JP4060407B2 - Method for producing soft magnetic stainless steel sheet for motor yoke - Google Patents

Method for producing soft magnetic stainless steel sheet for motor yoke Download PDF

Info

Publication number
JP4060407B2
JP4060407B2 JP24029297A JP24029297A JP4060407B2 JP 4060407 B2 JP4060407 B2 JP 4060407B2 JP 24029297 A JP24029297 A JP 24029297A JP 24029297 A JP24029297 A JP 24029297A JP 4060407 B2 JP4060407 B2 JP 4060407B2
Authority
JP
Japan
Prior art keywords
stainless steel
leveler
soft magnetic
less
steepness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24029297A
Other languages
Japanese (ja)
Other versions
JPH1157812A (en
Inventor
龍二 広田
広 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP24029297A priority Critical patent/JP4060407B2/en
Publication of JPH1157812A publication Critical patent/JPH1157812A/en
Application granted granted Critical
Publication of JP4060407B2 publication Critical patent/JP4060407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets

Description

【0001】
【発明の属する技術分野】
本発明は、ステッピングモーターなどのモーターに用いられているステータヨークなどのヨーク用の材料として提供される軟磁性ステンレス鋼板の製造方法に関するものである。
【0002】
【従来の技術】
従来より、ステッピングモーターには、ステータヨークなどのヨークを構成する材料として、電磁軟鉄(SUY)、ケイ素鋼板、Znめっき鋼板(SEC)などが用いられている。かかる鋼板は、熱間加工、冷間加工、熱処理などが施されており、この鋼板を打ち抜き、あるいはプレス加工することにより、モーターのヨークなどとして使用される。
【0003】
一般に、ステッピングモーターなどに用いるヨーク材の特性は、省電力化、高出力化のためには直流磁気特性ばかりでなく、実際のモータ駆動時における交流磁気特性が良いことが必要である。したがって、ステッピングモーターとして十分な出力トルクを得るためには、ヨークに用いる素材の特性として高い交流での磁束密度が必要となる。
【0004】
そこで、磁束密度が高く、かつ、耐食性に優れている軟磁性材料としてFe−Cr系合金が開発され、特開平5−255817、特開平8−47235、特開平8−120420などが開示されている。
【0005】
特開平5−255817は、Fe−Cr系合金にSiを添加し、Al、Tiを低減し、S、Oの含有量を制御することにより、磁気特性の向上を図っている。
【0006】
特開平8−47235は、Fe−Cr系合金にC,Si,Mn等の添加物を制御し、かつ、所定のF値を満たすように調整することにより、磁気特性の向上を図っている。
【0007】
特開平8−120420は、Fe−Cr系合金にC,Si,Mn等の添加物を制御し、かつ、所定のF値を満たすように調整した軟磁性ステンレス鋼について、F値に応じた条件下で磁気焼鈍を施すことにより、磁気特性の向上を図っている。
【0008】
【発明が解決しようとする課題】
上記開示された発明、例えば特開平5−255817では、モーターのヨークに使用するFe−Cr合金は、熱間圧延、冷間加工、熱処理等を施しステンレス鋼板とされた後、打ち抜き、または、プレス加工が施され所定のヨ−ク形状に加工される。しかし、圧延条件や熱処理条件によっては、鋼板の平坦度が保てなくなりヨーク形状の加工が困難となる場合がある。また、加工が可能な場合であっても、所望のヨ−ク形状や寸法精度が得られず、多くの不良品が発生したりモーター特性がばらつくなどという問題がおこっていた。
【0009】
このような場合には、平坦度の保てない鋼板にレベラー通板を施すことにより、鋼板の形状を矯正することになる。しかし、レベラー通板を行うことは、同時に鋼板に加工歪みを付与することになり、磁束密度が低下することになる。さらに、許容される平坦度の鋼板であっても、この鋼板の打ち抜きまたはプレス加工により成形されるヨークは、このプレス加工によって加えられた加工歪みによっても、ヨークの磁気特性は劣化する。 すなわち、プレス加工時に加えられた歪みが、ヨークの磁束密度の低下をもたらし、モータのトルクの低下を招く。つまり、上記Fe−Cr合金を用いた効果が十分に発揮し得ない。
【0010】
したがって、ヨーク形状に加工時に付与された加工歪みを除去し、ヨークの磁気特性を付与するため加工後に焼鈍を行う必要がある。通常、磁気焼鈍は、850℃〜1,150℃で、30分〜3時間もの長時間、水素雰囲気下、水素窒素雰囲気下あるいは真空下で行なわれる。磁気焼鈍は工程を煩雑化するとともに長時間を要するため、生産性の低下の原因となり消費財を要して生産コストの増大を招く。
【0011】
そこで、本発明の課題は、磁気焼鈍を施すことなく高い磁束密度を有し、かつ、加工性が良好なモーターヨーク用の軟磁性ステンレス鋼板を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明では、重量%で、C:0.04%以下、Si:0.1%〜3.0%、Mn:1.0%以下、P:0.04%以下、S:0.01%以下、Cr:8.0%〜18.0%、N:0.04%以下、Ni:1.0%以下、Al:5.0%以下、Ti:1.0%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、最終板厚まで冷間圧延後、仕上げ焼鈍を施した軟磁性ステンレス鋼板について、該軟磁性鋼板の急峻度が1.5%を越えた場合に、伸び率1%以内でレベラー通板を施すという構成を採用した。
【0013】
この構成によれば、各種モーターのヨークに最適な高い最大磁束密度Bmと優れた加工性とを兼ね備えた軟磁性ステンレス鋼を得ることが可能となる。
【0014】
【発明の実施の形態】
[成分元素]
本発明は、所定の加工を施した軟磁性ステンレス鋼板の急峻度が1.5%を越えた場合に、伸び率1%以内でレベラー通板を施すことを見いだした点に特徴を有するものであるが、軟磁性ステンレス鋼板各成分についてはそれぞれの理由により、その含有量が規制されなければならない。まず、本発明の対象となる鋼の成分元素について説明する。
【0015】
Cは、炭化物を形成しやすく磁気特性および耐食性を劣化させるため、0.04重量%以下に限定した。
【0016】
Siは、フェライト生成元素であり、そして、電気抵抗率を増加させ、交流での磁気特性を向上させるのに有効に作用する元素である。当該鋼において、フェライト単相組織を確保し、磁気特性を付与するためには0.1重量%を越える量で含有する必要がある。しかし、3.0重量%を越えると逆に磁束密度が低下するとともに、硬度が増加し加工性が劣化するため、打ち抜き、プレス成形が困難となる。したがって、Siの含有量は0.1重量%を越え3.0重量%以下に限定した。
【0017】
Mnは、製鋼時の脱酸に必要な元素であるが、磁気特性を劣化させるため上限を1.0重量%とした。
【0018】
Pは、磁気特性を劣化させる元素であり、その上限を0.04重量%以下とした。
【0019】
Sは、不純物元素であるSは硫化物を形成しやすく磁気特性を著しく劣化させる元素であるため低く抑える必要がある。したがって、上限を0.01重量%以下に限定した。
【0020】
Crは、本発明鋼の用途に必要な耐食性を確保するのに必要な元素であり、さらに、鋼の電気抵抗率を増加させ、交流での磁気特性の向上に寄与することから、8.0重量%以上含有する必要がある。しかし、Crを多量に含有させると磁束密度が低下するため、その上限を18.0重量%とした。
【0021】
Nは、Alなどと窒化物を形成して、磁気特性、耐食性を劣化させる元素であるため、その上限を0.04重量%とした。
【0022】
Niは、オーステナイト生成元素であり、磁気特性を劣化させるため、その上限を1.0重量%とした。
【0023】
Alは、鋼の脱酸剤として添加される元素であり、脱酸にともなって不純物を低減し、また、電気抵抗率を増加することにより磁気特性を向上させる。しかし、過剰に添加すると材料は脆くなり加工性が低下するため、上限を5.0重量%とした。
【0024】
Tiは、Crより安定に炭化物を形成するため、耐食性の改善に有効に寄与するとともに、磁気特性に有害なマルテンサイト相の生成を防止する。しかし、過剰に添加すると硬度が増加し加工性が悪くなるため、上限を1.0重量%とした。
【0025】
次に、レベラー通板伸び率と最大磁束密度、急峻度との関係を調査した。
【0026】
[レベラー通板伸び率と最大磁束密度との関係]
本発明者らは表1に示す本発明を満たす化学組成を有する鋼板を種々の伸び率でレベラー通板をおこない、周波数1000Hz、印加磁場10エルステッドの条件下での最大磁束密度Bmとレベラー通板時の伸び率との関係を調査した。
【0027】
ここで、周波数1000Hz、印加磁場10エルステッドの条件を選択した理由は、本発明の用途であるモーターは駆動周波数1000Hz程度、印加磁場10エルステッド以上にて使用される場合が多いからである。
【0028】
なお、Bmは、打ち抜き、プレスによる加工後に切削により磁気測定用リング試験片加工後、磁気焼鈍を施さずに測定した値である。
【0029】
図1に本試験結果を示す。Bmはレベラー通板時の伸び率の増加にともない低下する傾向を示す。レベラー通板を伸び率1%以内でおこなうことにより、モータが駆動するために必要な4000G以上のBmが得られることがわかる。
【0030】
すなわち、本発明者らは鋼板表面のレベラー通板時の伸び率を調整することにより、鋼板の形状、および、磁束密度を制御できることを見い出した。
【0031】
【表1】

Figure 0004060407
【0032】
[レベラー通板伸び率と急峻度との関係]
本発明において、表面の平坦度を表す指標として急峻度を採用した。
急峻度の定義:鋼板の表面平坦度を表す指標である。すなわち、レベラー通板後の供試鋼から1000mm×1000mmの大きさの試験片を採取し、その試験片を表面が平坦な定盤の上に置く。そして、定盤と鋼との接点間距離lおよび鋼板の最大高さhを測定して、その比を百分率で表示することにより急峻度を表した。
急峻度(%)= h/l×100
【0033】
この急峻度が大きいと、ヨーク形状の加工が困難となり、また、加工が可能な場合であっても、所望のヨ−ク形状や寸法精度が得られないことから、鋼板の急峻度が小さいことが要求される。通常、この急峻度が1.5%以内であれば、打ち抜き、プレス加工を行なう際には問題とはならない。
【0034】
しかし、鋼板加工時の圧延条件、焼鈍条件が微妙に変化するだけでも、急峻度は大きく変動しするため、急峻度が1.5%以内の鋼板を安定して製造するのは困難となっている。そのため、予期せずに急峻度が1.5%を越える鋼板が製造される場合が生じる。かかる場合は、鋼板の形状を矯正する手段としてレベラー通板が行われる。
【0035】
仕上げ焼鈍後の急峻度が2.2%の鋼板を用いて、種々の伸び率でレベラー通板を行い、急峻度の変化を調査した結果を図3に示した。
【0036】
図3に本試験結果を示す。急峻度はレベラー通板時の伸び率の増加にともない低下する傾向を示す。そして、鋼板の急峻度を1.5%以内にするためには、レベラー通板を伸び率0.05%以上でおこなうことが必要であることがわかる。したがって、レベラー通板を伸び率0.05%以上でおこなうことにより、急峻度が1.5%を越える鋼板を、1.5%以内の急峻度にすることができる。そして、かかる鋼板を用いてヨーク形状に加工するに際し、安定した打ち抜きプレス加工を施すことができる。
【0037】
なお、仕上げ焼鈍後の急峻度が1.5%以内場合は、そのままでも安定した打ち抜き、プレス加工を施すことができるので、レベラー通板をおこなう必要はない。
【0038】
以上の結果をまとめると、図1に示すレベラー通板の伸び率と最大磁束密度Bm(G)の関係から、レベラー通板の伸び率を1.0%以内することが望ましく、また、図3に示すレベラー通板の伸び率と急峻度の関係から、レベラー通板の伸び率を0.05%にすることが望ましい。したがって、この両方の関係を満たすこと、すなわち、伸び率を0.05%から1%とするレベラー通板を行うことにより、最適の磁束密度と良好な加工性とを同時に満たす鋼板を得られることがわかる。
【0039】
【実施例】
次に、本発明にしたがう軟磁性ステンレス鋼をヨークに適用したときの材料特性を実施例をあげて説明する。
【0040】
表2に示した化学成分値を有するステンレス鋼を、電気炉、転炉、脱ガス、連続鋳造工程を経て溶製し、厚さ200mmのスラブを得た。そして、そのスラブを熱間圧延、焼鈍酸洗を施した後冷間圧延おこない最終板厚0.8mmの軟磁性ステンレス鋼板を製造した。その後、この軟磁性ステンレス鋼板を950℃の温度で0分間の仕上げ焼鈍を施し、硝酸電解により酸洗した。そして、かかる鋼板について、表2に示す各伸び率にてレベラー通板をおこなったものを供試鋼板として、急峻度、最大磁束密度Bm、耐食性の材料特性評価を行なった。以下、本試験結果について説明する。なお、表2において、A1〜A5は、本発明に従う化学成分値をもつ鋼、B1〜B3は、鋼の化学成分またはレベラー通板の伸び率について規格値外の比較例である。
【0041】
[実施例1]
A1:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、伸び率が0.30%のレベラー通板を施したもの。
【0042】
[実施例2]
A2:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、レベラー通板を施さなかったもの。
【0043】
[実施例3]
A3:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、伸び率が0.35%のレベラー通板を施したもの。
【0044】
[実施例4]
A4:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、伸び率が0.45%のレベラー通板を施したもの。
【0045】
[実施例5]
A5:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、伸び率が0.50%のレベラー通板を施したもの。
【0046】
[比較例1]
B1:化学成分のうちPを本発明の規格値以上に含み、かつ、Crを規格値以下に含む軟磁性ステンレス鋼板に伸び率が0.50%のレベラー通板を施したもの。
【0047】
[比較例2]
B2:Crを本発明の規格値以上に含む軟磁性ステンレス鋼板に、伸び率が0.50%のレベラー通板を施したもの。
【0048】
[比較例3]
B3:本発明に従う化学成分値をもつ軟磁性ステンレス鋼板に、本発明の規格値以上の伸び率1.40%のレベラー通板を施したもの。
【0049】
【表2】
Figure 0004060407
【0050】
次に、各供試鋼板について、急峻度、最大磁束密度Bm、耐食性の材料特性評価の結果について説明する。
【0051】
[試験例1]
(急峻度)
前記した急峻度の測定方法により、レベラー通板後の急峻度を測定した。
【0052】
[試験例2]
(最大磁束密度Bm)
各供試鋼板から切削加工により外径45mm内径33mmの磁気測定用リング試験片を採取した。その後、周波数1000Hz、印加磁場10エルステッドの条件下で磁気測定をおこないBmを評価した。
【0053】
[試験例3]
(耐食性)
耐食性の評価は、JlSZ2371に準拠した24時間の塩水噴霧試験により耐食性を評価した。評価は目視判定によりおこない、ほとんど錆が発生しないものを耐食性が良好な○とし、面積率で10%以上の錆が発生したものを耐食性が不良な×とした。
【0054】
表3に以上の調査結果を示す。各供試鋼板A1〜A5は本発明の化学組成を有し、かつ、本発明の範囲内の伸び率によりレベラー通板を施したので、急峻度が1.5%以下と形状に優れ、Bmが4000G以上と優れた磁気特性を示し、かつ耐食性も良好な軟磁性ステンレス鋼板が得られた。
【0055】
これに対して、比較例であるB1は、レベラー通板時の伸び率が本発明の範囲内にあるので急峻度は1.5%以内となる。Cr量とP量が5.04重量%と本発明範囲より少ないことから最大磁束密度Bmが3200Gと低くなり、また、Cr量が少ないことより耐食性も不良となった。
【0056】
B2は、Cr量が20.01重量%と本発明の範囲より含有量が多いので、最大磁束密度Bmが3600Gと低いものとなった。
【0057】
B3は、レベラー通板時の伸び率が1.40%と本発明の範囲外にあるため最大磁束密度Bmが2800Gと低いものとなった。
【0058】
【表3】
Figure 0004060407
【0059】
【発明の効果】
以上の説明から明らかなように、本発明によれば、鋼板のプレス加工後に磁気焼鈍を施すことなく、最適な最大磁束密度Bmと優れた加工性とを兼ね備えたステッピングモーターのヨーク用軟磁性ステンレス鋼板を得ることができる。その結果、大幅な生産性向上を図ることができ、安価なヨークを提供することができる。
【図面の簡単な説明】
【図1】周波数1000Hz、印加磁場10エルステッドの条件下での最大磁束密度Bmとレベラー通板時の伸び率との関係を示した図。
【図2】急峻度を説明するための図。
【図3】仕上げ焼鈍後の急峻度が2.2%の鋼板を種々の伸び率でレベラー通板した後の急峻度を示した図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a soft magnetic stainless steel plate provided as a material for a yoke such as a stator yoke used in a motor such as a stepping motor.
[0002]
[Prior art]
Conventionally, electromagnetic soft iron (SUY), silicon steel plate, Zn-plated steel plate (SEC), etc. are used for stepping motors as materials constituting yokes such as stator yokes. Such a steel sheet is subjected to hot working, cold working, heat treatment, and the like, and is used as a motor yoke or the like by punching or pressing the steel sheet.
[0003]
In general, the properties of a yoke material used for a stepping motor and the like need to have not only DC magnetic characteristics but also good AC magnetic characteristics during actual motor driving in order to save power and increase output. Therefore, in order to obtain a sufficient output torque as a stepping motor, a magnetic flux density at a high alternating current is required as a characteristic of the material used for the yoke.
[0004]
Therefore, Fe—Cr alloys have been developed as soft magnetic materials having high magnetic flux density and excellent corrosion resistance, and Japanese Patent Laid-Open Nos. 5-255817, 8-47235, and 8-120420 are disclosed. .
[0005]
Japanese Patent Application Laid-Open No. 5-255817 aims to improve magnetic properties by adding Si to an Fe—Cr alloy, reducing Al and Ti, and controlling the contents of S and O.
[0006]
JP-A-8-47235 attempts to improve magnetic properties by controlling an additive such as C, Si, Mn and the like in an Fe—Cr alloy and adjusting it to satisfy a predetermined F value.
[0007]
Japanese Patent Application Laid-Open No. 8-120420 discloses a condition according to an F value for a soft magnetic stainless steel which is controlled so as to satisfy a predetermined F value by controlling an additive such as C, Si, and Mn in an Fe—Cr alloy. Magnetic properties are improved by magnetic annealing below.
[0008]
[Problems to be solved by the invention]
In the above disclosed invention, for example, Japanese Patent Laid-Open No. 5-255817, the Fe—Cr alloy used for the motor yoke is subjected to hot rolling, cold working, heat treatment, etc. to form a stainless steel plate, and then punched or pressed. Processing is performed to form a predetermined yoke shape. However, depending on the rolling conditions and heat treatment conditions, the flatness of the steel sheet cannot be maintained, and it may be difficult to process the yoke shape. Even when processing is possible, the desired yoke shape and dimensional accuracy cannot be obtained, and many defective products are generated and motor characteristics vary.
[0009]
In such a case, the shape of the steel plate is corrected by applying a leveler through plate to the steel plate that cannot maintain flatness. However, performing the leveler passing plate simultaneously imparts a working strain to the steel plate, resulting in a decrease in magnetic flux density. Furthermore, even if the steel sheet has an acceptable flatness, the yoke formed by stamping or pressing the steel sheet also deteriorates the magnetic characteristics of the yoke due to processing strain applied by the pressing process. That is, the distortion applied at the time of press work brings about a decrease in the magnetic flux density of the yoke and a decrease in the torque of the motor. That is, the effect using the Fe—Cr alloy cannot be sufficiently exhibited.
[0010]
Therefore, it is necessary to perform annealing after the processing in order to remove the processing strain applied to the yoke shape during processing and to impart the magnetic characteristics of the yoke. Usually, magnetic annealing is performed at 850 ° C. to 1,150 ° C. for 30 minutes to 3 hours for a long time in a hydrogen atmosphere, a hydrogen nitrogen atmosphere, or a vacuum. Since magnetic annealing complicates the process and requires a long time, it causes a decrease in productivity and requires consumer goods, resulting in an increase in production cost.
[0011]
Therefore, an object of the present invention is to provide a soft magnetic stainless steel plate for a motor yoke that has a high magnetic flux density and is excellent in workability without being subjected to magnetic annealing.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, by weight, C: 0.04% or less, Si: 0.1% to 3.0%, Mn: 1.0% or less, P: 0.04% Hereinafter, S: 0.01% or less, Cr: 8.0% to 18.0%, N: 0.04% or less, Ni: 1.0% or less, Al: 5.0% or less, Ti: 1. For a soft magnetic stainless steel plate containing 0% or less, the balance of Fe and inevitable impurities remaining, cold-rolled to the final plate thickness and then subjected to finish annealing, the steepness of the soft magnetic steel plate is 1. When exceeding 5%, a configuration in which leveler threading is applied within an elongation of 1% is adopted.
[0013]
According to this configuration, it is possible to obtain a soft magnetic stainless steel having both a high maximum magnetic flux density Bm optimum for a yoke of various motors and excellent workability.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[Component elements]
The present invention is characterized in that it has been found that when a steepness of a soft magnetic stainless steel sheet subjected to predetermined processing exceeds 1.5%, a leveler passing plate is applied within an elongation of 1%. However, the content of each component of the soft magnetic stainless steel sheet must be regulated for each reason. First, the constituent elements of steel that is the subject of the present invention will be described.
[0015]
C is limited to 0.04% by weight or less because it easily forms carbides and deteriorates magnetic properties and corrosion resistance.
[0016]
Si is a ferrite-forming element, and is an element that effectively acts to increase the electrical resistivity and improve the magnetic characteristics at alternating current. In the steel, it is necessary to contain it in an amount exceeding 0.1% by weight in order to secure a ferrite single phase structure and to impart magnetic properties. However, if it exceeds 3.0% by weight, the magnetic flux density decreases, and the hardness increases and the workability deteriorates, so that punching and press molding become difficult. Therefore, the Si content is limited to more than 0.1% by weight and not more than 3.0% by weight.
[0017]
Mn is an element necessary for deoxidation during steelmaking, but the upper limit was set to 1.0% by weight in order to deteriorate the magnetic properties.
[0018]
P is an element that deteriorates the magnetic properties, and its upper limit is set to 0.04% by weight or less.
[0019]
S is an impurity element, and S is an element that easily forms sulfides and significantly deteriorates magnetic properties, so it is necessary to keep it low. Therefore, the upper limit is limited to 0.01% by weight or less.
[0020]
Cr is an element necessary to ensure the corrosion resistance necessary for the use of the steel of the present invention, and further increases the electrical resistivity of the steel and contributes to the improvement of the magnetic properties at alternating current. It is necessary to contain at least wt%. However, since the magnetic flux density is lowered when a large amount of Cr is contained, the upper limit is set to 18.0% by weight.
[0021]
N is an element that forms a nitride with Al or the like and degrades magnetic properties and corrosion resistance, so the upper limit was made 0.04% by weight.
[0022]
Ni is an austenite-forming element, and its upper limit is set to 1.0% by weight in order to deteriorate the magnetic properties.
[0023]
Al is an element added as a deoxidizer for steel. Impurities are reduced with deoxidation, and magnetic properties are improved by increasing electrical resistivity. However, if added excessively, the material becomes brittle and the workability decreases, so the upper limit was made 5.0% by weight.
[0024]
Since Ti forms carbides more stably than Cr, it contributes effectively to improving corrosion resistance and prevents the formation of martensite phases that are harmful to magnetic properties. However, if added in excess, the hardness increases and the workability deteriorates, so the upper limit was made 1.0% by weight.
[0025]
Next, the relationship between the leveler plate elongation, the maximum magnetic flux density, and the steepness was investigated.
[0026]
[Relationship between leveler plate elongation and maximum magnetic flux density]
The present inventors perform leveler passing through steel plates having chemical compositions satisfying the present invention shown in Table 1 at various elongation rates, and the maximum magnetic flux density Bm and leveler passing plate under conditions of a frequency of 1000 Hz and an applied magnetic field of 10 oersted. The relationship with the rate of time growth was investigated.
[0027]
Here, the reason for selecting the condition of the frequency of 1000 Hz and the applied magnetic field of 10 Oersted is that the motor that is the application of the present invention is often used at a drive frequency of about 1000 Hz and an applied magnetic field of 10 Oersted or higher.
[0028]
Bm is a value measured without performing magnetic annealing after machining a ring test piece for magnetism measurement by cutting after punching and pressing.
[0029]
FIG. 1 shows the results of this test. Bm shows a tendency to decrease as the elongation rate increases when the leveler is passed. It can be seen that Bm of 4000 G or more necessary for driving the motor can be obtained by performing the leveler threading within 1% elongation.
[0030]
That is, the present inventors have found that the shape of the steel sheet and the magnetic flux density can be controlled by adjusting the elongation rate when the leveler passes through the steel sheet surface.
[0031]
[Table 1]
Figure 0004060407
[0032]
[Relationship between leveler plate elongation and steepness]
In the present invention, steepness is adopted as an index representing the flatness of the surface.
Definition of steepness: an index representing the surface flatness of a steel sheet. That is, a test piece having a size of 1000 mm × 1000 mm is taken from the test steel after passing through the leveler, and the test piece is placed on a surface plate having a flat surface. Then, the distance l between the contact points between the surface plate and the steel and the maximum height h of the steel plate were measured, and the ratio was displayed as a percentage to express the steepness.
Steepness (%) = h / l x 100
[0033]
If this steepness is large, it is difficult to process the yoke shape, and even if processing is possible, the desired yoke shape and dimensional accuracy cannot be obtained, so the steepness of the steel sheet is small. Is required. Usually, if this steepness is within 1.5%, there is no problem when performing punching and pressing.
[0034]
However, even if the rolling conditions and annealing conditions at the time of steel plate processing change slightly, the steepness fluctuates greatly, making it difficult to stably produce steel sheets with steepness within 1.5%. Yes. Therefore, a steel sheet having a steepness exceeding 1.5% may be produced unexpectedly. In such a case, leveler threading is performed as means for correcting the shape of the steel sheet.
[0035]
FIG. 3 shows the result of investigating the change of the steepness by using the steel plate having a steepness of 2.2% after the finish annealing and performing leveler passing at various elongation rates.
[0036]
FIG. 3 shows the results of this test. The steepness tends to decrease as the elongation rate increases when the leveler passes through. It can be seen that in order to make the steepness of the steel sheet within 1.5%, it is necessary to perform the leveler threading at an elongation of 0.05% or more. Therefore, by performing leveler threading at an elongation of 0.05% or more, a steel sheet having a steepness exceeding 1.5% can be made steepness within 1.5%. And when processing into a yoke shape using this steel plate, the stable stamping press work can be given.
[0037]
When the steepness after finish annealing is within 1.5%, stable punching and pressing can be performed even if it is as it is, so that it is not necessary to perform leveler passing.
[0038]
Summarizing the above results, it is desirable that the elongation rate of the leveler passage plate is within 1.0% from the relationship between the elongation rate of the leveler passage plate and the maximum magnetic flux density Bm (G) shown in FIG. In view of the relationship between the elongation rate of the leveler threading plate and the steepness, it is desirable that the elongation rate of the leveler threading plate is 0.05%. Therefore, by satisfying both of these relationships, that is, by performing a leveler threading with an elongation of 0.05% to 1%, it is possible to obtain a steel sheet that simultaneously satisfies the optimum magnetic flux density and good workability. I understand.
[0039]
【Example】
Next, material characteristics when the soft magnetic stainless steel according to the present invention is applied to a yoke will be described with reference to examples.
[0040]
Stainless steel having the chemical component values shown in Table 2 was melted through an electric furnace, converter, degassing, and continuous casting process to obtain a slab having a thickness of 200 mm. The slab was hot-rolled and annealed and then cold-rolled to produce a soft magnetic stainless steel plate having a final thickness of 0.8 mm. Then, this soft magnetic stainless steel plate was subjected to finish annealing at a temperature of 950 ° C. for 0 minute and pickled by nitric acid electrolysis. And about this steel plate, what carried out the leveler passage by each elongation shown in Table 2 was made into the test steel plate, and material characteristic evaluation of steepness, maximum magnetic flux density Bm, and corrosion resistance was performed. Hereinafter, the results of this test will be described. In Table 2, A1 to A5 are steels having chemical component values according to the present invention, and B1 to B3 are comparative examples outside the standard values for the chemical components of steel or the elongation of the leveler plate.
[0041]
[Example 1]
A1: A soft magnetic stainless steel plate having a chemical component value according to the present invention and a leveler passing plate having an elongation of 0.30%.
[0042]
[Example 2]
A2: A soft magnetic stainless steel plate having a chemical component value according to the present invention, which was not subjected to a leveler passing plate.
[0043]
[Example 3]
A3: A soft magnetic stainless steel plate having a chemical component value according to the present invention and a leveler passing plate having an elongation of 0.35%.
[0044]
[Example 4]
A4: A soft magnetic stainless steel plate having a chemical component value according to the present invention and a leveler passing plate having an elongation of 0.45%.
[0045]
[Example 5]
A5: A soft magnetic stainless steel plate having a chemical component value according to the present invention and a leveler passing plate having an elongation of 0.50%.
[0046]
[Comparative Example 1]
B1: A soft magnetic stainless steel plate containing P among the chemical components above the standard value of the present invention and Cr below the standard value and subjected to a leveler threading plate having an elongation of 0.50%.
[0047]
[Comparative Example 2]
B2: A soft magnetic stainless steel plate containing Cr in excess of the standard value of the present invention and provided with a leveler through plate having an elongation of 0.50%.
[0048]
[Comparative Example 3]
B3: A soft magnetic stainless steel plate having a chemical component value according to the present invention and a leveler passing plate having an elongation of 1.40% which is equal to or higher than the standard value of the present invention.
[0049]
[Table 2]
Figure 0004060407
[0050]
Next, the results of the material property evaluation of the steepness, the maximum magnetic flux density Bm, and the corrosion resistance will be described for each test steel sheet.
[0051]
[Test Example 1]
(Steepness)
The steepness after passing the leveler was measured by the above-described steepness measuring method.
[0052]
[Test Example 2]
(Maximum magnetic flux density Bm)
Ring specimens for magnetic measurement having an outer diameter of 45 mm and an inner diameter of 33 mm were collected from each test steel sheet by cutting. Thereafter, magnetic measurement was performed under conditions of a frequency of 1000 Hz and an applied magnetic field of 10 oersted to evaluate Bm.
[0053]
[Test Example 3]
(Corrosion resistance)
Corrosion resistance was evaluated by a 24-hour salt spray test in accordance with JlSZ2371. The evaluation was made by visual judgment. The case where almost no rust was generated was evaluated as “Good”, and the case where 10% or more of rust was generated in the area ratio was evaluated as “Poor”.
[0054]
Table 3 shows the above survey results. Each of the test steel plates A1 to A5 had the chemical composition of the present invention and was leveled through the elongation within the range of the present invention, so that the steepness was 1.5% or less and the shape was excellent. Obtained a soft magnetic stainless steel sheet having excellent magnetic properties of 4000 G or more and good corrosion resistance.
[0055]
On the other hand, B1 which is a comparative example has a steepness of 1.5% or less because the elongation rate when passing through the leveler is within the range of the present invention. Since the Cr content and the P content are 5.04% by weight, which is less than the range of the present invention, the maximum magnetic flux density Bm is as low as 3200G, and the corrosion resistance is also poor due to the small Cr content.
[0056]
Since B2 has a Cr content of 20.01% by weight, which is larger than the range of the present invention, the maximum magnetic flux density Bm is as low as 3600G.
[0057]
In B3, the elongation rate when passing through the leveler was 1.40%, which was outside the range of the present invention, so the maximum magnetic flux density Bm was as low as 2800 G.
[0058]
[Table 3]
Figure 0004060407
[0059]
【The invention's effect】
As is apparent from the above description, according to the present invention, the soft magnetic stainless steel for a yoke of a stepping motor having both the optimum maximum magnetic flux density Bm and excellent workability without performing magnetic annealing after pressing the steel sheet. A steel plate can be obtained. As a result, productivity can be greatly improved, and an inexpensive yoke can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a maximum magnetic flux density Bm and an elongation rate when a leveler is passed under conditions of a frequency of 1000 Hz and an applied magnetic field of 10 oersted.
FIG. 2 is a diagram for explaining steepness.
FIG. 3 is a view showing the steepness after a leveler passes through a steel plate having a steepness of 2.2% after finish annealing at various elongation rates.

Claims (1)

重量%で、C:0.04%以下、Si:0.1%〜3.0%、Mn:1.0%以下、P:0.04%以下、S:0.01%以下、Cr:8.0%〜18.0%、N:0.04%以下、Ni:1.0%以下、Al:5.0%以下、Ti:1.0%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、最終板厚まで冷間圧延後、仕上げ焼鈍を施した軟磁性ステンレス鋼板について、
該軟磁性ステンレス鋼板の急峻度が1.5%を越えた場合に、伸び率1.0%以内でレベラー通板を施すことを特徴とする軟磁性ステンレス鋼板の製造方法。
By weight, C: 0.04% or less, Si: 0.1% to 3.0%, Mn: 1.0% or less, P: 0.04% or less, S: 0.01% or less, Cr: 8.0% to 18.0%, N: 0.04% or less, Ni: 1.0% or less, Al: 5.0% or less, Ti: 1.0% or less, the balance being Fe and inevitable Soft magnetic stainless steel sheet that has been subjected to finish annealing after cold rolling the steel material consisting of mechanical impurities to the final thickness,
A method for producing a soft magnetic stainless steel plate, characterized in that, when the steepness of the soft magnetic stainless steel plate exceeds 1.5%, a leveler passing plate is applied within an elongation rate of 1.0% or less.
JP24029297A 1997-08-22 1997-08-22 Method for producing soft magnetic stainless steel sheet for motor yoke Expired - Lifetime JP4060407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24029297A JP4060407B2 (en) 1997-08-22 1997-08-22 Method for producing soft magnetic stainless steel sheet for motor yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24029297A JP4060407B2 (en) 1997-08-22 1997-08-22 Method for producing soft magnetic stainless steel sheet for motor yoke

Publications (2)

Publication Number Publication Date
JPH1157812A JPH1157812A (en) 1999-03-02
JP4060407B2 true JP4060407B2 (en) 2008-03-12

Family

ID=17057317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24029297A Expired - Lifetime JP4060407B2 (en) 1997-08-22 1997-08-22 Method for producing soft magnetic stainless steel sheet for motor yoke

Country Status (1)

Country Link
JP (1) JP4060407B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748055B2 (en) * 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
JP5500840B2 (en) * 2009-03-02 2014-05-21 日新製鋼株式会社 Soft magnetic stainless steel with improved design and manufacturing method thereof
JP5455099B1 (en) 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP5516816B1 (en) 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
CN103667950A (en) * 2013-12-05 2014-03-26 宁波宝新不锈钢有限公司 430 stainless steel for cold stamping processing, and manufacturing method thereof
JP5641462B1 (en) 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
CN106460150B (en) 2015-02-10 2020-01-10 大日本印刷株式会社 Method for manufacturing vapor deposition mask, metal plate for manufacturing vapor deposition mask, and method for manufacturing metal plate
CN113430452B (en) * 2021-05-26 2022-06-10 武汉钢铁有限公司 Steel with excellent surface quality for hydraulic generator rotor yoke and production method thereof
CN113430451B (en) * 2021-05-26 2022-06-10 武汉钢铁有限公司 1000 MPa-grade magnet yoke steel for manufacturing hydro-generator rotor and production method

Also Published As

Publication number Publication date
JPH1157812A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
KR102301751B1 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
CN111373494B (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
CN108463569A (en) Non orientation electromagnetic steel plate and its manufacturing method
CN113015817B (en) Non-magnetic austenitic stainless steel and method for manufacturing same
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
EP2540853B1 (en) Non-oriented electrical steel sheet
EP0489727B1 (en) Aluminium-manganese-iron stainless steel alloy
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
KR20140075005A (en) Electromagnetic steel sheet
JP4060407B2 (en) Method for producing soft magnetic stainless steel sheet for motor yoke
JPH0847235A (en) Production of stepping motor and yoke therefor
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
US6364962B1 (en) Electromagnetic steel sheet having excellent high-frequency magnetic properties and method
JP2019173099A (en) Stainless steel material
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP5207514B2 (en) Hysteresis motor
JP4852804B2 (en) Non-oriented electrical steel sheet
JP3758425B2 (en) Method for producing Fe-Cr-Si electrical steel sheet
JPH0633197A (en) Fe-cr alloy excellent in workability
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JP2668543B2 (en) Cold-rolled steel sheet for deep drawing with excellent punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term