JP3492531B2 - Heat resistant stainless steel - Google Patents

Heat resistant stainless steel

Info

Publication number
JP3492531B2
JP3492531B2 JP28210998A JP28210998A JP3492531B2 JP 3492531 B2 JP3492531 B2 JP 3492531B2 JP 28210998 A JP28210998 A JP 28210998A JP 28210998 A JP28210998 A JP 28210998A JP 3492531 B2 JP3492531 B2 JP 3492531B2
Authority
JP
Japan
Prior art keywords
phase
heat
stainless steel
less
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28210998A
Other languages
Japanese (ja)
Other versions
JP2000109955A (en
Inventor
寛 泉田
望 河部
憲人 山尾
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP28210998A priority Critical patent/JP3492531B2/en
Publication of JP2000109955A publication Critical patent/JP2000109955A/en
Application granted granted Critical
Publication of JP3492531B2 publication Critical patent/JP3492531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱ステンレス鋼
に関するものである。特に、高温での耐へたり性に優
れ、エンジン部品,原子力発電用部品,タービン部品等
の耐熱性が要求される部品、主にばね素材として最適な
高強度のステンレス鋼に関するものである。
TECHNICAL FIELD The present invention relates to heat-resistant stainless steel. In particular, the present invention relates to a high strength stainless steel that is excellent in sag resistance at high temperatures and is required to have heat resistance such as engine parts, nuclear power generation parts, turbine parts, etc., and is most suitable as a spring material.

【0002】[0002]

【従来の技術】自動車エンジンの排気系に用いられるば
ね部品素材として、使用温度域〜500℃程度では耐熱鋼
として使用されてきたSUS304,SUS316,SUS631,SUS631
J1などのオーステナイト系ステンレスが用いられてい
る。また、500℃を越える温度域に使用される部品素材
としてNi基耐熱合金であるInconel X750などが用いら
れている。
2. Description of the Related Art SUS304, SUS316, SUS631, SUS631 which have been used as heat-resistant steel in the operating temperature range of about 500 ° C as a spring component material used in the exhaust system of an automobile engine.
Austenitic stainless steel such as J1 is used. Moreover, Inconel X750, which is a Ni-based heat-resistant alloy, is used as a material for parts used in a temperature range exceeding 500 ° C.

【0003】近年、環境問題対策として自動車の排ガス
規制への要求の高まりから、エンジンおよび触媒の高効
率化のために排気系温度が上昇する傾向にある。このた
め使用温度域が最高500℃であったばね部品においても6
00℃近くまで上昇し、SUS304などのオーステナイト系ス
テンレスでは、耐熱特性、特に耐熱ばねに必要な高温引
張強さと高温耐へたり性において不十分となる場合があ
る。
In recent years, the exhaust system temperature tends to rise in order to improve the efficiency of the engine and the catalyst, because of the increasing demand for exhaust gas regulations of automobiles as a measure against environmental problems. For this reason, even in spring parts whose operating temperature range was up to 500 ° C, 6
The temperature rises to around 00 ° C, and austenitic stainless steel such as SUS304 may have insufficient heat resistance, especially high temperature tensile strength and high temperature sag resistance required for heat resistant springs.

【0004】この際、同部品素材としてInconel X750
などのNi基耐熱合金が用いられるが、素材コスト増加や
高温長時間の熱処理などによる製造コスト増加は免れな
い。Inconel X750に代表されるNi基耐熱合金は、その
使用温度域を600℃以上とする超合金で、600℃以下の温
度域に用いるには過剰仕様である。
At this time, Inconel X750 is used as the material for the same parts.
Ni-based heat-resistant alloys such as are used, but increase in material cost and manufacturing cost due to heat treatment at high temperature for a long time cannot be avoided. Ni-based heat-resistant alloys such as the Inconel X750 are superalloys whose operating temperature range is 600 ° C or higher, which is an excessive specification for use in the temperature range of 600 ° C or lower.

【0005】そこで、オーステナイト系ステンレスと耐
熱Ni基超合金の中間の耐熱特性とコストを持つものとし
てA286(AISI660)などのγ′相[Ni(Al,Ti,Nb)]
析出強化型オーステナイト系耐熱鋼の使用が有望であ
る。
Therefore, the γ'phase [Ni 3 (Al, Ti, Nb)] such as A286 (AISI660) has the heat resistance and cost intermediate between those of austenitic stainless steel and heat-resistant Ni-base superalloy.
The use of precipitation-strengthened austenitic heat-resistant steel is promising.

【0006】さらに耐熱特性、特に700℃以上での高温
引張り強さや高温耐クリープ性を向上させるために、特
開平7-238349号公報に記載の技術では、成分中のTi/Al
比を5〜20とし、γ′相[Ni(Al,Ti,Nb)]の析出を
短時間で促進させている。
Further, in order to improve heat resistance characteristics, particularly high temperature tensile strength at 700 ° C. or higher and high temperature creep resistance, in the technique described in Japanese Patent Laid-Open No. 7-238349, Ti / Al in the components is used.
The ratio is set to 5 to 20 to accelerate the precipitation of the γ ′ phase [Ni 3 (Al, Ti, Nb)] in a short time.

【0007】また、特開平4-48051号公報に記載の技術
では、η相[NiTi:hcp構造]析出を積極的に利用す
ることで熱疲労性の向上を図っている。
Further, in the technique described in Japanese Patent Laid-Open No. 4-48051, the thermal fatigue resistance is improved by positively utilizing the precipitation of the η phase [Ni 3 Ti: hcp structure].

【0008】[0008]

【発明が解決しようとする課題】しかし、これらの中
で、耐熱ばねに必要な高温引張強さと高温耐へたり性の
両立を図ったものはない。析出強化型耐熱鋼の析出相形
態は、鋼の耐熱特性に様々な影響を及ぼす。高温引張強
さと高温耐へたり性の両立を図るために、析出形態を限
定する必要がある。
However, none of these have achieved both high temperature tensile strength and high temperature sag resistance, which are necessary for heat resistant springs. The precipitation phase morphology of precipitation-strengthened heat-resistant steel has various effects on the heat resistance characteristics of the steel. In order to achieve both high temperature tensile strength and high temperature sag resistance, it is necessary to limit the precipitation morphology.

【0009】従って、本発明の主目的は、Fe基である
オーステナイト系ステンレスの基地強化とγ′相[Ni
(Al,Ti,Nb)]の強析出強化を行うことによって、SUS3
04やSUS631などに対してコスト増加を抑制でき、析出
相であるη相[NiTi:hcp構造]とγ′相[Ni(Al,
Ti,Nb)]の析出形態を規定することで、高温域(500℃
以上600℃以下)においてもばね材に必要な高温引張り
強さ,高温耐へたり性に優れる耐熱高強度ステンレス鋼
を提供することにある。
[0009] Therefore, the main object of the present invention is to strengthen the matrix of Fe-based austenitic stainless steel and to provide the γ'phase [Ni 3
(Al, Ti, Nb)] by performing strong precipitation strengthening of SUS3
The cost increase can be suppressed for 04 and SUS631, etc., and the precipitation phase η phase [Ni 3 Ti: hcp structure] and γ ′ phase [Ni 3 (Al,
Ti, Nb)] precipitation morphology
The purpose is to provide heat-resistant high-strength stainless steel with excellent high-temperature tensile strength and high-temperature sag resistance required for spring materials even at temperatures above 600 ° C).

【0010】[0010]

【課題を解決するための手段】本発明の耐熱ステンレス
鋼は、C:0.02〜0.30wt%,Si:0.02〜3.5wt%,Mn:0.02
〜2.5wt%,Ni:10〜50wt%,Cr:12〜25wt%,Ti:1.0〜
5.0wt%,Al:0.002〜1.0wt%を含有し、かつNb:0.1〜3.
0wt%,B:0.001〜0.01wt%,Mo:0.1〜4.0wt%から選択
された1種以上を含有して、Ti,AlおよびNbの合計含有
量が3.0〜7.0wt%である耐熱ステンレス鋼である。ここ
で、粒界に析出するη相[NiTi:hcp構造]と基地で
あるγ相(オーステナイト)結晶粒内に析出するγ′相
[Ni(Al,Ti,Nb)]との重量比率「{η相[NiTi:
hcp構造]/γ′相[Ni(Al,Ti,Nb)]}×100
(%)」が0.01%以上30.00%以下である。そして、600
℃での熱間引張強さが800N/mm 2以上であることを特徴
とする。
The heat-resistant stainless steel of the present invention has C: 0.02 to 0.30 wt%, Si: 0.02 to 3.5 wt%, Mn: 0.02
〜2.5wt%, Ni: 10〜50wt%, Cr: 12〜25wt%, Ti: 1.0〜
5.0 wt%, Al: 0.002 to 1.0 wt%, and Nb: 0.1 to 3.
Heat-resistant stainless steel containing at least one selected from 0 wt%, B: 0.001 to 0.01 wt% and Mo: 0.1 to 4.0 wt% and the total content of Ti, Al and Nb is 3.0 to 7.0 wt% Is. Here, the weight of the η phase [Ni 3 Ti: hcp structure] that precipitates at the grain boundaries and the γ ′ phase [Ni 3 (Al, Ti, Nb)] that precipitates within the γ phase (austenite) crystal grains that are the matrix Ratio “{η phase [Ni 3 Ti:
hcp structure] / γ ′ phase [Ni 3 (Al, Ti, Nb)]} × 100
(%) ”Is 0.01% or more and 30.00% or less. And 600
It is characterized by a hot tensile strength at 800 ° C of 800 N / mm 2 or more.

【0011】さらに、高温耐へたり性を向上させるため
には、粒界析出η相[NiTi:hcp構造と母相であるγ
相(オーステナイト)の不整合がない方が良く、かつ結
晶粒内にγ′相[Ni(Al,Ti,Nb)]が多く析出する必
要がある。そこで上記析出物の重量比率「{η相[Ni
Ti:hcp構造]/γ′相[Ni(Al,Ti,Nb)]}×100
(%)」が0.01%以上10.00%以下であることが望まし
い。
Further, in order to improve the high temperature sag resistance, grain boundary precipitation η phase [Ni 3 Ti: hcp structure and γ which is a matrix phase]
It is better that there is no phase (austenite) mismatch, and more γ ′ phase [Ni 3 (Al, Ti, Nb)] must be precipitated in the crystal grains. Therefore, the weight ratio of the above-mentioned precipitate “{η phase [Ni 3
Ti: hcp structure] / γ ′ phase [Ni 3 (Al, Ti, Nb)]} × 100
(%) ”Is preferably 0.01% or more and 10.00% or less.

【0012】特に、600℃付近での高温耐へたり性を向
上させるために、基地であるγ相(オーステナイト)結
晶粒内に析出するγ′相[Ni(Al,Ti,Nb)]の球状粒
子の直径は出来るだけ微細であることが必要である。そ
のためには粒内析出するγ′相[Ni(Al,Ti,Nb)]の
球状粒子の直径は1nm以上20nm以下であることが望まし
い。
In particular, in order to improve the high temperature sag resistance at around 600 ° C., the γ'phase [Ni 3 (Al, Ti, Nb)] precipitated in the matrix γ phase (austenite) crystal grains is formed. It is necessary that the diameter of the spherical particles is as fine as possible. For that purpose, it is desirable that the diameter of the spherical particles of the γ'phase [Ni 3 (Al, Ti, Nb)] precipitated in the grains is 1 nm or more and 20 nm or less.

【0013】以下に本発明ステンレス鋼における組成の
限定理由を述べる。
The reasons for limiting the composition of the stainless steel of the present invention will be described below.

【0014】Cは鋼中のCrなどと結合し炭化物を形成す
ることで高温強度を高める。しかし、多量に含有すると
靭性および耐食性の低下が起こる。そこで有効な含有量
としてC:0.02〜0.30wt%とした。
C combines with Cr or the like in the steel to form a carbide, thereby increasing the high temperature strength. However, if it is contained in a large amount, toughness and corrosion resistance decrease. Therefore, the effective content of C is 0.02 to 0.30 wt%.

【0015】Siは固溶することで耐熱特性の向上に効果
がある。また、溶解精錬時の脱酸剤としても有効で、効
果を現すためにはSi:0.02wt%以上含有することが必要
である。但し、靭性劣化を考慮し3.5wt%以下とした。
Si is effective as a solid solution in improving heat resistance. It is also effective as a deoxidizer during dissolution and refining, and it is necessary to contain Si: 0.02 wt% or more to bring out the effect. However, considering the toughness deterioration, it was set to 3.5 wt% or less.

【0016】MnもSi同様溶解精錬時の脱酸剤として使用
される。また、オーステナイト系ステンレスのγ相(オ
ーステナイト)の相安定にも有効である。但し、高温で
の耐酸化性には悪影響を及ほすため、Mn:0.02〜2.5wt
%とした。
Like Si, Mn is also used as a deoxidizing agent during melting and refining. Further, it is also effective for phase stabilization of the γ phase (austenite) of austenitic stainless steel. However, Mn: 0.02 to 2.5 wt% as it has a bad effect on the oxidation resistance at high temperature.
%.

【0017】Niはγ相(オーステナイト)の安定化に有
効である。また、Niは本発明の耐熱特性向上の主因とな
るγ′相[Ni(Al,Ti,Nb)](析出相)の構成元素で
ある。そこでγ相(オーステナイト)の安定を考慮して
10wt%以上とし、コスト上昇抑制のため50wt%以下とし
た。
Ni is effective in stabilizing the γ phase (austenite). Further, Ni is a constituent element of the γ ′ phase [Ni 3 (Al, Ti, Nb)] (precipitation phase), which is the main cause of the improvement in heat resistance of the present invention. So considering the stability of the γ phase (austenite)
It was set to 10 wt% or more and 50 wt% or less to suppress cost increase.

【0018】Crはオーステナイト系ステンレスの主要な
構成元素であり、耐熱特性,耐酸化性を得るために有効
な元素である。そこで、他の元素成分からNi当量,Cr当
量を算出し、γ相(オーステナイト)の相安定性を考慮
した上で、必要な耐熱特性を得るために12wt%以上と
し、靭性劣化を考慮して25wt%以下とした。
Cr is a main constituent element of austenitic stainless steel, and is an element effective for obtaining heat resistance and oxidation resistance. Therefore, Ni equivalent and Cr equivalent are calculated from other elemental components, and after considering the phase stability of the γ phase (austenite), it is set to 12 wt% or more in order to obtain the necessary heat resistance property, and toughness deterioration is considered. It was set to 25 wt% or less.

【0019】本発明のステンレス鋼は、耐熱特性の向上
を目的とし、γ′相[Ni(Al,Ti,Nb)]の析出強化を
行う。以下に、その構成元素の成分範囲を限定する理由
を述べる。
The stainless steel of the present invention is subjected to precipitation strengthening of the γ'phase [Ni 3 (Al, Ti, Nb)] for the purpose of improving heat resistance. The reasons for limiting the component range of the constituent elements will be described below.

【0020】Tiはγ′相[Ni(Al,Ti,Nb)]を構成す
る主要な構成元素であるが、多量に添加するとη相[Ni
Ti:hcp構造]を粒界に過剰に析出し、耐熱特性を得
るために必要なγ′相[Ni(Al,Ti,Nb)]の析出を熱
処理のみで制御することが不可能となる。有効な析出量
を得るためには1.0〜5.0wt%とする必要がある。
Ti is a main constituent element of the γ'phase [Ni 3 (Al, Ti, Nb)], but if added in a large amount, the η phase [Ni
3 Ti: hcp structure] is excessively precipitated at the grain boundaries, and it is impossible to control the precipitation of the γ ′ phase [Ni 3 (Al, Ti, Nb)] required to obtain heat resistance characteristics only by heat treatment. Become. In order to obtain an effective precipitation amount, it is necessary to set it to 1.0 to 5.0 wt%.

【0021】AlはTi同様γ′相[Ni(Al,Ti,Nb)]の
主要な構成元素であるが、酸化物を形成しやすく溶解精
錬時の脱酸剤としても使用される。但し、過度の添加は
熱間加工性の劣化を生じやすいため1.0wt%以下とし
た。
Al, like Ti, is a main constituent element of the γ'phase [Ni 3 (Al, Ti, Nb)], but it easily forms an oxide and is also used as a deoxidizing agent during melting and refining. However, excessive addition easily causes deterioration of hot workability, so the content was made 1.0 wt% or less.

【0022】Nbは過剰に添加するとFe2Nb(ラーバス)
相を析出する。このとき強度劣化が見込まれるため0.1
〜3.0wt%とした。
If Nb is added excessively, Fe 2 Nb (Rabus)
Precipitate the phases. Since strength deterioration is expected at this time, 0.1
〜3.0wt%.

【0023】これらTi、Al、Nbの合計含有量の増加は
γ′相[Ni(Al,Ti,Nb)]の析出量増加と共に、母相
γ相(オーステナイト)の不安定化を生じる。そこで高
温特性向上に有効な含有量として3.0wt%以上、γ相
(オーステナイト)の相安定性を考慮し7.0wt%以下と
した。
An increase in the total content of Ti, Al and Nb causes an increase in the precipitation amount of the γ'phase [Ni 3 (Al, Ti, Nb)] and destabilization of the matrix γ phase (austenite). Therefore, the content effective for improving the high temperature characteristics is 3.0 wt% or more, and considering the phase stability of the γ phase (austenite), it is set to 7.0 wt% or less.

【0024】Moはγ相(オーステナイト)中に固溶し、
高温引張強さ,耐へたり性の向上に大きく寄与する。そ
こで耐へたり性向上に最低限必要な0.1wt%以上とし、
加工性の劣化を考慮して4.0wt%以下とした。
Mo dissolves in the γ phase (austenite),
It greatly contributes to the improvement of high temperature tensile strength and sag resistance. Therefore, 0.1 wt% or more, which is the minimum required to improve sag resistance,
Considering the deterioration of workability, it was set to 4.0 wt% or less.

【0025】Bについては強析出強化を行う上で熱間加
工性が低下することを防止し、かつ靭性の向上を目的と
してB:0.001〜0.01wt%とした。
B is 0.001 to 0.01 wt% for the purpose of preventing deterioration of hot workability during strong precipitation strengthening and improving toughness.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。150kgの鋼材を真空溶解炉で溶解鋳造し、鍛造後
熱間圧延で直径9.5mmの線材を作製した。その後、溶体
化と伸線を繰り返し、最終的に加工度40%の線径4mmの
試験材を作製した。表1にその化学成分および「{η相
[NiTi:hcp構造]/γ′相[Ni(Al,Ti,Nb)]}
×100(%)」の重量比率(以下単にη/γ′比率とい
う)ならびにγ′相[Ni(Al,Ti,Nb)]の粒子直径を
示す。このη/γ′比率および粒子直径についてはTEM
(Transmission Electron Microscope)画像より分析
して算出した結果を用いた。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. A 150 kg steel material was melt-cast in a vacuum melting furnace, forged and then hot-rolled to produce a wire having a diameter of 9.5 mm. After that, solution treatment and wire drawing were repeated, and finally a test material with a wire diameter of 4 mm and a workability of 40% was prepared. Table 1 shows its chemical composition and “{η phase [Ni 3 Ti: hcp structure] / γ ′ phase [Ni 3 (Al, Ti, Nb)]}.
× 100 (%) ”weight ratio (hereinafter simply referred to as η / γ ′ ratio) and particle diameter of γ ′ phase [Ni 3 (Al, Ti, Nb)]. For this η / γ 'ratio and particle diameter, see TEM
(Transmission Electron Microscope) The result calculated by analyzing from the image was used.

【0027】[0027]

【表1】 [Table 1]

【0028】各試験材の熱処理条件は次の通りである。
発明材および比較材4〜7についてはη/γ′比率と析
出したγ′相[Ni(Al,Ti,Nb)]の粒子直径を調整す
るため、各試料毎に、溶体化条件として温度1000〜1300
℃で適切な時間を設定し、時効条件は温度600〜800℃×
1〜50時間のうち適切なものを設定して、試作材を作製
した。比較材1はInco社のNi基耐熱起合金Inconel?X7
50で、時効条件を704℃×20時間,空冷とした。比較材
2はSUS304‐WPB で、400℃×20分の低温焼鈍を行い、
比較材3はSUS631J1−WPCで、475℃×1時間の低温焼鈍
を行った。
The heat treatment conditions for each test material are as follows.
For the invention material and the comparative materials 4 to 7, in order to adjust the η / γ ′ ratio and the particle diameter of the precipitated γ ′ phase [Ni 3 (Al, Ti, Nb)], the temperature was set as the solution treatment condition for each sample. 1000-1300
Set an appropriate time in ° C, and the aging condition is a temperature of 600 to 800 ° C.
Prototype materials were prepared by setting appropriate ones for 1 to 50 hours. Comparative material 1 is Inco's Ni-based heat-resistant alloy Inconel? X7
At 50, the aging condition was 704 ° C. × 20 hours and air cooling. Comparative material 2 is SUS304-WPB, which was low temperature annealed at 400 ℃ for 20 minutes.
Comparative material 3 was SUS631J1-WPC and was subjected to low temperature annealing at 475 ° C for 1 hour.

【0029】なお、比較材として他にもAl+Ti+Nbの含有
量が7.0wt%以上のものでη/γ′比率が0.01%以上30.
00%以下のものを用意しようとしたが、熱処理条件制御
による試料作製は困難であった。
As a comparative material, the Al + Ti + Nb content is 7.0 wt% or more and the η / γ 'ratio is 0.01% or more 30.
Although we tried to prepare less than 00%, it was difficult to prepare a sample by controlling the heat treatment conditions.

【0030】(引張り試験)上記の各試作材について、
600℃で引張試験を行った。試験法については、各試作
材(4.0mmφ)とも大気中試験温度600℃で15分間保持し
た後、引張試験を行った。いずれの試料も時効もしくは
低温焼純後、試験を行った。その結果を表2に示す。
(Tensile test) For each of the above trial materials,
A tensile test was performed at 600 ° C. Regarding the test method, each prototype material (4.0 mmφ) was held in the atmosphere at a test temperature of 600 ° C. for 15 minutes and then subjected to a tensile test. All the samples were tested after aging or low temperature calcination. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2から、本発明材はいずれも一般的な耐
熱鋼であるステンレス鋼と比較して、600℃において高
い引張強さを持つことが確認できる。特に、η/γ′比
率が10.00%以下の発明材8、9ならびにη/γ′比率
が10.00%以下でかつγ′相[Ni(Al,Ti,Nb)]の球
状粒子の直径が20nm以下である発明材10、11は優れた引
張り強度を示している。
From Table 2, it can be confirmed that each of the materials of the present invention has a higher tensile strength at 600 ° C. as compared with stainless steel which is a general heat resistant steel. In particular, the invention materials 8 and 9 having an η / γ ′ ratio of 10.00% or less and the diameter of spherical particles of the γ ′ phase [Ni 3 (Al, Ti, Nb)] having a η / γ ′ ratio of 10.00% or less and 20 nm. The following invention materials 10 and 11 show excellent tensile strength.

【0033】これに対して、 η/γ′比率において30%を越え、γ′相[Ni(A
l,Ti,Nb)]の粒子直径が20nmを越える比較材4,5、 γ′相[Ni(Al,Ti,Nb)]の粒子直径が20nm以下で
あるがη/γ′比率が30%を越えAl+Ti+Nbの含有量が7w
t%を越える比較材6、 γ′相[Ni(Al,Ti,Nb)]の粒子直径が20nm以下で
あるがη/γ′比率が30%を越える比較材7では、600
℃における引張強さが800N/mm 2以下となることが確認
できる。
On the other hand, when the η / γ 'ratio exceeds 30%, the γ'phase [Ni 3 (A
l, Ti, Nb)] having a particle diameter of more than 20 nm, comparative materials 4, 5 and γ ′ phase [Ni 3 (Al, Ti, Nb)] having a particle diameter of 20 nm or less but having an η / γ ′ ratio of 30 %, Al + Ti + Nb content is 7w
Comparative material 6 having a t% of more than 6%, and a comparative material 7 having a γ ′ phase [Ni 3 (Al, Ti, Nb)] having a particle diameter of 20 nm or less, but having an η / γ ′ ratio of more than 30%, 600
It can be confirmed that the tensile strength at ℃ becomes 800 N / mm 2 or less.

【0034】(高温耐へたり性試験)次に、本発明耐熱
ステンレス鋼の高温耐へたり性を評価した。試験方法
は、図1に示すように、まず試料をコイルばね100とした
後、圧縮荷重を負荷し(負荷せん断応力は400Mpa)、試
験温度600℃において24hrs保持する。その後、荷重を解
放して、ばねのへたり量の測定から残留せん断ひずみを
算出した。その結果を表3に示す。
(High temperature sag resistance test) Next, the high temperature sag resistance of the heat resistant stainless steel of the present invention was evaluated. As shown in FIG. 1, the test method is as follows. First, the sample is a coil spring 100, and then a compressive load is applied (load shear stress is 400 MPa), and the test temperature is kept at 600 ° C. for 24 hours. After that, the load was released, and the residual shear strain was calculated from the measurement of the amount of fatigue of the spring. The results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】表3に試験後の残留せん断ひずみ量(%)
を示す。発明材はいずれも一般的な耐熱鋼であるステン
レス鋼よりも高い高温耐へたり性を有しており、特にη
/γ′比率が10.00%以下の発明材8〜11はより高い高
温耐へたり性が得られることが確認出来る。中でもγ′
相[Ni(Al,Ti,Nb)]の球状粒子の直径が20nm以下で
ある発明材10、11は、Ni基耐熱超合金(比較材1)とほ
ぼ同等か、それ以上の高温耐へたり性を有する。
Table 3 shows the residual shear strain amount (%) after the test.
Indicates. All of the invention materials have higher high temperature fatigue resistance than stainless steel which is a general heat resistant steel, and in particular, η
It can be confirmed that invention materials 8 to 11 having a / γ 'ratio of 10.00% or less can obtain higher high temperature sag resistance. Above all γ ′
Inventive materials 10 and 11 in which the diameter of the spherical particles of the phase [Ni 3 (Al, Ti, Nb)] are 20 nm or less are almost equivalent to or higher than the Ni-based heat-resistant superalloy (Comparative material 1) in high temperature resistance. Has a tendency.

【0037】[0037]

【発明の効果】以上説明したように、本発明の耐熱鋼は
基地であるγ相(オーステナイト)相結晶粒内にγ′相
[Ni(Al,Ti,Nb)]粒子を一定量強析出させること
で、600℃付近での熱間引張強さを高くすることができ
る。その上、粒界析出相であるη相[NiTi:hcp構
造]と粒内析出相であるγ′相[Ni(Al,Ti,Nb)]と
の重量比を規定することで高温耐へたり性も改善するこ
とができる。
As described above, the heat-resistant steel of the present invention strongly precipitates a certain amount of γ'phase [Ni 3 (Al, Ti, Nb)] particles in the γ phase (austenite) phase crystal grains that are the base. By doing so, the hot tensile strength at around 600 ° C. can be increased. In addition, by defining the weight ratio of the η phase [Ni 3 Ti: hcp structure] that is the grain boundary precipitation phase and the γ ′ phase [Ni 3 (Al, Ti, Nb)] that is the intragranular precipitation phase, the high temperature Settling resistance can also be improved.

【0038】さらに、粒内析出したγ′相[Ni(Al,T
i,Nb)]の粒子直径を20nm以下と規定することで、高価
なNi基耐熱超合金なみか、それ以上の高温耐へたり性を
得ることも可能である。
Furthermore, the γ'phase [Ni 3 (Al, T
i, Nb)] with a particle diameter of 20 nm or less, it is possible to obtain high temperature sag resistance higher than that of an expensive Ni-based heat-resistant superalloy.

【0039】従って、本発明の耐熱ステンレス鋼は、自
動車排気系に用いられるフレキシブルジョイント部品で
あるボールジョイント,ブレード,三元触媒に用いられ
るニットメッシュなど、耐熱ばね材として適したもので
ある。また、Fe基合金とすることでNi基耐熱超合金の使
用によるコスト上昇を小さくすることが可能で工業的価
値が高い。
Therefore, the heat-resistant stainless steel of the present invention is suitable as a heat-resistant spring material such as a ball joint, which is a flexible joint part used in an automobile exhaust system, a blade, and a knit mesh used for a three-way catalyst. In addition, by using a Fe-based alloy, it is possible to reduce the cost increase due to the use of a Ni-based heat-resistant superalloy, which has high industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】ステンレス鋼の耐へたり性を評価する試験方法
の説明図である。
FIG. 1 is an explanatory diagram of a test method for evaluating the sag resistance of stainless steel.

【符号の説明】[Explanation of symbols]

1 ばね 1 spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 照幸 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭58−34129(JP,A) 特開 平7−11376(JP,A) 特開 昭64−25919(JP,A) 特開 平7−216515(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Teruyuki Murai, 1-1 1-1 Kunyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (56) Reference JP-A-58-34129 (JP, A) ) JP-A 7-11376 (JP, A) JP-A 64-25919 (JP, A) JP-A 7-216515 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00 302 C22C 38/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.02〜0.30wt%,Si:0.02〜3.5wt%,
Mn:0.02〜2.5wt%,Ni:10〜50wt%,Cr:12〜25wt%,T
i:1.0〜5.0wt%,Al:0.002〜1.0wt%を含有し、かつNb:
0.1〜3.0wt%,B:0.001〜0.01wt%,Mo:0.1〜4.0wt%か
ら選択された1種以上を含有して、Ti,AlおよびNbの合
計含有量が3.0〜7.0wt%である耐熱ステンレス鋼であっ
て、 粒界に析出するη相[NiTi:hcp構造]と基地である
γ相(オーステナイト)結晶粒内に析出するγ′相[Ni
(Al,Ti,Nb)]との重量比率「{η相[NiTi:hcp
構造]/γ′相[Ni(Al,Ti,Nb)]}×100(%)」
が、0.01%以上10.00%以下であり、 600℃での熱間引張強さが800N/mm2以上であることを特
徴とする耐熱ステンレス鋼。
1. C: 0.02 to 0.30 wt%, Si: 0.02 to 3.5 wt%,
Mn: 0.02 to 2.5wt%, Ni: 10 to 50wt%, Cr: 12 to 25wt%, T
i: 1.0-5.0wt%, Al: 0.002-1.0wt%, and Nb:
0.1 to 3.0 wt%, B: 0.001 to 0.01 wt%, Mo: 0.1 to 4.0 wt%, and the total content of Ti, Al and Nb is 3.0 to 7.0 wt% Heat-resistant stainless steel, η phase [Ni 3 Ti: hcp structure] that precipitates at grain boundaries and γ ′ phase [Ni that precipitates in the γ phase (austenite) crystal grains that are the matrix
3 (Al, Ti, Nb)] weight ratio “{η phase [Ni 3 Ti: hcp
Structure] / γ 'phase [Ni 3 (Al, Ti, Nb)]} × 100 (%) ”
Is 0.01% or more and 10.00% or less , and the hot tensile strength at 600 ° C. is 800 N / mm 2 or more, a heat-resistant stainless steel.
【請求項2】 C:0.02〜0.30wt%,Si:0.02〜3.5wt%,
Mn:0.02〜2.5wt%,Ni:10〜50wt%,Cr:12〜25wt%,T
i:1.0〜5.0wt%,Al:0.002〜1.0wt%を含有し、かつNb:
0.1〜3.0wt%,B:0.001〜0.01wt%,Mo:0.1〜4.0wt%か
ら選択された1種以上を含有して、Ti,AlおよびNbの合
計含有量が3.0〜7.0wt%である耐熱ステンレス鋼であっ
て、 粒界に析出するη相[Ni Ti:hcp構造]と基地である
γ相(オーステナイト)結晶粒内に析出するγ′相[Ni
(Al,Ti,Nb)]との重量比率「{η相[Ni Ti:hcp
構造]/γ′相[Ni (Al,Ti,Nb)]}×100(%)」
が、0.01%以上30.00%以下で、 前記γ′相[Ni (Al,Ti,Nb)]の球状粒子の直径が1
nm以上20nm以下であり、 600℃での熱間引張強さが800N/mm 2 以上であることを特
徴とする耐熱ステンレス鋼。
2. C: 0.02 to 0.30 wt%, Si: 0.02 to 3.5 wt%,
Mn: 0.02 to 2.5wt%, Ni: 10 to 50wt%, Cr: 12 to 25wt%, T
i: 1.0-5.0wt%, Al: 0.002-1.0wt%, and Nb:
0.1-3.0wt%, B: 0.001-0.01wt%, Mo: 0.1-4.0wt%
Containing one or more selected from the group consisting of Ti, Al and Nb
Heat-resistant stainless steel with a total content of 3.0-7.0 wt%
Te, eta phase precipitated in grain boundaries: is [Ni 3 Ti hcp structure] and base
γ ′ phase [Ni (Austenite) precipitates in crystal grains [Ni
3 (Al, Ti, Nb)] weight ratio “{η phase [Ni 3 Ti: hcp
Structure] / γ 'phase [Ni 3 (Al, Ti, Nb)]} × 100 (%) ”
Is 0.01% or more and 30.00% or less, the diameter of the spherical particles of the γ'phase [Ni 3 (Al, Ti, Nb)] is 1 or less.
nm or more and 20 nm or less, and the hot tensile strength at 600 ° C is 800 N / mm 2 or more.
Heat resistant stainless steel to collect.
JP28210998A 1998-10-05 1998-10-05 Heat resistant stainless steel Expired - Lifetime JP3492531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28210998A JP3492531B2 (en) 1998-10-05 1998-10-05 Heat resistant stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28210998A JP3492531B2 (en) 1998-10-05 1998-10-05 Heat resistant stainless steel

Publications (2)

Publication Number Publication Date
JP2000109955A JP2000109955A (en) 2000-04-18
JP3492531B2 true JP3492531B2 (en) 2004-02-03

Family

ID=17648252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28210998A Expired - Lifetime JP3492531B2 (en) 1998-10-05 1998-10-05 Heat resistant stainless steel

Country Status (1)

Country Link
JP (1) JP3492531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170059458A (en) * 2014-09-19 2017-05-30 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075171A (en) 2006-09-25 2008-04-03 Nippon Seisen Co Ltd HEAT RESISTANT ALLOY SPRING AND Ni-BASED ALLOY WIRE USED THEREFOR
JP5880836B2 (en) 2011-03-21 2016-03-09 大同特殊鋼株式会社 Precipitation strengthened heat resistant steel and processing method thereof
JP6259579B2 (en) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 High-strength stainless steel wire, high-strength spring, and method of manufacturing the same
CN105506501B (en) * 2014-09-25 2018-12-28 宝钢不锈钢有限公司 A kind of long-life heat-resistant high alloy steel and its manufacturing method
KR101639888B1 (en) * 2014-11-13 2016-07-15 주식회사 포스코 High temperature structural steel containing titanium and method for manufacturing the same
KR101639890B1 (en) * 2014-11-13 2016-07-15 주식회사 포스코 High temperature structural steel containing titanium and method for manufacturing the same
KR101639892B1 (en) * 2014-11-13 2016-07-15 주식회사 포스코 High temperature structural steel containing titanium and method for manufacturing the same
KR101639891B1 (en) * 2014-11-13 2016-07-15 주식회사 포스코 High temperature structural steel containing titanium and method for manufacturing the same
KR101639889B1 (en) * 2014-11-13 2016-07-15 주식회사 포스코 High temperature structural steel containing titanium and method for manufacturing the same
JP6160787B2 (en) * 2015-07-03 2017-07-12 新日鐵住金株式会社 Thin plate and manufacturing method thereof
KR101851864B1 (en) * 2016-08-31 2018-06-08 한밭대학교 산학협력단 Method for heat treatment of high strength precipitation hardening alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170059458A (en) * 2014-09-19 2017-05-30 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet

Also Published As

Publication number Publication date
JP2000109955A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3371423B2 (en) Heat resistant alloy wire
JP5988008B2 (en) Austenitic stainless steel sheet
JP5302192B2 (en) Abrasion resistant heat resistant alloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP6270194B2 (en) Metal gasket and manufacturing method thereof
JP3492531B2 (en) Heat resistant stainless steel
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
WO2014104138A1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JPS5834129A (en) Heat-resistant metallic material
JP2008075119A (en) Alloy wire for heat resistant spring, and heat resistant spring product using the same
JPH06306550A (en) Heat resistant steel and heat treatment therefor
JP3515770B2 (en) Heat-resistant steel wire and spring
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
WO2002024967A1 (en) Co-ni base heat-resistant alloy and method for production thereof
JP2860260B2 (en) High corrosion resistance Ni-based alloy
JP2001158943A (en) Heat resistant bolt
JPH07238349A (en) Heat resistant steel
JPH11229059A (en) Heat resistant alloy for engine valve
JP2004190060A (en) Heat-resistant alloy for engine valve
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JP6960083B2 (en) Heat resistant plate material
JP2001172751A (en) Fe-BASE HEAT-RESISTING ALLOY FOR ENGINE VALVE, WITH EXCELLENT COLD WORKABILITY AND HIGH TEMPERATURE STRENGTH
JP2023029224A (en) Heat-resistant alloy material and elastic member formed by processing the same
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term