JP3498933B2 - Soft magnetic stainless steel with high magnetic flux density - Google Patents

Soft magnetic stainless steel with high magnetic flux density

Info

Publication number
JP3498933B2
JP3498933B2 JP21326696A JP21326696A JP3498933B2 JP 3498933 B2 JP3498933 B2 JP 3498933B2 JP 21326696 A JP21326696 A JP 21326696A JP 21326696 A JP21326696 A JP 21326696A JP 3498933 B2 JP3498933 B2 JP 3498933B2
Authority
JP
Japan
Prior art keywords
less
flux density
magnetic flux
steepness
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21326696A
Other languages
Japanese (ja)
Other versions
JPH1036950A (en
Inventor
龍二 広田
敏彦 武本
広 森川
孝二 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21326696A priority Critical patent/JP3498933B2/en
Publication of JPH1036950A publication Critical patent/JPH1036950A/en
Application granted granted Critical
Publication of JP3498933B2 publication Critical patent/JP3498933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種リレー鉄芯お
よび各種モーターのヨーク部品などに用いられる軟磁性
ステンレス鋼に関するものである。 【0002】 【従来の技術】従来、各種リレー鉄芯や各種モーターの
ヨーク部品には、電磁軟鉄(SUYP)や亜鉛めっき鋼
板(SECP)などが広く用いられている。なお、電磁
軟鉄は耐食性が劣るので、通常は部品加工後にめっき処
理を施したうえで使用されている。 【0003】 【発明が解決しようとする課題】電磁軟鉄の耐食性改善
を目的として、Niめっきやユニクロめっきが施されて
いるが、めっきを施すことにより本来電磁軟鉄の保有す
る磁気特性が劣化するとともに、製品ごとのめっき厚さ
のばらつきに伴う磁気特性のばらつきが生ずるなど、電
磁軟鉄は必ずしも安定して優れた特性を発揮し得るもの
ではなかった。また、亜鉛めっき鋼板はもともと電磁軟
鉄ほどには優れた磁気特性を示さないだけでなく、めっ
き処理を施すことでは電磁軟鉄と同様特性の安定性が得
にくいという特徴がある。 【0004】ところで、リレー鉄芯やモーターヨークの
性能は、磁束密度に依存することが良く知られている。
この磁束密度が高く、素材の耐食性にも優れた材料とし
て特開平5−255817号公報では、Fe−Cr系合
金が提案されている。このFe−Cr系合金は、耐食性
に優れるためめっき工程を省略できる利点のある材料で
ある。Fe−Cr系合金も電磁軟鉄や亜鉛めっき鋼板と
同様に、リレー鉄芯やモーターヨークなどに使用される
際には、その冷延鋼板に打ち抜き加工やプレス加工が施
されるが、急峻度の大きな、すなわち鋼板が不要に大き
なうねりを持ち形状の良くない場合には、加工しづらく
なる。また、加工可能であった場合でも、加工後の部品
形状や寸法精度が必ずしも満足なものではなく、その結
果、リレー鉄芯やモーターヨークとしての性能がばらつ
くという問題がある。 【0005】そこで、焼鈍酸洗後の冷延鋼板の急峻度の
大きなものに対しては、打ち抜きやプレス加工に供する
前に形状矯正が行われることになる。しかし、Fe−C
r系鋼板は、電磁軟鉄や亜鉛めっき鋼板素材である普通
鋼々板に比べて耐力が高く、形状矯正のためには電磁軟
鉄や普通鋼々板の場合より大きな応力を負荷しなければ
ならないため、形状矯正後のFe−Cr系鋼板には大き
な残留応力が生じ易く、この残留応力が磁気特性劣化の
要因として作用する。 【0006】また、わずかではあるが打ち抜きやプレス
加工によっても加工後部品に残留応力が生じることか
ら、先の形状矯正に起因するものも含めて、リレー鉄芯
やモーターヨーク部品への加工後には、残留応力を除去
し磁気特性を回復するための磁気焼鈍と呼ばれる熱処理
を施されるのが通常である。磁気焼鈍は、温度850〜
1150℃、時間30min〜3hr、水素雰囲気ある
いは真空下などの雰囲気条件で実施されるのが一般的な
ようである。磁気焼鈍は工程を繁雑にするとともに、長
時間を要して生産性低下の原因となるとともに消費材を
要して生産コストを増す原因ともなる。 【0007】本発明は、これらの問題点を解消するべく
なされたものであり、耐食性が良好でめっき処理が不要
であり、急峻度を抑制して優れた打ち抜き性、プレス加
工性を付与するとともに、残留応力の発生を抑制して磁
気焼鈍することなしに高磁束密度を保有するリレー鉄芯
やモーターヨーク部品としての使用に適した軟磁性ステ
ンレス鋼の開発を目的としたものである。 【0008】 【課題を解決する手段】上記目的は、重量%で、C:
0.02%以下、Si:0.1〜3.0%、Mn:1.
0%以下、P:0.04%以下、S:0.01%以下、
Cr:9.0〜17.0%、N:0.02%以下、N
i:1.0%以下、Al:1.0%以下、Ti:1.0
%以下を含有し、残部がFeおよび不可避的不純物から
なるステンレス鋼であって、当該冷間圧延鋼板の焼鈍酸
洗後における急峻度が1.5%以下であり、その鋼板表
面の残留応力が絶対値で10kgf/mm2 以下であり、磁束
密度B10が6000G以上であることを特徴とする軟磁
性ステンレス鋼により達成することができる。 【0009】 【発明の実施の形態】本発明者らは、鋼板の磁束密度に
影響を及ぼす因子について行った種々の検討を通じて、
鋼板表面の残留応力値と磁束密度との間に関係のあるこ
とを見出した。本発明範囲内の化学組成を有するFe−
Cr系鋼板表面の残留応力値と磁束密度B10との関係を
鋭意調査した結果、図1および図2の各々に示すよう
に、鋼板表面の残留応力値が圧縮であると引張であると
にかかわらず、残留応力値とB10との間には一元的な関
係が成立し、残留応力値の絶対値が大きくなるほどB10
は低下するとの知見を得た。 【0010】さらに、本発明範囲内の化学組成を有する
Fe−Cr系鋼板であれば、鋼板表面の残留応力の絶対
値を10kgf/mm2 以下とすることにより、リレー鉄芯や
モーターヨーク部品等の性能確保に必要なB10で600
0G以上の特性が得られることを明らかにした。 【0011】また、上述したように打ち抜き、プレス加
工時には、鋼板の急峻度が小さいことが要求される。鋼
板の急峻度が大きいと加工に支障があるため、急峻度の
矯正をしなければならず、矯正によって磁束密度B10
低下するという問題が生ずる。したがって、加工性を満
足し、且つ所望の磁束密度を得るためには、鋼板の急峻
度を小さくしなければならない。本発明鋼板の用途であ
るモーターヨーク、リレー鉄芯等への加工であれば、急
峻度が1.5%以下であれば良い。なお、ここで急峻度
とは、図3において定義する値をいう。 【0012】一般的に鋼板は、冷間圧延後に仕上焼鈍酸
洗されるが、冷間圧延時にロールクラウンあるいはロー
ル荷重が不適切であった場合には、仕上焼鈍酸洗後も鋼
板にたわみがあり形状の不良なものが発生する。本発明
で意図するところのFe−Cr系において急峻度1.5
%以下の鋼板を得るためには、冷間圧延時にバックアッ
プロールのテーパ量およびロール荷重を適正範囲に調整
するとともに、両者の設定バランスのとれていることが
必要である。例えば、ワークロールの直径が45〜55
mmのゼンジミア圧延機にて本発明のステンレス鋼の冷
間圧延を実施する場合には、ワークロールに隣接するバ
ックアップロールのテーパ量を10/10000〜30
/10000に調整し、ロール荷重を450〜550ト
ンに調整することにより、急峻度が1.5%以下の形状
の良好な鋼板が得られる。ここで、バックアップロール
のテーパ量は、図4において定義する値をいう。 【0013】また、冷間圧延によって急峻度が1.5%
を越える鋼板となった場合には、形状矯正のための調質
圧延を実施して急峻度を1.5%以下にするとともに、
その後再焼鈍、例えば800℃×0minの焼鈍を実施
することにより、矯正圧延の残留応力を除去して絶対値
で10kgf/mm2 以下とし、所望の磁束密度B106000
G以上を得ることができる。 【0014】本発明の鋼板は、打ち抜き、プレス加工等
の部品加工後も磁気焼鈍なしでの使用を基本としてい
る。しかし、部品加工が強加工である場合には、加工後
の残留応力が絶対値で10kgf/mm2 を越えることもあ
り、その場合には磁束密度が低下して使用に適さない。
この場合にも、部品加工後に低温短時間、例えば800
℃×0minの磁気焼鈍を施すことにより、部品の残留
応力が除去され良好な磁束密度を得ることができるので
使用可能となる。 【0015】本発明鋼板は、仕上焼鈍酸洗後には急峻度
が1.5%以下であり、打ち抜き、プレス加工等の部品
加工を容易に行うことが可能であり、鋼板表面の残留応
力の絶対値が10kgf/mm2 以下、且つ磁束密度B10が6
000G以上であるため、モーター、リレーなどに組込
み使用され優れた特性を発揮するものである。 【0016】以下に、本発明の対象となる鋼の化学組成
限定理由について説明する。 C:0.02重量%以下 Cは、炭化物を生成し、耐食性を劣化するとともに磁気
特性に対しても悪影響を及ぼすため、0.02重量%以
下とする。 【0017】Si:0.1重量%以上、3.0重量%以
下 Siは、磁気特性を向上させるのに有効に作用する元素
であり、磁気特性向上に寄与するためには0.1重量%
以上を含有する必要がある。しかし、過剰の含有は硬度
を増し、打ち抜きあるいはプレス加工を困難にすること
から、3.0重量%以下とする。 【0018】Mn:1.0重量%以下 Mnは、製鋼時の脱酸に必要な元素であるが、過剰の含
有は磁気特性を劣化させるため、1.0重量%以下とし
た。 【0019】P:0.04重量%以下 Pは、磁気特性を劣化させる作用があるため、0.04
重量%以下とした。 【0020】S:0.01重量%以下 Sは、磁気特性を著しく劣化させる作用を呈する元素で
あることから、0.01重量%以下に制限した。 【0021】Cr:9.0重量%以上、17.0重量%
以下 Crは、本発明において意図する用途に必要な耐食性を
確保するために必須の元素であり、9.0重量%以上の
含有を必要とする。しかし、過剰の含有は、磁束密度を
低下させる作用があるため、17.0重量%以下とす
る。 【0022】Ni:1.0重量%以下 Niは、磁束密度の低下を招くため、1.0重量%以下
とした。 【0023】N:0.02重量% Nは、Cと同じく耐食性および磁気特性を劣化させる作
用を呈するため、0.02重量%以下とした。 【0024】AlおよびTi:各々1.0重量%以下 AlおよびTiは、製鋼時の脱酸に必要な元素であり、
添加に伴う脱酸機能により不純物低減に寄与するため、
磁気特性を向上させる。しかし、過剰に添加されると介
在物として鋼中に残存するなどして、逆に磁気特性劣化
の作用を呈するため、各々1.0重量%以下とした。 【0025】 【実施例】以下、実施例にもとづき発明を詳細に説明す
る。表1に示す化学組成を有する各種供試鋼を、電気炉
−転炉−脱ガス−連続鋳造工程を経て溶製し、厚さ20
0mmのスラブを得た。表1に示す各供試鋼のうち、A
1〜A5は本発明例であり、B1〜B2は比較例であ
る。いずれの鋼も熱間圧延後、焼鈍酸洗し冷間圧延に供
した。冷間圧延は、バックアップロールのテーパ量を1
0/10000〜30/10000の範囲に調整し、ロ
ール荷重を450〜550トンの範囲に調整して実施
し、最終的な仕上板厚は1.0mmとした。その後、9
00℃×0minで仕上焼鈍し、弗硝酸の混酸酸洗を施
した。 【0026】 【表1】 【0027】各供試冷延鋼板は、仕上焼鈍酸洗後に10
00mm×1000mmの大きさの試験片を採取し、表
面が平坦な定盤の上に置き、図3に示したlおよびhを
測定して急峻度を求めた。また、各供試鋼板より、外径
45mm、内径33mmのリング試験片を採取した。次
に、得られたリング試験片に、打ち抜きやプレスの部品
加工によるひずみ付与、すなわち残留応力の影響を想定
し、アムスラー型試験機にて約1%程度のひずみに相当
する加工を施した。その後、磁気焼鈍することなしに磁
束密度B10を測定した。また、各リング試験片の表面残
留応力はX線ディフラクトメーター法により測定した。 【0028】さらに、各供試鋼の耐食性は、JIS−Z
2371に準拠し、24時間塩水噴霧試験により評価し
た。評価は目視判定により行い、殆ど発錆の認められな
いものを耐食性良好な○とし、面積率で10%以上の錆
が発生したものについては耐食性不良な×とした。 【0029】表2に試験結果を示す。供試鋼A1〜A5
は、化学組成が本発明の範囲内であるとともに、急峻度
が1.5%以下と鋼板形状に優れ、表面残留応力の絶対
値が10kgf/mm2 以下と小さく、磁束密度B10が600
0G以上と優れた磁気特性を示し、また耐食性も優れて
いる。 【0030】一方、比較例である供試鋼B1およびB2
について、B1は急峻度および表面残留応力が本発明範
囲にあるため磁束密度B10が高く磁気特性には優れる
が、Cr含有量が低いため耐食性が劣る。B2は、急峻
度および表面残留応力ともに本発明範囲にあるが、Cr
含有量が本発明範囲を外れて高いため、耐食性は良好で
あるが磁束密度B10が低い。 【0031】次に、化学組成が本発明範囲内にあるとこ
ろの表3に示す供試鋼A6を用いて、種々の急峻度の冷
延鋼板を作製する目的で、表4に示すように冷間圧延条
件を変化させて厚さ1.0mmまで冷延を実施した。試
験番号1、2および4では、冷延後仕上焼鈍酸洗を行い
急峻度を測定した。試験番号3では、仕上焼鈍酸洗後、
レベラー通板とレベラーに起因するひずみ除去を目的と
した再焼鈍(800℃×0min)を実施し、さらに酸
洗後急峻度を測定した。試験番号5では、レベラー通板
しているが、ひずみ除去を目的とした再焼鈍することな
しに急峻度を測定した。各試験番号の供試材とも急峻度
測定後、外径45mm、内径33mmのリング試験片を
採取し、磁束密度B10を測定した。ただし、試験番号2
及び5の両者については、表面残留応力の影響を明確に
するため、リング試験片に加工後アムスラー型試験機に
て、試験番号2の試験片には1%ひずみの加工および試
験番号5の試験片には3%ひずみの加工を施した後、磁
束密度B10を測定した。また、各試験番号のリング試験
片について、前記と同様の方法にて表面残留応力を測定
した。 【0032】 【表3】 【0033】 【表4】 【0034】表5に測定結果を示す。本発明例の試験番
号1及び2では、冷延条件が適切であり急峻度が小さ
く、最終工程での付与ひずみも小さいことから、表面残
留応力の絶対値が10kgf/mm2 以下であり、磁束密度B
10も6000G以上の良好な値を示す。一方、冷延条件
が不適であるが形状矯正のためのレベラー通板をしてい
ない試験番号4では、表面残留応力の絶対値が10kgf/
mm2 以下で磁束密度B10も6000G以上の良好な値を
示すものの、急峻度が高く、試験片への加工に困難性が
伴い、手作業による加工を強いられるなど部品材料とし
ては不適なものであった。試験番号5は、形状矯正のた
めにレベラー通板しているが、その後のひずみ取り再焼
鈍を実施していないばかりでなく最終付与ひずみも3%
と大きいため、急峻度は小さいものの表面残留応力の絶
対値が10kgf/mm2 を超え、したがって磁束密度B10
6000G未満と磁気特性が良くない。 【0035】 【表5】 【0036】 【発明の効果】以上に説明したように、本発明によれ
ば、各種リレー鉄芯、モーターヨーク部品に適した磁気
特性と耐食性を有し、部品加工の自動化等に適した鋼板
形状をも有する軟磁性ステンレス鋼を得ることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic stainless steel used for various relay iron cores and yoke parts of various motors. 2. Description of the Related Art Conventionally, electromagnetic soft iron (SUYP), galvanized steel sheet (SECP), and the like have been widely used as yoke parts for various relay iron cores and various motors. Since electromagnetic soft iron has poor corrosion resistance, it is usually used after plating after component processing. [0003] Problems to be Solved by the Invention [0004] Ni plating or unichrome plating is applied for the purpose of improving the corrosion resistance of electromagnetic soft iron. However, the plating deteriorates the magnetic characteristics originally possessed by the electromagnetic soft iron. Electromagnetic soft iron cannot always exhibit stable and excellent characteristics, such as variations in magnetic properties due to variations in plating thickness for each product. In addition, galvanized steel sheets not only do not originally exhibit magnetic properties as excellent as electromagnetic soft iron, but also have the characteristic that it is difficult to obtain the same stability as electromagnetic soft iron by plating. It is well known that the performance of a relay iron core and a motor yoke depends on the magnetic flux density.
JP-A-5-255817 proposes an Fe-Cr alloy as a material having a high magnetic flux density and excellent corrosion resistance. This Fe-Cr alloy is a material having an advantage that the plating step can be omitted because of its excellent corrosion resistance. Fe-Cr alloys, like electromagnetic soft iron and galvanized steel sheets, are used in relay iron cores and motor yokes when cold-rolled steel sheets are stamped or pressed. If the steel plate is large, that is, if the steel plate has an unnecessarily large undulation and the shape is not good, it becomes difficult to process. Further, even if processing is possible, the shape and dimensional accuracy of the parts after processing are not always satisfactory, and as a result, there is a problem that the performance as a relay iron core or a motor yoke varies. [0005] Therefore, the shape of a cold-rolled steel sheet having a large steepness after annealing and pickling is corrected before being subjected to punching or pressing. However, Fe-C
r-based steel sheets have higher proof strength than electromagnetic steel sheets and plain steel sheets made of galvanized steel sheets, and in order to correct the shape, larger stress must be applied than electromagnetic steel sheets and ordinary steel sheets. On the other hand, a large residual stress tends to be generated in the Fe-Cr-based steel sheet after the shape correction, and this residual stress acts as a factor for deteriorating magnetic properties. [0006] Also, since a small amount of residual stress is generated in a part after processing by punching or pressing, even after slight processing after forming into a relay iron core or a motor yoke part, including the one caused by the above-mentioned shape correction. Usually, heat treatment called magnetic annealing for removing residual stress and restoring magnetic properties is performed. Magnetic annealing is performed at a temperature of 850
It seems that the method is generally carried out at 1150 ° C. for 30 minutes to 3 hours under a hydrogen atmosphere or a vacuum. The magnetic annealing complicates the process, takes a long time, causes a decrease in productivity, and requires a consumable material to increase production costs. The present invention has been made to solve these problems, has good corrosion resistance, does not require plating, suppresses steepness, and provides excellent punching and press workability. Another object of the present invention is to develop a soft magnetic stainless steel suitable for use as a relay iron core or a motor yoke component having a high magnetic flux density without suppressing the generation of residual stress and performing magnetic annealing. [0008] The object of the present invention is to provide, by weight%, C:
0.02% or less, Si: 0.1 to 3.0%, Mn: 1.
0% or less, P: 0.04% or less, S: 0.01% or less,
Cr: 9.0-17.0%, N: 0.02% or less, N
i: 1.0% or less, Al: 1.0% or less, Ti: 1.0
%, The balance being Fe and inevitable impurities, the steepness of the cold-rolled steel sheet after annealing and pickling is 1.5% or less, and the residual stress on the steel sheet surface is less than 1.5%. It can be achieved by a soft magnetic stainless steel having an absolute value of 10 kgf / mm 2 or less and a magnetic flux density B 10 of 6000 G or more. BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on factors affecting the magnetic flux density of a steel sheet,
It has been found that there is a relationship between the residual stress value on the steel sheet surface and the magnetic flux density. Fe- having a chemical composition within the scope of the present invention
Residual stress value and intensive investigation result the relationship between the magnetic flux density B 10 of Cr-based steel sheet surface, as shown in each of FIGS. 1 and 2, in the residual stress value of the steel sheet surface is tensile and is compressed though, centralized relationship is established between the residual stress value and B 10, the larger the absolute value of the residual stress values B 10
Was found to decrease. Further, in the case of an Fe—Cr-based steel sheet having a chemical composition within the range of the present invention, by setting the absolute value of the residual stress on the steel sheet surface to 10 kgf / mm 2 or less, a relay iron core, a motor yoke part, etc. in B 10 necessary to secure performance of the 600
It has been clarified that characteristics of 0 G or more can be obtained. [0011] Further, as described above, when punching and pressing, the steel plate is required to have a small steepness. Because of the difficulty in working with the steepness of the steel sheet is large, it is necessary to the correction of steepness, the problem that the magnetic flux density B 10 is lowered caused by straightening. Therefore, in order to satisfy workability and obtain a desired magnetic flux density, the steepness of the steel sheet must be reduced. If the steel sheet of the present invention is to be processed into a motor yoke, a relay iron core, or the like, which is a use of the steel sheet of the present invention, the steepness may be 1.5% or less. Here, the steepness means a value defined in FIG. [0012] Generally, a steel sheet is finish-annealed and pickled after cold rolling. However, if the roll crown or roll load is inappropriate during cold rolling, the steel sheet bends even after finish annealing and pickling. There is a defective shape. In the Fe-Cr system intended in the present invention, a steepness of 1.5
In order to obtain a steel sheet of not more than%, it is necessary to adjust the taper amount and the roll load of the backup roll during the cold rolling to an appropriate range, and to balance the settings of both. For example, when the diameter of the work roll is 45 to 55,
When the cold rolling of the stainless steel of the present invention is carried out by a Sendzimir rolling mill having a thickness of 10 mm, the taper amount of the backup roll adjacent to the work roll is set to 10/1000 to 30.
By adjusting the roll load to 450 to 550 tons, a good steel plate having a shape with a steepness of 1.5% or less can be obtained. Here, the taper amount of the backup roll refers to a value defined in FIG. Further, the steepness is 1.5% by cold rolling.
When the steel sheet exceeds the limit, while performing temper rolling for shape correction to reduce the steepness to 1.5% or less,
Thereafter, re-annealing, for example, annealing at 800 ° C. × 0 min, is performed to remove the residual stress of the straightening rolling to an absolute value of 10 kgf / mm 2 or less and obtain a desired magnetic flux density B 10 6000
G or more can be obtained. [0014] The steel sheet of the present invention is basically used without magnetic annealing even after part processing such as punching and pressing. However, when the component processing is a strong processing, the residual stress after the processing may exceed 10 kgf / mm 2 in absolute value, and in such a case, the magnetic flux density is lowered and the component is not suitable for use.
In this case, too, a low temperature and a short time after processing the parts, for example, 800
By performing magnetic annealing at a temperature of 0 ° C. × 0 min, the residual stress of the component can be removed and a good magnetic flux density can be obtained, so that it can be used. [0015] The steel sheet of the present invention has a steepness of 1.5% or less after finish annealing and pickling, allows easy processing of parts such as punching and pressing, and has an absolute value of residual stress on the steel sheet surface. Value is 10 kgf / mm 2 or less and the magnetic flux density B 10 is 6
Since it is 000G or more, it is used in a motor, a relay, or the like, and exhibits excellent characteristics. The reasons for limiting the chemical composition of the steel which is the subject of the present invention will be described below. C: 0.02% by weight or less C forms carbides, deteriorates corrosion resistance and adversely affects magnetic properties. Si: 0.1% by weight or more and 3.0% by weight or less Si is an element which effectively acts to improve the magnetic properties.
It is necessary to contain the above. However, excessive content increases the hardness and makes punching or pressing difficult, so that the content is set to 3.0% by weight or less. Mn: 1.0% by weight or less Mn is an element necessary for deoxidation at the time of steel making, but an excessive content degrades magnetic properties. P: not more than 0.04% by weight P has an effect of deteriorating magnetic properties.
% By weight or less. S: not more than 0.01% by weight S is an element exhibiting an effect of remarkably deteriorating magnetic properties, and is therefore limited to not more than 0.01% by weight. Cr: 9.0% by weight or more, 17.0% by weight
In the following, Cr is an essential element for securing the corrosion resistance required for the intended use in the present invention, and requires a content of 9.0% by weight or more. However, an excessive content has an effect of lowering the magnetic flux density, so that the content is set to 17.0% by weight or less. Ni: 1.0% by weight or less Ni lowers the magnetic flux density by 1.0% by weight or less. N: 0.02% by weight N has the same effect of deteriorating corrosion resistance and magnetic properties as C, and is therefore not more than 0.02% by weight. Al and Ti: 1.0% by weight or less each Al and Ti are elements necessary for deoxidation during steelmaking.
Because it contributes to the reduction of impurities by the deoxidation function accompanying the addition,
Improve magnetic properties. However, if added in excess, they may remain in the steel as inclusions and conversely exhibit the effect of deteriorating magnetic properties. Hereinafter, the present invention will be described in detail with reference to examples. Various test steels having the chemical compositions shown in Table 1 were melted through an electric furnace-converter-degassing-continuous casting process to have a thickness of 20%.
A slab of 0 mm was obtained. Among the test steels shown in Table 1, A
1 to A5 are examples of the present invention, and B1 and B2 are comparative examples. After hot rolling, all steels were subjected to annealing and pickling and then subjected to cold rolling. In cold rolling, the taper amount of the backup roll is reduced by 1
The adjustment was performed in the range of 0/1000 to 30/10000, the roll load was adjusted in the range of 450 to 550 tons, and the final finished plate thickness was 1.0 mm. Then 9
Finish annealing was performed at 00 ° C. × 0 min, followed by pickling with mixed acid of hydrofluoric and nitric acids. [Table 1] Each of the test cold-rolled steel sheets was subjected to a final annealing
A test piece having a size of 00 mm × 1000 mm was sampled, placed on a surface plate having a flat surface, and l and h shown in FIG. 3 were measured to determine the steepness. In addition, a ring test piece having an outer diameter of 45 mm and an inner diameter of 33 mm was collected from each test steel sheet. Next, the obtained ring test piece was subjected to a process corresponding to a strain of about 1% using an Amsler type testing machine, assuming the effect of residual stress, that is, the application of strain due to punching and pressing part processing. Thereafter, the magnetic flux density was measured B 10 without magnetic annealing. The surface residual stress of each ring test piece was measured by an X-ray diffractometer method. Further, the corrosion resistance of each test steel was determined according to JIS-Z
Evaluation was performed by a 24-hour salt spray test according to 2371. The evaluation was made by visual judgment, and those with almost no rusting were evaluated as ○ with good corrosion resistance, and those with rust with an area ratio of 10% or more were evaluated as x with poor corrosion resistance. Table 2 shows the test results. Test steels A1 to A5
Has a chemical composition within the range of the present invention, a steepness of 1.5% or less, excellent steel sheet shape, an absolute value of surface residual stress of 10 kgf / mm 2 or less, and a magnetic flux density B 10 of 600
It shows excellent magnetic properties of 0 G or more, and also has excellent corrosion resistance. On the other hand, test steels B1 and B2 as comparative examples
For, B1 is superior to the magnetic flux density B 10 is high magnetic properties because of the steepness and surface residual stresses present invention range, corrosion resistance is inferior because the Cr content is low. B2 has both steepness and surface residual stress in the range of the present invention,
Since a high content outside the range of the present invention, corrosion resistance is good low magnetic flux density B 10. Next, in order to produce cold-rolled steel sheets having various steepnesses using the test steel A6 shown in Table 3 whose chemical composition is within the range of the present invention, as shown in Table 4, Cold rolling was performed to a thickness of 1.0 mm by changing the cold rolling conditions. In Test Nos. 1, 2 and 4, finish annealing pickling was performed after cold rolling, and the steepness was measured. In test number 3, after finish annealing pickling,
Re-annealing (800 ° C. × 0 min) was performed to remove strain caused by the leveler passing plate and the leveler, and the steepness was measured after pickling. In Test No. 5, the steepness was measured without passing through a leveler but re-annealing for the purpose of removing strain. After the measurement steepness with test material of each test number, outer diameter 45 mm, a ring test piece having an inner diameter of 33mm was taken to measure the magnetic flux density B 10. However, test number 2
In order to clarify the effect of surface residual stress on both of Nos. 5 and 5, after processing into a ring test piece, the test piece of test No. 2 was processed with 1% strain and the test of test no. after giving the process of the 3% strain into pieces, the magnetic flux density was measured B 10. Further, the surface residual stress of the ring test piece of each test number was measured by the same method as described above. [Table 3] [Table 4] Table 5 shows the measurement results. In Test Nos. 1 and 2 of the present invention, since the cold rolling conditions are appropriate, the steepness is small, and the applied strain in the final step is small, the absolute value of the surface residual stress is 10 kgf / mm 2 or less. Density B
10 also shows a good value of 6000 G or more. On the other hand, in Test No. 4, in which the cold rolling conditions were inappropriate, but the leveler was not passed for shape correction, the absolute value of the surface residual stress was 10 kgf /
while indicating good value of more than the magnetic flux density B 10 6000 G in mm 2 or less, high steepness, are accompanied difficulties in processing into the test piece, unsuitable as part material such as forced machining manual Met. In Test No. 5, although leveler passing was performed for shape correction, not only the subsequent strain relief and reannealing was not performed, but also the final applied strain was 3%.
Therefore, although the steepness is small, the absolute value of the surface residual stress exceeds 10 kgf / mm 2 , and thus the magnetic flux density B 10 is less than 6000 G, and the magnetic properties are not good. [Table 5] As described above, according to the present invention, according to the present invention, the shape of a steel sheet having magnetic characteristics and corrosion resistance suitable for various relay iron cores and motor yoke components, and suitable for automation of component processing, etc. Can be obtained.

【図面の簡単な説明】 【図1】 圧縮残留応力値と磁束密度B10の関係を示す
図。 【図2】 引張残留応力値と磁束密度B10の関係を示す
図。 【図3】 急峻度を説明する図。 【図4】 ロールのテーパ量を説明する図。 【表2】
Diagram showing the relationship between BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] compressive residual stress value and the magnetic flux density B 10. Diagram showing the relationship [2] the tensile residual stress value and the magnetic flux density B 10. FIG. 3 is a diagram illustrating steepness. FIG. 4 is a diagram illustrating a taper amount of a roll. [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 孝二 山口県新南陽市野村南町4976番地 日新 製鋼株式会社技術研究所内 (56)参考文献 特開 平7−233452(JP,A) 特開 平5−255817(JP,A) 特開 昭58−174525(JP,A) 特公 昭43−26992(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00,38/50 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Koji Seto 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Pref. Nissin Steel Engineering Co., Ltd. (56) References JP-A-7-233452 (JP, A) 5-255817 (JP, A) JP-A-58-174525 (JP, A) JP-B-43-26992 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 , 38/50

Claims (1)

(57)【特許請求の範囲】 【請求項1】重量%で、C:0.02%以下、Si:
0.1〜3.0%、Mn:1.0%以下、P:0.04
%以下、S:0.01%以下、Cr:9.0〜17.0
%、N:0.02%以下、Ni:1.0%以下、Al:
1.0%以下、Ti:1.0%以下を含有し、残部がF
eおよび不可避的不純物からなるステンレス鋼であっ
て、その鋼板表面の残留応力が絶対値で10kgf/mm2
下であり、磁束密度B10が6000G以上であり、冷間
圧延鋼板の焼鈍酸洗後における急峻度が1.5%以下で
あることを特徴とする軟磁性ステンレス鋼。
(57) [Claims 1] By weight%, C: 0.02% or less, Si:
0.1-3.0%, Mn: 1.0% or less, P: 0.04
%, S: 0.01% or less, Cr: 9.0-17.0
%, N: 0.02% or less, Ni: 1.0% or less, Al:
1.0% or less, Ti: 1.0% or less, the balance being F
e) and a stainless steel comprising unavoidable impurities, the residual stress of the steel sheet surface of which is 10 kgf / mm 2 or less in absolute value, the magnetic flux density B 10 is 6000 G or more, and the cold-rolled steel sheet after annealing and pickling. A soft magnetic stainless steel having a steepness of 1.5% or less.
JP21326696A 1996-07-25 1996-07-25 Soft magnetic stainless steel with high magnetic flux density Expired - Fee Related JP3498933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21326696A JP3498933B2 (en) 1996-07-25 1996-07-25 Soft magnetic stainless steel with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21326696A JP3498933B2 (en) 1996-07-25 1996-07-25 Soft magnetic stainless steel with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH1036950A JPH1036950A (en) 1998-02-10
JP3498933B2 true JP3498933B2 (en) 2004-02-23

Family

ID=16636261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21326696A Expired - Fee Related JP3498933B2 (en) 1996-07-25 1996-07-25 Soft magnetic stainless steel with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3498933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110637B2 (en) * 2007-08-02 2012-12-26 日新製鋼株式会社 Hysteresis motor and method for manufacturing hysteresis motor rotor
KR102326044B1 (en) * 2019-12-20 2021-11-15 주식회사 포스코 Ferritic stainless steel with improved magnetization properties and manufacturing method thereof
CN114836684A (en) * 2022-04-01 2022-08-02 山西太钢不锈钢股份有限公司 Low-chromium soft magnetic stainless steel and preparation method and application thereof

Also Published As

Publication number Publication date
JPH1036950A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP2000169943A (en) Ferritic stainless steel excellent in high temperature strength and its production
WO2017056452A1 (en) Ferrite-based stainless steel
WO2016051437A1 (en) Ferritic stainless steel and method for producing same
WO2019087761A1 (en) Ferritic stainless-steel sheet and method for manufacturing same
JP3498933B2 (en) Soft magnetic stainless steel with high magnetic flux density
JP4060407B2 (en) Method for producing soft magnetic stainless steel sheet for motor yoke
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
WO2007084432A1 (en) Corrosion-resistant, free-machining, magnetic stainless steel
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
JPH064891B2 (en) Method for manufacturing non-magnetic steel wire rod
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP3758425B2 (en) Method for producing Fe-Cr-Si electrical steel sheet
JP2737819B2 (en) Fe-Cr alloy with excellent ridging resistance
JP3281243B2 (en) Ferritic stainless steel sheet excellent in magnetic properties and method for producing the same
JP4042897B2 (en) Steel plate for CRT frame
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
JPH0953118A (en) Production of hot rolled steel plate with high young's modulus
JP2005029882A (en) Method for manufacturing structural high-strength electric welded steel tube of excellent welding softening resistance
JP4852804B2 (en) Non-oriented electrical steel sheet
JPH03285017A (en) Production of resistance welded tube having high vibration damping property
JP4297586B2 (en) Stainless steel for CRT support frame and its manufacturing method
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees