JPH08297000A - Treating method for unnecessary explosive and the like - Google Patents

Treating method for unnecessary explosive and the like

Info

Publication number
JPH08297000A
JPH08297000A JP7100863A JP10086395A JPH08297000A JP H08297000 A JPH08297000 A JP H08297000A JP 7100863 A JP7100863 A JP 7100863A JP 10086395 A JP10086395 A JP 10086395A JP H08297000 A JPH08297000 A JP H08297000A
Authority
JP
Japan
Prior art keywords
crushed
explosives
unnecessary
solution
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7100863A
Other languages
Japanese (ja)
Other versions
JP3354743B2 (en
Inventor
Masakazu Tateishi
正和 立石
Nobuaki Murakami
信明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10086395A priority Critical patent/JP3354743B2/en
Publication of JPH08297000A publication Critical patent/JPH08297000A/en
Application granted granted Critical
Publication of JP3354743B2 publication Critical patent/JP3354743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: To obtain a method for safely treating unnecessary explosive and the like such as bullet and shell, bomb or torpedo which becomes unnecessary. CONSTITUTION: A bullet shell for protecting gunpowder or the like is cooled by liquid nitrogen, press crushed at a low temperature having no fear of explosion, brittle broken, the crushed material is retained as it is or press broken residue is removed, then it is heated in alkaline solution of sodium hydroxide added with alkali silicate such as sodium silicate or alkali amide such as sodium aluminate to hydrolyze the gunpowder or the like. Thus, unnecessary explosive or the like such as bullet and shell, bomb or torpedo which becomes unnecessary can be safely treated without exploding riskiness without public pollution due to noise or vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不要となった銃砲弾、爆
弾、魚雷等の不要弾薬類の安全な処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for safely treating unnecessary ammunition such as unnecessary ammunition, bombs, torpedoes and the like.

【0002】[0002]

【従来の技術】従来、不要になった銃砲弾、爆弾、魚雷
等の不要弾薬類はそのまま、又は切断、破砕等の何らか
の前処理を行った後、少量ずつ燃焼、爆発させる燃焼、
爆発法で処理されているが、この方法の場合は含有され
ている火薬類は分解されることなく処理されるため作業
員が常に爆発の危険に曝されており、騒音や振動の問題
もあった。そこでより安全な処理法として、超臨界水中
で酸化分解する超臨界水酸化法や、アルカリ溶液中での
加水分解法等が提案されている。しかしながら、超臨界
水酸化法は短時間で処理可能であるが酸化剤が必要であ
るため、装置材の腐食が問題で装置の内面を金ライニン
グするなど装置が高価になる欠点があった。また、アル
カリ加水分解法は分解速度が遅く、装置が大容量になる
欠点があった。
2. Description of the Related Art Conventionally, unnecessary ammunition such as unnecessary ammunition, bombs, torpedoes, etc. is burned or burned in small amounts as it is, or after some pretreatment such as cutting or crushing.
Although it is processed by the explosive method, in this method explosives contained are processed without being decomposed, so workers are always exposed to the danger of explosion, and there are also problems of noise and vibration. It was Therefore, as a safer treatment method, a supercritical water oxidation method of oxidizing and decomposing in supercritical water, a hydrolysis method in an alkaline solution, and the like have been proposed. However, although the supercritical water oxidation method can be processed in a short time, it requires an oxidizing agent, so that there is a problem in that the apparatus is expensive due to corrosion of the apparatus material and gold lining of the inner surface of the apparatus. Further, the alkali hydrolysis method has a drawback that the decomposition rate is slow and the apparatus has a large capacity.

【0003】すなわち、火薬、爆薬類は水中で加熱する
と徐々に酸化あるいは加水分解してより安全な物質に変
化することが知られている。しかし実用的な速度で分解
してやるためには臨界温度以上の超臨界水中で処理する
か、酸素、過酸化水素、オゾンなどの酸化剤あるいはア
ルカリを添加する必要があった。しかもこの超臨界水酸
化法では400〜600℃の温度で処理するため火薬、
爆薬類の自己分解温度以上となり、火薬、爆薬類が局部
的に急激に分解して爆発事故を起こす恐れがあるととも
に装置材料の腐食の面から金をライニングするなどの必
要があった。また、酸化剤を用いる方法では、やはり腐
食の面から金ライニングなどが必要となり装置が高価と
なっていた。また、アルカリ加水分解法では火薬、爆薬
類の自己分解温度よりも低い温度の水中で処理すること
ができるが、分解反応速度が遅く、実用的な方法ではな
かった。
That is, it is known that when explosives and explosives are heated in water, they are gradually oxidized or hydrolyzed to change into safer substances. However, in order to decompose it at a practical rate, it was necessary to treat it in supercritical water at a critical temperature or higher, or to add an oxidizing agent such as oxygen, hydrogen peroxide, or ozone, or an alkali. Moreover, in this supercritical water oxidation method, since explosives are treated at a temperature of 400 to 600 ° C.,
There is a risk that explosives and explosives may decompose rapidly locally to cause an explosion accident when the temperature exceeds the self-decomposition temperature of explosives, and gold is lined to prevent corrosion of equipment materials. In addition, the method using an oxidizing agent also requires a gold lining or the like from the viewpoint of corrosion, and the apparatus is expensive. In addition, the alkaline hydrolysis method can be carried out in water at a temperature lower than the self-decomposition temperature of explosives and explosives, but the decomposition reaction rate is slow, which is not a practical method.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、不要と
なった火薬類を珪酸ナトリウム等のアルカリ珪酸塩又は
アルミン酸ナトリウム等のアルカリアルミン酸塩を添加
した水酸化ナトリウム等のアルカリ溶液中で水の臨界温
度以下に加熱することによって、爆発の危険性の少ない
蟻酸、酢酸その他の低分子有機物まで分解できることを
確認し、先に出願した(特願平6−213702号)。
しかしながらこの方法によっても、銃砲弾や爆弾、魚雷
等に入っている火薬類は弾殻に保護されているために、
そのままで処理することは不可能である。本発明は、前
記のような従来技術の不具合点を改善し、安全でしかも
騒音、振動などの公害問題のない不要弾薬類の処理方法
を提供しようとするものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have used unnecessary explosives in an alkali solution such as sodium hydroxide to which an alkali silicate such as sodium silicate or an alkali aluminate such as sodium aluminate is added. It was confirmed that by heating below the critical temperature of water, even formic acid, acetic acid and other low molecular weight organic substances with less risk of explosion can be decomposed, and the application was filed earlier (Japanese Patent Application No. 6-213702).
However, even with this method, the explosives contained in the shells, bombs, torpedoes, etc. are protected by shells,
It is impossible to process it as it is. SUMMARY OF THE INVENTION The present invention is intended to provide a method for treating unnecessary ammunition which is safe and has no pollution problem such as noise and vibration by improving the above-mentioned problems of the prior art.

【0005】[0005]

【課題を解決するための手段】本発明の第1は次の
(a)乃至(e)の工程からなることを特徴とする不要
弾薬類の処理方法である。 (a)予め信管を取り外した不要弾薬類を液体窒素中で
十分冷却した後、圧搾破砕する工程。 (b)この圧搾破砕物をアルカリ珪酸塩又はアルカリア
ルミン酸塩を添加したアルカリ溶液中で該溶液の臨界温
度以下の温度に加熱し、前記圧搾破砕物中の火薬類を爆
発の危険性の少ない有機物まで分解する工程。 (c)前記分解工程の反応液を圧搾破砕残渣と分解液と
に分離する工程。 (d)分離した圧搾破砕残渣を燃焼処理して残留火薬を
除去する工程。 (e)前記分解工程で分離された爆発の危険性の少ない
有機物を含む分解液を、無害化処理する工程。
A first aspect of the present invention is a method for treating unnecessary ammunition characterized by comprising the following steps (a) to (e). (A) A step of crushing after crushing unnecessary ammunition from which the fuze has been removed in liquid nitrogen sufficiently. (B) This crushed crushed product is heated to a temperature below the critical temperature of the solution in an alkaline solution to which an alkali silicate or alkali aluminate has been added, so that there is little risk of explosives in the crushed crushed product. The process of decomposing to organic matter. (C) A step of separating the reaction liquid of the decomposition step into a crushing residue and a decomposition liquid. (D) A step of burning the separated crushed residue to remove residual explosive. (E) A step of detoxifying the decomposed solution containing an organic substance having a low risk of explosion separated in the decomposition step.

【0006】本発明の第2は次の(f)乃至(j)の工
程からなることを特徴とする不要弾薬類の処理方法であ
る。 (f)予め信管を取り外した不要弾薬類を液体窒素中で
十分冷却した後、圧搾破砕する工程。 (g)この圧搾破砕物を50〜100℃のアルカリ珪酸
塩又はアルカリアルミン酸塩を添加したアルカリ溶液と
接触させ、この圧搾破砕物中に含まれる火薬類を洗浄分
離する工程。 (h)洗浄分離工程で得られる圧搾破砕残渣を燃焼処理
して残留火薬を除去する工程。 (i)洗浄分離工程で得られる火薬類を含む溶液を該溶
液の臨界温度以下の温度に加熱し、溶液中の火薬類を爆
発の危険性の少ない有機物まで分解する工程。 (j)前記分解工程で分離された爆発の危険性の少ない
有機物を含む分解液を、無害化処理する工程。
A second aspect of the present invention is a method for treating unnecessary ammunition, which comprises the following steps (f) to (j). (F) A step of sufficiently crushing unnecessary ammunition from which the fuze has been removed in liquid nitrogen and then crushing by crushing. (G) A step of bringing the pressed crushed product into contact with an alkali solution containing an alkali silicate or an alkali aluminate at 50 to 100 ° C., and washing and separating explosives contained in the pressed crushed product. (H) A step of burning the compressed crushed residue obtained in the washing and separating step to remove residual explosive. (I) A step of heating the solution containing explosives obtained in the washing / separating step to a temperature equal to or lower than the critical temperature of the solution to decompose the explosives in the solution into organic substances having less risk of explosion. (J) A step of detoxifying the decomposition liquid containing an organic substance having a low risk of explosion separated in the decomposition step.

【0007】本発明は火薬類を保護している弾殻を、爆
発の恐れのない低温下で脆性破壊させて、火薬類と珪酸
ナトリウム等のアルカリ珪酸塩又はアルミン酸ナトリウ
ム等のアルカリアルミン酸塩を添加した水酸化ナトリウ
ム等のアルカリ溶液との接触を容易にした点に特徴があ
る。
According to the present invention, the shell which protects the explosives is brittlely broken at a low temperature where there is no danger of explosion, and the explosives and the alkali silicate such as sodium silicate or the alkali aluminate such as sodium aluminate. It is characterized in that it facilitates contact with an alkaline solution such as sodium hydroxide added with.

【0008】本発明で処理対象とする弾薬類は、無煙火
薬、黒色火薬等の火薬類、及びTNT(トリニトロトル
エン)などのニトロ化合物、RDX(トリメチレントリ
ニトロアミン)などのニトロアミン化合物、ニトログリ
セリンなどの硝酸エステル化合物など、及びこれらの混
合物などの火薬、爆薬類を金属製の弾殻中に保持した銃
砲弾、爆弾、魚雷等の不要弾薬類である。
The ammunition to be treated in the present invention includes smokeless explosives, explosives such as black explosives, nitro compounds such as TNT (trinitrotoluene), nitroamine compounds such as RDX (trimethylenetrinitroamine), and nitroglycerin. It is unnecessary ammunition such as ammunition, bombs, torpedoes, etc., in which a nitric ester compound, etc., and a mixture thereof, explosives, and explosives held in a metal shell.

【0009】本発明の方法で使用するアルカリ溶液とし
ては、水酸化ナトリウム、水酸化カリウムなどナトリウ
ム塩あるいはカリウム塩の水溶液が好ましい。反応促進
剤として添加する珪酸アルカリ塩又はアルミン酸アルカ
リ塩としては珪酸ナトリウム、珪酸カリウム、アルミン
酸ナトリウム、アルミン酸カリウムなどのナトリウム
塩、カリウム塩が好ましい。珪酸アルカリ塩又はアルミ
ン酸アルカリ塩の添加量はアルカリ溶液中での濃度が1
0〜1000ppmが好ましく、さらに好ましくは50
〜500ppmとなるようにする。添加量が10ppm
以上では反応促進効果が大きく、また、1000ppm
までは添加による影響が効果的である。150℃で4時
間反応させた分解試験の1例では、50ppmの添加で
無添加の場合の分解率の2倍以上の分解率が得られ、珪
酸アルカリ塩又はアルミン酸アルカリ塩100ppm、
200ppm、500ppmの添加では前者の場合、そ
れぞれ50ppm添加の場合の1.11倍、1.23倍
及び1.28倍、後者の場合それぞれ50ppm添加の
場合の1.08倍、1.21倍及び1.27倍の分解率
となっており、添加量の増加に対する分解率の向上幅は
大きくないのでこれらアルカリ塩の添加量は最高100
0ppm程度で十分である。
The alkaline solution used in the method of the present invention is preferably an aqueous solution of sodium salt or potassium salt such as sodium hydroxide or potassium hydroxide. As the alkali silicate salt or alkali aluminate salt added as a reaction accelerator, sodium salts such as sodium silicate, potassium silicate, sodium aluminate and potassium aluminate, and potassium salts are preferable. The addition amount of alkali silicate or alkali aluminate is 1 in the alkaline solution.
0 to 1000 ppm is preferable, more preferably 50
To be about 500 ppm. Addition amount is 10ppm
Above, the reaction acceleration effect is large, and 1000 ppm
Up to, the effect of addition is effective. In one example of a decomposition test in which the reaction was carried out at 150 ° C. for 4 hours, a decomposition rate of at least twice the decomposition rate in the case of no addition was obtained by adding 50 ppm, and 100 ppm of a silicic acid alkali salt or an aluminate alkali salt,
In the case of the addition of 200 ppm and 500 ppm, the former case is 1.11 times, 1.23 times and 1.28 times respectively in the case of 50 ppm addition, and the latter case is 1.08 times, 1.21 times in the case of 50 ppm addition, respectively. The decomposition rate is 1.27 times, and the degree of improvement in the decomposition rate with respect to the increase in the added amount is not large, so the maximum addition amount of these alkali salts is 100.
About 0 ppm is sufficient.

【0010】アルカリ溶液のpHは10〜12の範囲と
するのが好ましい。pHが10以上であれば加水分解反
応が速く、また、pHが12以下であれば装置の腐食の
問題が生じにくい。加水分解反応の温度は150℃以上
とするのが好ましく、温度が150℃以上になると反応
速度が速くなりより実用的である。また、温度が溶液の
臨界温度以下であれば装置の腐食や火薬、爆薬類の急激
な分解の恐れが小さいので、温度はアルカリ溶液の臨界
温度(アルカリ水溶液の場合で約374℃)以下、好ま
しくは350℃以下とするのがよい。
The pH of the alkaline solution is preferably in the range of 10-12. If the pH is 10 or more, the hydrolysis reaction is fast, and if the pH is 12 or less, the problem of corrosion of the apparatus is unlikely to occur. The temperature of the hydrolysis reaction is preferably 150 ° C. or higher, and when the temperature is 150 ° C. or higher, the reaction rate becomes faster, which is more practical. Further, if the temperature is below the critical temperature of the solution, there is little risk of corrosion of the equipment and rapid decomposition of explosives and explosives, so the temperature is below the critical temperature of the alkaline solution (about 374 ° C in the case of alkaline aqueous solution), preferably Is preferably 350 ° C. or lower.

【0011】[0011]

【作用】前記のように火薬類はアルカリ珪酸塩又はアル
カリアルミン酸塩を添加したアルカリ溶液中で加熱する
ことにより爆発の危険性の少ない有機物に分解すること
ができるが、銃砲弾、爆弾、魚雷等の不要弾薬類に含ま
れる火薬類は金属製の弾殻の内部に保護されており、こ
の弾殻を何らかの方法で破砕してやらなければ火薬類を
アルカリ溶液に接触させることができず、加水分解する
ことができない。これらの金属製弾殻は液体窒素中に浸
漬し、−190℃以下に冷却した状態で高圧で圧搾する
と簡単に脆性破壊を起こして破砕することができる。こ
の場合、圧搾時の温度が低くしかも液体窒素が不活性で
あるため、高圧で圧搾しても火薬類が爆発する危険もな
い。そこで予め信管を取り除いた不要弾薬類を液体地租
中に浸漬して十分冷却した後、高圧で圧搾することによ
り弾殻を破壊することができる。なお、冷却温度は−1
50℃以下であればよく、冷却用媒体も液体窒素に限ら
ず液体アルゴン,液体ヘリウム等不活性な物質であれば
使用できるが、価格や入手の容易さなどから液体窒素が
最適である。
[Function] As described above, explosives can be decomposed into organic substances with a low risk of explosion by heating in an alkaline solution containing an alkali silicate or an alkali aluminate. The explosives contained in unnecessary ammunition such as is protected inside the metal shell, and unless the shell is crushed by some method, the explosives cannot be brought into contact with the alkaline solution, resulting in hydrolysis. Can not do it. When these metallic shells are immersed in liquid nitrogen and squeezed under high pressure in a state of being cooled to −190 ° C. or less, brittle fracture can be easily caused to crush. In this case, since the temperature at the time of compression is low and the liquid nitrogen is inactive, there is no danger of explosives exploding even when compressed at high pressure. Therefore, the shell can be destroyed by immersing the unnecessary ammunition from which the fuze has been removed in advance in the liquid ground, cooling it sufficiently, and then squeezing it at high pressure. The cooling temperature is -1
The cooling medium is not limited to liquid nitrogen, and any inert substance such as liquid argon or liquid helium can be used as long as it is 50 ° C. or lower. However, liquid nitrogen is most suitable because of its price and availability.

【0012】本発明の第1では、このようにして弾殻が
破砕された不要弾薬類を、珪酸ナトリウム等のアルカリ
珪酸塩又はアルミン酸ナトリウム等のアルカリアルミン
酸塩を添加した水酸化ナトリウム等のアルカリ溶液で該
溶液の臨界温度以下の温度に加熱し、前記圧搾破砕物中
の火薬類を爆発の危険性の少ない蟻酸、酢酸その他の低
分子有機物まで加水分解する。火薬類の分解終了後、常
温まで冷却し、分解生成物である低分子有機物を含んだ
アルカリ溶液と金属製弾殻圧搾破砕残渣とに分離する。
In the first aspect of the present invention, the unnecessary ammunition whose shell is crushed in this way is treated with sodium silicate or other alkali silicate or sodium aluminate or other alkali aluminate to add sodium hydroxide or the like. The mixture is heated to a temperature not higher than the critical temperature of the solution with an alkaline solution to hydrolyze the explosives contained in the crushed crushed product to formic acid, acetic acid and other low molecular weight organic substances with less risk of explosion. After the explosives are decomposed, the explosives are cooled to room temperature and separated into an alkaline solution containing a decomposition product, a low molecular weight organic compound, and a metal shell crush residue.

【0013】分離した金属製弾殻圧搾破砕残渣は水洗
浄、焼却等の後処理を施した後、埋め立て等の廃棄処分
を行うか、有価物として再利用することができる。一
方、低分子有機物を含んだアルカリ溶液は排水基準に適
合するように活性汚泥処理等の無害化処理を行った後、
系外に排出するか、又は噴霧燃焼等の処理を行うことが
できる。
The separated metal shell crushing residue can be subjected to post-treatments such as water washing and incineration, and then can be disposed of as landfill or reused as a valuable resource. On the other hand, the alkaline solution containing low molecular weight organic matter is subjected to detoxification treatment such as activated sludge treatment so as to meet the drainage standard,
It can be discharged to the outside of the system or treated such as spray combustion.

【0014】また、本発明の第2では、前記のようにし
て弾殻が破砕された不要弾薬類を、50〜100℃の珪
酸ナトリウム等のアルカリ珪酸塩又はアルミン酸ナトリ
ウム等のアルカリアルミン酸塩を添加した水酸化ナトリ
ウム等のアルカリ溶液と接触させ、この圧搾破砕物中に
含まれる火薬類を洗浄分離する。破砕弾薬類とアルカリ
溶液を接触させる方法としては、破砕弾薬類をアルカリ
溶液中に浸漬したり、破砕弾薬類にアルカリ溶液を噴霧
したり、吹き付けるなどの方法をとることができる。洗
浄分離の際、火薬類の大部分は溶解するが、一部はアル
カリ溶液中に分散した形で分離される。
In the second aspect of the present invention, unnecessary ammunition whose shell is crushed as described above is treated with an alkali silicate such as sodium silicate at 50 to 100 ° C. or an alkali aluminate such as sodium aluminate. It is contacted with an alkaline solution such as sodium hydroxide to which is added, and explosives contained in this crushed material are washed and separated. As a method of contacting the crushed ammunition with the alkaline solution, a method of immersing the crushed ammunition in the alkaline solution, spraying the crushed ammunition with the alkaline solution, or spraying it can be used. During washing separation, most of the explosives are dissolved, but some are separated in a form dispersed in an alkaline solution.

【0015】火薬類を洗浄分離した後の弾殻の圧搾破砕
残渣は残留火薬類を完全に除去するため、ロータリーキ
ルンなどにより焼却処理を行った後、前記第1の発明の
場合と同様に埋め立て等の廃棄処分を行うか、有価物と
して再利用することができる。なお、火薬類を洗浄分離
した圧搾破砕残渣に残留する火薬類は微量のため、焼却
処理によってこれらが爆発するおそれはない。
In order to completely remove the residual explosives from the crushed and crushed residue of the shell after washing and separating the explosives, after incineration with a rotary kiln or the like, landfilling is performed in the same manner as in the case of the first invention. Can be disposed of or reused as valuables. In addition, since the explosives remaining in the crushing residue obtained by washing and separating the explosives are in very small amounts, there is no risk of these exploding due to incineration.

【0016】一方、分離された火薬類を含む洗浄廃液
は、珪酸ナトリウム等のアルカリ珪酸塩又はアルミン酸
ナトリウム等のアルカリアルミン酸塩を添加した水酸化
ナトリウム等のアルカリ溶液であり、該溶液の臨界温度
以下の温度に加熱することにより、アルカリ珪酸塩又は
アルカリアルミン酸塩を反応促進剤として火薬類は爆発
の危険性の少ない蟻酸、酢酸その他の低分子有機物まで
加水分解される。この低分子有機物を含んだアルカリ溶
液は排水基準に適合するように活性汚泥処理等の無害化
処理を行った後、系外に排出するか、又は噴霧燃焼等の
処理を行うことができる。
On the other hand, the cleaning waste liquid containing the separated explosives is an alkaline solution such as sodium hydroxide to which an alkaline silicate such as sodium silicate or an alkaline aluminate such as sodium aluminate is added, and the criticality of the solution. By heating to a temperature lower than the temperature, the explosives are hydrolyzed to formic acid, acetic acid and other low molecular weight organic substances which are less likely to explode by using alkali silicate or alkali aluminate as a reaction accelerator. The alkaline solution containing the low molecular weight organic matter can be subjected to detoxification treatment such as activated sludge treatment so as to meet the drainage standard, and then discharged to the outside of the system, or subjected to treatment such as spray combustion.

【0017】この第2発明のプロセスでは、破砕後の火
薬類を含んだ状態の不要弾薬類は、最高でも100℃程
度までしか加熱されることがないので、圧搾破砕後の弾
薬類をそのままアルカリ溶液中で臨界温度以下に加熱す
る第1の発明の場合に比較して消費エネルギが小さいと
いう利点がある。
In the process of the second invention, unnecessary ammunition containing crushed explosives can be heated up to about 100 ° C. at maximum, so that the crushed ammunition remains as it is. There is an advantage that the energy consumption is small as compared with the case of the first invention in which the temperature is heated below the critical temperature in a solution.

【0018】[0018]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (実施例1)本発明の方法により魚雷の弾頭の処理試験
を行った。通常、魚雷の弾頭はアルミニウム製の弾殻の
内部に炸薬と信管が入っているが、処理試験では最初か
ら信管を取付けていない弾頭を用いた。使用した弾頭の
重量は約40kgで、そのうち炸薬の重量は約30kg
であった。炸薬はHBX−3であり、そのその主成分は
TNT(トリニトロトルエン)、RDX(トリメチレン
トリニトロアミン)及びアルミニウム粉であり、その
他、ワックス等が含まれている。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. Example 1 A torpedo warhead treatment test was conducted by the method of the present invention. Usually, a torpedo warhead contains an explosive and a fuze inside an aluminum shell, but in the treatment test, a warhead without a fuze was used from the beginning. The used warhead weighs about 40 kg, of which the explosive charge weighs about 30 kg.
Met. The explosive is HBX-3, the main components of which are TNT (trinitrotoluene), RDX (trimethylenetrinitroamine) and aluminum powder, and in addition, wax and the like are contained.

【0019】先ず、弾頭を150リットルの液体窒素の
入った容器内に20分間浸漬し、十分冷却した後、金属
試験片の圧縮強度を測定する試験機でプレスして圧搾破
砕した。この破砕片を集め、その1/10を珪酸ナトリ
ウムを200mg/リットルの濃度になるように添加し
たpH11の水酸化ナトリウム溶液100リットルの入
った圧力容器内に投入し、室温で1時間撹拌しHBX−
3中に含まれるアルミニウム粉を溶かし、発生する水素
ガスを大気放出した。次いで溶液のpHが11となるよ
うに水酸化ナトリウムを追加した後、容器を密閉して撹
拌しながら300℃に昇温し、1時間加水分解処理を行
った。この間、定期的に溶液のpHをチェックしてpH
が10〜11の範囲に保持されるように水酸化ナトリウ
ムを添加した。
First, the warhead was immersed in a container containing 150 liters of liquid nitrogen for 20 minutes, sufficiently cooled, and then pressed and crushed by pressing with a tester for measuring the compressive strength of a metal test piece. The crushed pieces were collected, and 1/10 of the crushed pieces were put into a pressure vessel containing 100 liters of a sodium hydroxide solution having a pH of 11 to which sodium silicate was added so as to have a concentration of 200 mg / liter, and stirred at room temperature for 1 hour to prepare HBX. −
The aluminum powder contained in No. 3 was melted and the generated hydrogen gas was released into the atmosphere. Next, sodium hydroxide was added so that the pH of the solution became 11, then the container was sealed and the temperature was raised to 300 ° C. with stirring, and a hydrolysis treatment was carried out for 1 hour. During this period, periodically check the pH of the solution and
Sodium hydroxide was added so that was maintained in the range of 10-11.

【0020】300℃に到達して1時間経過した後、徐
々に冷却し、溶液温度が室温となった後、内容物を溶液
と弾殻破砕残渣に分離して取出し、分析した。その結
果、溶液及び弾殻破砕残渣中のTNT及びRDXは共に
検出限界以下で完全に分解しており、溶液中には蟻酸、
酢酸等の低分子有機物が検出され、その濃度は約120
0mg/リットルであった。また、分解後の溶液につい
て生物化学的酸素要求量(BOD)を測定したところ約
800mg/リットルであり、この値は溶液中の有機物
を分解する酸素量とほぼ等量であることから、分解後の
溶液は活性汚泥処理によって無害化できることも確認さ
れた。
One hour after reaching 300 ° C., the solution was gradually cooled to room temperature, and then the contents were separated into a solution and a shell crushing residue, taken out and analyzed. As a result, both TNT and RDX in the solution and the shell crushing residue were completely decomposed below the detection limit, and formic acid,
Low-molecular organic substances such as acetic acid are detected, and the concentration is about 120.
It was 0 mg / liter. In addition, the biochemical oxygen demand (BOD) of the solution after decomposition was measured to be about 800 mg / liter, which is almost the same as the amount of oxygen for decomposing organic matter in the solution. It was also confirmed that the solution in (1) could be rendered harmless by treatment with activated sludge.

【0021】(実施例2)実施例1で使用したのと同じ
弾頭を、実施例1と同様にして冷却し、圧搾破砕した破
砕片の1/10を、珪酸ナトリウムを200mg/リッ
トルの濃度になるように添加し、80℃に加熱したpH
11の水酸化ナトリウム溶液100リットルの入った容
器内に投入し、室温で3時間撹拌し破砕片に付着してい
るHBX−3を洗浄分離するとともにHBX−3中に含
まれるアルミニウム粉を溶解させ、発生する水素ガスを
大気放出した。
(Example 2) The same warhead used in Example 1 was cooled in the same manner as in Example 1 and 1/10 of the crushed pieces crushed by compression was added with sodium silicate to a concentration of 200 mg / liter. PH to be adjusted to 80 ° C.
It is put in a container containing 100 liters of sodium hydroxide solution of 11, and stirred at room temperature for 3 hours to wash and separate HBX-3 adhering to the crushed pieces and dissolve aluminum powder contained in HBX-3. The generated hydrogen gas was released into the atmosphere.

【0022】破砕片の洗浄終了後、圧搾破砕残渣と洗浄
廃液とに分離した。この圧搾破砕残渣について残留HB
X−3量を測定したところ、残留量は約5gであり、9
9.8%以上の洗浄効率が得られることが分かった。こ
の程度の残留量であれば、ロータリーキルンなどを用い
て爆発の危険なしに焼却処理することができる。
After the washing of the crushed pieces was completed, the crushed pieces were separated into a crushed residue and a washing waste liquid. Residual HB for this crushing residue
When the amount of X-3 was measured, the residual amount was about 5 g.
It was found that a cleaning efficiency of 9.8% or more can be obtained. If the residual amount is around this level, it can be incinerated using a rotary kiln or the like without risk of explosion.

【0023】一方、洗浄廃液はpHが11となるように
水酸化ナトリウムを追加した後、圧力容器内で撹拌しな
がら300℃に昇温し、1時間加水分解処理を行った。
この間、定期的に溶液のpHをチェックしてpHが10
〜11の範囲に保持されるように水酸化ナトリウムを添
加した。このように圧搾破砕残渣と洗浄廃液を分離し
て、洗浄廃液のみを300℃に加熱した場合、圧搾破砕
残渣も一緒に加熱する場合に比較して約50kcalの
熱量を節約することができた。
On the other hand, the washing waste liquid was added with sodium hydroxide so as to have a pH of 11, and then heated to 300 ° C. with stirring in a pressure vessel and hydrolyzed for 1 hour.
During this period, the pH of the solution is checked regularly to ensure that the pH is 10
Sodium hydroxide was added so that it was kept in the range of -11. In this way, when the crushing residue and the washing waste liquid were separated and only the cleaning waste liquid was heated to 300 ° C., it was possible to save about 50 kcal of heat as compared with the case where the crushing residue was also heated together.

【0024】300℃に到達して1時間経過した後、徐
々に冷却し、溶液温度が室温となった後、内容物を取出
し分析した。その結果、溶液中のTNT及びRDXは共
に検出限界以下で完全に分解しており、溶液中には蟻
酸、酢酸等の低分子有機物が検出され、その濃度は約1
000mg/リットルであった。また、分解後の溶液に
ついて生物化学的酸素要求量(BOD)を測定したとこ
ろ約700mg/リットルであり、この値は溶液中の有
機物を分解する酸素量とほぼ等量であることから、分解
後の溶液は活性汚泥処理によって無害化できることも確
認された。
One hour after reaching 300 ° C., the solution was gradually cooled, and after the solution temperature reached room temperature, the contents were taken out and analyzed. As a result, both TNT and RDX in the solution were completely decomposed below the detection limit, low-molecular organic substances such as formic acid and acetic acid were detected in the solution, and the concentration was about 1
It was 000 mg / liter. Also, the biochemical oxygen demand (BOD) of the solution after decomposition was measured to be about 700 mg / liter, which is almost the same as the amount of oxygen for decomposing organic matter in the solution. It was also confirmed that the solution in (1) could be rendered harmless by treatment with activated sludge.

【0025】これらの実施例の結果から、本発明の方法
によって魚雷の弾頭を安全・無公害に処理できることが
確認された。
From the results of these examples, it was confirmed that the method of the present invention can treat the warhead of a torpedo safely and without pollution.

【0026】[0026]

【発明の効果】本発明の方法によれば、不要となった銃
砲弾、爆弾、魚雷等の不要弾薬類を、爆発危険性がな
く、しかも騒音や振動による公害もなく、安全に処理す
ることができる。
According to the method of the present invention, unnecessary ammunition such as unnecessary ammunition, bombs, torpedoes, etc. can be safely treated without danger of explosion and pollution due to noise and vibration. You can

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 次の(a)乃至(e)の工程からなるこ
とを特徴とする不要弾薬類の処理方法。 (a)予め信管を取り外した不要弾薬類を液体窒素中で
十分冷却した後、圧搾破砕する工程。 (b)この圧搾破砕物をアルカリ珪酸塩又はアルカリア
ルミン酸塩を添加したアルカリ溶液中で該溶液の臨界温
度以下の温度に加熱し、前記圧搾破砕物中の火薬類を爆
発の危険性の少ない有機物まで分解する工程。 (c)前記分解工程の反応液を圧搾破砕残渣と分解液と
に分離する工程。 (d)分離した圧搾破砕残渣を燃焼処理して残留火薬を
除去する工程。 (e)前記分解工程で分離された爆発の危険性の少ない
有機物を含む分解液を、無害化処理する工程。
1. A method for treating unnecessary ammunition, comprising the following steps (a) to (e): (A) A step of crushing after crushing unnecessary ammunition from which the fuze has been removed in liquid nitrogen sufficiently. (B) This crushed crushed product is heated to a temperature below the critical temperature of the solution in an alkaline solution to which an alkali silicate or alkali aluminate has been added, so that there is little risk of explosives in the crushed crushed product. The process of decomposing to organic matter. (C) A step of separating the reaction liquid of the decomposition step into a crushing residue and a decomposition liquid. (D) A step of burning the separated crushed residue to remove residual explosive. (E) A step of detoxifying the decomposed solution containing an organic substance having a low risk of explosion separated in the decomposition step.
【請求項2】 次の(f)乃至(j)の工程からなるこ
とを特徴とする不要弾薬類の処理方法。 (f)予め信管を取り外した不要弾薬類を液体窒素中で
十分冷却した後、圧搾破砕する工程。 (g)この圧搾破砕物を50〜100℃のアルカリ珪酸
塩又はアルカリアルミン酸塩を添加したアルカリ溶液と
接触させ、この圧搾破砕物中に含まれる火薬類を洗浄分
離する工程。 (h)洗浄分離工程で得られる圧搾破砕残渣を燃焼処理
して残留火薬を除去する工程。 (i)洗浄分離工程で得られる火薬類を含む溶液を該溶
液の臨界温度以下の温度に加熱し、溶液中の火薬類を爆
発の危険性の少ない有機物まで分解する工程。 (j)前記分解工程で分離された爆発の危険性の少ない
有機物を含む分解液を、無害化処理する工程。
2. A method for treating unnecessary ammunition, comprising the following steps (f) to (j): (F) A step of sufficiently crushing unnecessary ammunition from which the fuze has been removed in liquid nitrogen and then crushing by crushing. (G) A step of bringing the pressed crushed product into contact with an alkali solution containing an alkali silicate or an alkali aluminate at 50 to 100 ° C., and washing and separating explosives contained in the pressed crushed product. (H) A step of burning the compressed crushed residue obtained in the washing and separating step to remove residual explosive. (I) A step of heating the solution containing explosives obtained in the washing / separating step to a temperature equal to or lower than the critical temperature of the solution to decompose the explosives in the solution into organic substances having less risk of explosion. (J) A step of detoxifying the decomposition liquid containing an organic substance having a low risk of explosion separated in the decomposition step.
JP10086395A 1995-04-25 1995-04-25 How to handle unwanted ammunition Expired - Fee Related JP3354743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086395A JP3354743B2 (en) 1995-04-25 1995-04-25 How to handle unwanted ammunition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086395A JP3354743B2 (en) 1995-04-25 1995-04-25 How to handle unwanted ammunition

Publications (2)

Publication Number Publication Date
JPH08297000A true JPH08297000A (en) 1996-11-12
JP3354743B2 JP3354743B2 (en) 2002-12-09

Family

ID=14285158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086395A Expired - Fee Related JP3354743B2 (en) 1995-04-25 1995-04-25 How to handle unwanted ammunition

Country Status (1)

Country Link
JP (1) JP3354743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090684A1 (en) * 2000-05-22 2001-11-29 Shimoi, Nobuhiro Mine disposing device and mine disposing method
CN107289831A (en) * 2016-03-30 2017-10-24 薛文亚 Explosion-proof vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090684A1 (en) * 2000-05-22 2001-11-29 Shimoi, Nobuhiro Mine disposing device and mine disposing method
CN107289831A (en) * 2016-03-30 2017-10-24 薛文亚 Explosion-proof vehicle

Also Published As

Publication number Publication date
JP3354743B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
US5709800A (en) Environmentally acceptable waste disposal by hydrothermal decomposition of labile compounds with nitrite
US6603050B2 (en) Destruction of energetic materials
US3778320A (en) Non-polluting disposal of explosives and propellants
CN100334417C (en) Method and installation for destroying rocket mounted on ammunition
AU2016314774B2 (en) Blasting agent
US6011193A (en) Munitions treatment by acid digestion
JP2001506161A (en) Methods for destroying energetic materials
US4231822A (en) Non-polluting process for desensitizing explosives
JP3354743B2 (en) How to handle unwanted ammunition
WO1999058201A2 (en) Ammonia fluidjet cutting in demilitarization processes using solvated electrons
US5889063A (en) Process for converting scrap tires to rubber particles while removing inorganic compounds from the tires
JP2004533877A (en) Processing method
CN113912097A (en) Harmless treatment method for aluminum ash
ZA200502133B (en) Decomposition of nitrogen-based energetic material.
RU2302891C2 (en) Method of decontamination of the inner surface of the chemical ammunition from the residues of the organophosphorous poisonous substances
RU2122536C1 (en) Method and decomposing mixture for decomposition of solid rocket fuel
SU981209A1 (en) Process for decomposizing alkali metal azide
FR2737416A1 (en) Pyrolytic process for destruction of e.g. munitions - comprises in three-step process including in-situ pyrolysis, destruction of chemical effluents and mechanical destruction of casing
JP6901073B2 (en) How to collect valuables from the object to be processed
RU2042368C1 (en) Method for eliminating toxic substance
US20080086024A1 (en) Hydrolysis system and process for devices containing energetic material
CN117776825A (en) Energy-containing material treatment method
JP2004161522A (en) Method for treating gunpowder and explosive
JP2022010515A (en) Treatment method and treatment device for magnesium alloy chip
CN1068415A (en) The recovery and treatment method of the detonator of compound containing mercury, potassium chlorate and antimony trisulphide is housed

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

LAPS Cancellation because of no payment of annual fees