WO2016051437A1 - Ferritic stainless steel and method for producing same - Google Patents

Ferritic stainless steel and method for producing same Download PDF

Info

Publication number
WO2016051437A1
WO2016051437A1 PCT/JP2014/005038 JP2014005038W WO2016051437A1 WO 2016051437 A1 WO2016051437 A1 WO 2016051437A1 JP 2014005038 W JP2014005038 W JP 2014005038W WO 2016051437 A1 WO2016051437 A1 WO 2016051437A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
phase
stainless steel
ferritic stainless
less
Prior art date
Application number
PCT/JP2014/005038
Other languages
French (fr)
Japanese (ja)
Inventor
正崇 吉野
映斗 水谷
光幸 藤澤
彩子 田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2014/005038 priority Critical patent/WO2016051437A1/en
Priority to CN201480082384.4A priority patent/CN106715740B/en
Priority to US15/516,584 priority patent/US20180265951A1/en
Priority to KR1020177008704A priority patent/KR101941066B1/en
Priority to JP2015533329A priority patent/JP5904310B1/en
Priority to TW104122008A priority patent/TW201614079A/en
Publication of WO2016051437A1 publication Critical patent/WO2016051437A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a ferritic stainless steel having sufficient corrosion resistance and excellent formability and ridging resistance and a method for producing the same.
  • ferritic stainless steel Since ferritic stainless steel is inexpensive and has excellent corrosion resistance, it is used in various applications such as building materials, transportation equipment, home appliances, kitchen equipment, and automobile parts, and its application range has been further expanded in recent years. In order to be applied to these applications, not only corrosion resistance but also sufficient formability (high elongation and average Rankford value (hereinafter sometimes referred to as average r value)) that can be processed into a predetermined shape is required. .
  • ferritic stainless steel is often applied to applications that require a good appearance, and is also required to have excellent ridging resistance. Ridging is surface irregularities that occur due to molding distortion. Ferritic stainless steel may produce a group of crystal grains (colonies) with similar crystal orientations during casting and / or hot rolling, and in steel sheets with colonies remaining, the amount of strain at the colony and other parts during forming Since a large difference occurs in the surface, surface irregularities (ridging) occur after molding. When excessive ridging occurs after molding, there is a problem that a polishing step is required to remove surface irregularities, and the manufacturing cost of the molded product increases.
  • Patent Document 1 in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less , Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ⁇ (C + N) ⁇ 0.12, 1 ⁇ N / C and 1.5 ⁇ 10 ⁇ 3 ⁇ (V ⁇ N) ⁇ 1.5
  • a ferritic stainless steel excellent in formability and ridging resistance characterized by satisfying ⁇ 10 ⁇ 2 (C, N, and V each represents mass% of each element) is disclosed.
  • Patent Document 1 it is necessary to perform so-called box annealing (for example, annealing at 860 ° C. for 8 hours) after hot rolling. Such box annealing takes about one week when heating and cooling processes are included, and productivity is low.
  • box annealing for example, annealing at 860 ° C. for 8 hours
  • Patent Document 2 C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50%, Cu: 0.01 to 0.50%, V: 0.001 to 0.50%, Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%, Nb: 0.001 to 0.50%, N: 0.005 to 0.050%, and B: 0.00010 to 0.00500 % Hot-rolled steel, hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (annealing and pickling line) continuous furnace, followed by cold rolling and finish annealing A ferritic stainless steel excellent in workability and surface properties characterized by being performed is disclosed.
  • AP line annealing and pickling line
  • Patent Document 1 when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above.
  • elongation when hot-rolled sheet annealing is performed in a ferrite single-phase temperature range using a continuous annealing furnace, recrystallization becomes insufficient due to the low annealing temperature, and the ferrite single-phase temperature is low. The elongation decreases compared to the case where box annealing is performed in the region.
  • ferritic stainless steel as in Patent Document 2 generates a group of crystal grains (colonies) having a similar crystal orientation during casting and / or hot rolling. If done, the ferrite phase colonies cannot be destroyed sufficiently. Therefore, there is a problem that the colony expands and remains in the rolling direction by cold rolling after hot-rolled sheet annealing, and ridging occurs after forming.
  • Japanese Patent No. 3588281 Japanese Patent Publication No. 2000-60134
  • Japanese Patent No. 3582001 Japanese Patent No. 3582001 (JP 2001-3143)
  • An object of the present invention is to solve such problems, and to provide a ferritic stainless steel having sufficient corrosion resistance, excellent formability and ridging resistance, and a method for producing the same.
  • sufficient corrosion resistance refers to a salt spray cycle test ((salt spray (35)) on a steel plate whose surface is polished with # 600 emery paper and then the end face is sealed. °C, 5% NaCl, spray 2h) ⁇ drying (60 ° C, relative humidity 40%, 4h) ⁇ wet (50 ° C, relative humidity
  • Excellent formability means that the elongation at break (El) in a tensile test in accordance with JIS Z2241 is 28% or more in a specimen perpendicular to the rolling direction, and a strain of 15% in a tensile test in accordance with JIS Z2241.
  • r L is an r value when a tensile test is performed in a direction parallel to the rolling direction
  • r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction
  • r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.
  • excellent ridging resistance means that the ridging height measured by the method described below is 2.5 ⁇ m or less.
  • a JIS No. 5 tensile test piece is taken in parallel with the rolling direction.
  • the surface of the collected specimen is polished with # 600 emery paper, and then 20% tensile strain is applied.
  • the arithmetic average waviness (Wa) defined by JIS B 0601 (2001) is measured with a surface roughness meter in the direction perpendicular to the rolling direction on the polished surface at the center of the parallel part of the test piece.
  • the measurement conditions are a measurement length of 16 mm, a high cut filter wavelength of 0.8 mm, and a low cut filter wavelength of 8 mm. This arithmetic mean swell is defined as the ridging height.
  • hot rolled sheet annealing was performed in a temperature range in which the ferrite phase and the austenite phase are two phases before hot rolling and cold rolling on ferritic stainless steel having an appropriate component.
  • cold-rolled sheet annealing at a higher temperature than in the conventional single-phase temperature range, a ferritic stainless steel with sufficient corrosion resistance and excellent formability and ridging resistance can be obtained. I found.
  • a ferritic stainless steel having sufficient corrosion resistance and excellent formability and ridging resistance can be obtained.
  • the ferritic stainless steel of the present invention is used for various applications such as building material parts, home appliance parts, kitchen appliances, and automobile parts by press working. In order to be applied to these applications, sufficient formability (elongation and average r value are large) is required.
  • the elongation characteristics are insufficient, it cannot be molded due to necking or breakage in the direction of the worst elongation during molding.
  • the appearance of the product may be deteriorated due to the fact that the thickness of the overhang portion after forming varies greatly depending on the direction of the steel plate before forming.
  • large pans manufactured by drawing or the like are necked or broken when the average r value is low, and cannot be formed into a predetermined product shape.
  • the plate thickness of the body of the pan varies greatly depending on the location, which may cause problems in heat transfer characteristics. Thus, it is desired that the elongation and the average r value are large.
  • SUS430LX (16mass% Cr-0.15mass% Ti or 16mass% Cr-0.4mass% Nb), SUS436L (18mass% Cr-1.0mass% Mo-0.25) specified in Japanese Industrial Standard JIS G4305 mass% Ti) contains a large amount of Ti and Nb, has a high El and average r value, has excellent formability, and is used in many applications.
  • SUS436L (18mass% Cr-1.0mass% Mo-0.25) specified in Japanese Industrial Standard JIS G4305 mass% Ti
  • SUS430 (16 mass% Cr), which is most produced among ferritic stainless steels, is less expensive than SUS430LX and SUS436L because it does not contain a large amount of Ti or Nb, but its formability is SUS430LX or SUS436L. Inferior. Therefore, SUS430 having improved formability has been demanded.
  • ferritic stainless steel generates surface irregularities called ridging on the surface of the steel sheet due to forming strain, so a product that requires surface aesthetics requires a polishing step to remove the surface irregularities, There is a problem that the manufacturing cost increases.
  • the colonies that cause ridging contain Ti and Nb, and steels with less solid solution carbon are more likely to form. Therefore, the above SUS430LX and SUS436L have poor ridging resistance properties compared to SUS430.
  • the inventors have El ⁇ 28%, an average r value ⁇ 0.70, and a ridging height of an appropriate component of ferritic stainless steel (particularly SUS430 (16 mass% Cr)) that does not contain a large amount of Ti or Nb.
  • the method of obtaining ferritic stainless steel satisfying 2.5 ⁇ m or less was studied intensively.
  • box annealing batch annealing
  • continuous annealing as methods for annealing (hereinafter referred to as hot rolled sheet annealing) before cold rolling the ferritic stainless steel sheet after hot rolling.
  • box annealing batch annealing
  • continuous annealing as methods for annealing
  • the problem with the prior art using a continuous annealing furnace is that annealing is performed in a temperature range in which the metal structure becomes a single phase of ferrite, so that sufficient recrystallization does not occur, sufficient elongation cannot be obtained, The ridging resistance was not obtained because it remained even after finish annealing. Therefore, the inventors performed hot rolling sheet annealing in the two-phase region of the ferrite phase and austenite phase, then cold-rolled by a conventional method, and further performed finish annealing (cold rolling sheet annealing) at a higher temperature than conventional, We finally devised a ferrite single-phase structure again. Specifically, it is as follows.
  • the austenite phase is the ferrite before annealing. It has a crystal orientation different from that of the phase.
  • the metal structure after hot-rolled sheet annealing becomes a martensite phase generated during cooling due to transformation from the ferrite phase and austenite phase, and then at the heterogeneous interface between the soft ferrite phase and the hard martensite phase during cold rolling. Rolling strain is introduced more concentratedly and becomes a recrystallization site during cold-rolled sheet annealing.
  • the ferrite phase colonies are effectively destroyed and the ridging resistance is improved.
  • the martensite phase is decomposed into carbonitride and ferrite phases, resulting in excellent ridging resistance of 2.5 ⁇ m or less in ridging height Is obtained.
  • C 0.005-0.035%
  • C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.035%, the steel sheet becomes hard and ductility decreases. Therefore, the C content is in the range of 0.005 to 0.035%. Preferably it is 0.010 to 0.030% of range. More preferably, it is in the range of 0.015 to 0.025%.
  • Si 0.25 to less than 0.40% Si is an element to increase the T A point. In order to obtain this effect, a content of 0.25% or more is necessary. However, when the Si content is 0.40% or more, the steel sheet becomes hard and the rolling load during hot rolling increases, and the ductility after annealing of the cold-rolled sheet decreases, and a predetermined breaking elongation cannot be obtained. Therefore, the Si content is in the range of 0.25% to less than 0.40%. Preferably it is 0.25 to 0.35% of range. More preferably, it is in the range of 0.25 to 0.30%.
  • Mn 0.05-0.35% Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, Mn amount is not obtained predetermined breaking elongation is too low T A point exceeds 0.35%. Therefore, the Mn content is in the range of 0.05 to 0.35%. Preferably it is 0.10 to 0.30% of range. More preferably, it is in the range of 0.15 to 0.25%.
  • the martensite phase generated by hot-rolled sheet annealing is decomposed and removed into a ferrite phase and carbide by cold-rolled sheet annealing, and the metal structure is converted into a single ferrite phase. It is necessary to increase the grain size of the ferrite crystal grains by causing sufficient grain growth.
  • the martensite phase generated by hot-rolled sheet annealing rapidly decomposes in a temperature range of about 750 ° C. or higher in the cold-rolled sheet annealing after cold rolling, and the temperature range of 800 ° C. or higher.
  • ferrite crystal grains were formed by recrystallization.
  • the temperature of the lower generating austenite by adjusting the steel component (T A point) by a high temperature than the conventional made it possible to more ferrite single phase region annealing at a high temperature.
  • ferrite crystal grains can be sufficiently grown without generating an austenite phase.
  • the temperature increase at the T A point is realized by adjusting the balance of the Si and Mn contents within a suitable range.
  • Si increases the T A point with increasing and content ferrite forming element.
  • Mn lowers the T A point with increasing and content austenite forming element.
  • P 0.040% or less
  • P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.040%. Preferably it is 0.035% or less. More preferably, it is 0.030% or less.
  • S 0.01% or less
  • S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like, and particularly when the content exceeds 0.01%, the adverse effects thereof are remarkably generated. Therefore, it is desirable that the S amount be as low as possible.
  • the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.
  • Cr 15.5-18.0%
  • Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface.
  • the Cr content needs to be 15.5% or more.
  • the Cr content is in the range of 15.5 to 18.0%.
  • it is 16.0 to 17.5% of range. More preferably, it is in the range of 16.0 to 17.0%.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set in the range of 0.001 to 0.10%. Preferably it is 0.001 to 0.05% of range. More preferably, it is in the range of 0.001 to 0.03%.
  • N 0.01-0.06% N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing.
  • the N content needs to be 0.01% or more.
  • the N content is in the range of 0.01 to 0.06%.
  • it is 0.01 to 0.05% of range. More preferably, it is in the range of 0.02 to 0.04%.
  • the balance is Fe and inevitable impurities.
  • Cu and Ni are elements that improve corrosion resistance. In particular, it is effective to contain it when high corrosion resistance is required. Further, Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 0.5%, formability may be deteriorated, which is not preferable. Therefore, if Cu is contained, the content is made 0.1 to 0.5%. Preferably it is 0.2 to 0.3% of range. If the Ni content exceeds 0.6%, the moldability is lowered, which is not preferable. Therefore, when Ni is contained, the content is made 0.1 to 0.6%. Preferably it is 0.1 to 0.3% of range.
  • Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, when the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, if it contains Mo, the content is made 0.1 to 0.5%. Preferably it is 0.2 to 0.3% of range.
  • Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.3%, the moldability is lowered. Therefore, if Co is contained, the content is made 0.01 to 0.3%.
  • V 0.01-0.10%
  • Ti 0.001-0.05%
  • Nb 0.001-0.05%
  • Ca 0.0002-0.0020%
  • Mg 0.0002-0.0050%
  • B 0.0002-0.0050%
  • REM Of 0.01-0.10%
  • V combines with C and N in the steel to reduce solute C and solute N. This improves the average r value.
  • the surface behavior is improved by controlling the precipitation behavior of carbonitrides on the hot-rolled sheet to suppress the occurrence of linear flaws caused by hot rolling and annealing.
  • the V content needs to be 0.01% or more.
  • the amount of V exceeds 0.10%, the workability decreases and the manufacturing cost increases. Therefore, when V is contained, the content is made 0.01 to 0.10%. Preferably it is 0.03 to 0.08% of range.
  • Ti and Nb are elements with a high affinity for C and N, and precipitate as carbides or nitrides during hot rolling, reducing solid solution C and solid solution N in the matrix, and cold rolling. There is an effect of improving the workability after sheet annealing (after finish annealing). In order to obtain these effects, it is necessary to contain 0.001% or more of Ti or 0.001% or more of Nb. However, if the Ti content or Nb content exceeds 0.05%, it is not possible to obtain good surface properties due to precipitation of excess TiN and NbC.
  • the range when Ti is contained, the range is 0.001 to 0.05%, and when Nb is contained, the range is 0.001 to 0.05%.
  • the amount of Ti is preferably in the range of 0.003 to 0.020%.
  • the amount of Nb is preferably in the range of 0.005 to 0.020%. More preferably, it is in the range of 0.010 to 0.015%.
  • Ca 0.0002-0.0020%
  • Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire the effect, 0.0002% or more needs to be contained. However, if the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance decreases. Therefore, when Ca is contained, the content is made 0.0002 to 0.0020%.
  • the range is preferably 0.0005 to 0.0015. More preferably, it is in the range of 0.0005 to 0.0010%.
  • Mg 0.0002-0.0050%
  • Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when Mg is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
  • B 0.0002-0.0050%
  • B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when B is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
  • REM 0.01-0.10% REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film on the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold rolling annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when REM is contained, the content is made 0.01 to 0.10%.
  • the ferritic stainless steel of the present invention is a steel slab having the above component composition, hot-rolled and then annealed at 900 to 1050 ° C. for 5 seconds to 15 minutes, After cold rolling, it is obtained by annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
  • molten steel is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
  • This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.
  • hot rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 900 to 1050 ° C., which is a two-phase region temperature of a ferrite phase and an austenite phase.
  • pickling is performed as necessary, and cold rolling and cold rolled sheet annealing are performed. Furthermore, pickling is performed as necessary to obtain a product.
  • Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of extensibility, bendability, press formability, and shape correction.
  • cold rolling and annealing may be repeated twice or more.
  • grinding or polishing may be performed.
  • Hot-rolled sheet annealing held at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes Hot-rolled sheet annealing is an extremely important step for the present invention to obtain excellent formability and ridging resistance. If the hot-rolled sheet annealing temperature is less than 900 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is obtained, so that the effects of the present invention that are manifested by two-phase region annealing may not be obtained. However, when the annealing temperature exceeds 1050 ° C, solid solution of carbide is promoted, so C concentration in the austenite phase is promoted, and a hard martensite phase is generated after hot-rolled sheet annealing, resulting in poor surface properties.
  • hot-rolled sheet annealing is held at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes.
  • the holding is performed at a temperature of 920 to 1020 ° C. for 15 seconds to 5 minutes. More preferably, the temperature is maintained at 920 to 1000 ° C. for 30 seconds to 3 minutes.
  • Cold-rolled sheet annealing which is held at a temperature of 800-950 ° C for 5 seconds to 5 minutes.
  • Cold-rolled sheet annealing is important for making the two-phase structure of the ferrite phase and martensite phase formed by hot-rolled sheet annealing into a single-phase structure. It is a difficult process.
  • the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and a predetermined elongation at break and average r value cannot be obtained.
  • the cold-rolled sheet annealing temperature exceeds 950 ° C
  • the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. A predetermined elongation at break cannot be obtained.
  • the temperature is a steel component in the ferrite single-phase temperature range
  • the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality.
  • the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that a predetermined breaking elongation and an average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held at 800 to 950 ° C for 5 seconds to 5 minutes. The holding is preferably performed at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes. In order to obtain more gloss, BA annealing (bright annealing) may be performed.
  • Stainless steel having the chemical composition shown in Table 1 was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated at 1150 ° C. for 1 h and then hot rolled to form 3.5 mm thick hot rolled sheets. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions described in Table 2. Next, the surface was descaled by shot blasting and pickling. Furthermore, after cold rolling to a sheet thickness of 0.7 mm, after performing cold-rolled sheet annealing (finish annealing) under the conditions shown in Table 2, descaling by pickling is performed to obtain a cold-rolled pickled and annealed sheet It was.
  • the cold roll pickling annealed plate thus obtained was evaluated as follows.
  • the salt spray cycle test consists of 1 cycle of salt spray (5 mass% NaCl, 35 ° C, spray 2h) ⁇ dry (60 ° C, 4h, relative humidity 40%) ⁇ wet (50 ° C, 2h, relative humidity ⁇ 95%) As a result, 8 cycles were performed.
  • FIG. 1 shows a graph in which ductility evaluation results are arranged by Si and Mn contents for Nos. 1 to 25 where the Cr content satisfies the scope of the present invention.
  • Nos. 1-17 (steel AA-AQ) whose steel components satisfy the scope of the present invention have excellent formability and ridging resistance such as breaking elongation of 28% or more, average r value of 0.70 or more, and ridging height of 2.5 ⁇ m or less. The characteristics were confirmed. Furthermore, regarding corrosion resistance, the rusting rate on the surface of the test piece after 8 cycles of the salt spray cycle test is 25% or less, and good characteristics are obtained.
  • the Si and Mn contents are within the scope of the present invention, but No. 20 to 23 (steel BC to BF) in which 29.5 ⁇ Si-50 ⁇ Mn + 6 falls below the scope of the present invention has a balance of Si and Mn contents. Since it was not appropriate, an austenite phase was generated during the cold-rolled sheet annealing, and this austenite phase was transformed into a martensite phase after cooling, so that the steel sheet was hardened and a predetermined breaking elongation could not be obtained.
  • FIG. 1 is a graph in which ductility evaluation results are arranged by Si and Mn contents for Nos. 1 to 25 in which the Cr content satisfies the scope of the present invention. It can be seen that the predetermined elongation at break is obtained when 29.5 ⁇ Si ⁇ 50 ⁇ Mn + 6 satisfies the scope of the present invention in addition to the Si and Mn contents.
  • the ferritic stainless steel obtained in the present invention is particularly suitable for press-molded products mainly composed of a drawing and applications requiring high surface beauty, such as kitchen utensils and tableware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a ferritic stainless steel which has sufficient corrosion resistance, while having excellent formability and ridging resistance. A ferritic stainless steel according to the present invention contains, in mass%, 0.005-0.035% of C, 0.25% or more but less than 0.40% of Si, 0.05-0.35% of Mn, 0.040% or less of P, 0.01% or less of S, 15.5-18.0% of Cr, 0.001-0.10% of Al and 0.01-0.06% of N, with Si and Mn satisfying 29.5 × Si - 50 × Mn + 6 ≥ 0 (wherein Si and Mn represent the contents (mass%) of the respective elements), and with the balance made up of Fe and unavoidable impurities.

Description

フェライト系ステンレス鋼およびその製造方法Ferritic stainless steel and manufacturing method thereof
 本発明は、十分な耐食性を有し、成形性および耐リジング特性に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。 The present invention relates to a ferritic stainless steel having sufficient corrosion resistance and excellent formability and ridging resistance and a method for producing the same.
 フェライト系ステンレス鋼は、安価で耐食性に優れているため、建材、輸送機器、家電製品、厨房機器、自動車部品などのさまざまな用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、耐食性だけでなく、所定の形状に加工できる十分な成形性(伸びおよび平均ランクフォード値(以下、平均r値と称することがある)が大きい)が求められる。 Since ferritic stainless steel is inexpensive and has excellent corrosion resistance, it is used in various applications such as building materials, transportation equipment, home appliances, kitchen equipment, and automobile parts, and its application range has been further expanded in recent years. In order to be applied to these applications, not only corrosion resistance but also sufficient formability (high elongation and average Rankford value (hereinafter sometimes referred to as average r value)) that can be processed into a predetermined shape is required. .
 一方、フェライト系ステンレス鋼では外観が良好であることが求められる用途へ適用される場合が多く、耐リジング特性に優れることも必要とされる。リジング(ridging)とは成形加工のひずみに起因して発生する表面凹凸のことである。フェライト系ステンレス鋼では鋳造および/または熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成する場合があり、コロニーが残存する鋼板では成形加工時にコロニー部とその他の部位で、ひずみ量に大きな差が生じるために成形後に表面凹凸(リジング)が発生する。成形後に過度のリジングが発生した場合、表面凹凸を除去するために研磨工程が必要となり成形品の製造コストが上昇するという問題がある。 On the other hand, ferritic stainless steel is often applied to applications that require a good appearance, and is also required to have excellent ridging resistance. Ridging is surface irregularities that occur due to molding distortion. Ferritic stainless steel may produce a group of crystal grains (colonies) with similar crystal orientations during casting and / or hot rolling, and in steel sheets with colonies remaining, the amount of strain at the colony and other parts during forming Since a large difference occurs in the surface, surface irregularities (ridging) occur after molding. When excessive ridging occurs after molding, there is a problem that a polishing step is required to remove surface irregularities, and the manufacturing cost of the molded product increases.
 上記に対して、特許文献1では、質量%で、C: 0.02~0.06%、Si:1.0%以下、Mn:1.0%以下、P: 0.05%以下、S: 0.01%以下、Al: 0.005%以下、Ti: 0.005%以下、Cr: 11~30%、Ni: 0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性および耐リジング特性に優れるフェライト系ステンレス鋼が開示されている。しかし、特許文献1では熱間圧延後にいわゆる箱焼鈍(例えば、860℃で8時間の焼鈍)を行う必要がある。このような箱焼鈍は加熱や冷却の過程を含めると一週間程度掛かり、生産性が低い。 On the other hand, in Patent Document 1, in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less , Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ≦ (C + N) ≦ 0.12, 1 ≦ N / C and 1.5 × 10 −3 ≦ (V × N) ≦ 1.5 A ferritic stainless steel excellent in formability and ridging resistance, characterized by satisfying × 10 −2 (C, N, and V each represents mass% of each element) is disclosed. However, in Patent Document 1, it is necessary to perform so-called box annealing (for example, annealing at 860 ° C. for 8 hours) after hot rolling. Such box annealing takes about one week when heating and cooling processes are included, and productivity is low.
 一方、特許文献2では、質量%で、C: 0.01~0.10%、Si: 0.05~0.50%、Mn: 0.05~1.00%、Ni: 0.01~0.50%、Cr: 10~20%、Mo: 0.005~0.50%、Cu: 0.01~0.50%、V: 0.001~0.50%、Ti: 0.001~0.50%、Al: 0.01~0.20%、Nb: 0.001~0.50%、N: 0.005~0.050%およびB: 0.00010~0.00500%を含有した鋼を熱間圧延後、箱型炉あるいはAPライン(annealing and pickling line)の連続炉を用いてフェライト単相温度域で熱延板焼鈍を行い、さらに冷間圧延および仕上げ焼鈍を行うことを特徴とした加工性と表面性状に優れたフェライト系ステンレス鋼が開示されている。しかし、箱型炉を用いた場合には上記の特許文献1と同様に生産性が低いという問題がある。また、伸びに関しては一切言及されていないが、熱延板焼鈍を連続焼鈍炉を用いてフェライト単相温度域で行った場合、焼鈍温度が低いために再結晶が不十分となり、フェライト単相温度域で箱焼鈍を行った場合に比べて伸びが低下する。また、一般に特許文献2のようなフェライト系ステンレス鋼は、鋳造および/または熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成するが、熱延板焼鈍をフェライト単相温度域で行うとフェライト相のコロニーを十分に破壊することができない。そのため、コロニーは熱延板焼鈍後の冷間圧延によって圧延方向に展伸して残存し、成形後にリジングが生じるという問題がある。 On the other hand, in Patent Document 2, C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50%, Cu: 0.01 to 0.50%, V: 0.001 to 0.50%, Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%, Nb: 0.001 to 0.50%, N: 0.005 to 0.050%, and B: 0.00010 to 0.00500 % Hot-rolled steel, hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (annealing and pickling line) continuous furnace, followed by cold rolling and finish annealing A ferritic stainless steel excellent in workability and surface properties characterized by being performed is disclosed. However, when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above. Although no mention is made of elongation, when hot-rolled sheet annealing is performed in a ferrite single-phase temperature range using a continuous annealing furnace, recrystallization becomes insufficient due to the low annealing temperature, and the ferrite single-phase temperature is low. The elongation decreases compared to the case where box annealing is performed in the region. In general, ferritic stainless steel as in Patent Document 2 generates a group of crystal grains (colonies) having a similar crystal orientation during casting and / or hot rolling. If done, the ferrite phase colonies cannot be destroyed sufficiently. Therefore, there is a problem that the colony expands and remains in the rolling direction by cold rolling after hot-rolled sheet annealing, and ridging occurs after forming.
 以上のように、高い成形性と耐リジング特性を有するフェライト系ステンレス鋼を、連続焼鈍炉を用いて高効率で生産する技術は確立されていない。 As described above, a technology for producing ferritic stainless steel having high formability and ridging resistance with high efficiency using a continuous annealing furnace has not been established.
特許第3584881号公報(特再公表2000-60134号公報)Japanese Patent No. 3588281 (Japanese Patent Publication No. 2000-60134) 特許第3581801号公報(特開2001-3143号公報)Japanese Patent No. 3582001 (JP 2001-3143)
 本発明は、かかる課題を解決し、十分な耐食性を有し、成形性および耐リジング特性に優れたフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。 An object of the present invention is to solve such problems, and to provide a ferritic stainless steel having sufficient corrosion resistance, excellent formability and ridging resistance, and a method for producing the same.
 なお、本発明において、十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシール(seal)した鋼板にJIS H 8502に規定された塩水噴霧サイクル試験((塩水噴霧(35℃、5%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h))を1サイクルとする試験)を8サイクル行った場合の鋼板表面における発錆面積率(=(発錆面積/鋼板全面積)×100(%))が25%以下であることを意味する。 In the present invention, sufficient corrosion resistance refers to a salt spray cycle test ((salt spray (35)) on a steel plate whose surface is polished with # 600 emery paper and then the end face is sealed. ℃, 5% NaCl, spray 2h) → drying (60 ° C, relative humidity 40%, 4h) → wet (50 ° C, relative humidity ≥ 95%, 2h)))) It means that the rusting area ratio (= (rusting area / total steel sheet area) × 100 (%)) on the steel sheet surface is 25% or less.
 また、優れた成形性とは、JIS Z2241に準拠した引張試験における破断伸び(El)が圧延方向と直角方向の試験片で28%以上、かつ、JIS Z2241に準拠した引張試験において15%のひずみを付与した際の下記(1)式により算出される平均ランクフォード値(以下、平均r値と称す)が0.70以上であることを意味する。
平均r値=(rL+2×rD+rC)/4   (1)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
Excellent formability means that the elongation at break (El) in a tensile test in accordance with JIS Z2241 is 28% or more in a specimen perpendicular to the rolling direction, and a strain of 15% in a tensile test in accordance with JIS Z2241. Means that the average Rankford value (hereinafter referred to as the average r value) calculated by the following equation (1) is 0.70 or more.
Average r value = (r L + 2 × r D + r C ) / 4 (1)
Here, r L is an r value when a tensile test is performed in a direction parallel to the rolling direction, r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction, and r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.
 さらに、優れた耐リジング特性とは、次に述べる方法で測定したリジング高さが2.5μm以下であることを意味する。リジング高さの測定は、まず、圧延方向に平行にJIS 5号引張試験片を採取する。次いで、採取した試験片の表面を#600のエメリーペーパーを用いて研磨した後、20%の引張ひずみを付与する。次いで、試験片の平行部中央の研磨面で、圧延方向に直角の方向に、表面粗度計でJIS B 0601(2001年)で規定される算術平均うねり(Wa)を測定する。測定条件は、測定長16mm、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmである。この算術平均うねりをリジング高さとする。 Furthermore, excellent ridging resistance means that the ridging height measured by the method described below is 2.5 μm or less. For measuring the ridging height, first, a JIS No. 5 tensile test piece is taken in parallel with the rolling direction. Next, the surface of the collected specimen is polished with # 600 emery paper, and then 20% tensile strain is applied. Next, the arithmetic average waviness (Wa) defined by JIS B 0601 (2001) is measured with a surface roughness meter in the direction perpendicular to the rolling direction on the polished surface at the center of the parallel part of the test piece. The measurement conditions are a measurement length of 16 mm, a high cut filter wavelength of 0.8 mm, and a low cut filter wavelength of 8 mm. This arithmetic mean swell is defined as the ridging height.
 課題を解決するために検討した結果、適切な成分のフェライト系ステンレス鋼に対して熱間圧延後冷間圧延する前に、フェライト相とオーステナイト相の二相となる温度域で熱延板焼鈍を行い、さらに、冷延板焼鈍をフェライト単相の温度域ではあるが従来より高温で行うことにより、十分な耐食性を有し、成形性および耐リジング特性に優れたフェライト系ステンレス鋼が得られることを見出した。 As a result of studying to solve the problems, hot rolled sheet annealing was performed in a temperature range in which the ferrite phase and the austenite phase are two phases before hot rolling and cold rolling on ferritic stainless steel having an appropriate component. In addition, by performing cold-rolled sheet annealing at a higher temperature than in the conventional single-phase temperature range, a ferritic stainless steel with sufficient corrosion resistance and excellent formability and ridging resistance can be obtained. I found.
 本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.005~0.035%、Si:0.25~0.40未満%、Mn: 0.05~0.35%、P: 0.040%以下、S: 0.01%以下、Cr: 15.5~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、SiおよびMnが29.5×Si-50×Mn+6≧0(ただし、式中のSi、Mnは含有量(質量%)を示す)を満たし、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
[2]質量%で、さらに、Cu:0.1~0.5%、Ni: 0.1~0.6%、Mo: 0.1~0.5%、Co: 0.01~0.3%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]に記載のフェライト系ステンレス鋼。
[3]質量%で、さらに、V: 0.01~0.10%、Ti: 0.001~0.05%、Nb: 0.001~0.05%、Ca: 0.0002~0.0020%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]圧延方向と直角方向の破断伸びが28%以上、平均ランクフォード値が0.70以上、リジング高さが2.5μm以下であることを特徴とする上記[1]~[3]のいずれかに記載のフェライト系ステンレス鋼。
[5]上記[1]から[4]のいずれかに記載のフェライト系ステンレス鋼の製造方法であって、鋼スラブに対して、熱間圧延を施した後、900~1050℃の温度範囲で5秒~15分間保持する焼鈍を行い、次いで、冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する焼鈍を行うことを特徴とするフェライト系ステンレス鋼の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.005 to 0.035%, Si: 0.25 to less than 0.40%, Mn: 0.05 to 0.35%, P: 0.040% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: Contains 0.001 to 0.10%, N: 0.01 to 0.06%, and Si and Mn are 29.5 × Si-50 × Mn + 6 ≧ 0 (where Si and Mn indicate the content (% by mass)) Ferritic stainless steel characterized by being filled with the balance being Fe and inevitable impurities.
[2] By mass%, further containing one or more selected from Cu: 0.1 to 0.5%, Ni: 0.1 to 0.6%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.3% The ferritic stainless steel as described in [1] above.
[3] By mass%, V: 0.01 to 0.10%, Ti: 0.001 to 0.05%, Nb: 0.001 to 0.05%, Ca: 0.0002 to 0.0020%, Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050% REM: The ferritic stainless steel according to the above [1] or [2], comprising one or more selected from 0.01 to 0.10%.
[4] Any one of the above [1] to [3], wherein the elongation at break in the direction perpendicular to the rolling direction is 28% or more, the average Rankford value is 0.70 or more, and the ridging height is 2.5 μm or less. The ferritic stainless steel described.
[5] A method for producing a ferritic stainless steel according to any one of [1] to [4] above, wherein the steel slab is hot-rolled and then subjected to a temperature range of 900 to 1050 ° C. Manufacture of ferritic stainless steel characterized by annealing for 5 seconds to 15 minutes, followed by cold rolling, followed by annealing for 5 seconds to 5 minutes in the temperature range of 800 to 950 ° C Method.
In the present specification, “%” indicating the component of steel is “% by mass”.
 本発明によれば、十分な耐食性を有し成形性および耐リジング特性に優れたフェライト系ステンレス鋼が得られる。 According to the present invention, a ferritic stainless steel having sufficient corrosion resistance and excellent formability and ridging resistance can be obtained.
SiおよびMn含有量で整理した延性の評価結果を示す図である。It is a figure which shows the evaluation result of the ductility arranged by Si and Mn content.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のフェライト系ステンレス鋼は、プレス加工で建材部品、家電製品の部品、厨房器具、自動車部品などのさまざまな用途に使用される。これらの用途に適用するためには、十分な成形性(伸びおよび平均r値が大きいこと)が求められる。 The ferritic stainless steel of the present invention is used for various applications such as building material parts, home appliance parts, kitchen appliances, and automobile parts by press working. In order to be applied to these applications, sufficient formability (elongation and average r value are large) is required.
 例えば、張出し成形される球形の換気口フードの場合、伸び特性が不足していると成形時にもっとも伸びが劣位な方向にネッキングや破断が生じて成形できない。また、成形後の張出し部の板厚が成形前の鋼板の方向によって大きく異なることに起因した製品外観の悪化が生じる場合がある。あるいは、絞り加工などにより製造される大型鍋は、平均r値が低い場合はネッキングや破断が生じ、所定の製品形状に成形することができない。鍋の胴部分の板厚が場所によって大きく異なり伝熱特性上の不具合が生じる場合がある。このように、伸びおよび平均r値が大きいことが望まれている。 For example, in the case of a spherical vent hood that is stretched and formed, if the elongation characteristics are insufficient, it cannot be molded due to necking or breakage in the direction of the worst elongation during molding. In addition, the appearance of the product may be deteriorated due to the fact that the thickness of the overhang portion after forming varies greatly depending on the direction of the steel plate before forming. Alternatively, large pans manufactured by drawing or the like are necked or broken when the average r value is low, and cannot be formed into a predetermined product shape. The plate thickness of the body of the pan varies greatly depending on the location, which may cause problems in heat transfer characteristics. Thus, it is desired that the elongation and the average r value are large.
 フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430LX(16mass%Cr-0.15mass%Tiあるいは16mass%Cr-0.4mass%Nb)、SUS436L(18mass%Cr-1.0mass%Mo-0.25mass%Ti)等は多量のTiやNbを含有し、Elおよび平均r値が高く優れた成形性を持ち、多くの用途に使用されている。しかし、これらの鋼種は多量のTiやNbを含有するために原料コストと製造コストが高く、価格が高い問題がある。一方、フェライト系ステンレス鋼の中でもっとも多く生産されているSUS430(16mass%Cr)は、多量のTiやNbを含有していないので、SUS430LXやSUS436Lより安価であるが、成形性がSUS430LXやSUS436Lより劣る。そのため、成形性を向上させたSUS430が求められていた。 Among ferritic stainless steels, SUS430LX (16mass% Cr-0.15mass% Ti or 16mass% Cr-0.4mass% Nb), SUS436L (18mass% Cr-1.0mass% Mo-0.25) specified in Japanese Industrial Standard JIS G4305 mass% Ti) contains a large amount of Ti and Nb, has a high El and average r value, has excellent formability, and is used in many applications. However, since these steel types contain a large amount of Ti and Nb, there is a problem that the raw material cost and the manufacturing cost are high and the price is high. On the other hand, SUS430 (16 mass% Cr), which is most produced among ferritic stainless steels, is less expensive than SUS430LX and SUS436L because it does not contain a large amount of Ti or Nb, but its formability is SUS430LX or SUS436L. Inferior. Therefore, SUS430 having improved formability has been demanded.
 一方、フェライト系ステンレス鋼は前述したとおり、成形加工ひずみによって鋼板表面にリジングと呼ばれる表面凹凸が発生するため、表面美麗性が要求される製品では表面凹凸を除去するための研磨工程が必要となり、製造コストが増加するという問題がある。リジングの原因となるコロニーはTiやNbを添加し、固溶炭素が少ない鋼の方が生成しやすいため、上記のSUS430LXやSUS436LではSUS430に比べて耐リジング特性が劣る。 On the other hand, as described above, ferritic stainless steel generates surface irregularities called ridging on the surface of the steel sheet due to forming strain, so a product that requires surface aesthetics requires a polishing step to remove the surface irregularities, There is a problem that the manufacturing cost increases. The colonies that cause ridging contain Ti and Nb, and steels with less solid solution carbon are more likely to form. Therefore, the above SUS430LX and SUS436L have poor ridging resistance properties compared to SUS430.
 このように、十分な耐食性と優れた成形性および優れた耐リジング特性を鼎立し、かつ安価であるフェライト系ステンレス鋼の製造技術は十分には確立されていないのが現状である。 As described above, the manufacturing technology for ferritic stainless steel, which has sufficient corrosion resistance, excellent formability, and excellent ridging resistance and is inexpensive, has not been sufficiently established.
 そこで、発明者らは多量のTiやNbを含有しない適切な成分のフェライト系ステンレス鋼(特にSUS430(16mass%Cr)系)の成分でEl≧28%、平均r値≧0.70、リジング高さが2.5μm以下を満足するフェライト系ステンレス鋼を得る方法を鋭意検討した。また、熱間圧延後のフェライト系ステンレス鋼板を冷間圧延する前に焼鈍(以下、熱延板焼鈍と称する)する方法には、箱焼鈍(バッチ焼鈍)と連続焼鈍があるが、長時間を要して生産性の低い箱焼鈍ではなく、生産性の高い連続焼鈍により所定の成形性を得ることを検討した。 Therefore, the inventors have El ≧ 28%, an average r value ≧ 0.70, and a ridging height of an appropriate component of ferritic stainless steel (particularly SUS430 (16 mass% Cr)) that does not contain a large amount of Ti or Nb. The method of obtaining ferritic stainless steel satisfying 2.5μm or less was studied intensively. In addition, there are box annealing (batch annealing) and continuous annealing as methods for annealing (hereinafter referred to as hot rolled sheet annealing) before cold rolling the ferritic stainless steel sheet after hot rolling. In short, instead of box annealing with low productivity, it was studied to obtain a predetermined formability by continuous annealing with high productivity.
 連続焼鈍炉を用いた従来技術においての課題は、焼鈍を金属組織がフェライト単相となる温度域で行っているために十分な再結晶が生じず、十分な伸びが得られないとともに、コロニーが仕上げ焼鈍後にまで残存するために耐リジング特性が得られないことであった。そこで発明者らは、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った後に、常法で冷間圧延を行い、さらに従来より高温の仕上げ焼鈍(冷延板焼鈍)を行い、最終的に再度フェライト単相組織とすることを考案した。具体的には、以下の通りである。熱延板焼鈍をフェライト単相温度域よりも高温のフェライト相とオーステナイトの二相域で行うことにより、熱延板焼鈍でフェライト相からオーステナイト相が生成する際に、オーステナイト相が焼鈍前のフェライト相とは異なった結晶方位を有して生成する。また、熱延板焼鈍後の金属組織がフェライト相とオーステナイト相からの変態によって冷却中に生成するマルテンサイト相となり、その後の冷間圧延時に軟質なフェライト相と硬質なマルテンサイト相の異相界面に圧延ひずみがより集中して導入されて冷延板焼鈍時の再結晶サイトとなる。その結果、フェライト相のコロニーが効果的に破壊され、耐リジング特性が向上する。冷間圧延し、さらにフェライト単相温度域で冷延板焼鈍することにより、マルテンサイト相を炭窒化物とフェライト相へと分解させることにより、リジング高さで2.5μm以下の優れた耐リジング特性が得られる。 The problem with the prior art using a continuous annealing furnace is that annealing is performed in a temperature range in which the metal structure becomes a single phase of ferrite, so that sufficient recrystallization does not occur, sufficient elongation cannot be obtained, The ridging resistance was not obtained because it remained even after finish annealing. Therefore, the inventors performed hot rolling sheet annealing in the two-phase region of the ferrite phase and austenite phase, then cold-rolled by a conventional method, and further performed finish annealing (cold rolling sheet annealing) at a higher temperature than conventional, We finally devised a ferrite single-phase structure again. Specifically, it is as follows. By performing hot-rolled sheet annealing in a two-phase region of ferrite phase and austenite that is higher than the ferrite single-phase temperature range, when the austenite phase is generated from the ferrite phase in hot-rolled sheet annealing, the austenite phase is the ferrite before annealing. It has a crystal orientation different from that of the phase. In addition, the metal structure after hot-rolled sheet annealing becomes a martensite phase generated during cooling due to transformation from the ferrite phase and austenite phase, and then at the heterogeneous interface between the soft ferrite phase and the hard martensite phase during cold rolling. Rolling strain is introduced more concentratedly and becomes a recrystallization site during cold-rolled sheet annealing. As a result, the ferrite phase colonies are effectively destroyed and the ridging resistance is improved. By cold rolling and further cold-rolled sheet annealing in the ferrite single-phase temperature range, the martensite phase is decomposed into carbonitride and ferrite phases, resulting in excellent ridging resistance of 2.5 μm or less in ridging height Is obtained.
 しかしながら、上記技術のみでは、優れた成形性を安定的に得ることは出来ないことがわかった。そこで、各種成分の成形性と製造条件の成形性への影響を詳細に検討した。その結果、鋼成分と冷延板焼鈍温度を好適な範囲に調整することにより、安定して優れた成形性が得られることを見出した。すなわち、フェライト生成元素であるSiおよびオーステナイト生成元素であるMnを好適な範囲に調整し、オーステナイト相が生成する下限の温度(以下、TA点と称する場合がある)を高温側に移行させる。これにより冷延板鈍温度をより高温化し、粒成長を一層促進する。その結果、冷延板焼鈍後の金属組織において十分に粒成長したフェライト単相組織が得られ、破断伸び(El)が28%以上、平均r値が0.70以上の優れた成形性を有し、耐リジング特性と両立できることを見出した。 However, it has been found that excellent moldability cannot be stably obtained only by the above technique. Therefore, the effects of various components on the moldability and production conditions on the moldability were examined in detail. As a result, it has been found that excellent formability can be obtained stably by adjusting the steel component and the cold-rolled sheet annealing temperature to a suitable range. That is, Mn is Si and austenite formers a ferrite forming element is adjusted to a suitable range, the lower limit of the temperature at which austenite phase is produced (hereinafter, sometimes referred to as T A point) of the shifts to the high temperature side. Thereby, the cold-rolled sheet blunt temperature is further increased, and the grain growth is further promoted. As a result, a ferrite single-phase structure with sufficient grain growth in the metal structure after cold-rolled sheet annealing is obtained, and has excellent formability with an elongation at break (El) of 28% or more and an average r value of 0.70 or more, It has been found that it is compatible with ridging resistance.
 次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。
以下、特に断らない限り%は質量%を意味する。
Next, the component composition of the ferritic stainless steel of the present invention will be described.
Hereinafter, unless otherwise specified,% means mass%.
 C:0.005~0.035%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。しかし、C量が0.035%を超えると鋼板が硬質化して延性が低下する。そのため、C量は0.005~0.035%の範囲とする。好ましくは0.010~0.030%の範囲である。さらに好ましくは0.015~0.025%の範囲である。
C: 0.005-0.035%
C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.035%, the steel sheet becomes hard and ductility decreases. Therefore, the C content is in the range of 0.005 to 0.035%. Preferably it is 0.010 to 0.030% of range. More preferably, it is in the range of 0.015 to 0.025%.
 Si:0.25~0.40未満%
SiはTA点を上げる元素である。この効果を得るためには0.25%以上の含有が必要である。しかし、Si量が0.40%以上になると、鋼板が硬質化して熱間圧延時の圧延負荷が増大するとともに、冷延板焼鈍後の延性が低下し、所定の破断伸びが得られない。そのため、Si量は0.25%以上0.40%未満の範囲とする。好ましくは0.25~0.35%の範囲である。さらに好ましくは0.25~0.30%の範囲である。
Si: 0.25 to less than 0.40%
Si is an element to increase the T A point. In order to obtain this effect, a content of 0.25% or more is necessary. However, when the Si content is 0.40% or more, the steel sheet becomes hard and the rolling load during hot rolling increases, and the ductility after annealing of the cold-rolled sheet decreases, and a predetermined breaking elongation cannot be obtained. Therefore, the Si content is in the range of 0.25% to less than 0.40%. Preferably it is 0.25 to 0.35% of range. More preferably, it is in the range of 0.25 to 0.30%.
 Mn: 0.05~0.35%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.05%以上の含有が必要である。しかし、Mn量が0.35%を超えるとTA点が下がりすぎて所定の破断伸びが得られない。そのため、Mn量は0.05~0.35%の範囲とする。好ましくは0.10~0.30%の範囲である。さらに好ましくは0.15~0.25%の範囲である。
Mn: 0.05-0.35%
Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, Mn amount is not obtained predetermined breaking elongation is too low T A point exceeds 0.35%. Therefore, the Mn content is in the range of 0.05 to 0.35%. Preferably it is 0.10 to 0.30% of range. More preferably, it is in the range of 0.15 to 0.25%.
 29.5×Si-50×Mn+6≧0(ただし、式中のSi、Mnは含有量(質量%)を示す)
本発明では、オーステナイトが生成する下限の温度(TA点)の調整が極めて重要な要素となる。前述したように、本発明では熱延板焼鈍をフェライト相+オーステナイト相の二相温度域で行い熱延板焼鈍後の組織をフェライト相+マルテンサイト相の二相組織とするが、冷間圧延後に実施する冷延板焼鈍をフェライト単相温度域で行い、最終的な組織はフェライト単相とすることを大きな特徴としている。この方法で優れた破断伸びを得るためには、熱延板焼鈍によって生成したマルテンサイト相を冷延板焼鈍によってフェライト相と炭化物へと分解させて除去し、金属組織をフェライト単相化するとともに、十分な粒成長を生じさせてフェライト結晶粒の粒径を大きくする必要がある。発明者らが検討したところ、熱延板焼鈍によって生成したマルテンサイト相は冷間圧延後の冷延板焼鈍において約750℃以上の温度域で急速に分解が進むとともに、800℃以上の温度域で再結晶によりフェライト結晶粒が生成した。
29.5 × Si-50 × Mn + 6 ≧ 0 (However, Si and Mn in the formula indicate the content (% by mass))
In the present invention, adjustment of the temperature of the lower limit austenite generated (T A point) becomes an extremely important element. As described above, in the present invention, hot-rolled sheet annealing is performed in a two-phase temperature range of ferrite phase + austenite phase, and the structure after hot-rolled sheet annealing is a two-phase structure of ferrite phase + martensite phase. A great feature is that the cold-rolled sheet annealing to be performed later is performed in the ferrite single-phase temperature range, and the final structure is a ferrite single-phase. In order to obtain an excellent elongation at break by this method, the martensite phase generated by hot-rolled sheet annealing is decomposed and removed into a ferrite phase and carbide by cold-rolled sheet annealing, and the metal structure is converted into a single ferrite phase. It is necessary to increase the grain size of the ferrite crystal grains by causing sufficient grain growth. As a result of investigations by the inventors, the martensite phase generated by hot-rolled sheet annealing rapidly decomposes in a temperature range of about 750 ° C. or higher in the cold-rolled sheet annealing after cold rolling, and the temperature range of 800 ° C. or higher. Thus, ferrite crystal grains were formed by recrystallization.
 結晶粒の成長は、温度が高いほどあるいは焼鈍時間が長いほど進むことが広く知られている。しかし、冷延板焼鈍は連続焼鈍炉で行われるため、焼鈍時間を長くすると生産効率が著しく低下してしまう。一方、従来技術の鋼成分で冷延板焼鈍温度を高温化すると、焼鈍がフェライト相とオーステナイト相の二相域で行われることになる。その場合、金属組織中にオーステナイト相が新たに生成し、このオーステナイト相が冷却後にマルテンサイト相へと変態することにより鋼板が硬質化し、所定の破断伸びが得られない。 It is well known that the growth of crystal grains proceeds as the temperature increases or the annealing time increases. However, since cold-rolled sheet annealing is performed in a continuous annealing furnace, if the annealing time is increased, the production efficiency is significantly reduced. On the other hand, when the cold-rolled sheet annealing temperature is increased with the steel components of the prior art, annealing is performed in a two-phase region of a ferrite phase and an austenite phase. In that case, an austenite phase is newly generated in the metal structure, and the austenite phase is transformed into a martensite phase after cooling, so that the steel sheet becomes hard and a predetermined elongation at break cannot be obtained.
 そのため、本発明では、鋼成分を調整してオーステナイトが生成する下限の温度(TA点)を従来よりも高温にすることにより、より高温でのフェライト単相域焼鈍を可能とした。これにより、オーステナイト相を生成させることなく、フェライト結晶粒を十分に成長させることが出来る。 Therefore, in the present invention, the temperature of the lower generating austenite by adjusting the steel component (T A point) by a high temperature than the conventional, made it possible to more ferrite single phase region annealing at a high temperature. Thereby, ferrite crystal grains can be sufficiently grown without generating an austenite phase.
 TA点の高温化は、具体的にはSiとMnの含有量のバランスを好適な範囲に調整することにより実現される。Siはフェライト生成元素であり含有量の増加に伴いTA点を上昇させる。一方、Mnはオーステナイト生成元素であり含有量の増加に伴いTA点を低下させる。検討の結果、29.5×Si-50×Mn+6が0未満の場合、TA点が十分に高温化せず、所定の破断伸びが得られないことがわかった。よって、本発明では、29.5×Si-50×Mn+6≧0とする。 Specifically, the temperature increase at the T A point is realized by adjusting the balance of the Si and Mn contents within a suitable range. Si increases the T A point with increasing and content ferrite forming element. Meanwhile, Mn lowers the T A point with increasing and content austenite forming element. A result of the study, 29.5 × Si-50 × Mn + 6 if less than 0, T A point is not sufficiently high temperature, it was found that not be obtained predetermined breaking elongation. Therefore, in the present invention, 29.5 × Si-50 × Mn + 6 ≧ 0.
 P: 0.040%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.040%とする。好ましくは0.035%以下である。さらに好ましくは0.030%以下である。
P: 0.040% or less
P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.040%. Preferably it is 0.035% or less. More preferably, it is 0.030% or less.
 S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素であり、特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
S: 0.01% or less
S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like, and particularly when the content exceeds 0.01%, the adverse effects thereof are remarkably generated. Therefore, it is desirable that the S amount be as low as possible. In the present invention, the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.
 Cr: 15.5~18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を15.5%以上とする必要がある。しかし、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の耐リジング特性が得られない。そのため、Cr量は15.5~18.0%の範囲とする。好ましくは16.0~17.5%の範囲である。さらに好ましくは16.0~17.0%の範囲である。
Cr: 15.5-18.0%
Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain this effect, the Cr content needs to be 15.5% or more. However, if the Cr content exceeds 18.0%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and a predetermined ridging resistance characteristic cannot be obtained. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably it is 16.0 to 17.5% of range. More preferably, it is in the range of 16.0 to 17.0%.
 Al: 0.001~0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001~0.10%の範囲とする。好ましくは0.001~0.05%の範囲である。さらに好ましくは0.001~0.03%の範囲である。
Al: 0.001 to 0.10%
Al, like Si, is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set in the range of 0.001 to 0.10%. Preferably it is 0.001 to 0.05% of range. More preferably, it is in the range of 0.001 to 0.03%.
 N: 0.01~0.06%
Nは、CおよびMnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.01%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。そのため、N量は0.01~0.06%の範囲とする。好ましくは0.01~0.05%の範囲である。さらに好ましくは0.02~0.04%の範囲である。
N: 0.01-0.06%
N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to obtain this effect, the N content needs to be 0.01% or more. However, when the N content exceeds 0.06%, the ductility is remarkably lowered and the corrosion resistance is lowered by promoting the precipitation of Cr nitride. Therefore, the N content is in the range of 0.01 to 0.06%. Preferably it is 0.01 to 0.05% of range. More preferably, it is in the range of 0.02 to 0.04%.
 残部はFeおよび不可避的不純物である。 The balance is Fe and inevitable impurities.
 以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。 Although the effects of the present invention can be obtained by the above component composition, the following elements can be contained for the purpose of further improving manufacturability or material properties.
 Cu: 0.1~0.5%、Ni: 0.1~0.6%、Mo: 0.1~0.5%、Co: 0.01~0.3%のうちから選ばれる1種または2種以上
 CuおよびNiはいずれも耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。また、CuおよびNiにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は各々0.1%以上の含有で顕著となる。しかし、Cu含有量が0.5%を超えると成形性が低下する場合があり好ましくない。そのためCuを含有する場合は0.1~0.5%とする。好ましくは0.2~0.3%の範囲である。Ni含有量が0.6%を超えると成形性が低下するため好ましくない。そのためNiを含有する場合は0.1~0.6%とする。好ましくは0.1~0.3%の範囲である。
One or more selected from Cu: 0.1 to 0.5%, Ni: 0.1 to 0.6%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.3% Both Cu and Ni are elements that improve corrosion resistance. In particular, it is effective to contain it when high corrosion resistance is required. Further, Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 0.5%, formability may be deteriorated, which is not preferable. Therefore, if Cu is contained, the content is made 0.1 to 0.5%. Preferably it is 0.2 to 0.3% of range. If the Ni content exceeds 0.6%, the moldability is lowered, which is not preferable. Therefore, when Ni is contained, the content is made 0.1 to 0.6%. Preferably it is 0.1 to 0.3% of range.
 Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなり好ましくない。そのため、Moを含有する場合は0.1~0.5%とする。好ましくは0.2~0.3%の範囲である。 Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, when the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, if it contains Mo, the content is made 0.1 to 0.5%. Preferably it is 0.2 to 0.3% of range.
 Coは靭性を向上させる元素である。この効果は0.01%以上の含有によって得られる。一方、含有量が0.3%を超えると成形性を低下させる.そのため、Coを含有する場合の含有量は0.01~0.3%の範囲とする。 Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.3%, the moldability is lowered. Therefore, if Co is contained, the content is made 0.01 to 0.3%.
 V: 0.01~0.10%、Ti: 0.001~0.05%、Nb: 0.001~0.05%、Ca: 0.0002~0.0020%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%のうちから選ばれる1種または2種以上
 V: 0.01~0.10%
Vは鋼中のCおよびNと化合して、固溶Cおよび固溶Nを低減する。これにより、平均r値を向上させる。さらに、熱延板での炭窒化物の析出挙動を制御して熱延および焼鈍起因の線状疵の発生を抑制して表面性状を改善する。これらの効果を得るためにはV量を0.01%以上含有する必要がある。しかし、V量が0.10%を超えると加工性が低下するとともに、製造コストの上昇を招く。そのため、Vを含有する場合は0.01~0.10%の範囲とする。好ましくは0.03~0.08%の範囲である。
V: 0.01-0.10%, Ti: 0.001-0.05%, Nb: 0.001-0.05%, Ca: 0.0002-0.0020%, Mg: 0.0002-0.0050%, B: 0.0002-0.0050%, REM: Of 0.01-0.10% One or more selected from V: 0.01-0.10%
V combines with C and N in the steel to reduce solute C and solute N. This improves the average r value. Furthermore, the surface behavior is improved by controlling the precipitation behavior of carbonitrides on the hot-rolled sheet to suppress the occurrence of linear flaws caused by hot rolling and annealing. In order to obtain these effects, the V content needs to be 0.01% or more. However, if the amount of V exceeds 0.10%, the workability decreases and the manufacturing cost increases. Therefore, when V is contained, the content is made 0.01 to 0.10%. Preferably it is 0.03 to 0.08% of range.
 Ti: 0.001~0.05%、Nb:0.001~0.05%、
TiおよびNbはVと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後(仕上げ焼鈍後)の加工性を向上させる効果がある。これらの効果を得るためには、0.001%以上のTiあるいは0.001%以上のNbを含有する必要がある。しかし、Ti量あるいはNb量が0.05%を超えると、過剰なTiNおよびNbCの析出により良好な表面性状を得ることができない。そのため、Tiを含有する場合は0.001~0.05%の範囲、Nbを含有する場合は0.001~0.05%の範囲とする。Ti量は好ましくは0.003~0.020%の範囲である。Nb量は好ましくは0.005~0.020%の範囲である。さらに好ましくは0.010~0.015%の範囲である。
Ti: 0.001-0.05%, Nb: 0.001-0.05%,
Ti and Nb, like V, are elements with a high affinity for C and N, and precipitate as carbides or nitrides during hot rolling, reducing solid solution C and solid solution N in the matrix, and cold rolling. There is an effect of improving the workability after sheet annealing (after finish annealing). In order to obtain these effects, it is necessary to contain 0.001% or more of Ti or 0.001% or more of Nb. However, if the Ti content or Nb content exceeds 0.05%, it is not possible to obtain good surface properties due to precipitation of excess TiN and NbC. Therefore, when Ti is contained, the range is 0.001 to 0.05%, and when Nb is contained, the range is 0.001 to 0.05%. The amount of Ti is preferably in the range of 0.003 to 0.020%. The amount of Nb is preferably in the range of 0.005 to 0.020%. More preferably, it is in the range of 0.010 to 0.015%.
 Ca: 0.0002~0.0020%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果を得るためには0.0002%以上の含有が必要である。しかし、Ca量が0.0020%を超えるとCaSが生成して耐食性が低下する。そのため、Caを含有する場合は0.0002~0.0020%の範囲とする。好ましくは0.0005~0.0015の範囲である。さらに好ましくは0.0005~0.0010%の範囲である。
Ca: 0.0002-0.0020%
Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire the effect, 0.0002% or more needs to be contained. However, if the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance decreases. Therefore, when Ca is contained, the content is made 0.0002 to 0.0020%. The range is preferably 0.0005 to 0.0015. More preferably, it is in the range of 0.0005 to 0.0010%.
 Mg: 0.0002~0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する。そのため、Mgを含有する場合は0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0035%の範囲である。さらに好ましくは0.0005~0.0020%の範囲である。
Mg: 0.0002-0.0050%
Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when Mg is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
 B: 0.0002~0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する。そのため、Bを含有する場合は0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0035%の範囲である。さらに好ましくは0.0005~0.0020%の範囲である。
B: 0.0002-0.0050%
B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when B is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
 REM: 0.01~0.10%
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜の形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の含有が必要である。しかし、0.10%を超えて含有すると冷延焼鈍時の酸洗性などの製造性を低下させる。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01~0.10%の範囲とする。
REM: 0.01-0.10%
REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film on the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold rolling annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when REM is contained, the content is made 0.01 to 0.10%.
 次に本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は、上記の成分組成を有する鋼スラブに対して、熱間圧延を施した後、900~1050℃の温度範囲で5秒~15分間保持する焼鈍を行い、次いで、冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する焼鈍を行うことで得られる。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The ferritic stainless steel of the present invention is a steel slab having the above component composition, hot-rolled and then annealed at 900 to 1050 ° C. for 5 seconds to 15 minutes, After cold rolling, it is obtained by annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
 まずは、溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。このスラブを、1100~1250℃で1~24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。
その後、フェライト相とオーステナイト相の二相域温度となる900~1050℃の温度で5秒~15分間保持する熱延板焼鈍を行う。
First, molten steel is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method. This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.
Thereafter, hot rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 900 to 1050 ° C., which is a two-phase region temperature of a ferrite phase and an austenite phase.
 次いで、必要に応じて酸洗を施し、冷間圧延および冷延板焼鈍を行う。さらに、必要に応じて酸洗を施して製品とする。 Then, pickling is performed as necessary, and cold rolling and cold rolled sheet annealing are performed. Furthermore, pickling is performed as necessary to obtain a product.
 冷間圧延は伸び性、曲げ性、プレス成形性および形状矯正の観点から、50%以上の圧下率で行うことが好ましい。また、本発明では、冷延-焼鈍を2回以上繰り返しても良い。 Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of extensibility, bendability, press formability, and shape correction. In the present invention, cold rolling and annealing may be repeated twice or more.
 なお、さらに表面性状を向上させるために、研削や研磨等を施してもよい。 In addition, in order to further improve the surface properties, grinding or polishing may be performed.
 製造条件の限定理由について、以下に説明する。 The reasons for limiting the manufacturing conditions will be described below.
 900~1050℃の温度で5秒~15分間保持する熱延板焼鈍
 熱延板焼鈍は本発明が優れた成形性および耐リジング特性を得るために極めて重要な工程である。熱延板焼鈍温度が900℃未満では十分な再結晶が生じないうえ、フェライト単相域となるため、二相域焼鈍によって発現する本発明の効果が得られない場合がある。しかし、焼鈍温度が1050℃を超えると炭化物の固溶が促進されるためにオーステナイト相中へのC濃化が助長され、熱延板焼鈍後に硬質なマルテンサイト相が生成し、表面性状が悪化する場合がある。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもオーステナイト相の生成とフェライト相の再結晶が十分に生じないため、所望の成形性が得られない場合がある。一方、焼鈍時間が15分を超えるとオーステナイト相中へのC濃化が助長され、上記と同様の機構によって表面性状が悪化する場合がある。そのため、熱延板焼鈍は900~1050℃の温度で、5秒~15分間保持する。好ましくは、920~1020℃の温度で15秒~5分間保持である。さらに好ましくは920~1000℃の温度で30秒~3分間保持である。
Hot-rolled sheet annealing held at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes Hot-rolled sheet annealing is an extremely important step for the present invention to obtain excellent formability and ridging resistance. If the hot-rolled sheet annealing temperature is less than 900 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is obtained, so that the effects of the present invention that are manifested by two-phase region annealing may not be obtained. However, when the annealing temperature exceeds 1050 ° C, solid solution of carbide is promoted, so C concentration in the austenite phase is promoted, and a hard martensite phase is generated after hot-rolled sheet annealing, resulting in poor surface properties. There is a case. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, generation of austenite phase and recrystallization of the ferrite phase do not occur sufficiently, so that desired formability may not be obtained. On the other hand, if the annealing time exceeds 15 minutes, C concentration in the austenite phase is promoted, and surface properties may be deteriorated by the same mechanism as described above. Therefore, hot-rolled sheet annealing is held at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes. Preferably, the holding is performed at a temperature of 920 to 1020 ° C. for 15 seconds to 5 minutes. More preferably, the temperature is maintained at 920 to 1000 ° C. for 30 seconds to 3 minutes.
 800~950℃の温度で5秒~5分間保持する冷延板焼鈍
 冷延板焼鈍は熱延板焼鈍で形成したフェライト相とマルテンサイト相の二相組織をフェライト単相組織とするために重要な工程である。冷延板焼鈍温度が800℃未満では再結晶が十分に生じず所定の破断伸びおよび平均r値を得ることができない。一方、冷延板焼鈍温度が950℃を超えた場合、当該温度がフェライト相とオーステナイト相の二相温度域となる鋼成分では冷延板焼鈍後にマルテンサイト相が生成するために鋼板が硬質化し所定の破断伸びを得ることができない。また、当該温度がフェライト単相温度域となる鋼成分であったとしても、結晶粒の著しい粗大化により、鋼板の光沢度が低下するため表面品質の観点で好ましくない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもフェライト相の再結晶が十分に生じないため、所定の破断伸びおよび平均r値を得ることができない。焼鈍時間が5分を超えると、結晶粒が著しく粗大化し、鋼板の光沢度が低下するため表面品質の観点で好ましくない。そのため、冷延板焼鈍は800~950℃の範囲で5秒~5分間保持とする。好ましくは、850℃~900℃で15秒~3分間保持である。より光沢を求めるためにBA焼鈍(光輝焼鈍)を行っても良い。
Cold-rolled sheet annealing, which is held at a temperature of 800-950 ° C for 5 seconds to 5 minutes. Cold-rolled sheet annealing is important for making the two-phase structure of the ferrite phase and martensite phase formed by hot-rolled sheet annealing into a single-phase structure. It is a difficult process. When the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and a predetermined elongation at break and average r value cannot be obtained. On the other hand, when the cold-rolled sheet annealing temperature exceeds 950 ° C, the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. A predetermined elongation at break cannot be obtained. Moreover, even if the temperature is a steel component in the ferrite single-phase temperature range, the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that a predetermined breaking elongation and an average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held at 800 to 950 ° C for 5 seconds to 5 minutes. The holding is preferably performed at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes. In order to obtain more gloss, BA annealing (bright annealing) may be performed.
 以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1150℃で1h加熱後、熱間圧延を施して3.5mm厚の熱延板とした。次いで、これらの熱延板に表2に記載の条件で熱延板焼鈍を施した。次いで、表面にショットブラスト処理と酸洗による脱スケールを行った。さらに、板厚0.7mmまで冷間圧延した後、表2に記載の条件で冷延板焼鈍(仕上げ焼鈍)を行った後、酸洗による脱スケール処理を行い、冷延酸洗焼鈍板を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Stainless steel having the chemical composition shown in Table 1 was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated at 1150 ° C. for 1 h and then hot rolled to form 3.5 mm thick hot rolled sheets. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions described in Table 2. Next, the surface was descaled by shot blasting and pickling. Furthermore, after cold rolling to a sheet thickness of 0.7 mm, after performing cold-rolled sheet annealing (finish annealing) under the conditions shown in Table 2, descaling by pickling is performed to obtain a cold-rolled pickled and annealed sheet It was.
 かくして得られた冷延酸洗焼鈍板について以下の評価を行った。 The cold roll pickling annealed plate thus obtained was evaluated as follows.
 (1)延性の評価
冷延酸洗焼鈍板から、圧延方向と直角にJIS 13B号引張試験片を採取し、引張試験をJIS Z2241に準拠して行い、破断伸びを測定し、各方向の破断伸びが28%以上の場合を合格(○)、一方向でも28%未満のものがある場合を不合格(×)とした。
(1) Evaluation of ductility JIS 13B tensile test specimens were sampled from cold-rolled pickled and annealed sheets at right angles to the rolling direction, tensile tests were performed in accordance with JIS Z2241, and elongation at break was measured. A case where the elongation was 28% or more was judged as acceptable (◯), and a case where the elongation was less than 28% in one direction was regarded as unacceptable (x).
 (2)平均r値の評価
冷延酸洗焼鈍板から、圧延方向に対して平行(L方向)、45°(D方向)およびに直角(C方向)となる方向にJIS 13B号引張試験片を採取し、JIS Z2411に準拠した引張試験をひずみ15%まで行って中断し、各方向のr値を測定し平均r値(=(r+2r+r)/4)を算出した。ここで、r、r、rはそれぞれL方向、D方向およびC方向のr値である。平均r値は0.70以上を合格(○)、0.70未満を不合格(×)とした。
(2) Evaluation of average r value JIS 13B tensile test specimens in the direction parallel to the rolling direction (L direction), 45 ° (D direction) and perpendicular to the rolling direction (C direction) from the cold rolled pickling annealed plate Then, the tensile test based on JIS Z2411 was interrupted to a strain of 15%, the r value in each direction was measured, and the average r value (= (r L + 2r D + r C ) / 4) was calculated. Here, r L , r D , and r C are r values in the L direction, the D direction, and the C direction, respectively. As for the average r value, 0.70 or more was regarded as acceptable (◯), and less than 0.70 was regarded as unacceptable (x).
 (3)耐リジング特性の評価
冷延酸洗焼鈍板から、圧延方向に平行にJIS 5号引張試験片を採取し、その表面を#600のエメリーペーパーを用いて研磨した後、20%の引張ひずみを付与し、その試験片の平行部中央の研磨面で圧延方向に直角の方向に、表面粗度計を用いて、JIS B 0601(2001年)で規定される算術平均うねり(Wa)を、測定長16mm、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmで測定した。算術平均うねり(Wa)が2.5μm以下の場合を合格(○)、2.5μm超の場合を不合格(×)とした。
(3) Evaluation of ridging resistance properties JIS No. 5 tensile test specimens were collected from cold-rolled pickled and annealed sheets parallel to the rolling direction, and the surface was polished with # 600 emery paper, and then 20% tensile. Using a surface roughness meter in the direction perpendicular to the rolling direction on the polished surface at the center of the parallel part of the test piece, strain was applied, and the arithmetic average waviness (Wa) defined in JIS B 0601 (2001) was applied. Measured with a measurement length of 16 mm, a high-cut filter wavelength of 0.8 mm, and a low-cut filter wavelength of 8 mm. Arithmetic mean waviness (Wa) of 2.5 μm or less was accepted (◯), and the case of over 2.5 μm was rejected (×).
 (4)耐食性の評価
冷延酸洗焼鈍板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2h)→乾燥(60℃、4h、相対湿度40%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとして、8サイクル行った。
塩水噴霧サイクル試験を8サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆率が10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした
 評価結果を焼鈍条件と併せて表2に示す。また、Cr含有量が本発明範囲を満たすNo.1~25について、延性の評価結果をSiおよびMn含有量で整理したグラフを図1として示す。
(4) Evaluation of corrosion resistance A 60 x 100 mm test piece was taken from a cold rolled pickled and annealed sheet, and the test piece was prepared by polishing the surface with # 600 emery paper and sealing the end face. Subjected to the prescribed salt spray cycle test. The salt spray cycle test consists of 1 cycle of salt spray (5 mass% NaCl, 35 ° C, spray 2h) → dry (60 ° C, 4h, relative humidity 40%) → wet (50 ° C, 2h, relative humidity ≥95%) As a result, 8 cycles were performed.
Photograph the surface of the specimen after 8 cycles of the salt spray cycle test, measure the rusting area on the specimen surface by image analysis, and determine the rusting rate ((development in the specimen) from the ratio to the total area of the specimen. Rust area / total area of test piece) × 100 [%]) was calculated. Rust rate of 10% or less passed with excellent corrosion resistance (◎), more than 10% 25% or less passed (○), and more than 25% rejected (×). It is shown in 2. Further, FIG. 1 shows a graph in which ductility evaluation results are arranged by Si and Mn contents for Nos. 1 to 25 where the Cr content satisfies the scope of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 鋼成分が本発明の範囲を満たすNo.1~17(鋼AA~AQ)では、破断伸び28%以上、平均r値が0.70以上、リジング高さが2.5μm以下と優れた成形性と耐リジング特性が確認された。さらに耐食性に関しても塩水噴霧サイクル試験を8サイクル実施後の試験片表面の発錆率がいずれも25%以下と良好な特性が得られている。 Nos. 1-17 (steel AA-AQ) whose steel components satisfy the scope of the present invention have excellent formability and ridging resistance such as breaking elongation of 28% or more, average r value of 0.70 or more, and ridging height of 2.5 μm or less. The characteristics were confirmed. Furthermore, regarding corrosion resistance, the rusting rate on the surface of the test piece after 8 cycles of the salt spray cycle test is 25% or less, and good characteristics are obtained.
 特に、Niを0.4%含有したNo.3(鋼AC)、Crを17.7%含有したNo.4(鋼AD)、Cuを0.4%含有したNo.6(鋼AF)およびMoを0.4%含有したNo.7(鋼AG)では、No.1塩水噴霧サイクル試験後の発錆率が10%以下となっており、耐食性が一層向上した。 In particular, No.3 containing 0.4% Ni (steel AC), No.4 containing 17.7% Cr (steel AD), No.6 containing 0.4% Cu (steel AF), and 0.4% Mo In No. 7 (steel AG), the rusting rate after the No. 1 salt spray cycle test was 10% or less, and the corrosion resistance was further improved.
 一方、Cr含有量が本発明の範囲を下回るNo.26(鋼BI)では、所定の成形性および耐リジング特性は得られたものの、Cr含有量が不足したために所定の耐食性が得られなかった。 On the other hand, in No. 26 (steel BI) whose Cr content is lower than the range of the present invention, although predetermined formability and ridging resistance were obtained, the predetermined corrosion resistance was not obtained because the Cr content was insufficient. .
 Cr含有量が本発明の範囲を上回るNo.27(鋼BJ)では、十分な耐食性は得られたが、過剰にCrを含有したために熱延板焼鈍時にオーステナイト相が生成せず、所定の耐リジング特性を得ることができなかった。 In No. 27 (steel BJ), whose Cr content exceeds the range of the present invention, sufficient corrosion resistance was obtained, but since it contained excessive Cr, an austenite phase was not generated during hot-rolled sheet annealing, and the prescribed resistance to resistance was obtained. The ridging characteristics could not be obtained.
 Si含有量が本発明の範囲を下回るNo.18(鋼BA)および25(鋼BH)は、Si含有量が不足したために冷延板焼鈍中にオーステナイト相が生成し、このオーステナイト相が冷却後にマルテンサイト相に変態したために鋼板が硬質化し、所定の破断伸びを得ることができなかった。 No. 18 (steel BA) and 25 (steel BH), whose Si content is below the range of the present invention, produced an austenite phase during cold-rolled sheet annealing because the Si content was insufficient, and this austenite phase was cooled after cooling. Since the steel sheet was transformed into the martensite phase, the steel plate was hardened and a predetermined elongation at break could not be obtained.
 Si含有量が本発明の範囲を上回るNo.19(鋼BB)は、過度のSi含有によって鋼板が硬質化し、所定の破断伸びを得ることができなかった。 In No. 19 (steel BB) having a Si content exceeding the range of the present invention, the steel sheet hardened due to excessive Si content, and a predetermined breaking elongation could not be obtained.
 SiおよびMn含有量は本発明の範囲内であるが、29.5×Si-50×Mn+6が本発明の範囲を下回るNo.20~23(鋼BC~BF)は、SiおよびMn含有量のバランスが適正でなかったために冷延板焼鈍中にオーステナイト相が生成し、このオーステナイト相が冷却後にマルテンサイト相に変態したために鋼板が硬質化し、所定の破断伸びを得ることができなかった。
Mn含有量が本発明の範囲を上回るNo.24(鋼BG)は、過度のMn含有によって29.5×Si-50×Mn+6が本発明の範囲を下回り、冷延板焼鈍中にオーステナイト相が生成し、このオーステナイト相が冷却後にマルテンサイト相に変態したために鋼板が硬質化し、所定の破断伸びを得ることができなかった。以上の評価結果のうち、Cr含有量が本発明範囲を満たすNo.1~25について、延性の評価結果をSiおよびMn含有量で整理したグラフが図1である。所定の破断伸びはSiおよびMn含有量に加え、29.5×Si-50×Mn+6が本発明の範囲を満たした場合に得られていることがわかる。
The Si and Mn contents are within the scope of the present invention, but No. 20 to 23 (steel BC to BF) in which 29.5 × Si-50 × Mn + 6 falls below the scope of the present invention has a balance of Si and Mn contents. Since it was not appropriate, an austenite phase was generated during the cold-rolled sheet annealing, and this austenite phase was transformed into a martensite phase after cooling, so that the steel sheet was hardened and a predetermined breaking elongation could not be obtained.
In No.24 (steel BG), whose Mn content exceeds the range of the present invention, 29.5 × Si-50 × Mn + 6 falls below the range of the present invention due to excessive Mn content, and an austenite phase is formed during cold-rolled sheet annealing. Since the austenite phase was transformed into a martensite phase after cooling, the steel sheet was hardened and a predetermined elongation at break could not be obtained. Of the above evaluation results, FIG. 1 is a graph in which ductility evaluation results are arranged by Si and Mn contents for Nos. 1 to 25 in which the Cr content satisfies the scope of the present invention. It can be seen that the predetermined elongation at break is obtained when 29.5 × Si−50 × Mn + 6 satisfies the scope of the present invention in addition to the Si and Mn contents.
 No.28~30では、所定の成形性および耐リジング特性は得られたもののCr含有量が不足したために所定の耐食性が得られなかった鋼BIを用い、熱延板焼鈍温度および冷延板焼鈍温度の成形性および耐リジング特性に対する影響を検討した。熱延板焼鈍温度が本発明範囲を下回る880℃のNo.28は、熱延板焼鈍時にオーステナイト相が生成せず、所定の耐リジング特性が得られなかった。冷延板焼鈍温度が本発明範囲を下回る780℃のNo.29は、冷延板焼鈍時にフェライト結晶粒の粒成長が不足し、所定の成形性(破断伸びおよび平均r値)が得られなかった。冷延板焼鈍温度を本発明範囲を上回る970℃のNo.30は、冷延板焼鈍中にオーステナイト相が生成し、このオーステナイト相が冷却後にマルテンサイト相に変態したために鋼板が硬質化し、所定の破断伸びを得ることができなかった。 In Nos. 28-30, steel BI was used that had the prescribed formability and ridging resistance but did not have the prescribed corrosion resistance due to insufficient Cr content. The effects of temperature on formability and ridging resistance were investigated. No. 28 having an annealing temperature of 880 ° C., which is lower than the range of the present invention, did not generate an austenite phase during the hot rolling annealing, and a predetermined ridging resistance characteristic could not be obtained. No. 29, which has a cold rolled sheet annealing temperature of 780 ° C below the scope of the present invention, has insufficient ferrite crystal grain growth during cold rolled sheet annealing, and the predetermined formability (breaking elongation and average r value) cannot be obtained. It was. No. 30 of 970 ° C, which exceeds the cold rolled sheet annealing temperature of the present invention, the austenite phase was generated during cold rolled sheet annealing, and the steel sheet became hardened because this austenite phase was transformed into a martensite phase after cooling. The elongation at break could not be obtained.
 本発明で得られるフェライト系ステンレス鋼は、絞りを主体としたプレス成形品や高い表面美麗性を要求される用途、例えば厨房器具や食器への適用に特に好適である。 The ferritic stainless steel obtained in the present invention is particularly suitable for press-molded products mainly composed of a drawing and applications requiring high surface beauty, such as kitchen utensils and tableware.

Claims (5)

  1.  質量%で、C:0.005~0.035%、Si:0.25~0.40未満%、Mn: 0.05~0.35%、P: 0.040%以下、S: 0.01%以下、Cr: 15.5~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、SiおよびMnが29.5×Si-50×Mn+6≧0(ただし、式中のSi、Mnは含有量(質量%)を示す)を満たし、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。 In mass%, C: 0.005 to 0.035%, Si: 0.25 to less than 0.40%, Mn: 0.05 to 0.35%, P: 0.040% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10 %, N: 0.01-0.06%, Si and Mn satisfy 29.5 × Si-50 × Mn + 6 ≧ 0 (where Si and Mn indicate content (mass%)), the balance A ferritic stainless steel characterized by comprising Fe and inevitable impurities.
  2.  質量%で、さらに、Cu:0.1~0.5%、Ni: 0.1~0.6%、Mo: 0.1~0.5%、Co: 0.01~0.3%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1に記載のフェライト系ステンレス鋼。 It is characterized by containing one or more selected from Cu: 0.1 to 0.5%, Ni: 0.1 to 0.6%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.3%. The ferritic stainless steel according to claim 1.
  3.  質量%で、さらに、V: 0.01~0.10%、Ti: 0.001~0.05%、Nb: 0.001~0.05%、Ca: 0.0002~0.0020%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1または2に記載のフェライト系ステンレス鋼。 In mass%, V: 0.01-0.10%, Ti: 0.001-0.05%, Nb: 0.001-0.05%, Ca: 0.0002-0.0020%, Mg: 0.0002-0.0050%, B: 0.0002-0.0050%, REM: The ferritic stainless steel according to claim 1 or 2, comprising one or more selected from 0.01 to 0.10%.
  4.  圧延方向と直角方向の破断伸びが28%以上、平均ランクフォード値が0.70以上、リジング高さが2.5μm以下であることを特徴とする請求項1~3のいずれか一項に記載のフェライト系ステンレス鋼。 The ferrite system according to any one of claims 1 to 3, wherein the elongation at break in the direction perpendicular to the rolling direction is 28% or more, the average Rankford value is 0.70 or more, and the ridging height is 2.5 µm or less. Stainless steel.
  5.  請求項1~4のいずれか一項に記載のフェライト系ステンレス鋼の製造方法であって、鋼スラブに対して、熱間圧延を施した後、900~1050℃の温度範囲で5秒~15分間保持する焼鈍を行い、次いで、冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する焼鈍を行うことを特徴とするフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel according to any one of claims 1 to 4, wherein the steel slab is hot-rolled and then subjected to a temperature range of 900 to 1050 ° C for 5 seconds to 15 seconds. A method for producing a ferritic stainless steel, characterized in that annealing is performed for a minute, followed by cold rolling, followed by annealing at a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
PCT/JP2014/005038 2014-10-02 2014-10-02 Ferritic stainless steel and method for producing same WO2016051437A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/005038 WO2016051437A1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and method for producing same
CN201480082384.4A CN106715740B (en) 2014-10-02 2014-10-02 Ferrite-group stainless steel and its manufacturing method
US15/516,584 US20180265951A1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and method for manufacturing the same
KR1020177008704A KR101941066B1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and method for manufacturing the same
JP2015533329A JP5904310B1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and manufacturing method thereof
TW104122008A TW201614079A (en) 2014-10-02 2015-07-07 Ferritic stainless steel and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/005038 WO2016051437A1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and method for producing same

Publications (1)

Publication Number Publication Date
WO2016051437A1 true WO2016051437A1 (en) 2016-04-07

Family

ID=55629539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005038 WO2016051437A1 (en) 2014-10-02 2014-10-02 Ferritic stainless steel and method for producing same

Country Status (6)

Country Link
US (1) US20180265951A1 (en)
JP (1) JP5904310B1 (en)
KR (1) KR101941066B1 (en)
CN (1) CN106715740B (en)
TW (1) TW201614079A (en)
WO (1) WO2016051437A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3231882B1 (en) * 2014-12-11 2020-01-15 JFE Steel Corporation Stainless steel and production method therefor
JP2019081916A (en) * 2017-10-27 2019-05-30 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing the same
CN109881082A (en) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 A kind of automobile exhaust system cold end ferritic stainless steel and preparation method thereof
WO2022085708A1 (en) * 2020-10-23 2022-04-28 日鉄ステンレス株式会社 Ferritic stainless steel, and method for manufacturing ferritic stainless steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112692A (en) * 1997-06-25 1999-01-19 Kawasaki Steel Corp Ferritic stainless steel having excellent antibacterial property
JPH11350088A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Ind Ltd Ferritic stainless steel material and its production
JP2000273547A (en) * 1999-03-19 2000-10-03 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface property
JP2006299374A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet superior in corrosion resistance and anti-ridging property, and manufacturing method therefor
JP2009275268A (en) * 2008-05-16 2009-11-26 Jfe Steel Corp Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP2010047822A (en) * 2008-08-25 2010-03-04 Jfe Steel Corp Stainless cold rolled steel sheet having excellent blanking property and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581801A (en) 1981-06-26 1983-01-07 Sony Corp Record player
JPS584881A (en) 1981-06-26 1983-01-12 三菱レイヨン株式会社 Dyeing of triacetate fiber
JP2001089815A (en) * 1999-09-22 2001-04-03 Kawasaki Steel Corp Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001271143A (en) * 2000-03-28 2001-10-02 Nisshin Steel Co Ltd Ferritic stainless steel excellent in ridging resistance and its production method
JP2006274436A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Ferritic stainless sheet sheet and steel tube for bent tube having sectional shape for components
KR101279052B1 (en) * 2009-12-23 2013-07-02 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR101600156B1 (en) * 2011-06-16 2016-03-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR101522077B1 (en) * 2012-12-20 2015-05-20 주식회사 포스코 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112692A (en) * 1997-06-25 1999-01-19 Kawasaki Steel Corp Ferritic stainless steel having excellent antibacterial property
JPH11350088A (en) * 1998-06-11 1999-12-21 Sumitomo Metal Ind Ltd Ferritic stainless steel material and its production
JP2000273547A (en) * 1999-03-19 2000-10-03 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface property
JP2006299374A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet superior in corrosion resistance and anti-ridging property, and manufacturing method therefor
JP2009275268A (en) * 2008-05-16 2009-11-26 Jfe Steel Corp Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP2010047822A (en) * 2008-08-25 2010-03-04 Jfe Steel Corp Stainless cold rolled steel sheet having excellent blanking property and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
US11401573B2 (en) 2017-04-25 2022-08-02 Jfe Steel Corporation Ferritic stainless steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
TW201614079A (en) 2016-04-16
JPWO2016051437A1 (en) 2017-04-27
KR20170044741A (en) 2017-04-25
JP5904310B1 (en) 2016-04-13
CN106715740A (en) 2017-05-24
TWI560283B (en) 2016-12-01
US20180265951A1 (en) 2018-09-20
CN106715740B (en) 2019-09-27
KR101941066B1 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
JP5534119B1 (en) Ferritic stainless steel
TWI546389B (en) Fat iron stainless steel plate
WO2016092714A1 (en) Ferrite-based stainless steel and production method therefor
TWI567208B (en) Stainless steel and its manufacturing method
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
WO2014045476A1 (en) Ferritic stainless steel
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP4675771B2 (en) Ferritic stainless steel wire for glass encapsulation
JP5928669B1 (en) Ferritic stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008704

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15516584

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14903337

Country of ref document: EP

Kind code of ref document: A1