process of blacklead
CN112496004B (en) * 2020-11-26 2022-11-08 中化环境科技工程有限公司 Method for treating dinitrotoluene waste residue

Also Published As

Publication number Publication date
JPH0859383A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JPS6351732B2 (en)
JPS62132200A (en) Method of removing contaminant on metallic surface contaminated by radioactive deposit
JP3513226B2 (en) How to handle explosives and explosives
CN113912097A (en) Harmless treatment method for aluminum ash
JPH0563401B2 (en)
US6960701B2 (en) Neutralization of vesicants and related compounds
EP1231609B1 (en) Process for dissolution and decontamination
JPH0763893A (en) Chemical decontamination of radioactive crud
JP4402286B2 (en) Organic waste treatment methods
RU2792642C1 (en) Method for destruction of 1,1-dimethylhydrazine in soils
Ustinov et al. Possibility of using hydrogen peroxide for trapping nitrogen oxide at radiochemical enterprises
RU2656663C1 (en) Method for the disposal of hydroxylamine nitrate in waste water
SU565708A1 (en) Method of purifying electrolysis gases from fluor oxide
RU2242429C1 (en) Method for production of palladium nitrate
JP3474349B2 (en) Decomposition method of halogen-containing organic compounds
RU2732468C1 (en) Method for destruction of 1,1-dimethylhydrazine in aqueous solutions
JPH08297000A (en) Treating method for unnecessary explosive and the like
JPH0724315A (en) Catalyst activated carbon
CN116064042A (en) Chemical restoration agent for restoring TNT contaminated soil, and preparation method and application thereof
JPH026799A (en) Treatment of waste solvent used for retreatment of nuclear fuel
JP3148498B2 (en) Treatment of wastewater containing ammonia
JP2525916B2 (en) Treatment method of radioactive liquid waste
RU2109547C1 (en) Method of evaluating stability of the extractant-nitric acid system
JP5774870B2 (en) Nitric acid waste liquid treatment method
JP2004161522A (en) Method for treating gunpowder and explosive

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees