JP3469529B2 - 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子 - Google Patents

金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子

Info

Publication number
JP3469529B2
JP3469529B2 JP2000067660A JP2000067660A JP3469529B2 JP 3469529 B2 JP3469529 B2 JP 3469529B2 JP 2000067660 A JP2000067660 A JP 2000067660A JP 2000067660 A JP2000067660 A JP 2000067660A JP 3469529 B2 JP3469529 B2 JP 3469529B2
Authority
JP
Japan
Prior art keywords
thin film
single crystal
magnetic
lattice constant
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000067660A
Other languages
English (en)
Other versions
JP2001257396A (ja
Inventor
泰史 荻本
好紀 十倉
雅司 川崎
真 和泉
隆志 眞子
泰秀 富岡
剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Original Assignee
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, National Institute of Advanced Industrial Science and Technology AIST, Sharp Corp filed Critical NEC Corp
Priority to JP2000067660A priority Critical patent/JP3469529B2/ja
Publication of JP2001257396A publication Critical patent/JP2001257396A/ja
Application granted granted Critical
Publication of JP3469529B2 publication Critical patent/JP3469529B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は磁気ヘッドや磁気メ
モリに用いられる金属絶縁体転移によるスイッチング現
象を利用した磁気抵抗素子に関する。特に、膜厚100
nm以下の酸化物薄膜磁性体を用いた磁気抵抗素子で、
従来のものに比べて、より低磁場で磁気抵抗効果の得ら
れる磁気抵抗素子に関している。
【0002】
【従来の技術】近年、磁気ディスクの高密度化は年率1
00%を越えるに到り、製品レベルでは11Gb/in
2(in2=約6.45cm2)、研究レベルでは36G
b/in2の高密度化が実現されるなどその高密度化の
進展においては、目覚ましいものがある。また、磁性体
を記憶媒体に用いることでその不揮発性という特長を生
かし、従来のDRAMやフラッシュメモリなどに代表さ
れる半導体メモリを凌ぐ究極のメモリとしてMRAM
(Magnetic Random AccessMe
mory)と呼ばれる固体素子の磁気メモリの開発も注
目を集めている。このような磁気ディスク、あるいはM
RAMの高密度化は、記録された磁気信号を読み出す磁
気抵抗素子の性能向上によるところが大きい。
【0003】磁気抵抗素子はその用途に応じ、様々な特
性が要求されるが、なかでも磁場強度に依存した電気抵
抗の変化の指標である磁気抵抗比の向上が磁気抵抗素子
の性能向上においては重要となる。その他、以下に示す
素子サイズ、動作磁場等も重要な要素となる。
【0004】素子サイズについては、上記磁気ディスク
に使用する磁気ヘッドや上記MRAM等への応用を念頭
においた場合、膜厚は少なくとも100nm以下にする
ことが望まれる。なぜならば、磁気ヘッド応用において
は、磁気抵抗素子部の膜厚がビット長の再生分解能を制
限するため膜厚は記録される最短ビット長とほぼ同程度
にまで薄くすることが必要となるためであり、また、M
RAM応用においては、磁気抵抗素子部の膜厚が厚い場
合、素子の段差が大きくなるに応じて層間絶縁膜を厚く
する結果生じる膜剥離の問題、あるいは配線の段差が大
きくなり配線切れが発生しやすくなる問題などが集積化
のうえで大きな障害をもたらすためである。
【0005】さらに、磁気抵抗効果を得るに必要な磁場
(動作磁場)が高い場合、磁気ヘッドやMRAM動作に
おけるバイアス磁場を高くすることが必要になるため、
消費電力が大きくなり、最終的には素子破壊などを引き
起こす問題がある。このように、磁気抵抗素子としては
より薄い薄膜において、いかにしてより大きな磁気抵抗
をより低磁場で実現させるのかが重要となる。
【0006】現在、実用化されている磁気抵抗素子とし
てはMR(Magneto Resistance)素
子や、GMR(Giant−MR)素子と呼ばれる金属
磁性体薄膜からなるものがあげられる。これらの磁気抵
抗はMR素子で2%前後、GMR素子で4〜7%前後で
ある。GMR素子において実用化されているのはスピン
バルブと呼ばれる薄膜積層構造を有する素子であり、金
属磁性体材料を用いた反強磁性層/強磁性層/金属非磁
性層/強磁性層といった薄膜多層構造からなる。
【0007】一方、上記のMR、GMR素子とは異な
り、金属絶縁体転移を磁気抵抗効果の原理として利用す
るものとして、マンガンを含む酸化物ペロフスカイト材
料からなる磁気抵抗素子が単結晶材料を中心に精力的に
研究されている。例えば特許第2685721号公報に
は、Pr1-xxMnO3(MはCa、またはSr、xは
0.3〜0.5)においてMn3+イオンとMn4+イオン
が整列する電荷整列相(絶縁体)に磁場を印加すること
で電荷整列相を崩壊し絶縁体から金属へ転移するスイッ
チング現象(数%に及ぶ格子変化を伴う)を利用した単
結晶の磁気抵抗素子が記載されている。
【0008】本発明もまた、金属絶縁体転移におけるス
イッチング現象を磁気抵抗効果の原理として利用するも
のである。
【0009】この金属絶縁体転移によるスイッチング現
象は電荷整列転移温度以下の広い温度範囲で得られ、数
桁に及ぶ抵抗変化が起こる。このため、その磁気抵抗比
は上記GMR素子やTMR素子で得られている磁気抵抗
比よりもはるかに大きく次世代の磁気抵抗素子として注
目を集めている。なお、磁気抵抗比として100%を越
える表記は、磁気抵抗比を以下の数1により定義してい
るためである。
【数1】 ここで、R(0)とは印加磁場が0の時の電気抵抗を示
し、R(H)とは磁場Hが印加された時の電気抵抗を示
している。
【0010】この電荷整列状態(絶縁体)から金属へス
イッチングさせるには、一般に大きな磁場が必要である
が、クロムやコバルトなどの不純物をマンガンサイトに
数%ドーピングすることにより電荷整列相を不安定化す
ることでスイッチングするに必要な磁場を著しく小さく
することが可能であることが、例えば、文献(J.So
lid State Chem.,Vol.130,
P.162(1997))に記載されている。
【0011】このように、電荷整列相のスイッチング現
象によれば大きな磁気抵抗比が期待される。しかし、高
密度記録において必要となる薄膜化についての従来例は
少ない。ここで、薄膜とは100nm以下の膜厚を示
す。
【0012】200〜1000nm程度の厚い膜での報
告は、いくつかあるものの、応用上望まれる100nm
以下の膜厚での報告は非常に少なく、発明者の知る限り
では、文献(Appl.Phys.Lett.,Vo
l.75,P.1473(1999))があげられるの
みである。この文献には、SrTiO3単結晶基板とL
aAlO3単結晶基板上とのそれぞれの基板上に、多結
晶や単結晶で電荷整列を示す膜厚60nmのSm0.5
0.5MnO3層を形成し、0〜7Tの磁場を印加し約5
〜300Kの温度範囲で、その抵抗率の温度変化を四探
針法により測定した結果が報告されている。この文献で
は、そのうちの、SrTiO3単結晶基板上の膜厚60
nmのSm0.5Sr0.5MnO3層において5T以上の磁
場印加により磁気抵抗が得られる事が報告されている。
【0013】
【発明が解決しようとする課題】しかし、従来の金属絶
縁体転移によるスイッチング現象を利用した磁気抵抗素
子では、磁気記憶装置に適用できるほどの低磁場では、
充分な磁気抵抗効果が得られていない。例えば、既に報
告された中で最も顕著な特性を示すSrTiO3単結晶
基板上のSm0.5Sr0.5MnO3薄膜においても5Tよ
り低い磁場印加においては実用上充分な磁気抵抗効果が
得らていない。
【0014】本発明は、上記課題を解決するためになさ
れたものであり、磁気記憶装置への実用化において必須
である薄膜構造において、従来知られているものより低
磁場で、あるいは、同じ磁場でより大きな磁気抵抗比を
示す金属絶縁体転移によるスイッチング現象を利用した
磁気抵抗素子を提供することを目的としている。
【0015】
【課題を解決するための手段】本特許の発明者らは、金
属絶縁体転移を示す薄膜とその薄膜の形成される基板と
の関係において、磁気抵抗を得るに適した関係があるこ
とを発見した。これは、金属絶縁体転移を示す薄膜にお
いて、その面内格子定数が、その薄膜の形成される基板
の面内格子定数と一致するようにエピタキシャル成長し
た単結晶薄膜においては、基板によって薄膜の面内格子
がクランプされるため多結晶や単結晶のようには格子が
自由に変形することができなくなることに起因してい
る。これにより、数%もの大きな格子定数の変化を伴う
電荷整列相のスイッチングによる絶縁体から金属への転
移は大きな影響を受けることが分かった。すなわち、基
板から薄膜に作用する格子歪みが薄膜の抵抗率及び磁気
抵抗へ大きく影響を与えることから、金属絶縁体転移を
示す薄膜とその薄膜が形成される基板とにおいて磁気抵
抗を得るに適した格子定数についての関係があることが
分かる。
【0016】この発見に基づいた、上記の目的を達成す
るための請求項1に記載の発明は、金属絶縁体転移によ
るスイッチング現象を利用した磁気抵抗素子で、単結晶
基板上に膜厚100nm以下の磁性薄膜が形成されてなる
磁気抵抗素子において、該磁性薄膜の電気抵抗測定手段
が該磁性薄膜に接触してあるいは近接して設置され、該
磁性薄膜は電荷整列相を示すマンガンを含む酸化物ペロ
フスカイトにクロムをドープした磁性体からなり、か
つ、該磁性薄膜の基板面内の格子定数は基板面に垂直な
格子定数よりも小さいことを特徴としている。
【0017】また、請求項2に記載の発明は、上記した
請求項1に記載の発明の構成に加えて、電荷整列相を示
すマンガンを含む酸化物ペロフスカイトは、Pr0.5
0.5MnO3、Nd0.5Sr0.5MnO3、あるいは、S
0.5Sr0.5MnO3、のSrを含む系のいずれか、ま
たは、Pr1-xCaxMnO3(0.3≦x≦0.7)、
Nd1-xCaxMnO3(0.3≦x≦0.7)、あるい
はSm1-xCaxMnO3、(0.15≦x≦0.85)
のCaを含む系、のいずれかであることを特徴としてい
る。
【0018】また、請求項3に記載の発明は、上記した
請求項2に記載の発明の構成に加えて、単結晶基板は、
LaAlO3単結晶基板であることを特徴としている。
【0019】
【発明の実施の形態】以下にこの発明の実施の形態を詳
細に説明する。先ず本発明に係る磁気抵抗素子につい
て、(a)原理、の説明の後、(b)面内格子定数が基
板面に垂直な格子定数よりも大きいという関係にある引
っ張り歪みが作用した薄膜での磁気抵抗効果、(c)面
内格子定数が基板面に垂直な格子定数よりも小さいとい
う関係にある圧縮歪みが作用した薄膜での磁気抵抗効
果、が得られる事を説明する。
【0020】(a)原理: まず、本発明の原理につい
て図2を用いて説明する。ここでは多結晶や単結晶の形
態において電荷整列相を示すマンガンを含む酸化物ペロ
フスカイトにクロムをドープした磁性体を磁性膜として
用い、擬立方晶として見積もった多結晶や単結晶試料で
の平均格子定数をaと表し、単結晶基板1の全ての面内
格子定数は簡単のため等しいとし、これをa*と表記し
て説明をすすめる。
【0021】一般に、単結晶基板1にコヒーレントに成
長した単結晶薄膜2においては、単結晶薄膜2の面内格
子定数afは単結晶基板1の面内格子定数a*と一致し
ている。図2(a)はa<a*、すなわち多結晶や単結
晶試料での平均格子定数aが単結晶基板1の面内格子定
数a*よりも小さい場合に単結晶基板1にかかる応力を
示した断面図である。この場合、単結晶薄膜2の面内格
子定数afが単結晶基板1の面内格子定数a*と一致す
る(af=a*)には単結晶薄膜2に引っ張り歪みが入
ることになり、単結晶薄膜2は体積を一定に保つように
基板面に垂直な方向の格子定数cを弾性変形の作用によ
り縮める(af>c)こととなる。図2(b)はa>a
*の場合、すなわち多結晶や単結晶試料での平均格子定
数aが単結晶基板1の面内格子定数a*よりも大きい場
合を示した断面図である。この場合、単結晶薄膜2の面
内格子定数afが単結晶基板1の面内格子定数a*と一
致する(af=a*)には単結晶薄膜2に圧縮歪みが入
ることになり、同様に単結晶薄膜2は体積を一定に保つ
ように基板面に垂直な方向の格子定数cを弾性変形の作
用により延ばす(af<c)こととなる。
【0022】一方、多結晶や単結晶試料においては、電
荷整列相での結晶格子は二軸が伸び一軸が縮んだ構造を
とり絶縁体となる。ところが、クロムを数%ドープした
系において金属になっている状態では、上記とは逆に、
格子定数は二軸が縮み、一軸が伸びた構造であり、なお
かつ、格子定数は概略等しい、すなわち格子の異方性が
小さい、値をとる。このことから、また、電荷整列相に
おいては絶縁体から金属への転移において数%に及ぶ格
子変化を伴うことからも、その抵抗率や磁気抵抗特性は
格子歪みに強く影響をうけることが分かる。
【0023】これらのことから、発明者らは、単結晶薄
膜2に磁性膜を用いると、磁性膜の多結晶や単結晶試料
での平均格子定数aと基板の格子定数a*を適宜選択す
ることにより、電荷整列転移温度以下での相において、
電荷整列相を安定化する組み合わせと、電荷整列を不安
定化する組み合わせと、を実現できることを見い出し
た。
【0024】すなわち、a<a*の関係となるような組
み合わせでは引っ張り歪みによる結果、af>cとな
り、電荷整列が安定化され、一方、a>a*の関係とな
るような組み合わせでは圧縮歪みによる結果、af<c
となり、電荷整列が不安定化する。この理由を以下に詳
細に説明する。
【0025】単結晶薄膜2の面内の格子定数afが単結
晶基板1の面内格子定数a*と一致するようにエピタキ
シャル成長した単結晶薄膜2においては単結晶基板1に
よって単結晶薄膜2の格子がクランプされるため、引っ
張り歪みが作用した単結晶薄膜2においては予め面内の
二軸(=af)が伸び、一軸(=c)が縮んだ格子のま
ま電荷整列転移温度以下に至ることになる。この単結晶
薄膜2の格子の異方性は多結晶や単結晶試料における電
荷整列相での格子の異方性に相当し、さらに単結晶薄膜
2の面内格子が単結晶基板1にクランプされることから
電荷整列相が安定化されることになる。
【0026】したがって、引っ張り歪みが作用した単結
晶薄膜2においてはクロムをドープをしても格子は単結
晶基板1にクランプされているため多結晶や単結晶試料
で金属的な抵抗率を示す際に得られているような格子へ
変化することができず、その結果、電荷整列相は安定化
され多結晶や単結晶試料で見られるような低磁場での金
属への転移は抑制され、大きな磁気抵抗は得られにくく
なる。
【0027】一方、圧縮歪みが作用した単結晶薄膜2に
おいては予め面内の二軸(=af)が縮み、一軸(=
c)が伸びた格子のまま電荷整列転移温度以下に至るこ
とになる。この単結晶薄膜2の格子の異方性は多結晶や
単結晶試料における電荷整列相が崩壊し金属的な抵抗率
を示す際に得られる格子の異方性に相当し、電荷整列相
が不安定化されることになる。
【0028】この時、圧縮歪みが作用した単結晶薄膜2
においては、クロムをドープすることで不安定化してい
た電荷整列相がより不安定化するため、より低い磁場印
加によっても抵抗変化(金属への転移)が発生し大きな
磁気抵抗が得られることになる。
【0029】クロムをドープすることで電荷整列相が不
安定化する理由は、以下のように考えられる。すなわ
ち、クロムは化学的に安定であるため価数が揺らぎにく
くCr 3+になると考えられるが、これは価数が固定した
Mn4+に相当する。すなわちクロムをドープすることは
g電子軌道へホールをドーピングすることと等価と考
えられ二重交換相互作用を介してより低磁場での金属へ
の転移を促進することになると考えられるためである。
【0030】以上説明したように本発明の磁気抵抗素子
により、薄膜構造において、より低磁場でより大きな磁
気抵抗効果を得ることが可能になる。
【0031】本発明の単結晶基板に用いることが可能な
単結晶基板1としては、上記の格子定数の関係、af
cを満たすものであればよく、この関係を満たす良好な
単結晶基板1としてLaAlO3単結晶基板が最も好適
である。
【0032】また、磁性膜3に用いることが可能な電荷
整列相を示すマンガンを含む酸化物ペロフスカイト構造
物質としては、Pr0.5Sr0.5MnO3、Nd0.5Sr
0.5MnO3、Sm0.5Sr0.5MnO3、などのSrを含
む系や、Pr1-xCaxMnO3(0.3≦x≦0.
7)、Nd1-xCaxMnO3(0.3≦x≦0.7)、
Sm1 -xCaxMnO3、(0.15≦x≦0.85)等
のCaを含む系があげられる。従来技術に示したSrを
含む系はSr量が0.5から0.45と僅かにずれても
電荷整列相から強磁性(金属)相へと変化するために組
成を厳密に制御しなければならないが、Caを含む系
は、Ca量をxとして表記したように広い組成範囲にお
いて電荷整列相が得られるため、僅かな組成ずれによる
基底状態の変化がなく、薄膜を作製するうえでより好適
である。また、Caを増やすと多結晶や単結晶試料での
格子定数が小さくなり、Ca量により格子定数を調整で
きることから、上記単結晶基板1との組み合わせを格子
の異方性が小さくなるように調整できるという利点もあ
る。
【0033】また、ドーピングするクロム量としては、
多量にドーピングすると異相などの発生による特性劣化
が起こることをも鑑み、10%以下であることが望まし
い。この範囲内であれば、クロム量を調整することによ
り動作磁場の低減や磁気抵抗の増大を適宜図ることが可
能であるという利点もある。
【0034】また、磁性膜3の膜厚は単結晶基板1との
格子定数のミスマッチの度合いにもよるが、数nm〜1
00nmの範囲まで単結晶基板1の格子定数と一致した
面内の格子定数を持つ単結晶薄膜2を得ることができミ
スフィット転位などの欠陥を抑制することが可能な範囲
で適宜選択することが可能である。
【0035】なお、磁性膜3上に形成する電極4として
は金電極がオーミックコンタクトをとりやすいものが好
適であるが、密着性を改善するなどの目的でその他の電
極材料を用いても本発明の趣旨に反するものではない。
【0036】(b)引っ張り歪みが作用した薄膜での磁
気抵抗:上記の原理を検証するために、本発明の比較例
として引っ張り歪みが作用した概略図1に示した構成を
持った磁気抵抗素子を作製した。以下に、その製造方法
と、測定により得られた磁気抵抗について説明する。
【0037】単結晶基板1としては、格子定数が0.3
91nmのSrTiO3単結晶基板、格子定数が0.3
87nmの(LaAlO30.3−(Sr2AlTaO6
0.7(以下、LSATと略記する)単結晶基板の2種類
を用いて、膜厚が40〜65nmのPr0.5Ca0.5Mn
3薄膜を、クロムのドープ量をそれぞれ0、3、10
%と変えて、レーザーアブレーション法により作製し
た。Pr0.5Ca0.5MnO3の単結晶における平均の格
子定数は0.381nmであり、格子不整合はそれぞれ
SrTiO3基板では2.4%、LSAT基板では1.
5%となる。
【0038】まず、磁性薄膜3の作製方法を説明する。
単結晶基板1を真空チャンバー内に取り付けた後、2.
66×10-6Pa以下に真空排気した後に高純度の酸素
ガスを導入して1.33×10-1Paにし、875℃に
基板を加熱する。レーザーとしては波長248nmのK
rFエキシマレーザを用い、チャンバーのレーザー光導
入ポートにて150mJのパワーを5Hzでターゲット
に照射し成膜を行う。その後、酸素ガスをチャンバー内
に導入し、0.1MPaの圧力下700℃で30分間の
アニールの後、60分間かけて27℃まで冷却する。
【0039】ターゲットは固相反応法で作製した多結晶
材料をφ20の円筒タブレットに成形したものを用いて
おり、その組成はストイキオメトリックであることを確
認している。
【0040】磁性薄膜3がエピタキシャル成長した単結
晶薄膜であり面内の格子定数が単結晶基板1の面内格子
定数と一致しているかどうかについては四軸のX線回折
装置を用いて(114)反射を調べることで評価した。
SrTiO3基板上の膜ではミスマッチが2.4%と大
きいために僅かに格子が緩和しているが引っ張り歪みは
作用しており面内の格子定数は0.389nm、基板面
に垂直な格子定数は0.375nmであった。また、L
SAT基板上の膜ではミスマッチが1.5%ほどある
が、完全に基板の面内格子定数と一致し引っ張り歪みが
作用した膜が得られており、面内の格子定数は0.38
7nm、基板面に垂直な格子定数は0.376nmであ
った。この様に、上記のいずれの場合も引っ張り歪みが
作用していることが分かる。
【0041】このようにして作製した磁性薄膜3上に1
50nmの厚みの電極4を抵抗加熱を用いた金蒸着法に
より形成した。図1に示すように電極4のパターンは四
探針法による測定が可能なようにメタルマスクを用いて
形成したものであり電極間ピッチは0.5mm、電極の
幅は約2mmとしている。外側の1対の電極に電流を流
し内側の1対の電極間に生じる電圧を測定することで膜
の抵抗を測定し抵抗率を算出した。
【0042】このようにして形成した試料のうちクロム
を10%添加したもっとも磁気抵抗効果による抵抗変化
の得られやすい試料について、抵抗率の温度依存性を印
加磁場を0、3、4、5、6、7Tとかえながら4.2
〜400Kの範囲で測定した。このとき磁場は膜面に平
行に印加している。図3(a)は、SrTiO3単結晶
基板上に作製した膜の抵抗率の温度依存性を示す図であ
る。横軸が温度であり縦軸は抵抗率を対数表示したもの
である。磁場を7Tまでかけても抵抗はほとんど低下せ
ず90K以下の温度では抵抗率が100Ωcmを越えて
測定装置の測定範囲外にまで抵抗が上昇することがわか
る。
【0043】ついで、より詳細に調べるために300
K、170K、150K、130K、110Kの各温度
で−7T〜7Tの範囲で磁場を印加し磁気抵抗を調べた
結果を図3(b)に示す。横軸は印加磁場であり縦軸は
7T印加したときの抵抗Rに対する各印加磁場Hにおけ
る抵抗Rの比、R(H)/R(7T)を示している。こ
の図3(b)で示したH=0におけるR(H)/R(7
T)、すなわちR(0)/R(7T)の値から、前述の
数1により7Tの磁場を印加した際の磁気抵抗を求める
ことができる。この結果、300Kではほとんど磁気抵
抗効果は得られず、もっとも大きな磁気抵抗比が得られ
た110Kの温度においても約140%にとどまり電荷
整列相を利用する磁気抵抗としては小さい値しか得られ
ないことがわかる。なお、これ以下の温度においては抵
抗が高すぎるために磁気抵抗は測定できなかった。
【0044】図4(a)にはLSAT単結晶基板上に作
製した膜の抵抗率の温度依存性を示した。図3(a)と
同様に横軸が温度であり縦軸は抵抗率を対数表示したも
のである。7Tまで磁場を印加しても抵抗率がほとんど
低下しないのはSrTiO3単結晶基板上の膜と同様で
あり、90K以下では同様に抵抗率が100Ωcmを越
えて測定装置の測定範囲外にまで抵抗が上昇している。
【0045】図4(b)には、図3(b)と同様に30
0K、170K、150K、130K、110Kの各温
度で−7T〜7Tの範囲で磁場を印加し磁気抵抗を調べ
た結果を示した。図3(b)と同様に横軸は印加磁場で
あり縦軸は、R(H)/R(7T)を示している。数1
により磁気抵抗比を求めると、SrTiO3単結晶基板
上の膜よりは幾分磁気抵抗比は大きくなっているが、最
も大きな磁気抵抗が得られた110Kの温度においても
170%に過ぎないことがわかった。
【0046】以上説明したように、引っ張り歪みが作用
した単結晶薄膜においては、面内の格子定数が基板にク
ランプされ、基板面に垂直方向の格子定数よりも大きく
電荷整列相を安定化している。このため、クロムを10
%ドープした膜においても磁気抵抗が抑制されることが
実際に確認できた。
【0047】(c)面内格子定数が基板面に垂直な格子
定数よりも小さいという関係にある圧縮歪みが作用した
薄膜での磁気抵抗効果:次に、本発明の趣旨である、概
略図1に示した構成を持った磁気抵抗素子で圧縮歪みが
作用した薄膜での磁気抵抗を調べた結果を説明する。
【0048】単結晶基板1としては、格子定数が0.3
79nmのLaAlO3単結晶基板を用いて、膜厚が4
0〜65nmのPr0.5Ca0.5MnO3薄膜をクロムの
ドープ量をそれぞれ0、3、10%と変えてレーザーア
ブレーション法により作製した。格子不整合は−0.6
%となる。
【0049】薄膜を作製方法は、上記の(b)引っ張り
歪みが作用した薄膜での磁気抵抗、の項で説明した方法
と同様の方法で磁性膜3を作製した。但し、単結晶基板
1にLaAlO3基板を用いた点が異なっている。La
AlO3基板上の膜は、完全に基板の面内格子定数と一
致し圧縮歪みが作用した膜が得られており、面内の格子
定数は0.379nm、基板面に垂直な格子定数は0.
387nmであった。このことから、圧縮歪が作用して
いることがわかる。
【0050】このようにして作製した磁性膜3に金電極
4を同様の方法で形成しクロムを10%添加した最も抵
抗変化の得られやすい試料の抵抗率の温度依存性を印加
磁場を0、3、4、5、6、7Tと変えながら4.2〜
400Kの範囲で測定した。磁場は上記の場合と同様に
膜面に平行に印加している。
【0051】図5(a)にLaAlO3単結晶基板上に
作製した膜の抵抗率の温度依存性を示した。横軸が温度
であり縦軸は抵抗率を対数表示したものである。磁場を
3T印加した段階ですでに170K以下の温度範囲で抵
抗が低下していることがわかる。さらに磁場を4T以上
に増加すると磁場の増加につれて抵抗変化はますます大
きくなり5T〜7Tでは金属相へと抵抗変化したことが
わかる。ついで、より詳細に調べるために300K、1
70K、150K、130K、110K、90K、70
K、50K、30Kの各温度で−7T〜7Tの範囲で磁
場を印加し磁気抵抗を調べた結果を図5(b)に示す。
図3(b)と同様に横軸は印加磁場であり縦軸は、R
(H)/R(7T)を示している。引っ張り歪みの作用
した薄膜では140〜170%程度の磁気抵抗比が得ら
れた110Kの温度において、圧縮歪みの作用した薄膜
では850%と大きな磁気抵抗比が得られている。さら
に、90Kの温度では1930%、70Kの温度では6
900%とより大きな磁気抵抗が得られている。50
K、30Kの温度では磁場0のときの抵抗値が大きく測
定できないために数1による磁気抵抗比を求めることは
できないものの、それぞれR(2.2T)/R(7
T)、R(3.5T)/R(7T)での値を代用して磁
気抵抗比を求めてみても10000%を越えた巨大な磁
気抵抗比が得られることが示された。
【0052】以上説明したように、圧縮歪みが作用した
単結晶薄膜においては面内の格子定数が基板面に垂直方
向の格子定数よりも小さく、電荷整列相を不安定化して
いるためにクロムを10%ドープした膜において、従来
の磁気抵抗素子より低い磁場でより大きな磁気抵抗比が
得られることを示した。
【0053】以上の説明においては、LaAlO3単結
晶基板を用いてクロムのドープした膜厚が40〜65n
mのPr0.5Ca0.5MnO3薄膜について述べたが、上
記した、引っ張り歪みが作用した薄膜の場合と、圧縮歪
みが作用した薄膜の場合との比較から、薄膜にかかる歪
の違いが、従来の磁気抵抗素子より低い磁場でより大き
な磁気抵抗比が得られることの主要因であることが分か
る。従って、電荷整列相を示すマンガンを含む酸化物ペ
ロフスカイト構造を持った物質であれば、クロムのドー
ピングにより、上述した磁気抵抗効果と同様の効果が得
られることは容易に理解できる。
【0054】また、以上の説明において磁性体薄膜の電
気抵抗は、磁性体薄膜にオーミックコンタクトした電極
を通じて測定したが、既に良く知られている電磁波の反
射あるいは透過を用いた方法によっても容易に測定する
ことができるので、電極を形成することは本発明の本質
的な要件ではなく、他の電気抵抗を測定する手段によっ
て測定する事によっても、上述した磁気抵抗効果と同様
の効果が得られることは容易に理解できる。
【0055】
【発明の効果】この発明は上記した構成からなるので、
以下に説明するような効果を奏することができる。
【0056】請求項1に記載の発明では、実用化におい
て必須である薄膜構造において、従来に比べて、より低
磁場で、またより大きな磁気抵抗を示す磁気抵抗素子を
実現することが可能となった。
【0057】また、請求項2および3に記載の発明で
は、具体的に用いる材料を開示したので、100nm以
下の薄膜で、従来に比べて、より低磁場で、またより大
きな磁気抵抗を示す磁気抵抗素子を実現することが可能
となった。
【図面の簡単な説明】
【図1】本発明の磁気抵抗素子の模式的断面図である。
【図2】単結晶基板に格子不整合の単結晶薄膜を成長さ
せた場合の応力を示す図で、(a)は引っ張り歪みが作
用した薄膜の応力を示す模式的断面図であり、(b)は
圧縮歪みが作用した薄膜の応力を示す模式的断面図であ
る。
【図3】SrTiO3単結晶基板上に作製した、クロム
をドープしたPr0.5Ca0.5MnO3薄膜の特性を示す
図で、(a)は薄膜の抵抗率の温度依存性を示す図で、
(b)は薄膜の磁気抵抗の磁場依存性を示す図である。
【図4】LSAT単結晶基板上に作製した、クロムをド
ープしたPr0.5Ca0.5MnO3薄膜の特性を示す図
で、(a)は薄膜の抵抗率の温度依存性を示す図で、
(b)は薄膜の磁気抵抗の磁場依存性を示す図である。
【図5】LaAlO3単結晶基板上に作製した、クロム
をドープしたPr0.5Ca0.5MnO3薄膜の特性を示す
図で、(a)は薄膜の抵抗率の温度依存性を示す図で、
(b)は薄膜の磁気抵抗の磁場依存性を示す図である。
【符号の説明】
1 単結晶基板 2 単結晶薄膜 3 磁性膜 4 電極
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荻本 泰史 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 十倉 好紀 茨城県つくば市東1丁目1番4 工業技 術院 産業技術融合領域研究所内 (72)発明者 川崎 雅司 茨城県つくば市東1丁目1番4 工業技 術院 産業技術融合領域研究所内 (72)発明者 和泉 真 茨城県つくば市東1丁目1番4 工業技 術院 産業技術融合領域研究所内 (72)発明者 眞子 隆志 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 富岡 泰秀 茨城県つくば市東1丁目1番4 工業技 術院 産業技術融合領域研究所内 (72)発明者 木村 剛 茨城県つくば市東1丁目1番4 工業技 術院 産業技術融合領域研究所内 (56)参考文献 特開 平10−190092(JP,A) 特開 平10−269842(JP,A) 特開 平8−133894(JP,A) 特開 平11−340542(JP,A) 特許2685721(JP,B2) Applied Physics L etters,1999年,Vol.75, No.10,pp.1473−1475 (58)調査した分野(Int.Cl.7,DB名) H01L 43/08

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 単結晶基板上に膜厚100nm以下の磁性
    薄膜が形成されてなる磁気抵抗素子において、該磁性薄
    膜の電気抵抗測定手段が該磁性薄膜に接触してあるいは
    近接して設置され、該磁性薄膜は電荷整列相を示すマン
    ガンを含む酸化物ペロフスカイトにクロムをドープした
    磁性体からなり、かつ、該磁性薄膜の基板面内の格子定
    数は基板面に垂直な格子定数よりも小さいことを特徴と
    する金属絶縁体転移によるスイッチング現象を利用した
    磁気抵抗素子。
  2. 【請求項2】 請求項1に記載の金属絶縁体転移による
    スイッチング現象を利用した磁気抵抗素子において、電
    荷整列相を示すマンガンを含む酸化物ペロフスカイト
    は、Pr0.5Sr0.5MnO3、Nd0.5Sr0.5MnO3
    あるいは、Sm0. 5Sr0.5MnO3、のSrを含む系の
    いずれか、または、Pr1-xCaxMnO3(0.3≦x
    ≦0.7)、Nd1-xCaxMnO3(0.3≦x≦0.
    7)、あるいはSm1-xCaxMnO3、(0.15≦x
    ≦0.85)のCaを含む系のいずれかであることを特
    徴とする金属絶縁体転移によるスイッチング現象を利用
    した磁気抵抗素子。
  3. 【請求項3】 請求項2に記載の金属絶縁体転移による
    スイッチング現象を利用した磁気抵抗素子において、単
    結晶基板は、LaAlO3単結晶基板であることを特徴
    とする金属絶縁体転移によるスイッチング現象を利用し
    た磁気抵抗素子。
JP2000067660A 2000-03-10 2000-03-10 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子 Expired - Lifetime JP3469529B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067660A JP3469529B2 (ja) 2000-03-10 2000-03-10 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067660A JP3469529B2 (ja) 2000-03-10 2000-03-10 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子

Publications (2)

Publication Number Publication Date
JP2001257396A JP2001257396A (ja) 2001-09-21
JP3469529B2 true JP3469529B2 (ja) 2003-11-25

Family

ID=18586814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067660A Expired - Lifetime JP3469529B2 (ja) 2000-03-10 2000-03-10 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子

Country Status (1)

Country Link
JP (1) JP3469529B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569745B2 (en) * 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
JP4509467B2 (ja) * 2002-11-08 2010-07-21 シャープ株式会社 不揮発可変抵抗素子、及び記憶装置
US9885937B2 (en) 2011-01-07 2018-02-06 Hewlett Packard Enerprise Development Lp Dynamic optical crossbar array
JP5884431B2 (ja) * 2011-11-18 2016-03-15 日産自動車株式会社 磁気冷暖房装置
JP5884432B2 (ja) * 2011-11-18 2016-03-15 日産自動車株式会社 磁気冷暖房装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters,1999年,Vol.75, No.10,pp.1473−1475

Also Published As

Publication number Publication date
JP2001257396A (ja) 2001-09-21

Similar Documents

Publication Publication Date Title
Wang et al. Leakage current of multiferroic (Bi0. 6Tb0. 3La0. 1) FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect
Feng et al. Electric‐Field Control of Magnetic Order: From FeRh to Topological Antiferromagnetic Spintronics
Guo et al. Growth of epitaxial thin films of the ordered double perovskite La2NiMnO6 on different substrates
US7606010B2 (en) Mg-Zn oxide tunnel barriers and method of formation
JP4764466B2 (ja) ホイスラー合金を有する積層体、この積層体を用いた磁気抵抗素子、及びスピントランジスタ
US7541105B2 (en) Epitaxial ferroelectric and magnetic recording structures including graded lattice matching layers
US6528326B1 (en) Magnetoresistive device and method for producing the same, and magnetic component
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
KR102404434B1 (ko) 수직 자화막, 수직 자화막 구조, 자기 저항 소자, 및 수직 자기 기록 매체
US20130200457A1 (en) Strongly correlated oxide field effect element
JP2006237304A (ja) 強磁性伝導体材料およびその製造方法、並びに磁気抵抗素子、電界効果トランジスタ
Zheng et al. Oxygen deficiency and cooling field driven vertical hysteretic shift in epitaxial SrRuO3/SrTiO3 heterostructures
JP4230374B2 (ja) ペロブスカイトマンガン酸化物薄膜及び該薄膜を備えてなるスイッチング素子、並びに該薄膜の製造方法
KR102432900B1 (ko) 수직 자화막 및 이를 포함하는 자기 장치
Zeng et al. Emergent ferromagnetism with tunable perpendicular magnetic anisotropy in short-periodic SrIrO3/SrRuO3 superlattices
JP3469529B2 (ja) 金属絶縁体転移によるスイッチング現象を利用した磁気抵抗素子
Mukaiyama et al. Over 100% magnetoresistance ratio at room temperature in magnetic tunnel junctions with CuGaSe2 spacer layer
US6610421B2 (en) Spin electronic material and fabrication method thereof
JP4180456B2 (ja) 磁性酸化物薄膜の製造方法
JPH1197766A (ja) 強磁性トンネル接合素子
JP2018129423A (ja) 強磁性トンネル接合体の製造方法及び強磁性トンネル接合体
JP4230368B2 (ja) ペロブスカイトマンガン酸化物膜及びその製造方法
WO2021192128A1 (ja) ワイルフェルミオンの輸送現象を発現する物質および磁気抵抗素子
JP6740551B2 (ja) 強磁性トンネル接合体の製造方法、強磁性トンネル接合体及び磁気抵抗効果素子
Wang et al. The converse piezoelectric effect on electron tunnelling across a junction with a ferroelectric–ferromagnetic composite barrier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3469529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term