JP3486541B2 - Inner focus optical system having vibration proof function and camera having the same - Google Patents
Inner focus optical system having vibration proof function and camera having the sameInfo
- Publication number
- JP3486541B2 JP3486541B2 JP29957397A JP29957397A JP3486541B2 JP 3486541 B2 JP3486541 B2 JP 3486541B2 JP 29957397 A JP29957397 A JP 29957397A JP 29957397 A JP29957397 A JP 29957397A JP 3486541 B2 JP3486541 B2 JP 3486541B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- optical system
- image
- lens group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Adjustment Of Camera Lenses (AREA)
- Lenses (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フォーカスに際し
てインナーフォーカスを用いて光学系の振動による撮影
画像のブレを補正する機能、所謂防振機能を有し、特に
防振用の可動レンズ群を例えば光軸と直交する方向に移
動させて、防振効果を発揮させたときの光学性能の低下
を防止した写真用カメラやビデオカメラ等に好適な防振
機能を有したインナーフォーカス式の光学系及びそれを
有するカメラに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of correcting blur of a photographed image due to vibration of an optical system using an inner focus at the time of focusing, that is, a so-called anti-vibration function. An inner focus type optical system having an anti-vibration function suitable for a photographic camera, a video camera, etc., which prevents deterioration of optical performance when the anti-vibration effect is exerted by moving in a direction orthogonal to the optical axis, and It relates to a camera having it.
【0002】[0002]
【従来の技術】近年、民生用のビデオカメラにおいて手
持ちによる望遠撮影時において、手ブレ(振動)による
画質の劣化を防止する目的で像ブレ補正機能を有したも
のが多く提案されている。2. Description of the Related Art In recent years, many video cameras for consumer use have been proposed which have an image blur correction function for the purpose of preventing deterioration of image quality due to camera shake (vibration) during telephoto shooting by hand.
【0003】一般に長い焦点距離の撮影系を使用する際
には、撮影系の振動を抑制することが困難となる。撮影
系が振動によって傾くと、撮影画像はその傾き角と撮影
系の焦点距離に応じた変位を発生する。このため静止画
撮影装置においては、画質の劣化を防止するために撮影
時間を十分に短くしなければならないという問題があ
り、又動画撮影装置においては、構図の設定を維持する
ことが困難となるという問題がある。そのためこのよう
な撮影の際には、撮影系が振動によって傾いた際にも撮
影画像の変位所謂撮影画像のブレが発生しないように補
正することが必要となる。Generally, when a photographing system having a long focal length is used, it is difficult to suppress the vibration of the photographing system. When the photographing system tilts due to vibration, the photographed image is displaced according to the tilt angle and the focal length of the photographing system. Therefore, in the still image capturing device, there is a problem that the capturing time must be sufficiently short in order to prevent deterioration of image quality, and in the moving image capturing device, it becomes difficult to maintain the composition setting. There is a problem. Therefore, in such photographing, it is necessary to perform correction so that displacement of the photographed image, that is, blurring of the photographed image does not occur even when the photographing system tilts due to vibration.
【0004】従来より撮影画像のブレを補正する方法と
して、例えばビデオカメラ等では撮像素子の有効面積を
必要画面範囲より多く持たせ、電気的に像ぶれを補正す
る電気的な補正方法が多く採用されている。Conventionally, as a method of correcting the blur of a photographed image, for example, in a video camera or the like, an electric correction method is widely adopted in which an effective area of an image pickup device is larger than a necessary screen range to electrically correct an image blur. Has been done.
【0005】特開昭61−223819号公報では最も
被写体側に屈折型可変頂角プリズムを配置した撮影系に
おいて、撮影系の振動に対応させて該屈折型可変頂角プ
リズムの頂角を変化させて画像を偏向させて画像の安定
化を図っている。According to Japanese Patent Laid-Open No. 61-223819, in a photographing system in which a refracting variable apex angle prism is arranged closest to the subject, the apex angle of the refracting variable apex prism is changed in response to the vibration of the photographing system. The image is deflected to stabilize the image.
【0006】又、光学系中の一部のレンズ群(移動レン
ズ群)を光軸と直交する方向に移動させて撮影画像のブ
レを補正するものが、例えば特開昭50−80147号
公報や特開昭56−223819号公報や、特開平7−
270724号公報、そして特開平8−201691号
公報等で提案されている。[0006] Further, a lens group (moving lens group) in the optical system is moved in a direction orthogonal to the optical axis to correct the blur of a photographed image, as disclosed in, for example, JP-A-50-80147. JP-A-56-223819 and JP-A-7-
No. 270724, and Japanese Patent Laid-Open No. 8-201691.
【0007】一方、撮影レンズにおけるフォーカスは方
式は種々あり、例えば撮影レンズ全体を移動させたり、
若しくは撮影レンズの一部を移動させたりして行ってい
る。このうち撮影レンズが長焦点距離を有する望遠レン
ズの場合は撮影レンズが大型となり、又高重量となる
為、撮影レンズ全体を移動させてフォーカスを行うのが
機構的に困難である。On the other hand, there are various types of focusing in the taking lens, such as moving the entire taking lens,
Alternatively, a part of the photographing lens is moved. If the taking lens is a telephoto lens having a long focal length, the taking lens becomes large and heavy, and it is mechanically difficult to move the taking lens as a whole to perform focusing.
【0008】この為、望遠レンズでは一部のレンズ群を
移動させてフォーカスを行っているものが多い。このう
ち、撮影レンズの前方レンズ群以外の比較的小型で、し
かも軽量のレンズ系中の中央部分の一部のレンズ群を移
動させてフォーカスを行ったインナーフォーカス式を用
いているものが種々と提案されている。For this reason, in many telephoto lenses, some of the lens groups are moved for focusing. Among them, there are various ones that use the inner focus type in which a part of the central lens group in the relatively small and lightweight lens system other than the front lens group of the taking lens is moved to perform focusing. Proposed.
【0009】例えば、特開昭55−147606号公報
では焦点距離300mm、Fナンバー2.8のインナー
フォーカス式の望遠レンズを、特開昭59−65820
号公報や特開昭59−65821号公報では焦点距離1
35mm、Fナンバー2.8程度のインナーフォーカス
式の望遠レンズを提案している。For example, in JP-A-55-147606, an inner focus type telephoto lens having a focal length of 300 mm and an F number of 2.8 is disclosed in JP-A-59-65820.
In JP-A-59-65821 and JP-A-59-65821, the focal length is 1
An inner focus type telephoto lens of 35 mm and an F number of about 2.8 is proposed.
【0010】これらで提案されているインナーフォーカ
ス式の望遠レンズでは何れも物体側より順に正の屈折力
の第1群、負の屈折力の第2群、そして正の屈折力の第
3群の3つのレンズ群を有し、第2群を光軸上移動させ
てフォーカスを行っている。In each of the inner focus type telephoto lenses proposed by these, the first group having a positive refractive power, the second group having a negative refractive power, and the third group having a positive refractive power are arranged in this order from the object side. It has three lens groups, and the second group is moved on the optical axis for focusing.
【0011】[0011]
【発明が解決しようとする課題】撮影画像のブレを補正
する方法として前述の電気的な方法は、銀塩写真用カメ
ラには適用できないという問題点があった。又、光学系
の物体側にプリズム頂点角度が可変なプリズムを配置
し、ブレに応じてプリズム頂点角度を変化させ、その補
正を行う方式は、光学系の物体側のプリズムを装着する
為、特に大口径な光学系に対してはその補正光学系及び
駆動装置が大型化してしまう。又、光学性能的にも補正
時にプリズム作用による色収差が出てしまう為、銀塩写
真に求められる高画質の画像を得るのが難しくなってし
まうという問題点があった。However, there is a problem in that the above-mentioned electrical method as a method for correcting the blur of a photographed image cannot be applied to a silver halide photography camera. In addition, a prism with a variable prism apex angle is arranged on the object side of the optical system, the prism apex angle is changed according to the blur, and the method of correcting it is because the prism on the object side of the optical system is mounted. For a large-diameter optical system, the correction optical system and the driving device become large. Also, in terms of optical performance, there is a problem that chromatic aberration due to the prism action occurs at the time of correction, which makes it difficult to obtain a high-quality image required for silver halide photography.
【0012】又、光学系の一部の移動レンズ群を偏心さ
せることにより画像位置の変位を行い、ブレの補正を行
わせる方法は、移動レンズ群を適切に選択、配置するこ
とにより、装置を小型にすることができる。Further, a method of displacing an image position by decentering a moving lens group of a part of an optical system to correct blurring is a method of appropriately selecting and arranging the moving lens group and Can be small.
【0013】しかしながらこの方法は移動レンズ群が小
型軽量、かつ少ない移動量にて大きな像位置の変位作用
を偏心収差を補正して画質の劣化を極力防止しつつ行う
必要があり、一般にそれらのバランスを十分に満たすの
が大変難しいという問題点があった。However, in this method, it is necessary that the moving lens group is small and lightweight, and the displacement of a large image position is performed with a small amount of movement while correcting the eccentric aberration to prevent the deterioration of the image quality as much as possible. There was a problem that it was very difficult to satisfy
【0014】一方、インナーフォーカス式はフォーカス
用のレンズ群が小型軽量である為、操作性が容易で、し
かも高速操作が可能となり、又無限遠物体と至近物体に
フォーカスしたときのレンズ系全体の重心位置の変化が
少なく、ホールディングしやすい等の利点がある。On the other hand, in the inner focus type, since the focusing lens group is small and lightweight, the operability is easy and the high speed operation is possible, and the entire lens system when focusing on an object at infinity and a near object is provided. There are advantages that the position of the center of gravity does not change and holding is easy.
【0015】この反面、Fナンバーの明るい望遠レンズ
においてインナーフォーカス式を採用すると、フォーカ
スの際の収差変動が大きくなり、このときの収差変動を
良好に補正するのが難しく、光学性能を低下させる原因
となっている。On the other hand, when the inner focus type is adopted in the telephoto lens having a bright F number, the aberration variation at the time of focusing becomes large, and it is difficult to satisfactorily correct the aberration variation at this time, which causes the deterioration of the optical performance. Has become.
【0016】本発明は、光学系の一部のレンズ群を光軸
と垂直な方向に偏心駆動させて撮影画像の変位(ブレ)
を補正する際、各レンズ要素を適切に配置することによ
って各種の偏心収差を良好に補正し、又十分に少ない偏
心駆動量で十分に大きい変位補正(ブレ補正)を実現す
ることによって装置全体の小型化を可能とし、又インナ
ーフォーカス式を採用しつつ、無限遠物体から近距離物
体に至る広範囲の物体距離において、フォーカスの際の
収差変動を良好に補正した防振機能を有したインナーフ
ォーカス式の光学系及びそれを有するカメラの提供を目
的とする。According to the present invention, some lens groups of the optical system are eccentrically driven in a direction perpendicular to the optical axis to displace (blurr) a photographed image.
When correcting the above, various eccentric aberrations are satisfactorily corrected by appropriately disposing each lens element, and a sufficiently large displacement correction (shake correction) is realized with a sufficiently small eccentric drive amount. The inner focus type, which can be downsized and has an anti-vibration function that satisfactorily corrects aberration fluctuations during focusing, over a wide range of object distances from infinity objects to short-distance objects while adopting the inner focus method An optical system and a camera having the same are provided.
【0017】[0017]
【課題を解決するための手段】本発明の防振機能を有し
たインナーフォーカス式の光学系は、物体側より順に、
正の屈折力の第1レンズ群、負の屈折力の第2レンズ
群、正の屈折力の第3レンズ群を有し、該第2レンズ群
を光軸上移動させてフォーカスを行うインナーフォーカ
ス式の光学系において、該第1レンズ群と第2レンズ群
の合成の屈折力は正であり、該第3レンズ群は、物体側
より順に、正の屈折力の第31群、負の屈折力の第32
群、正の屈折力の第33群の3つのレンズ群を有し、該
第32群を光軸と直交する方向に移動させて撮影画像の
結像位置を変位させており、該第iレンズ群の焦点距離
をfi、全系の焦点距離をf、前記第31群、第32
群、第33群の焦点距離を順にf31、f32、f33
としたとき 0.3<f1/f<0.75 ・・・(3) 0.2<|f2/f|<0.7 ・・・(4) 0.1<f/f3<1.5 ・・・(5) 0.12<f31/f<0.5 ・・・(6) 0.05<|f32/f|<0.15 ・・・(7) 0.08<f33/f<0.25 ・・・(8)
を満足することを特徴としている。An inner focus type optical system having a vibration isolation function according to the present invention is arranged in order from the object side.
Inner focus having a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, and moving the second lens group on the optical axis for focusing. In the optical system of the expression, the combined refracting power of the first lens group and the second lens group is positive, and the third lens group is, in order from the object side, the 31st group of positive refracting power and the negative refracting power. 32nd of power
Group, three lens groups of the 33rd group having a positive refractive power, and the 32nd group is moved in the direction orthogonal to the optical axis to displace the image forming position of the photographed image . Focal length of group
Fi, the focal length of the entire system is f, the 31st group, the 32nd group
The focal lengths of the lens group and the 33rd lens group are f31, f32, and f33 in order.
Then 0.3 <f1 / f <0.75 (3) 0.2 <| f2 / f | <0.7 (4) 0.1 <f / f3 <1.5 (5) 0.12 <f31 / f <0.5 (6) 0.05 <| f32 / f | <0.15 (7) 0.08 <f33 / f < 0.25 (8) is satisfied.
【0018】[0018]
【発明の実施の形態】図1〜図16は本発明の後述する
数値実施例1〜16のレンズ断面図である。図中、L1
は正の屈折力の第1群,L2は負の屈折力の第2群,L
3は正の屈折力の第3群である。1 to 16 are lens sectional views of Numerical Examples 1 to 16 to be described later of the present invention. L1 in the figure
Is the first group of positive refractive power, L2 is the second group of negative refractive power, L
The third group 3 has a positive refractive power.
【0019】第3群L3は正の屈折力の第31群L3
1、負の屈折力の第32群L32、そして正の屈折力の
第33群L33の3つのレンズ群を有している。SPは
開口絞り、FLは光学フィルター、IPは像面である。The third lens unit L3 is the 31st lens unit L3 having a positive refractive power.
It has three lens groups, namely, a first lens unit L32 having a negative refractive power, and a third lens unit L33 having a positive refractive power. SP is an aperture stop, FL is an optical filter, and IP is an image plane.
【0020】本実施形態では無限遠物体から至近物体へ
のフォーカスは第2群を矢印LFの如く像面側へ移動さ
せて行っている。又、光学系が振動したときの撮影画像
のブレの補正(振動補償)は第32群L32を可動レン
ズ群(画像変位補正群)とし、矢印LTの如く光軸と直
交する方向に移動させて行っている。In the present embodiment, focusing from an object at infinity to a close object is performed by moving the second lens unit to the image plane side as indicated by an arrow LF. Further, the correction (vibration compensation) of the captured image when the optical system vibrates is performed by making the 32nd lens unit L32 a movable lens unit (image displacement correction unit) and moving it in the direction orthogonal to the optical axis as indicated by the arrow LT. Is going.
【0021】本発明に係る光学系は第1群に対し、小レ
ンズ径で、かつ軽量な負の屈折力の第2群を光軸上移動
させることによってフォーカシングを行い、その駆動装
置が低トルクで小型なものが利用できるようにしてい
る。又、第1群と第2群の合成の屈折力が正となるよう
にしている。そして第2群を通過した収斂光線を正の屈
折力の第31群で更に収斂させており、これにより第3
2群(画像変位補正群)のレンズ径の小型化を容易にし
ている。更に正の屈折力の第33群を配置することによ
り、一定のレンズ全系の焦点距離を保ちつつ負の屈折力
の第32群の屈折力を増大させて第32群の少ない偏心
移動により結像面上の大きな像位置の変位(以後、偏心
量と像位置変位の関係を像変位敏感度という。)を容易
にしている。In the optical system according to the present invention, focusing is performed by moving the second lens group, which has a small lens diameter and is lightweight and has a negative refractive power, with respect to the first lens group, on the optical axis, and the driving device thereof has a low torque. We have made available small things. Further, the combined refractive power of the first group and the second group is made positive. Then, the convergent light beam that has passed through the second lens unit is further converged by the 31st lens unit having a positive refractive power.
It is easy to reduce the lens diameter of the second group (image displacement correction group). Further, by arranging the 33rd lens unit having a positive refractive power, the refractive power of the 32nd lens unit having a negative refractive power is increased while maintaining a constant focal length of the entire lens system, and the eccentric movement of the 32nd lens unit causes less decentering movement. This facilitates a large displacement of the image position on the image plane (hereinafter, the relationship between the eccentricity amount and the image position displacement is referred to as image displacement sensitivity).
【0022】 本実施形態では前述の如く各要素を設定
することによって望遠光学系を備えたビデオカメラやス
チルカメラ等の手持ち撮影時や不安定な三脚、一脚等に
固定しての撮影等に生じる画像ブレを良好に補正してい
る。次に前述の条件式(3)〜(8)の技術的意味につ
いて説明する。条件式(3)は正の屈折力の第1群の屈
折力を適切に設定する為の条件である。条件式(3)の
上限値を越えて第1群の屈折力が小さくなりすぎるとテ
レフォト系の作用が弱くなってくるため、レンズ全長が
長くなってきて良くない。また、収斂作用が小さくなり
すぎるため、第2群に入射する光束が太くなってしま
い、第2群のレンズ径が大型化してしまう。又、一定の
撮影画角を保つ為には、第2群の屈折力が弱くなってく
る為フォーカス移動量が大きくなってくる。他方、下限
値を越えると正の屈折力が大きくなりすぎて高次の球面
収差が発生してこれを他のレンズ群で補正することが困
難になってくる。条件式(4)はフォーカス群である負
の屈折力の第2群の屈折力を適切に設定する為の条件で
ある。条件式(4)の上限値を越えると無限から一定有
限距離に対するフォーカス量が大きくなってしまい、レ
ンズ系の小型化の妨げとなってしまう。又、正の屈折力
の第1群で発生する諸収差、特に球面収差を負の屈折力
の第2群で補正できなくなり、他方、下限値を越えると
負の屈折力の第2群で球面収差が補正過剰になってしま
うため、結果として光学系全体で良好なる光学性能を維
持することが、困難となる。条件式(5)は正の屈折力
の第3群の屈折力を適切に設定する為の条件である。条
件式(5)の上限値を越えると、バックフォーカスが長
くなりすぎるため、光学系全体の小型化が困難となった
り、第1群で発生する正の歪曲収差の補正が困難とな
る。他方、下限値を越えると、球面収差やコマフレアー
等を補正するために第3群のレンズ枚数が増えてしま
い、結果として光学系全体の小型化が困難となったり、
光学系全体での透過率が悪化するので良くない。条件式
(6)〜(8)は第3群の各レンズ群の屈折力を適切に
設定して第32群を光軸と略垂直方向に移動して結像位
置の変位を行う際、大きな像変位敏感度を得つつも、良
好な像性能を確保する為のものであり、この条件式
(6)〜(8)の数値範囲を外れるとそのバランスを保
つことが困難となってくる。 In the present embodiment, by setting each element as described above, for hand-held shooting of a video camera or a still camera having a telescopic optical system, or for shooting with an unstable tripod or monopod fixed. Image blurring that occurs is well corrected. Next, the technical meanings of the conditional expressions (3) to (8) are described.
And explain. Conditional expression (3) is defined by the bending of the first group with positive refractive power.
This is a condition for properly setting the folding force. Of conditional expression (3)
If the upper limit is exceeded and the refractive power of the first group becomes too small,
Since the action of the photo reflex system becomes weak, the total lens length
It's not good to be long. Also, the astringent effect is reduced
Since it is too large, the luminous flux entering the second lens group becomes thick.
However, the lens diameter of the second lens group becomes large. Also, a certain
In order to maintain the shooting angle of view, the refracting power of the second lens group becomes weak.
Therefore, the amount of focus movement increases. On the other hand, the lower limit
Beyond the value, the positive refractive power becomes too large and the spherical surface of higher order
Aberration occurs and it is difficult to correct it with other lens groups.
It will be difficult. Conditional expression (4) is a negative focus group.
With the condition for setting the refracting power of the second group of refracting power of
is there. Infinite to constant if the upper limit of conditional expression (4) is exceeded
The focus amount for the limited distance becomes large,
This will hinder the miniaturization of the system. Also, positive refractive power
Aberrations that occur in the first lens group, especially spherical aberration,
If it becomes impossible to correct in the second group of, and if the lower limit is exceeded,
Spherical aberration is overcorrected in the second lens group with negative refractive power.
As a result, good optical performance is maintained in the entire optical system.
It becomes difficult to carry. Conditional expression (5) is positive refractive power
This is a condition for properly setting the refractive power of the third lens group. Article
If the upper limit of condition (5) is exceeded, the back focus will become long.
It became difficult to downsize the whole optical system because it became too difficult
Therefore, it is difficult to correct the positive distortion that occurs in the first lens unit.
It On the other hand, if the lower limit is exceeded, spherical aberration and coma flare will occur.
The number of lenses in the third group increases to correct
As a result, it becomes difficult to downsize the entire optical system,
It is not good because the transmittance of the entire optical system deteriorates. Conditional expression
(6) to (8) properly adjust the refractive power of each lens unit of the third group.
Set and move the 32nd lens group in a direction substantially perpendicular to the optical axis to form an image.
Image displacement sensitivity is high,
This conditional expression is for ensuring good image performance.
If the value is out of the range of (6) to (8), the balance will be maintained.
Becomes difficult.
【0023】本実施例ではこのようにインナーフォーカ
ス及び撮影画像のブレの補正を行うと共に各レンズ群の
光学的諸定数を適切に設定している。これにより光学系
全体の小型化を図りつつ、撮影画像のブレの補正を良好
に行うと共に第32群の光軸と直交する方向の移動に伴
う収差、即ち偏心に伴う偏心コマ収差、偏心非点収差、
偏心像面湾曲等の偏心収差の発生を少なくし、又、物体
距離全般にわたり良好なる光学性能を得ている。In this embodiment, the inner focus and the blurring of the photographed image are corrected in this way, and the optical constants of each lens group are appropriately set. As a result, the optical system as a whole is downsized, while the blurring of the captured image is corrected well, and the aberrations associated with the movement of the 32nd lens group in the direction orthogonal to the optical axis, that is, the eccentric coma aberration and the eccentric astigmatism. aberration,
The occurrence of eccentric aberrations such as eccentric field curvature is reduced, and good optical performance is obtained over the entire object distance.
【0024】尚、本発明において更に防振の際の偏心収
差変動を少なくし、又物体距離全般にわたり良好なる光
学性能を得るには次の諸条件のうち少なくとも1つを満
足させるのが良い。In the present invention, it is preferable to satisfy at least one of the following conditions in order to further reduce the fluctuation of the eccentric aberration during image stabilization and obtain good optical performance over the entire object distance.
【0025】(ア-1) 前記第32群は両凸形状の空気レン
ズを有しており、該空気レンズと該第32群の焦点距離
を各々fair ,f32としたとき
0.6< fair /f32 <1.4 ‥‥‥(1)
を満足することである。(A-1) The thirty-second lens group has a biconvex air lens. When the focal lengths of the air lens and the thirty-second lens group are fair and f32, respectively, 0.6 <fair / f32 <1.4 (1) is satisfied.
【0026】条件式(1)は第32群中に適切な形状の
空気レンズを構成して基準状態(無像変位状態)と像変
位状態の双方において良好な画質を得る為のものであ
る。条件式(1)の数値範囲を超えると基準状態及び像
変位状態での画質のバランスを取ることが困難となって
くる。Conditional expression (1) is for forming an appropriately shaped air lens in the thirty-second lens group to obtain good image quality in both the reference state (image-less displacement state) and the image displacement state. When the value exceeds the numerical range of the conditional expression (1), it becomes difficult to balance the image quality in the reference state and the image displacement state.
【0027】(ア-2) 前記第32群は両凸形状の空気レン
ズを有しており、該空気レンズの物体側と像面側のレン
ズ面の曲率半径を各々Rair1,Rair2としたとき(A-2) The 32nd group has a biconvex air lens, and the radius of curvature of the lens surface of the air lens on the object side and the radius of curvature of the lens surface on the image plane side are Rair1 and Rair2, respectively.
【0028】[0028]
【数2】 を満足することである。[Equation 2] Is to be satisfied.
【0029】条件式(2)は空気レンズの物体側のレン
ズ面及び像面側のレンズ面の曲率半径を適切に設定して
更に良好なる光学性能を得る為のものである。条件式
(2)の範囲を超えると条件式(1)と同様に基準状態
及び像変位状態での画質のバランスを取るのが困難とな
ってくる。Conditional expression (2) is for appropriately setting the radii of curvature of the object-side lens surface and the image-side lens surface of the air lens to obtain better optical performance. When the range of the conditional expression (2) is exceeded, it becomes difficult to balance the image quality in the reference state and the image displacement state as in the conditional expression (1).
【0030】[0030]
【0031】[0031]
【0032】[0032]
【0033】[0033]
【0034】[0034]
【0035】[0035]
【0036】[0036]
【0037】 (ア−3)前述した条件式(3)〜
(8)は全て同時に満足させる必要はなく、これらのう
ちから任意の数の条件式を満足させても所定の効果が得
られる。 (A-3) Conditional Expression (3)
It is not necessary for (8) to satisfy all at the same time.
Even if an arbitrary number of conditional expressions are satisfied, the desired effect can be obtained.
To be
【0038】(ア-4) 前記第2群は正レンズと負レンズを
有しており、該正レンズと負レンズの材質のアッベ数を
各々νp,νnとしたとき
7.5< νn−νp <30 ‥‥‥(9)
を満足することである。(A-4) The second group has a positive lens and a negative lens, and 7.5 <νn-νp, where the Abbe numbers of the materials of the positive lens and the negative lens are respectively νp and νn. <30 ... (9) is to be satisfied.
【0039】本発明において、第2群はフォーカス駆動
トルクの軽減の為のレンズ群の軽量化とフォーカスによ
る収差変動の低減の為に物体側より像面側に強い凸面を
向けた正レンズと像面側に強い凹面を向けた負レンズで
構成するのが良く、条件式(9)はこのときの正レンズ
と負レンズの材質のアッベ数を適切に設定してフォーカ
スにおける色収差変動を良好に補正する為のものであ
る。In the present invention, the second lens group is a positive lens having a strong convex surface facing the image side from the object side in order to reduce the weight of the lens group for reducing the focus driving torque and to reduce the aberration variation due to focusing. It is preferable to use a negative lens with a strong concave surface facing the surface side. Conditional expression (9) properly corrects the chromatic aberration variation in focus by appropriately setting the Abbe number of the material of the positive lens and the negative lens at this time. It is for doing.
【0040】尚、第2群のフォーカス移動量を低減する
為に第2群の屈折力を強くした場合は、複数の負レンズ
を用いても良い。If the refractive power of the second lens unit is increased in order to reduce the focus movement amount of the second lens unit, a plurality of negative lenses may be used.
【0041】(ア-5) 前記第32群は物体側より順に両レ
ンズ面が凸面の正レンズと両レンズ面が凹面の2枚の負
レンズより成っていることである。これによって像ブレ
補正時の光学性能を良好に維持している。(A-5) The thirty-second lens group is composed of, in order from the object side, a positive lens having two convex lens surfaces and a negative lens having two concave lens surfaces. This maintains good optical performance during image blur correction.
【0042】(ア-6) 前記第32群は物体側より順に物体
側に凸面を向けたメニスカス状の負レンズ、物体側の凸
面を向けたメニスカス状の正レンズ、そして両レンズ面
が凹面の負レンズより成っていることである。これによ
って像ブレ補正時の光学性能を良好に維持している。(A-6) The thirty-second lens group has, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, and both lens surfaces having a concave surface. It consists of a negative lens. This maintains good optical performance during image blur correction.
【0043】(ア-7) 前記第2群は正レンズと負レンズの
2つのレンズより成っていることである。これによって
フォーカスの際の色収差変動を良好に補正している。(A-7) The second group is composed of two lenses, a positive lens and a negative lens. Thereby, the chromatic aberration variation at the time of focusing is well corrected.
【0044】(ア-8) 前記第33群は複数の正レンズを有
していることである。高い像変位敏感度の達成の為に
は、第33群はある程度強い正の屈折力を持たせるのが
良い。特に大口径なレンズ系を達成しようとするなら
ば、第33群は複数の正レンズを有すると良く、これに
より特に高次の球面収差補正に有効となる。そして更に
少なくとも1つの負レンズと正レンズを接合した正レン
ズや対面したレンズ面の曲率半径が近似した正,負レン
ズを含むようにすれば更なる色収差改善が期待できる。(A-8) The 33rd group has a plurality of positive lenses. In order to achieve high image displacement sensitivity, it is preferable that the 33rd lens group has a certain degree of positive refractive power. If a lens system having a particularly large aperture is to be achieved, the 33rd lens group should have a plurality of positive lenses, which is particularly effective for correcting spherical aberrations of higher orders. Further, by further including at least one negative lens and a positive lens cemented with a positive lens, or a positive lens and a negative lens whose facing lens surfaces have similar radiuses of curvature, further improvement in chromatic aberration can be expected.
【0045】(ア-9) 第31群は第1,2群により発生し
た残存収差を、より像面側のレンズ群にて補正を行い易
くする為少なくとも一枚以上の正レンズ及び負レンズを
有することが望ましい。又、第32群は複数の負レンズ
と一枚以上の正レンズを有することが望ましく、これに
より像変位時における色収差の変動を抑えることができ
る。(A-9) The thirty-first lens unit has at least one positive lens and at least one negative lens in order to make it easy to correct the residual aberration generated by the first and second lens units by the lens unit closer to the image plane. It is desirable to have. Further, it is desirable that the 32nd lens group has a plurality of negative lenses and one or more positive lenses, and this makes it possible to suppress variation in chromatic aberration during image displacement.
【0046】(ア-10)第1群は複数の正レンズと一枚以上
の負レンズで構成されるのが良く、高画質を得る為に
は、物体側より両レンズ面が凸面の正レンズ、物体側が
強い凸面の正レンズ、両凹レンズ、物体側が強い凸面で
ある正レンズを有するのが良い。更に好ましくは、これ
らのレンズの後ろに物体側に凸面を向けたメニスカス状
の負レンズを配置するのが良い。(A-10) The first lens group is preferably composed of a plurality of positive lenses and one or more negative lenses. To obtain high image quality, the positive lens having both convex lens surfaces from the object side. It is preferable to have a positive lens having a strong convex surface on the object side, a biconcave lens, and a positive lens having a strong convex surface on the object side. More preferably, a meniscus-shaped negative lens having a convex surface directed toward the object side is preferably arranged behind these lenses.
【0047】(ア-11)レンズ面の保護及び温度変化による
レンズ膨脹、収縮に伴う結像位置変化防止のためレンズ
系の物体側に平面板ガラス又は透明部材又は弱い屈折力
を有したレンズ(保護部材)を配置するのが良い。(A-11) A flat plate glass or a transparent member or a lens having a weak refracting power on the object side of the lens system for protection of the lens surface and prevention of a change in image forming position due to lens expansion and contraction due to temperature change (protection (Members) should be arranged.
【0048】(ア-12)光彩絞り(開口絞り)は小絞り時に
使用画像範囲における周辺光束がケラレなければレンズ
系のどの位置に配置しても良いが、フォーカス駆動機構
と像変位レンズ群移動機構及び電気回路の基板実装等の
配置スペース効率を考えたとき、第2群と第3群間の空
気間中、または第3群内に配置するのが良い。(A-12) The iris diaphragm (aperture diaphragm) may be arranged at any position of the lens system as long as the peripheral light flux in the used image range is not vignetted when the diaphragm is small, but the focus drive mechanism and the image displacement lens group movement Considering the arrangement space efficiency of mounting the mechanism and the electric circuit on the substrate, it is preferable to arrange the mechanism in the air between the second group and the third group or in the third group.
【0049】(ア-13)光学フィルターは結像面と最も像面
側のレンズ面間の空気間隔中に配置することがフィルタ
ー径の小型化とスペース効率上望ましい。(A-13) It is desirable to arrange the optical filter in the air space between the image forming surface and the lens surface closest to the image surface in view of downsizing of the filter diameter and space efficiency.
【0050】(ア-14)固定絞りを結像面と最も像面側のレ
ンズ面間の空気間隔中に配置するのが良い。これによれ
ば像変位時における周辺光量の非対称性を軽減すること
ができる。(A-14) It is preferable to dispose the fixed diaphragm in the air space between the image forming surface and the lens surface closest to the image surface. According to this, it is possible to reduce the asymmetry of the peripheral light amount when the image is displaced.
【0051】(ア-15)尚、以上の各条件式(1)〜(9)
において更に好ましくは、数値範囲を次の如く設定する
のが良い。(A-15) The above conditional expressions (1) to (9)
In the above, it is more preferable to set the numerical range as follows.
【0052】 0.7< fair /f32 <1.2 ‥‥‥(1a)[0052] 0.7 <fair / f32 <1.2 (1a)
【0053】[0053]
【数3】
0.4 < f1 /f <0.7 ‥‥‥(3a)
0.25<|f2 /f |<0.6 ‥‥‥(4a)
0.1 < f /f3 <1.2 ‥‥‥(5a)
0.15< f31/f <0.45 ‥‥‥(6a)
0.06<|f32/f |<0.14 ‥‥‥(7a)
0.11< f33/f <0.23 ‥‥‥(8a)
8.0 < νn−νp <27 ‥‥‥(9a)
次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第i番目のレンズ厚及び空気間隔、Ni
とνiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアッベ数である。数値実施例において最終の
2つのレンズ面はフェースプレートやフィルター等のガ
ラスブロックである。又前述の各条件式と数値実施例に
おける諸数値との関係を表−1に示す。[Equation 3] 0.4 <f1 / f <0.7 ... (3a) 0.25 <| f2 / f | <0.6 ... (4a) 0.1 <f / f3 <1.2 ... (5a) 0.15 <f31 / f <0.45 (6a) 0.06 <| f32 / f | <0.14 (7a) 0.11 <f33 / f <0.23 (8a) 8.0 <νn-νp <27 (9a) Next, numerical examples of the present invention will be shown. R in numerical examples
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the i-th lens thickness from the object side and the air gap, Ni
And νi are the refractive index and Abbe number of the glass of the i-th lens in order from the object side. In the numerical examples, the last two lens surfaces are glass blocks such as face plates and filters. Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.
【0054】[0054]
【外1】 [Outer 1]
【0055】[0055]
【外2】 [Outside 2]
【0056】[0056]
【外3】 [Outside 3]
【0057】[0057]
【外4】 [Outside 4]
【0058】[0058]
【外5】 [Outside 5]
【0059】[0059]
【外6】 [Outside 6]
【0060】[0060]
【外7】 [Outside 7]
【0061】[0061]
【外8】 [Outside 8]
【0062】[0062]
【外9】 [Outside 9]
【0063】[0063]
【外10】 [Outside 10]
【0064】[0064]
【外11】 [Outside 11]
【0065】[0065]
【外12】 [Outside 12]
【0066】[0066]
【外13】 [Outside 13]
【0067】[0067]
【外14】 [Outside 14]
【0068】[0068]
【外15】 [Outside 15]
【0069】[0069]
【外16】 [Outside 16]
【0070】[0070]
【表1】 [Table 1]
【0071】[0071]
【発明の効果】本発明によれば以上のように、光学系の
一部のレンズ群を光軸と垂直な方向に偏心駆動させて撮
影画像の変位(ブレ)を補正する際、各レンズ要素を適
切に配置することによって各種の偏心収差を良好に補正
し、又十分に少ない偏心駆動量で十分に大きい変位補正
(ブレ補正)を実現することによって装置全体の小型化
を可能とし、又インナーフォーカス式を採用しつつ、無
限遠物体から近距離物体に至る広範囲の物体距離におい
て、フォーカスの際の収差変動を良好に補正した防振機
能を有したインナーフォーカス式の光学系及びそれを有
するカメラを達成することができる。As described above, according to the present invention, when a lens group of a part of the optical system is eccentrically driven in the direction perpendicular to the optical axis to correct the displacement (blurring) of a photographed image, each lens element By properly disposing various types of eccentric aberrations, it is possible to satisfactorily correct various eccentric aberrations, and by realizing a sufficiently large displacement correction (shake correction) with a sufficiently small eccentric drive amount, it is possible to downsize the entire device, and An inner focus type optical system having an anti-vibration function that satisfactorily corrects aberration fluctuations during focusing over a wide range of object distances from an infinitely distant object to a short range object while adopting the focus type, and a camera having the same Can be achieved.
【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the present invention.
【図2】本発明の数値実施例2のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 2 of the present invention.
【図3】本発明の数値実施例3のレンズ断面図FIG. 3 is a lens sectional view of Numerical Example 3 of the present invention.
【図4】本発明の数値実施例4のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 4 of the present invention.
【図5】本発明の数値実施例5のレンズ断面図FIG. 5 is a lens cross-sectional view of Numerical Example 5 of the present invention.
【図6】本発明の数値実施例6のレンズ断面図FIG. 6 is a lens cross-sectional view of Numerical Example 6 of the present invention.
【図7】本発明の数値実施例7のレンズ断面図FIG. 7 is a lens cross-sectional view of Numerical Example 7 of the present invention.
【図8】本発明の数値実施例8のレンズ断面図FIG. 8 is a lens cross-sectional view of Numerical Example 8 of the present invention.
【図9】本発明の数値実施例9のレンズ断面図FIG. 9 is a lens cross-sectional view of Numerical Example 9 of the present invention.
【図10】本発明の数値実施例10のレンズ断面図FIG. 10 is a lens cross-sectional view of Numerical Example 10 of the present invention.
【図11】本発明の数値実施例11のレンズ断面図FIG. 11 is a lens cross-sectional view of Numerical Example 11 of the present invention.
【図12】本発明の数値実施例12のレンズ断面図FIG. 12 is a lens cross-sectional view of Numerical Example 12 of the present invention.
【図13】本発明の数値実施例13のレンズ断面図FIG. 13 is a lens cross-sectional view of Numerical Example 13 of the present invention.
【図14】本発明の数値実施例14のレンズ断面図FIG. 14 is a lens cross-sectional view of Numerical Example 14 of the present invention.
【図15】本発明の数値実施例15のレンズ断面図FIG. 15 is a lens cross-sectional view of Numerical Example 15 of the present invention.
【図16】本発明の数値実施例16のレンズ断面図FIG. 16 is a lens cross-sectional view of Numerical Example 16 of the present invention.
【図17】本発明の数値実施例1の基準状態(結像位置
不変位)の縦収差図FIG. 17 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 1 of the present invention.
【図18】本発明の数値実施例1の基準状態(結像位置
不変位)の横収差図FIG. 18 is a lateral aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 1 of the present invention.
【図19】本発明の数値実施例1において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 19 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 1 of the present invention.
【図20】本発明の数値実施例2の基準状態(結像位置
不変位)の縦収差図FIG. 20 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 2 of the present invention.
【図21】本発明の数値実施例2の基準状態(結像位置
不変位)の横収差図FIG. 21 is a lateral aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 2 of the present invention.
【図22】本発明の数値実施例2において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 22 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 2 of the present invention.
【図23】本発明の数値実施例3の基準状態(結像位置
不変位)の縦収差図FIG. 23 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 3 of the present invention.
【図24】本発明の数値実施例3の基準状態(結像位置
不変位)の横収差図FIG. 24 is a lateral aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 3 of the present invention.
【図25】本発明の数値実施例3において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 25 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 3 of the present invention.
【図26】本発明の数値実施例4の基準状態(結像位置
不変位)の縦収差図FIG. 26 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 4 of the present invention.
【図27】本発明の数値実施例4の基準状態(結像位置
不変位)の横収差図FIG. 27 is a lateral aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 4 of the present invention.
【図28】本発明の数値実施例4において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 28 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 4 of the present invention.
【図29】本発明の数値実施例5の基準状態(結像位置
不変位)の縦収差図FIG. 29 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 5 of the present invention.
【図30】本発明の数値実施例5の基準状態(結像位置
不変位)の横収差図FIG. 30 is a lateral aberration diagram of the numerical example 5 of the present invention in a reference state (image-formation position undisplaced).
【図31】本発明の数値実施例5において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 31 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 5 of the present invention.
【図32】本発明の数値実施例6の基準状態(結像位置
不変位)の縦収差図FIG. 32 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 6 of the present invention.
【図33】本発明の数値実施例6の基準状態(結像位置
不変位)の横収差図FIG. 33 is a lateral aberration diagram in a reference state (imaging position non-displacement) according to Numerical Example 6 of the present invention.
【図34】本発明の数値実施例6において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 34 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 6 of the present invention.
【図35】本発明の数値実施例7の基準状態(結像位置
不変位)の縦収差図FIG. 35 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 7 of the present invention.
【図36】本発明の数値実施例7の基準状態(結像位置
不変位)の横収差図FIG. 36 is a lateral aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 7 of the present invention.
【図37】本発明の数値実施例7において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 37 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 7 of the present invention.
【図38】本発明の数値実施例8の基準状態(結像位置
不変位)の縦収差図FIG. 38 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 8 of the present invention.
【図39】本発明の数値実施例8の基準状態(結像位置
不変位)の横収差図FIG. 39 is a lateral aberration diagram of the numerical example 8 of the present invention in the reference state (image-formation position undisplaced).
【図40】本発明の数値実施例8において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 40 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 8 of the present invention.
【図41】本発明の数値実施例9の基準状態(結像位置
不変位)の縦収差図FIG. 41 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 9 of the present invention.
【図42】本発明の数値実施例9の基準状態(結像位置
不変位)の横収差図42 is a lateral aberration diagram in a reference state (image-formation position non-displacement) of Numerical Example 9 of the present invention. FIG.
【図43】本発明の数値実施例9において無限遠物体を
0.3°の画角に相当する像位置変位を行ったときの横
収差図FIG. 43 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 9 of the present invention.
【図44】本発明の数値実施例10の基準状態(結像位
置不変位)の縦収差図FIG. 44 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 10 of the present invention.
【図45】本発明の数値実施例10の基準状態(結像位
置不変位)の横収差図FIG. 45 is a lateral aberration diagram of the numerical example 10 of the present invention in a reference state (image-formation position undisplaced).
【図46】本発明の数値実施例10において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図46 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 10 of the present invention. FIG.
【図47】本発明の数値実施例11の基準状態(結像位
置不変位)の縦収差図FIG. 47 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 11 of the present invention.
【図48】本発明の数値実施例11の基準状態(結像位
置不変位)の横収差図FIG. 48 is a lateral aberration diagram of the numerical example 11 of the present invention in a reference state (imaging position is not displaced).
【図49】本発明の数値実施例11において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図FIG. 49 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 11 of the present invention.
【図50】本発明の数値実施例12の基準状態(結像位
置不変位)の縦収差図FIG. 50 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 12 of the present invention.
【図51】本発明の数値実施例12の基準状態(結像位
置不変位)の横収差図FIG. 51 is a lateral aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 12 of the present invention.
【図52】本発明の数値実施例12において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図52 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 12 of the present invention. FIG.
【図53】本発明の数値実施例13の基準状態(結像位
置不変位)の縦収差図FIG. 53 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 13 of the present invention.
【図54】本発明の数値実施例13の基準状態(結像位
置不変位)の横収差図FIG. 54 is a lateral aberration diagram in a reference state (image-forming position non-displacement) of Numerical Example 13 of the present invention.
【図55】本発明の数値実施例13において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図FIG. 55 is a lateral aberration diagram when an object at infinity is displaced in image position corresponding to an angle of view of 0.3 ° in Numerical Example 13 of the present invention.
【図56】本発明の数値実施例14の基準状態(結像位
置不変位)の縦収差図FIG. 56 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 14 of the present invention.
【図57】本発明の数値実施例14の基準状態(結像位
置不変位)の横収差図FIG. 57 is a lateral aberration diagram of a numerical example 14 of the present invention in a reference state (image-formation position undisplaced).
【図58】本発明の数値実施例14において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図FIG. 58 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 14 of the present invention.
【図59】本発明の数値実施例15の基準状態(結像位
置不変位)の縦収差図FIG. 59 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 15 of the present invention.
【図60】本発明の数値実施例15の基準状態(結像位
置不変位)の横収差図FIG. 60 is a transverse aberration diagram of Numerical Example 15 of the present invention in a reference state (image-formation position undisplaced).
【図61】本発明の数値実施例15において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図FIG. 61 is a lateral aberration diagram when an object at infinity is subjected to image position displacement corresponding to an angle of view of 0.3 ° in Numerical Example 15 of the present invention.
【図62】本発明の数値実施例16の基準状態(結像位
置不変位)の縦収差図FIG. 62 is a longitudinal aberration diagram in a reference state (imaging position non-displacement) of Numerical Example 16 of the present invention.
【図63】本発明の数値実施例16の基準状態(結像位
置不変位)の横収差図FIG. 63 is a lateral aberration diagram of the numerical example 16 of the present invention in a reference state (image-formation position undisplaced).
【図64】本発明の数値実施例16において無限遠物体
を0.3°の画角に相当する像位置変位を行ったときの
横収差図FIG. 64 is a lateral aberration diagram when an object at infinity is displaced in image position corresponding to an angle of view of 0.3 ° in Numerical Example 16 of the present invention.
L1 第1群 L2 第2群 L3 第3群 L31 第31群 L32 第32群 L33 第33群 SP 開口絞り IP 像面 ΔS サジタル像面 ΔM メリディオナル像面 d d線 g g線 L1 first group L2 second group L3 third group L31 31st group L32 32nd group L33 33rd group SP aperture stop IP image plane ΔS sagittal image plane ΔM meridional image plane d d line g g line
フロントページの続き (56)参考文献 特開 平9−218346(JP,A) 特開 平9−197265(JP,A) 特開 平7−261126(JP,A) 特開 平8−122711(JP,A) 特開 平8−122712(JP,A) 特開 平8−122713(JP,A) 特開 平8−304698(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 13/00 G02B 9/00 G02B 27/64 Continuation of the front page (56) Reference JP-A-9-218346 (JP, A) JP-A-9-197265 (JP, A) JP-A-7-261126 (JP, A) JP-A-8-122711 (JP , A) JP-A-8-122712 (JP, A) JP-A-8-122713 (JP, A) JP-A-8-304698 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) G02B 13/00 G02B 9/00 G02B 27/64
Claims (10)
ズ群、負の屈折力の第2レンズ群、正の屈折力の第3レ
ンズ群を有し、該第2レンズ群を光軸上移動させてフォ
ーカスを行うインナーフォーカス式の光学系において、
該第1レンズ群と第2レンズ群の合成の屈折力は正であ
り、該第3レンズ群は、物体側より順に、正の屈折力の
第31群、負の屈折力の第32群、正の屈折力の第33
群の3つのレンズ群を有し、該第32群を光軸と直交す
る方向に移動させて撮影画像の結像位置を変位させてお
り、 該第iレンズ群の焦点距離をfi、全系の焦点距離を
f、前記第31群、第32群、第33群の焦点距離を順
にf31、f32、f33としたとき 0.3<f1/f<0.75 0.2<|f2/f|<0.7 0.1<f/f3<1.5 0.12<f31/f<0.5 0.05<|f32/f|<0.15 0.08<f33/f<0.25 を満足することを特徴とする防振機能を有したインナー
フォーカス式の光学系。1. A first lens group having a positive refracting power, a second lens group having a negative refracting power, and a third lens group having a positive refracting power are provided in this order from the object side, and the second lens group is used as a light source. In an inner focus type optical system that moves on-axis for focusing,
The combined refractive power of the first lens group and the second lens group is positive, and the third lens group includes, in order from the object side, the 31st group of positive refractive power, the 32nd group of negative refractive power, 33rd of positive refractive power
It has three lens groups, and the 32nd group is moved in the direction orthogonal to the optical axis to displace the image forming position of the photographed image .
, The focal length of the i-th lens group is fi, and the focal length of the entire system is
f, the focal lengths of the 31st lens group, the 32nd lens group, and the 33rd lens group in order
When f31, f32, and f33 are set to 0.3 <f1 / f <0.75 0.2 <| f2 / f | <0.7 0.1 <f / f3 <1.5 0.12 <f31 / f <0.5 0.05 <| f32 / f | <0.15 0.08 <f33 / f <0.25 An inner focus type optical system having a vibration-proof function, characterized in that:
有しており、該空気レンズと該第32群の焦点距離を各
々fair、f32としたとき 0.6<fair/f32<1.4 を満足することを特徴とする請求項1の防振機能を有し
たインナーフォーカス式の光学系。2. The thirty-second lens group has a biconvex air lens, and 0.6 <fair / f32 <1 when the focal lengths of the air lens and the thirty-second lens group are fair and f32, respectively. 4. The inner focus type optical system having a vibration isolation function according to claim 1, wherein
有しており、該空気レンズの物体側と像面側のレンズ面
の曲率半径を各々Rair1、Rair2としたとき 【数1】 を満足することを特徴とする請求項1又は2の防振機能
を有したインナーフォーカス式の光学系。3. The thirty-second lens group has a biconvex air lens, and the radiuses of curvature of the object-side and image-side lens surfaces of the air lens are Rair1 and Rair2, respectively. The inner focus type optical system having the image stabilizing function according to claim 1 or 2, characterized in that:
を有しており、該正レンズと負レンズの材質のアッベ数
を各々νp、νnとしたとき 7.5<νn−νp<30 を満足することを特徴とする請求項1〜3の何れか1項
記載の防振機能を有したインナーフォーカス式の光学
系。 Wherein said second lens group has a positive lens and a negative lens, vp respectively the Abbe number of the material of the positive lens and the negative lens, 7.5 when the νn <νn-νp <30 The inner focus type optical system having a vibration-proof function according to any one of claims 1 to 3 , wherein
面が凸面の正レンズと両レンズ面が凹面の2枚の負レン
ズより成っていることを特徴とする請求項1〜4の何れ
か1項記載の防振機能を有したインナーフォーカス式の
光学系。 5. Any of the claims 1 to 4, characterized in that the positive lens and the both lens surfaces of the first 32 group both lens surfaces is a convex surface in order from the object side is made from two negative lens concave An inner focus type optical system having a vibration isolation function according to item 1.
凸面を向けたメニスカス状の負レンズ、物体側の凸面を
向けたメニスカス状の正レンズ、そして両レンズ面が凹
面の負レンズより成っていることを特徴とする請求項1
〜4の何れか1項記載防振機能を有したのインナーフォ
ーカス式の光学系。 Wherein said second 32 group of a meniscus-like positive lens having a negative lens, the object side convex surface of the meniscus form convex toward the object side in order from the object side, and a negative lens of which both surfaces are concave Claim 1 characterized by being formed.
4. An inner focus type optical system having a vibration isolation function according to any one of items 4 to 4 .
の2つのレンズより成っていることを特徴とする請求項
1〜4の何れか1項記載の防振機能を有したインナーフ
ォーカス式の光学系。 Wherein said second lens group claim, characterized in that it consists of two positive lens and a negative lens
An inner focus type optical system having the image stabilizing function according to any one of 1 to 4 .
いることを特徴とする請求項1〜4の何れか1項記載防
振機能を有したのインナーフォーカス式の光学系。 Wherein said second 33 group of a plurality of internal focusing optical system of having any one of claims stabilization function of claims 1 to 4, characterized in that it has a positive lens.
学系が振動したときに生じる撮影画像のブレを補正する
ものであることを特徴とする請求項1〜8の何れか1項
の防振機能を有したインナーフォーカス式の光学系。 Wherein said displacement of the imaging position of the captured image of any one of claims 1 to 8, characterized in that to correct the blur of the photographed image caused when the optical system is vibrated Inner focus optical system with anti-vibration function.
機能を有したインナーフォーカス式の光学系を有するこ
とを特徴とするカメラ。 10. A camera comprising an inner focus type optical system having a vibration isolation function according to any one of claims 1 to 9. Description:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29957397A JP3486541B2 (en) | 1997-10-16 | 1997-10-16 | Inner focus optical system having vibration proof function and camera having the same |
US09/172,164 US6115188A (en) | 1997-10-16 | 1998-10-14 | Optical system and optical apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29957397A JP3486541B2 (en) | 1997-10-16 | 1997-10-16 | Inner focus optical system having vibration proof function and camera having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11119092A JPH11119092A (en) | 1999-04-30 |
JP3486541B2 true JP3486541B2 (en) | 2004-01-13 |
Family
ID=17874388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29957397A Expired - Fee Related JP3486541B2 (en) | 1997-10-16 | 1997-10-16 | Inner focus optical system having vibration proof function and camera having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3486541B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8699151B2 (en) | 2011-05-17 | 2014-04-15 | Tamron Co., Ltd. | Imaging lens |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3505099B2 (en) * | 1999-02-04 | 2004-03-08 | ペンタックス株式会社 | Medium telephoto lens |
JP4624534B2 (en) * | 2000-09-27 | 2011-02-02 | 富士フイルム株式会社 | Inner focus lens |
JP2005181392A (en) | 2003-12-16 | 2005-07-07 | Canon Inc | Optical system |
JP4579553B2 (en) | 2004-01-30 | 2010-11-10 | キヤノン株式会社 | Optical system and optical apparatus having the same |
JP4630645B2 (en) | 2004-11-19 | 2011-02-09 | キヤノン株式会社 | Optical system |
JP4776988B2 (en) | 2005-06-15 | 2011-09-21 | キヤノン株式会社 | Optical system and optical apparatus having the same |
JP4810133B2 (en) | 2005-06-15 | 2011-11-09 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP4898205B2 (en) | 2005-12-08 | 2012-03-14 | キヤノン株式会社 | Optical system and optical apparatus having the same |
JP5101878B2 (en) * | 2006-12-28 | 2012-12-19 | 富士フイルム株式会社 | telescope lens |
JP5388446B2 (en) | 2007-12-05 | 2014-01-15 | キヤノン株式会社 | Optical system and optical apparatus having the same |
KR101495540B1 (en) | 2009-03-13 | 2015-02-25 | 삼성전자주식회사 | Telephoto lens system and photographing device having the same |
US8941921B2 (en) | 2010-08-30 | 2015-01-27 | Nikon Corporation | Optical system, optical apparatus, and method for manufacturing optical system |
JP5714925B2 (en) * | 2011-01-31 | 2015-05-07 | ソニー株式会社 | Inner focus lens |
JP5942193B2 (en) | 2012-03-15 | 2016-06-29 | パナソニックIpマネジメント株式会社 | Lens system, interchangeable lens device, and camera system |
JP5912864B2 (en) * | 2012-05-28 | 2016-04-27 | 株式会社シグマ | Imaging optics |
JP5904013B2 (en) * | 2012-05-30 | 2016-04-13 | 株式会社ニコン | PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS |
JP5904015B2 (en) * | 2012-05-30 | 2016-04-13 | 株式会社ニコン | PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS |
KR101941249B1 (en) | 2013-04-08 | 2019-01-22 | 삼성전자주식회사 | Telephoto lens and photographing apparatus having the same |
JP6405601B2 (en) * | 2013-04-17 | 2018-10-17 | 株式会社ニコン | PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS |
JP6264916B2 (en) * | 2014-02-05 | 2018-01-24 | 株式会社ニコン | Optical system, optical device |
JP6264914B2 (en) * | 2014-02-05 | 2018-01-24 | 株式会社ニコン | Optical system, optical device |
JP6264915B2 (en) * | 2014-02-05 | 2018-01-24 | 株式会社ニコン | Optical system, optical device |
JP6390298B2 (en) * | 2014-09-17 | 2018-09-19 | 株式会社リコー | Imaging lens and imaging device |
JP6558824B2 (en) * | 2015-02-10 | 2019-08-14 | オリンパス株式会社 | Telephoto lens and imaging apparatus having the same |
JP2016136213A (en) * | 2015-01-23 | 2016-07-28 | 株式会社ニコン | Optical system, optical instrument having the same, and manufacturing method of optical system |
JP6320949B2 (en) * | 2015-02-13 | 2018-05-09 | 富士フイルム株式会社 | Imaging lens and imaging apparatus |
JP6584086B2 (en) * | 2015-02-17 | 2019-10-02 | 株式会社タムロン | Optical system and imaging apparatus |
JP6584085B2 (en) * | 2015-02-17 | 2019-10-02 | 株式会社タムロン | Optical system and imaging apparatus |
JP6584184B2 (en) * | 2015-07-17 | 2019-10-02 | キヤノン株式会社 | Optical system and imaging apparatus |
JP6628242B2 (en) | 2015-08-21 | 2020-01-08 | キヤノン株式会社 | Optical system and imaging apparatus having the same |
JP7225047B2 (en) * | 2019-07-25 | 2023-02-20 | 富士フイルム株式会社 | Imaging lens and imaging device |
-
1997
- 1997-10-16 JP JP29957397A patent/JP3486541B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8699151B2 (en) | 2011-05-17 | 2014-04-15 | Tamron Co., Ltd. | Imaging lens |
Also Published As
Publication number | Publication date |
---|---|
JPH11119092A (en) | 1999-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3486541B2 (en) | Inner focus optical system having vibration proof function and camera having the same | |
JP3564061B2 (en) | Zoom lens and optical device using the same | |
JP5064837B2 (en) | Zoom lens with anti-vibration function | |
JP4630423B2 (en) | Zoom lens and optical apparatus using the same | |
JP3524482B2 (en) | Zoom lens and optical device using the same | |
JP4046834B2 (en) | Variable magnification optical system with anti-vibration function | |
JP3072815B2 (en) | Variable power optical system | |
JP4677249B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4789530B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4672880B2 (en) | Variable magnification optical system and optical apparatus using the same | |
JP2836142B2 (en) | Zoom lens | |
JP3919580B2 (en) | Zoom lens and optical apparatus having the same | |
JP3745104B2 (en) | Inner focus optical system with anti-vibration function | |
JP4617111B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4323584B2 (en) | Variable magnification optical system with anti-vibration function | |
JP4467920B2 (en) | Imaging lens and imaging apparatus having the same | |
JP2002006217A (en) | Zoom lens provided with vibration-proof function and optical equipment using the same | |
JP2002098894A (en) | Zoom lens and optical equipment provided therewith | |
JP4829445B2 (en) | Zoom lens and optical apparatus having the same | |
JP4095131B2 (en) | Variable magnification optical system having anti-vibration function and imaging apparatus having the same | |
JP4109854B2 (en) | Zoom lens and optical apparatus having the same | |
JP4272725B2 (en) | Optical system | |
JPH11174326A (en) | Optical system having vibration-proof function | |
JP2003322797A (en) | Photographic lens and optical instrument provided with the same | |
JP4630451B2 (en) | Zoom lens and optical apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |