JP3493270B2 - Measurement circuit for diode reverse recovery time - Google Patents

Measurement circuit for diode reverse recovery time

Info

Publication number
JP3493270B2
JP3493270B2 JP28937896A JP28937896A JP3493270B2 JP 3493270 B2 JP3493270 B2 JP 3493270B2 JP 28937896 A JP28937896 A JP 28937896A JP 28937896 A JP28937896 A JP 28937896A JP 3493270 B2 JP3493270 B2 JP 3493270B2
Authority
JP
Japan
Prior art keywords
diode
reverse recovery
recovery time
capacitor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28937896A
Other languages
Japanese (ja)
Other versions
JPH10115656A (en
Inventor
雅之 原田
一彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP28937896A priority Critical patent/JP3493270B2/en
Publication of JPH10115656A publication Critical patent/JPH10115656A/en
Application granted granted Critical
Publication of JP3493270B2 publication Critical patent/JP3493270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ダイオ−ドの逆回
復時間を測定する測定回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring circuit for measuring a reverse recovery time of a diode.

【0002】[0002]

【従来の技術】図1及び図2が従来から用いられている
逆回復時間測定回路の一例である。図1はIF、IR法に
よる測定回路であり、図3はdi/dtによる測定回路
である。
2. Description of the Related Art FIGS. 1 and 2 show an example of a reverse recovery time measuring circuit which has been conventionally used. FIG. 1 shows a measuring circuit by the IF and IR methods, and FIG. 3 shows a measuring circuit by the di / dt method.

【0003】図1のIF、IR法による測定回路に於い
て、パルス発生器G1により、例えば、1KHZの矩形波
を抵抗R1を通して、被測定ダイオ−ドD1に印加する。 (2) これにより、ダイオ−ドD1の電流波形は図2に示す様
な波形となる。IF(順方向電流)、IR(逆方向電流)
をあらかじめ指定の値にしておき、電流波形中に抵抗R
1によるIRの電流制限期間が存在するので、これから逆
回復時間(trr)を測定する。
In the measuring circuit using the IF and IR methods shown in FIG. 1, a rectangular wave of 1 kHz, for example, is applied to a diode D1 to be measured through a resistor R1. (2) As a result, the current waveform of the diode D1 becomes a waveform as shown in FIG. IF (forward current), IR (reverse current)
Is set to the specified value in advance, and the resistance R
Since there is a current limiting period of IR by 1, the reverse recovery time (trr) is measured from this.

【0004】図3のdi/dt法による測定回路に於い
て、一方の電源電圧V1より、スイッチS1を閉じて抵抗
R2を通して被測定ダイオ−ドD1に順方向に電流を流
す。次にスイッチS1は閉じたまま、V1より高い他方の
電源電圧V2より、スイッチS2を閉じて被測定ダイオ−
ドD2に逆方向に電流を流す。尚、インダクタンスL1
は、電流減少率を決める定数である。
In the measuring circuit according to the di / dt method shown in FIG. 3, a switch S1 is closed from one power source voltage V1 to cause a current to flow forward through a resistor R2 to a diode D1 to be measured. Next, while the switch S1 is kept closed, the switch S2 is closed by the other power source voltage V2 higher than V1 to measure the measured diode.
A current flows in the opposite direction to D2. Inductance L1
Is a constant that determines the current reduction rate.

【0005】従って、図3のdi/dt法による測定回
路にでは、図4に示す様な電流波形が発生する。ここで
IFを指定の値とし、電流転流期間中の電流減少率を条
件として、逆回復時間trrを測定する。
Therefore, in the measuring circuit by the di / dt method of FIG. 3, a current waveform as shown in FIG. 4 is generated. Here, the reverse recovery time trr is measured under the condition of the designated value of IF and the current decrease rate during the current commutation period.

【0006】[0006]

【発明が解決しようとする課題】上述のIF、IR法、d
i/dt法のいずれの測定方法においても、生産ライン
で測定する場合は、接触子等を用いて被測定ダイオ−ド
をつまんで測定する為、配線が長くなり電流減少率が一
定とならず、測定値の再現性に問題が生ずる。又、接触
子までの配線インダクタンスも無視出来ない大きさとな
り、従ってdi/dtを大きく出来ず、例えば逆回復時
間trr≦50ns程度の高速ダイオ−ドを測定する事
が出来ない等の問題がある。
The above-mentioned IF, IR method, d
In any measurement method of the i / dt method, when measuring in a production line, the diode to be measured is pinched and measured using a contactor, etc., so that the wiring becomes long and the current decrease rate is not constant. , A problem occurs in the reproducibility of measured values. Further, the wiring inductance up to the contact becomes a size that cannot be ignored, so that di / dt cannot be increased, and there is a problem that a high speed diode with a reverse recovery time trr ≦ 50 ns cannot be measured. .

【0007】又、図5はIF、IR法による、ダイオ−ド
の良品と不良品の場合の電流波形を示したものである。
逆回復時間trrは、IRが10%まで回復した時の時
間で一般的に定義されているが、図5のA(良品)、B
(不良品)の場合の波形の判別が出来ない等の (3) 問題点がある。
Further, FIG. 5 shows current waveforms in the case of a good diode and a defective diode by the IF and IR methods.
The reverse recovery time trr is generally defined as the time when the IR has recovered to 10%, but in FIG. 5A (good product), B
(3) There is a problem that the waveform cannot be discriminated in the case of (defective product).

【0008】そこで本発明は、生産ラインで接触子等に
より被測定ダイオ−ドをつまみ、往復の配線が60cm
程度ある様な場合に於いても、良品、不良品のダイオ−
ドの逆回復波形を再現性良く判別出来る、逆回復時間の
測定回路を提供する事を目的とするものである。
Therefore, according to the present invention, the diode to be measured is pinched by a contactor or the like in the production line, and the reciprocating wiring is 60 cm.
Even if there is a degree, it is a good or bad dio-
It is an object of the present invention to provide a reverse recovery time measuring circuit capable of discriminating a reverse recovery waveform of a drive signal with good reproducibility.

【0009】[0009]

【課題を解決する為の手段】本発明は、被測定ダイオ−
ドの逆回復時間の逆数以上の周波数の正弦波発振器の電
圧を、インピ−ダンスを介して被測定ダイオ−ドに印加
し、前記被測定ダイオ−ドに順方向に電流を流しコンデ
ンサを充電し、前記被測定ダイオ−ドに逆電流が流れる
ときには、前記コンデンサに蓄積時間に比例した電荷を
放電し、前記コンデンサ端子電圧を測定して逆回復時間
が短い場合はコンデンサ端子電圧が高く、逆回復時間が
長い場合はコンデンサ端子電圧が低くなることを利用し
て、ダイオードの逆方向回復時間を測定した事を特徴と
するダイオ−ド逆回復時間の測定回路。
SUMMARY OF THE INVENTION The present invention is directed to a measured diode.
The voltage of a sine wave oscillator having a frequency equal to or higher than the reciprocal of the reverse recovery time of the diode is applied to the diode to be measured through impedance, and a current is applied to the diode to be measured in the forward direction to charge the capacitor. , When a reverse current flows through the diode to be measured, a charge proportional to the storage time is discharged to the capacitor, and the capacitor terminal voltage is measured. If the reverse recovery time is short, the capacitor terminal voltage is high and the reverse recovery is performed. A diode reverse recovery time measurement circuit characterized by measuring the reverse recovery time of a diode by utilizing the fact that the capacitor terminal voltage becomes low when the time is long.

【0010】[0010]

【0011】又、コンデンサの端子電圧と逆回復時間と
の換算テ−ブルにより、被測定ダイオ−ドの逆回復時間
を測定する事が出来る。
Further, the reverse recovery time of the diode to be measured can be measured by the conversion table of the terminal voltage of the capacitor and the reverse recovery time.

【0012】[0012]

【発明の実施の形態】図6は、本発明の一実施例で、G
2は正弦波発振器、R1、R3はダイオ−ドの順方向、逆
方向電流制限抵抗、C1は被測定ダイオ−ドD1の整流電
圧測定用コンデンサ、R4はコンデンサC1の充放電時定
数を決める抵抗、R5は測定器(直流電圧計)の内部イ
ンピ−ダンス、D1は被測定ダイオ−ドである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 6 shows an embodiment of the present invention.
2 is a sine wave oscillator, R1 and R3 are forward and reverse current limiting resistors of the diode, C1 is a capacitor for measuring the rectified voltage of the diode D1 to be measured, and R4 is a resistor for determining the charging / discharging time constant of the capacitor C1. , R5 is the internal impedance of the measuring device (DC voltmeter), and D1 is the diode to be measured.

【0013】正弦波発振器G2により、インダクタンス
の依存性を少なくする為に正弦波電圧を印加する。 (4) 被測定ダイオ−ドD1が順方向の時は、G2→R1→D1→
R3→G2の経路で電流が流れ、抵抗R3の端子電圧によ
り、抵抗R4を通してコンデンサC1が充電される。
A sine wave voltage is applied by the sine wave oscillator G2 in order to reduce the dependency of the inductance. (4) When the measured diode D1 is in the forward direction, G2 → R1 → D1 →
A current flows through the path R3 → G2, and the terminal voltage of the resistor R3 charges the capacitor C1 through the resistor R4.

【0014】そして、被測定用ダイオ−ドD1が逆方向
の時は、ダイオ−ドD1の蓄積電荷により、コンデンサ
C1に充電されていた電荷は、C1→R4→D1→R1→G2
→C1を通して放電される。この放電々荷量はダイオ−
ドD1の蓄積電荷に比例する。
When the diode D1 to be measured is in the reverse direction, the charge accumulated in the capacitor C1 by the accumulated charge of the diode D1 is C1 → R4 → D1 → R1 → G2.
→ It is discharged through C1. This discharge load is
It is in proportion to the accumulated charge of D1.

【0015】この為、蓄積電荷の大きいダイオ−ド程、
コンデンサC1の端子電圧は小さくなる。この特性を示
すのが図7である。すなわち、図7は、逆回復波形の相
違によるコンデンサC1の端子電圧のちがいを示す特性
図である。
Therefore, the diode with the larger accumulated charge is
The terminal voltage of the capacitor C1 becomes smaller. FIG. 7 shows this characteristic. That is, FIG. 7 is a characteristic diagram showing the difference in the terminal voltage of the capacitor C1 due to the difference in the reverse recovery waveform.

【0016】図7に於いて、正弦波発振器G2の周波数
を被測定ダイオ−ドD1の逆回復時間に対して無視出来
ない周波数とする。一般的には逆回復時間とほぼ等しい
周波数の5〜10MHZに選ぶ。この周波数範囲に於い
ては、蓄積電荷の大きいダイオ−ドは、放電々荷量が大
きい為、コンデンサC1の端子電圧が小さくなり、図7
のBの特性となる。一方、蓄積電荷の小さいダイオ−ド
は放電々荷量が小さい為、コンデンサC1の端子電圧が
大きくなり、Aの特性となる。
In FIG. 7, the frequency of the sine wave oscillator G2 is a frequency that cannot be ignored with respect to the reverse recovery time of the diode D1 to be measured. Generally, it is selected to be 5 to 10 MHZ having a frequency almost equal to the reverse recovery time. In this frequency range, the diode with a large accumulated charge has a large discharge load, so the terminal voltage of the capacitor C1 becomes small, and the diode shown in FIG.
It becomes the characteristic of B. On the other hand, since the diode with a small accumulated charge has a small discharge load, the terminal voltage of the capacitor C1 becomes large and the characteristic of A is obtained.

【0017】今、図5の波形で、蓄積電荷量の小さいダ
イオ−ドは、Aの様なリカバリ−特性を示し、蓄積電荷
量の大きいダイオ−ドは、Bの様なリカバリ−特性を示
す。しかし、A、Bいずれの場合も、リカバリ−電流が
0、1IRまでに回復した時間をリカバリ−タイムtr
rと定義しているので、従来の測定方法では、逆回復時
間は同じ値に測定され、優劣の差異は表れない。 (5)
In the waveform of FIG. 5, a diode having a small accumulated charge amount exhibits a recovery characteristic like A, and a diode having a large accumulated charge amount exhibits a recovery characteristic like B. . However, in both cases of A and B, the recovery-time tr is the time when the recovery current is recovered to 0,1IR.
Since it is defined as r, in the conventional measurement method, the reverse recovery time is measured at the same value, and the difference between superiority and inferiority does not appear. (5)

【0018】ところが、ダイオ−ド選別のクラス分けを
した場合、蓄積電荷量の小さな特性AはAクラスであ
り、蓄積電荷量の大きい特性BはBクラスであり、それ
ぞれ用途が異なる使い方をした方が好ましい。
However, in the case of classifying diodes according to diode selection, the characteristic A having a small accumulated charge amount is the A class, and the characteristic B having a large accumulated charge amount is the B class. Is preferred.

【0019】そこで本発明では、図6の測定回路に於い
て、正弦波発振器G2の周波数を、5〜10MHZ程度
の測定可能周波数帯にして、コンデンサC1の端子電圧
をデジボル等で測定する。
Therefore, in the present invention, in the measuring circuit of FIG. 6, the frequency of the sine wave oscillator G2 is set to a measurable frequency band of about 5 to 10 MHZ, and the terminal voltage of the capacitor C1 is measured by digibol or the like.

【0020】これにより、図7の特性A、Bの選別が可
能となる。一方、逆回復時間trrと、特性A、Bの端
子電圧との関係をあらかじめテ−ブルに用意しておけ
ば、コンデンサC1の端子電圧から逆回復時間を読み取
る事が出来る。
As a result, the characteristics A and B shown in FIG. 7 can be selected. On the other hand, if the relationship between the reverse recovery time trr and the terminal voltages of the characteristics A and B is prepared in the table in advance, the reverse recovery time can be read from the terminal voltage of the capacitor C1.

【0021】今、実測により測定回路の配線による影響
を調べてみた。被測定ダイオ−ドのアノ−ド配線、カソ
−ド配線が接近した時と、大きく離れた時の差異を調べ
ると次の通りであった。測定条件として、正弦波発振器
の周波数5MHZ、測定端子往復の配線長60cm、被
測定ダイオ−ドの逆回復時間trr=155nsとする
と、コンデンサC1の端子電圧は配線が離れた時594
mv、配線が接近した時597mvであり、極めて測定
値の再現性は良いことがわかる。
Now, the effect of the wiring of the measuring circuit was examined by actual measurement. The difference between when the anode wiring and cathode wiring of the diode to be measured approached and when they largely separated was as follows. As the measurement conditions, the frequency of the sine wave oscillator is 5 MHZ, the wiring length between the measuring terminals is 60 cm, and the reverse recovery time trr of the diode to be measured trr = 155 ns, the terminal voltage of the capacitor C1 is 594 when the wiring is separated.
It was found that the reproducibility of the measured values was extremely good, which is 597 mv when the wiring approaches.

【0022】[0022]

【発明の効果】本発明は、ダイオ−ド逆回復時間を生産
ラインで測定する場合、測定配線の影響を受けないの
で、極めて再現性の良い測定が出来る。又、配線インダ
クタンスの影響も少ないので高速ダイオ−ドの測定も可
能となる。さらに、逆回復時間の差として表れない、逆
回復電流波形の差異によるダイオ (6) −ドのクラス別けが可能となり、きめ細かなダイオ−ド
の選別が出来る。
According to the present invention, when the diode reverse recovery time is measured on the production line, it is not affected by the measurement wiring, and therefore the measurement can be performed with extremely good reproducibility. Further, since the influence of the wiring inductance is small, it is possible to measure a high speed diode. Further, it is possible to classify the diodes (6) by the difference in the reverse recovery current waveform, which does not appear as the difference in the reverse recovery time, and it is possible to finely select the diodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】IF、IR法によるダイオ−ドの逆回復時間測定
回路。
FIG. 1 is a circuit for measuring the reverse recovery time of a diode by the IF and IR methods.

【図2】IF、IR法によるダイオ−ドの電流波形。FIG. 2 is a current waveform of a diode according to the IF and IR methods.

【図3】di/dt法によるダイオ−ドの逆回復時間測
定回路。
FIG. 3 is a circuit for measuring a reverse recovery time of a diode by a di / dt method.

【図4】di/dt法によるダイオ−ドの電流波形。FIG. 4 is a current waveform of a diode by the di / dt method.

【図5】ダイオ−ドの蓄積電荷のちがいによる電流波
形。
FIG. 5 shows a current waveform due to a difference in accumulated charge of a diode.

【図6】本発明の、ダイオ−ドの逆回復時間測定回路の
一実施例。
FIG. 6 shows an embodiment of a reverse recovery time measuring circuit for a diode according to the present invention.

【図7】ダイオ−ドの逆回復時間のちがいによるコンデ
ンサC1の端子電圧の相異。
FIG. 7: Difference in terminal voltage of the capacitor C1 due to difference in reverse recovery time of diode.

【符号の説明】[Explanation of symbols]

G1 パルス発生器 G2 正弦波発生器 R1 整流器順方向電流、逆方向電流制限抵抗 R2 整流器順方向電流制限抵抗 R3 整流器順方向電流、逆方向電流制限抵抗 R4 コンデンサC1の充、放電時定数を決める抵抗 R5 C1端子電圧を測定する計測器の等価入力インピ
−ダンス D1 被測定ダイオ−ド C1 被測定ダイオ−ドの整流電圧測定用コンデンサ
G1 pulse generator G2 sine wave generator R1 rectifier forward current, reverse current limiting resistor R2 rectifier forward current limiting resistor R3 rectifier forward current, reverse current limiting resistor R4 Capacitor C1 charging / discharging time constant resistance Equivalent input impedance of measuring instrument for measuring R5 C1 terminal voltage D1 Measured diode C1 Measured diode rectified voltage measuring capacitor

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/26 G01R 31/28 - 31/3193 H01L 21/66 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01R 31/26 G01R 31/28-31/3193 H01L 21/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定ダイオ−ドの逆回復時間の逆数以
上の周波数の正弦波発振器の電圧を、インピ−ダンスを
介して被測定ダイオ−ドに印加し、前記被測定ダイオ−
ドに順方向に電流を流しコンデンサを充電し、前記被測
定ダイオ−ドに逆電流が流れるときには、前記コンデン
サに蓄積時間に比例した電荷を放電し、前記コンデンサ
端子電圧を測定して逆回復時間が短い場合はコンデンサ
端子電圧が高く、逆回復時間が長い場合はコンデンサ端
子電圧が低くなることを利用して、ダイオードの逆方向
回復時間を測定した事を特徴とするダイオ−ド逆回復時
間の測定回路。
1. A reciprocal of a reverse recovery time of a diode to be measured or less.
The voltage of the sine wave oscillator with the above frequency is
Is applied to the measured diode via the
Current in the forward direction to charge the capacitor,
When a reverse current flows through the constant diode, the capacitor
Discharges a charge proportional to the storage time to the capacitor
If the reverse recovery time is short after measuring the terminal voltage, the capacitor
If the terminal voltage is high and the reverse recovery time is long, the capacitor end
Using the lower child voltage, the reverse direction of the diode
At the time of diode reverse recovery characterized by measuring recovery time
Measuring circuit between.
【請求項2】前記コンデンサの端子電圧と逆回復時間と
の換算テ−ブルにより、逆回復時間を測定する事を特徴
とする請求項1のダイオ−ドの逆回復時間の測定回路。
2. A circuit for measuring a reverse recovery time of a diode according to claim 1, wherein the reverse recovery time is measured by a conversion table of the terminal voltage of the capacitor and the reverse recovery time.
JP28937896A 1996-10-11 1996-10-11 Measurement circuit for diode reverse recovery time Expired - Fee Related JP3493270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28937896A JP3493270B2 (en) 1996-10-11 1996-10-11 Measurement circuit for diode reverse recovery time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28937896A JP3493270B2 (en) 1996-10-11 1996-10-11 Measurement circuit for diode reverse recovery time

Publications (2)

Publication Number Publication Date
JPH10115656A JPH10115656A (en) 1998-05-06
JP3493270B2 true JP3493270B2 (en) 2004-02-03

Family

ID=17742444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28937896A Expired - Fee Related JP3493270B2 (en) 1996-10-11 1996-10-11 Measurement circuit for diode reverse recovery time

Country Status (1)

Country Link
JP (1) JP3493270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854435B (en) * 2012-08-31 2014-06-18 南通市通州区华昌电子有限公司 High-temperature electric leakage testing system for diodes
CN103969564A (en) * 2013-01-30 2014-08-06 苏州同冠微电子有限公司 Diode reverse recovery characteristic tester
CN113552471A (en) * 2021-09-17 2021-10-26 北京星河泰视特科技有限公司 Method, device, equipment and medium for detecting inductance parallel PN junction circuit

Also Published As

Publication number Publication date
JPH10115656A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US6984988B2 (en) Ground-fault detecting device and insulation resistance measuring device
US20090287436A1 (en) Digital multimeter with automatic measurement selection function
JPH06225517A (en) Ac-dc converter
US20240063724A1 (en) Systems and methods for synchronous rectification of power supply systems
US5914569A (en) Switching controller and control device for a low pressure fluorescent lamp
US6639410B2 (en) Insulation resistance measuring apparatus for capacitive electronic parts
JP3493270B2 (en) Measurement circuit for diode reverse recovery time
JP3173483B2 (en) How to judge the quality of capacitors
US4267503A (en) Method and instrument for testing the operating characteristics of a capacitor
EP0872739A3 (en) Frequency detection circuit
US6104199A (en) Magnetic-head short-circuit detector
JP2002527718A (en) Micropower magnetometer
US4074183A (en) Apparatus for measuring the dwell of an automotive ignition system
JP3173512B2 (en) Peak hold circuit
JPH0964278A (en) Semiconductor integrated circuit and its test method
JP2680807B2 (en) Amplifier circuit for diode detection output
KR0166895B1 (en) Power source voltage sensing apparatus
JPH025420Y2 (en)
KR950006886Y1 (en) Checking circuit for condensor
JP3239338B2 (en) Ripple noise voltage measuring device
JP3450769B2 (en) Duty measuring device and duty measuring method
JP2692565B2 (en) Semiconductor measuring equipment
JP2006098145A (en) Measuring device of electrolytic capacitor, its measuring method and measuring program
SU1707547A1 (en) Device for measuring transient-residual voltage drop
JP3438495B2 (en) AC / DC shared voltage detection circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees