JP3467723B2 - Method for manufacturing silicon carbide sintered body member - Google Patents

Method for manufacturing silicon carbide sintered body member

Info

Publication number
JP3467723B2
JP3467723B2 JP06403298A JP6403298A JP3467723B2 JP 3467723 B2 JP3467723 B2 JP 3467723B2 JP 06403298 A JP06403298 A JP 06403298A JP 6403298 A JP6403298 A JP 6403298A JP 3467723 B2 JP3467723 B2 JP 3467723B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
carbide sintered
body member
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06403298A
Other languages
Japanese (ja)
Other versions
JPH11240780A (en
Inventor
文夫 徳岳
真人 高橋
誠司 谷池
重明 杉崎
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP06403298A priority Critical patent/JP3467723B2/en
Publication of JPH11240780A publication Critical patent/JPH11240780A/en
Application granted granted Critical
Publication of JP3467723B2 publication Critical patent/JP3467723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は炭化珪素焼結体部材
の製造方法に関し、より詳細には、炭化珪素焼結体部材
の広範囲の温度域での使用においても、焼結体表面から
の金属類不純物等の放出汚染及び炭化珪素(SiC)の
焼結に用いられる硼素等の焼結助剤成分の表面からの放
出汚染が著しく低減された炭化珪素焼結体部材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon carbide sintered body member, and more particularly, to a metal from the surface of the sintered body even when the silicon carbide sintered body member is used in a wide temperature range. The present invention relates to a method for producing a silicon carbide sintered body member in which the emission pollution such as impurities and the emission pollution from the surface of a sintering aid component such as boron used for sintering silicon carbide (SiC) are significantly reduced.

【0002】[0002]

【従来の技術】炭化珪素焼結体は、耐熱性、緻密生、高
熱伝導性、耐食性、強度、耐摩耗性等の数多くの物性に
優れているため保温筒、ガスタービンブレード等の高温
構造材、発熱体、抵抗体等の他に耐食材、耐摩耗材、砥
石等の研磨材、研削材、その他種々の用途に広く使用さ
れている。炭化珪素焼結体の製造方法には、大別して、
自焼結、反応焼結、再結晶の三通りの方法があるが、反
応焼結では含浸材として通常5重量%程度以上のSi等
を含むため、SiC含有量の高い焼結体の製造には自焼
結による製造が一般的に行われている。しかしながら、
炭化珪素(SiC)は共有結合性の強い化学的に安定な
化合物で、しかも、融点が2700度以上、2200度
以上では昇華、熱分解が始まるために、炭化珪素粉末を
単独で自焼結して良好な焼結体を得ることは難しく、通
常、その焼結には硼素、炭素、アルミナ等のいわゆる焼
結助剤の添加を必要とする。自焼結法により製造された
炭化珪素焼結体は、含有焼結助剤が硼素系の場合、一部
の特殊なものは、0.05重量%の低含有率のものもあ
るが、一般には0.1乃至数重量%程度の硼素を含有し
ている。
2. Description of the Related Art A silicon carbide sintered body is excellent in many physical properties such as heat resistance, denseness, high thermal conductivity, corrosion resistance, strength, and wear resistance, and therefore it is a high temperature structural material such as a heat insulating cylinder and a gas turbine blade. In addition to heating elements, resistors, etc., they are widely used in various applications such as food materials, wear resistant materials, abrasive materials such as grindstones, abrasive materials, and others. The method for manufacturing a silicon carbide sintered body is roughly classified into
There are three methods: self-sintering, reaction sintering, and recrystallization. In reaction sintering, the impregnating material usually contains about 5% by weight or more of Si, etc., so that it is possible to manufacture a sintered body with a high SiC content. Is generally manufactured by self-sintering. However,
Silicon carbide (SiC) is a chemically stable compound having a strong covalent bond property. Moreover, since sublimation and thermal decomposition start at a melting point of 2700 ° C. or higher and 2200 ° C. or higher, silicon carbide powder is self-sintered by itself. Therefore, it is difficult to obtain a good sintered body, and it is usually necessary to add a so-called sintering aid such as boron, carbon, or alumina to the sintering. Regarding the silicon carbide sintered body produced by the self-sintering method, when the contained sintering aid is a boron type, some special ones have a low content rate of 0.05% by weight. Contains about 0.1 to several wt% of boron.

【0003】この焼結助剤は、焼結処理時には必要であ
るが、焼結反応が終わると不要となるだけでなく、該焼
結体が部材として、特に高温加熱下で使用される際に
は、その表面乃至表面近傍に残存する助剤の一部が焼結
体内を移行し、焼結体外に放出され、周辺を汚染する汚
染源となる可能性がある。このため、極度にこの種の汚
染を嫌う精密工業分野、例えば、半導体製造分野等にお
いては、自焼結により製造された炭化珪素焼結材が上記
した数多くの優れた諸物性を有するにもかかわらず、そ
の使用は上記不純物放出汚染の虞れの観点から、特別な
場合を除いて一般に敬遠され、従来から、ウエハボー
ト、炉心管等の半導体熱処理用部材として採用を検討さ
れることは、ほとんどなかった。
This sintering aid is necessary during the sintering process, but is not necessary after the sintering reaction is completed, and when the sintered body is used as a member, especially under high temperature heating. In some cases, a part of the auxiliary agent remaining on the surface or in the vicinity of the surface migrates inside the sintered body and is released outside the sintered body, which may become a pollution source contaminating the surroundings. For this reason, in the field of precision industry where this kind of contamination is extremely disliked, for example, in the field of semiconductor manufacturing, the silicon carbide sintered material produced by self-sintering has many excellent physical properties described above. However, its use is generally shunned except for special cases from the viewpoint of the above-mentioned impurity emission and contamination, and conventionally, it is almost considered to be adopted as a semiconductor heat treatment member such as a wafer boat and a core tube. I didn't.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は、上記の
ように耐熱性、緻密生、高熱伝導性、耐食性、強度、耐
摩耗性等数多くの優れた諸物性を有するにもかかわらず
焼結助剤等の不純物放出による周辺汚染のため従来半導
体熱処理用部材として顧みられることの少なかった炭化
珪素焼結体の該汚染不純物の放出を抑止するため、炭化
珪素焼結材に種々の処理を施し、その処理方法と不純物
放出量との関係について種々の検討を重ねた。その結
果、以下に詳述するように、炭化珪素焼結体部材の表面
を酸化させ、生成した酸化膜を酸洗浄により除去した
後、特定の純化熱処理を施すことにより、上記焼結助剤
等の汚染物質の焼結体表面からの放出が極めて低いレベ
ルにまで低減できることを見出し、本発明を完成するに
至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention burned despite having many excellent physical properties such as heat resistance, denseness, high thermal conductivity, corrosion resistance, strength and abrasion resistance as described above. Various treatments have been applied to the silicon carbide sintered material in order to suppress the release of the contaminant impurities of the silicon carbide sintered body, which has been rarely considered as a semiconductor heat treatment member due to the peripheral contamination caused by the release of impurities such as auxiliary agents. Then, various studies were conducted on the relationship between the treatment method and the amount of released impurities. As a result, as described in detail below, the surface of the silicon carbide sintered body member is oxidized, the generated oxide film is removed by acid cleaning, and then a specific purification heat treatment is performed, whereby the above-mentioned sintering aid, etc. The inventors have found that the emission of the pollutant (1) from the surface of the sintered body can be reduced to an extremely low level, and have completed the present invention.

【0005】従って、本発明の課題は、金属類等の汚染
物質の放出を抑制できるだけでなく、炭化珪素焼結体中
に含まれる焼結助剤の表面からの放出、移行汚染をほぼ
完全に抑止することができ、半導体熱処理用部材として
充分に使用可能な炭化珪素焼結体部材を製造する方法を
提供することにある。
Therefore, the object of the present invention is not only to suppress the release of pollutants such as metals, but also to completely release the sintering aid contained in the silicon carbide sintered body from the surface and migration contamination. It is an object of the present invention to provide a method for producing a silicon carbide sintered body member which can be suppressed and can be sufficiently used as a semiconductor heat treatment member.

【0006】[0006]

【課題を解決するための手段】本発明によれば、焼結後
に機械加工を施した焼結助剤含有炭化珪素焼結体部材の
表面を洗浄して付着したパーティクルを除去し、乾燥
後、酸化雰囲気中で加熱処理してその表面を酸化し、生
成した酸化膜層を酸洗浄により除去した後、更に不活性
ガス雰囲気中、あるいは塩化水素含有ガス雰囲気中で加
熱純化処理することを特徴とする炭化珪素焼結体部材の
製造方法が提供される。また、本発明の一態様によれ
ば、上記不純物放出抑制処理された炭化珪素焼結体部材
の表面を、更に炭化珪素コーティング処理することによ
り、特に高温域での使用において優れた不純物放出抑止
効果を発揮する炭化珪素焼結体の製造方法が提供され
る。
According to the present invention, the surface of a sintering aid-containing silicon carbide sintered body member that has been machined after sintering is washed to remove particles that have adhered, and after drying, The surface of the oxide film is oxidized by heat treatment in an oxidizing atmosphere, the generated oxide film layer is removed by acid cleaning, and then heat purification treatment is further performed in an inert gas atmosphere or a hydrogen chloride-containing gas atmosphere. A method of manufacturing a silicon carbide sintered body member is provided. Further, according to one aspect of the present invention, the surface of the silicon carbide sintered body member that has been subjected to the impurity release suppressing treatment is further subjected to a silicon carbide coating treatment, so that an excellent impurity release suppressing effect is obtained particularly in use in a high temperature range. A method for manufacturing a silicon carbide sintered body that exhibits

【0007】本発明の方法は、機械加工が施された炭化
珪素焼結体部材を酸化雰囲気中で酸化して表面に酸化物
膜層を生成させ、生成した酸化膜をフッ酸水溶液、ある
いはフッ酸と硝酸の混酸水溶液等で酸洗浄して除去し、
次いでアルゴン等の不活性ガス雰囲気中で熱処理すると
いう比較的簡易な処理操作により、使用時に、その表面
から焼結助剤成分等の不純物が焼結体外に放出し、周辺
環境を汚染する虞れのある汎用の炭化珪素焼結体を、表
面からの不純物移行、放出汚染がほとんどない炭化珪素
焼結体に変換できる点が特徴である。本発明のこの方法
により製造された炭化珪素焼結体部材は、それを製品と
して使用した場合において、400乃至800℃の温度
領域で顕著な不純物放出抑制効果を表す。
According to the method of the present invention, a machined silicon carbide sintered body member is oxidized in an oxidizing atmosphere to form an oxide film layer on the surface, and the formed oxide film is a hydrofluoric acid solution or a hydrofluoric acid. Remove by acid washing with a mixed acid solution of acid and nitric acid,
Then, by a relatively simple treatment operation of heat treatment in an atmosphere of an inert gas such as argon, during use, impurities such as sintering aid components may be released from the surface of the sintered body to pollute the surrounding environment. It is a feature that a general-purpose silicon carbide sintered body having a certain property can be converted into a silicon carbide sintered body having almost no migration of impurities from the surface or emission pollution. The silicon carbide sintered body member manufactured by this method of the present invention, when used as a product, exhibits a remarkable effect of suppressing impurity emission in the temperature range of 400 to 800 ° C.

【0008】また、上記方法により処理した焼結体部材
の表面を、更にCVD法等により炭化珪素コーティング
処理する本発明の別態様の方法を適用して得られた炭化
珪素焼結体は、特に900乃至1200℃の高温域での
使用に対し、顕著な不純物放出抑制効果を表す。
Further, a silicon carbide sintered body obtained by applying the method of another aspect of the present invention in which the surface of the sintered body member treated by the above method is further coated with silicon carbide by the CVD method or the like, When used in a high temperature range of 900 to 1200 ° C., it exhibits a remarkable effect of suppressing the release of impurities.

【0009】本発明の方法において、炭化珪素焼結体部
材の表面酸化工程は、表面機械加工層の除去を目的とし
て行う処理で、該表面加工層は、不純物が比較的多く含
まれているだけでなく、一般に研削、研磨等の機械的処
理による歪み等により、結晶性が損なわれて不安定化
し、化学的に比較的活性ないわゆる破砕層である場合が
ほとんどである。この破砕層は、加工状態により変化す
るが、通常その厚さは数μmのオーダーである。このた
め、この層は比較的容易に酸化され、酸素雰囲気中で
は、1200℃、2時間程度で酸化は終了する。
In the method of the present invention, the step of oxidizing the surface of the sintered silicon carbide member is a treatment for the purpose of removing the surface machining layer, and the surface machining layer contains only a relatively large amount of impurities. In most cases, the so-called crushed layer is chemically relatively destabilized due to strain and the like caused by mechanical treatment such as grinding and polishing, which makes the layer unstable chemically. The crushed layer varies depending on the processing state, but the thickness is usually on the order of several μm. Therefore, this layer is relatively easily oxidized, and the oxidation is completed in 1200 ° C. for about 2 hours in an oxygen atmosphere.

【0010】次いで、本発明の方法においては、焼結体
のこの表面酸化層をフッ酸水溶液等の洗浄液で酸洗浄し
て溶解除去する。この表面加工層中に存在するFe、A
l、Ni、Cr等の金属元素不純物及びB、C、アルミ
ナ、その他の焼結助剤成分は、該加工層(破砕層)自身
が不安定で反応性に富むため、この層が存在する焼結体
をそのまま使用した場合、これ等の不純物は容易に脱離
して外部に移行、放出される傾向を有する。従って、本
発明では上記処理により先ずこの移行しやすい不純物
を、該加工表面層(破砕層)ごと除去する。自焼結法に
より製造された焼結体では焼結助剤成分元素は、そのほ
とんどがSiC結晶粒中に固溶された状態で存在する
か、または、粒界相にトラップされた状態で存在する。
この酸化層を除去した後に現れる焼結体の表面層は、結
晶が前記加工表面層に比較して整然と配列し、緻密なミ
クロ組織構造を有し、また助剤成分元素等の不純物元素
も多くは結晶粒内に固溶されている。炭化珪素(Si
C)結晶相中の不純物は拡散係数が小さいことから、外
部への移行量は非常に限定されたものとなる。
Then, in the method of the present invention, this surface oxide layer of the sintered body is acid-cleaned with a cleaning liquid such as an aqueous solution of hydrofluoric acid to dissolve and remove it. Fe and A present in this surface-treated layer
Metallic element impurities such as 1, Ni, Cr, etc. and B, C, alumina, and other sintering aid components are not stable because the processed layer (crushed layer) itself is unstable and is highly reactive. When the bound body is used as it is, these impurities tend to be easily desorbed, transferred to the outside, and released. Therefore, in the present invention, the impurities that are likely to migrate are first removed together with the processed surface layer (crushed layer) by the above treatment. In the sintered body produced by the self-sintering method, most of the sintering aid component elements exist in the state of being solid-solved in the SiC crystal grains, or in the state of being trapped in the grain boundary phase. To do.
The surface layer of the sintered body, which appears after removing the oxide layer, has crystals arranged more orderly than the processed surface layer, has a dense microstructure structure, and contains many impurity elements such as auxiliary component elements. Is dissolved in the crystal grains. Silicon carbide (Si
C) The impurity in the crystal phase has a small diffusion coefficient, so that the amount transferred to the outside is very limited.

【0011】次いで、本発明の方法では、この焼結体部
材を加熱純化処理するが、この処理は、該加工層除去後
の表面結晶相の粒界やミクロクラック等に存在する相対
的に移動しやすい不純物の除去を目的として行うもの
で、例えばアルゴン(Ar)ガス雰囲気中で1200
℃、2時間程度の処理によりこれ等の移動しやすい不純
物の除去が達成される。また、HCl含有ガス処理によ
っても同様の効果を得ることができる。一般に、炭化珪
素焼結体等の焼結体においては、例えば、硼素やアルミ
ニウム元素等の焼結助剤成分は、焼結時に多結晶相の粒
界に集まる傾向があるため、上記純化処理により、焼結
体表面の結晶粒界に濃縮されて存在し比較的移動し易い
不純物を除去することは本発明の方法において重要であ
る。
Next, in the method of the present invention, this sintered member is subjected to a heat purification treatment. This treatment involves relatively moving the grain boundary of the surface crystal phase after removal of the processed layer and microcracks. Is performed for the purpose of removing impurities that are easy to remove, for example, 1200 in an argon (Ar) gas atmosphere.
Treatment at about 2 hours for 2 hours achieves the removal of these easily moved impurities. Further, the same effect can be obtained by the treatment with the gas containing HCl. Generally, in a sintered body such as a silicon carbide sintered body, for example, a sintering aid component such as boron or aluminum element tends to gather at the grain boundaries of the polycrystalline phase during sintering. In the method of the present invention, it is important to remove impurities that are concentrated in the crystal grain boundaries on the surface of the sintered body and are relatively mobile.

【0012】この本発明の方法により得られた炭化珪素
焼結体は、後記の実施例の記載を参照することにより明
らかなように、汎用の焼結体に比較してその不純物放出
量が著しく低減される。更に、この処理焼結体の表面を
CVD法等により炭化珪素コーティング処理する本発明
の別態様の方法を適用して得られた炭化珪素焼結体部材
では、汎用の炭化珪素焼結体の表面に炭化珪素コーティ
ング処理した焼結体に比較して、1200℃での使用に
おいて、硼素の場合、1000分の1以下に、Feの場
合、50分の1以下に夫々放出不純物量を低減できる。
The silicon carbide sintered body obtained by the method of the present invention has a remarkable impurity emission amount as compared with a general-purpose sintered body, as will be apparent by referring to the description of Examples below. Will be reduced. Furthermore, in the silicon carbide sintered body member obtained by applying the method of another aspect of the present invention, in which the surface of this treated sintered body is coated with silicon carbide by the CVD method or the like, the surface of a general-purpose silicon carbide sintered body is obtained. When used at 1200 ° C., the amount of released impurities can be reduced to 1 / 1,000 or less in the case of boron and 1/50 or less in the case of Fe as compared with the sintered body coated with silicon carbide.

【0013】[0013]

【発明の実施の形態】本発明の方法を適用する炭化珪素
焼結体としては、特に限定されることなく通常の方法で
自焼結され、切削、研磨等により所定形状に加工された
部材用焼結体を用いることができる。炭化珪素焼結体
は、一般に、平均粒径0.3μm程度から数μm程度迄
のSiC粉末粒子に、硼素、硼素化合物、炭素乃至炭化
物、アルミニウム化合物等の焼結助剤、及び必要に応じ
てバインダー等を添加して混合物とし、水等を加えて混
練後、所定素材形状に成形し、脱脂後2000乃至22
00℃程度の温度で焼結して得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon carbide sintered body to which the method of the present invention is applied is not particularly limited and is for a member which is self-sintered by an ordinary method and processed into a predetermined shape by cutting, polishing or the like. A sintered body can be used. The silicon carbide sintered body is generally obtained by adding SiC powder particles having an average particle size of about 0.3 μm to several μm to a sintering aid such as boron, boron compound, carbon or carbide, aluminum compound and the like. Add a binder or the like to form a mixture, add water or the like, knead, and mold into a predetermined material shape, and after degreasing 2000 to 22
It is obtained by sintering at a temperature of about 00 ° C.

【0014】このようにして得られた焼結素材を、所定
形状に切削加工し、必要に応じて表面研磨等の加工処理
を施して焼結部材とする。焼結体が半導体熱処理用部材
等である場合は、更にHF+HNO3 混酸水溶液等で酸
洗浄し表面浄化後乾燥して部材とする。上記焼結体部材
に本発明の方法を適用して放出汚染が効果的に低減され
た良好な半導体熱処理部材とするには、焼結助剤として
硼素を添加した炭化珪素焼結体を素材として用いること
が好ましく、且つ焼結体の硼素含有量が1%未満のもの
であることが特に好ましい。
The sintered material thus obtained is cut into a predetermined shape and subjected to processing such as surface polishing as required to obtain a sintered member. In the case where the sintered body is a semiconductor heat treatment member or the like, it is further washed with an acid such as an aqueous solution of HF + HNO 3 mixed acid, the surface is cleaned and dried to obtain a member. In order to obtain a good semiconductor heat treatment member in which emission pollution is effectively reduced by applying the method of the present invention to the above sintered body member, a silicon carbide sintered body to which boron is added as a sintering aid is used as a material. It is preferable to use, and it is particularly preferable that the sintered body has a boron content of less than 1%.

【0015】本発明の方法においては、先ず上記表面加
工及び酸洗浄された焼結体を空気、酸素ガス、その他の
酸化性ガス等の酸化雰囲気中で、温度600乃至130
0℃、好ましくは1000乃至1200℃の温度で加熱
して酸化処理する。該酸化処理温度が600℃未満では
酸化速度が遅すぎて実際的でなく、また1300℃を越
えると、焼結体の酸化自体には問題はないが、酸化加熱
炉の構成材の耐熱性等に問題が生じ、やはり実用的でな
い。
In the method of the present invention, first, the surface-treated and acid-cleaned sintered body is heated to a temperature of 600 to 130 in an oxidizing atmosphere such as air, oxygen gas or other oxidizing gas.
Oxidation is performed by heating at a temperature of 0 ° C., preferably 1000 to 1200 ° C. If the oxidation temperature is less than 600 ° C, the oxidation rate is too slow to be practical, and if it exceeds 1300 ° C, there is no problem in oxidizing the sintered body itself, but the heat resistance of the constituent material of the oxidation heating furnace, etc. There is a problem with it, and it is still not practical.

【0016】この処理により、焼結体表面層では下記反
応式で示される酸化反応が進行する。 2SiC+3O2 =2SiO2 +2CO この表面層酸化は、通常の焼結体表面では1200℃で
0.2乃至0.3μm/Hr程度の酸化速度で進行する
が、破砕層では1乃至数μm/Hrで進行する。表面酸
化は前記数μm程度の表面破砕層の深さか、またはそれ
よりいくらか深い厚さの酸化膜層(SiO2 層)が形成
される程度に処理する。例えば、常圧酸素ガス雰囲気
中、1200℃、の処理条件では2時間程度で上記の表
面酸化膜層が形成される。
By this treatment, the oxidation reaction represented by the following reaction formula proceeds in the surface layer of the sintered body. 2SiC + 3O 2 = 2SiO 2 + 2CO This surface layer oxidation progresses at an oxidation rate of about 0.2 to 0.3 μm / Hr at 1200 ° C. on the surface of a normal sintered body, but 1 to several μm / Hr at the fracture layer. proceed. The surface oxidation is performed to such an extent that an oxide film layer (SiO 2 layer) having a depth of the surface crushed layer of about several μm or a thickness somewhat deeper than that is formed. For example, the surface oxide film layer is formed in about 2 hours under the processing condition of 1200 ° C. in the atmospheric oxygen gas atmosphere.

【0017】次いで、この焼結体表面に形成された酸化
膜層を、酸洗浄することにより溶解除去する。該酸洗浄
に用いられる洗浄液としては、例えば、フッ酸水溶液、
フッ酸と硝酸との混合酸水溶液等の珪酸成分溶解性水溶
液が用いられ、酸濃度としては、例えばフッ酸水溶液の
場合、通常、5乃至40重量%、好ましくは8乃至15
重量%程度の濃度の酸水溶液を用いる。酸洗浄温度は、
常温、加温、何れでも良いが、例えば10%濃度のフッ
酸水溶液を用いた場合、常温で10分間程度の洗浄で充
分にその目的を達成できる。
Then, the oxide film layer formed on the surface of the sintered body is dissolved and removed by acid cleaning. Examples of the cleaning solution used for the acid cleaning include a hydrofluoric acid aqueous solution,
A silicic acid component-soluble aqueous solution such as a mixed acid aqueous solution of hydrofluoric acid and nitric acid is used, and the acid concentration is, for example, 5 to 40% by weight, preferably 8 to 15% by weight in the case of a hydrofluoric acid aqueous solution.
An aqueous acid solution having a concentration of about wt% is used. The acid cleaning temperature is
Although either normal temperature or heating may be used, for example, when a 10% aqueous solution of hydrofluoric acid is used, the purpose can be sufficiently achieved by washing at normal temperature for about 10 minutes.

【0018】このようにして表面酸化膜層を除去した焼
結体を、純水等で十分洗浄して乾燥した後、加熱浄化処
理する。本発明の方法において、この加熱浄化処理は、
ヘリウム、ネオン、アルゴン、クリプトン等の不活性ガ
ス雰囲気中で、温度1200℃以上、好ましくは120
0乃至1800℃、の温度で加熱処理するか、または、
HCl含有ガス雰囲気中で上記と同様の温度で処理す
る。この処理時間は、例えば、常圧Arガス雰囲気中、
1200℃の処理の場合、2時間程度である。不活性ガ
ス雰囲気による処理の場合、ガスの取扱、処理効果及び
コスト的見地からArガスの使用が好ましい。HCl含
有ガスとしては、酸素ガスをキャリアとしたHCl含有
ガス、Arガス等の上記不活性ガスをキャリアとしたH
Cl含有ガス、酸素と不活性ガスをキャリアとしたHC
l含有ガス等を挙げることができる。
The sintered body from which the surface oxide film layer has been removed in this manner is thoroughly washed with pure water and dried, and then heat-purified. In the method of the present invention, this heat purification treatment is
In an inert gas atmosphere such as helium, neon, argon or krypton, the temperature is 1200 ° C. or higher, preferably 120.
Heat treatment at a temperature of 0 to 1800 ° C., or
Processing is performed at the same temperature as above in an atmosphere containing HCl gas. This processing time is, for example, in an atmospheric pressure Ar gas atmosphere,
In the case of 1200 ° C. treatment, it takes about 2 hours. In the case of processing in an inert gas atmosphere, it is preferable to use Ar gas from the viewpoints of gas handling, processing effect and cost. As the HCl-containing gas, HCl-containing gas that uses oxygen gas as a carrier, and H that uses the above-mentioned inert gas such as Ar gas as a carrier
HC using Cl-containing gas, oxygen and inert gas as carriers
1-containing gas etc. can be mentioned.

【0019】上記不活性ガス雰囲気中の処理では、純化
の際にSiC表面を変質させない利点があり、不活性ガ
スキャリアHCl含有ガス雰囲気では、不純物を塩化物
にして除去しやすくする利点があるが、焼結体(Si
C)表面を若干荒らす(ガスがSiCを若干分解する)
虞れがある。酸素と不活性ガスをキャリアとしたHCl
含有ガスは、焼結体(SiC)表面を荒らす危険性がよ
り大きくなるが、表層汚染をより速く完全に除去する効
果がある。
The treatment in the above-mentioned inert gas atmosphere has an advantage that the surface of the SiC is not altered during purification, and in the gas atmosphere containing the inert gas carrier HCl, there is an advantage that impurities can be easily converted to chloride to be removed. , Sintered body (Si
C) Surface is slightly roughened (gas slightly decomposes SiC)
There is fear. HCl with oxygen and inert gas as carriers
The contained gas has a greater risk of roughening the surface of the sintered body (SiC), but has an effect of completely removing surface contamination faster.

【0020】焼結炭化珪素部材が、800℃以上の高温
域で使用される場合には、上記処理により得られた炭化
珪素焼結体部材の表面を、更にSiCコーティング処理
することが好ましく、このようにして得られた本発明の
表面SiCコート焼結体は、特に800乃至1200℃
の高温域において、本発明の処理を施さない従来の炭化
珪素焼結体をそのままSiC表面コートして得られたも
のに比較して不純物の放出量が著しく低減される。これ
は、虞らく従来の焼結体では、コーティング処理時にそ
の表面から不純物が多量に放出され、この放出不純物
が、コート層に移行して該コート層が汚染され、使用時
において、コート層から不純物が更に外部に放出され
る。これに対し、本発明の処理を行った焼結体部材をコ
ートした場合には、コーティング時における汚染がない
ところからクリーンなコート層が得られるためと推測さ
れる。
When the sintered silicon carbide member is used in a high temperature range of 800 ° C. or higher, the surface of the sintered silicon carbide member obtained by the above treatment is preferably further subjected to SiC coating. The surface-SiC-coated sintered body of the present invention thus obtained has a temperature of 800 to 1200 ° C.
In the high temperature range of 1, the amount of impurities released is remarkably reduced as compared with the conventional silicon carbide sintered body not subjected to the treatment of the present invention which is directly coated on the SiC surface. This is probably because in the conventional sintered body, a large amount of impurities are released from the surface of the sintered body during the coating process, and the released impurities are transferred to the coat layer to contaminate the coat layer. Impurities are further released to the outside. On the other hand, it is presumed that when the sintered body member treated by the present invention is coated, a clean coat layer can be obtained because there is no contamination during coating.

【0021】本発明の処理を施した焼結体にSiC表面
コート層を形成させる方法としては、通常この種の焼結
体に用いられる公知の表面コート形成法を用いて良く、
例えば、化学的蒸着法(CVD法)、物理的蒸着法(P
VD法)、溶射などの方法を用いることができるが、こ
れらの内でも形成膜性能、密着性等の見地からCVD法
による表面コートが好ましい。即ち、例えば、トリクロ
ルシランと水素ガスを用いて1150℃で該焼結部材表
面をCVDコーティングする。このように、本発明の方
法を施用して得られた炭化珪素焼結体は、低温域から高
温域の広い温度領域において、不純物放出量が非常に少
ないことから、例えば、ウエハ移送用のフォーク治具、
ラッププレート、サセプタ等の他、ウエハボート、炉心
管等の半導体熱処理用部材として好適に使用できる。
As a method for forming the SiC surface coat layer on the sintered body which has been subjected to the treatment of the present invention, a known surface coat forming method which is generally used for this type of sintered body may be used.
For example, a chemical vapor deposition method (CVD method), a physical vapor deposition method (P
A VD method), a thermal spraying method, or the like can be used, and among these methods, the surface coating by the CVD method is preferable from the viewpoints of forming film performance, adhesion, and the like. That is, for example, the surface of the sintered member is CVD coated at 1150 ° C. using trichlorosilane and hydrogen gas. As described above, the silicon carbide sintered body obtained by applying the method of the present invention has a very small impurity emission amount in a wide temperature range from a low temperature region to a high temperature region. jig,
Besides the lap plate, the susceptor and the like, it can be suitably used as a semiconductor heat treatment member such as a wafer boat and a core tube.

【0022】[0022]

【実施例】「実施例1」自焼結法により製造した素材炭
化珪素焼結体(硼素含有量:0.086重量%、遊離炭
素量:1.2重量%、密度:3.16g/cm3 )を切
削加工して角柱形のSiC焼結体試料片(3×3×40
mm)を複数個用意し、これらをHF+HNO3 水溶液
で約30分酸洗浄し、110℃、1時間乾燥した。これ
らの試料片を石英ガラスで構成された炉に入れ、酸素ガ
ス雰囲気中、1200℃で2時間加熱して、試料表面に
酸化膜層を形成させた。冷却後、この表面酸化層を、1
0wt%濃度のフッ酸(HF)水溶液で10分間酸洗浄
し、酸化膜層を除去した。この試料片を乾燥した後、今
度はArガス雰囲気中、1200℃で2時間炉中で加熱
し、試料を純化処理して本発明の炭化珪素焼結体試料片
を得た。次いで、半割のシリコンウエハ表面上に、処理
試料片をその切断面を接触させて載置し、加熱炉内に入
れて乾燥酸素雰囲気中で、夫々下記表1に示した所定温
度に加熱してその温度で1時間保持した後、放冷し、各
ウエハの不純物増加量(測定不純物:B、Fe)を夫々
半割のもう一方の対照ウエハと比較して測定し、これを
不純物放出量とした(単位:atoms/cm2 )。その結果を
表1及び図1、図2に示す。
[Example] "Example 1" A material silicon carbide sintered body produced by a self-sintering method (boron content: 0.086% by weight, free carbon amount: 1.2% by weight, density: 3.16 g / cm3) 3 ) is cut to form a prismatic SiC sintered body sample piece (3 × 3 × 40
mm) were prepared, and these were acid-washed with an aqueous solution of HF + HNO 3 for about 30 minutes and dried at 110 ° C. for 1 hour. These sample pieces were placed in a furnace made of quartz glass and heated in an oxygen gas atmosphere at 1200 ° C. for 2 hours to form an oxide film layer on the sample surface. After cooling, the surface oxide layer was
The oxide film layer was removed by acid cleaning with a 0 wt% concentration hydrofluoric acid (HF) aqueous solution for 10 minutes. After drying this sample piece, this time it was heated in an oven at 1200 ° C. for 2 hours in an Ar gas atmosphere, and the sample was purified to obtain a silicon carbide sintered body sample piece of the present invention. Then, the treated sample piece was placed on the surface of a half-divided silicon wafer with its cut surface in contact, placed in a heating furnace, and heated to a predetermined temperature shown in Table 1 below in a dry oxygen atmosphere. After holding at that temperature for 1 hour, it is allowed to cool, and the increase amount of impurities (measured impurities: B, Fe) of each wafer is measured in comparison with the other half control wafer, and this is the amount of released impurities. (Unit: atoms / cm 2 ). The results are shown in Table 1 and FIGS.

【0023】「比較例1」実施例1で用意した切削加工
焼結SiC角柱試料と同様の試料片複数枚を実施例1と
同様に洗浄乾燥し、それらを酸化膜形成工程、酸化膜除
去工程を除いた以外は実施例1と同様に処理して不純物
放出量を測定した。その結果を表1及び図1、図2に示
す。
"Comparative Example 1" A plurality of sample pieces similar to the cut and sintered SiC prismatic sample prepared in Example 1 were washed and dried in the same manner as in Example 1, and these were subjected to an oxide film forming step and an oxide film removing step. The same procedure as in Example 1 was carried out except that the above was removed, and the amount of released impurities was measured. The results are shown in Table 1 and FIGS.

【0024】「実施例2」実施例1と同様に処理した試
料片を、CVD法(処理条件:トリクロルシラン+水素
ガス:処理温度1150℃、処理時間3Hr)で表面に
SiCコート層(層厚さ100μm)を形成させた。こ
れらのSiC表面コート試料片を実施例1と同様にして
ウエハに接触させ、実施例1の場合より高温域での不純
物放出量を測定した。その結果を表2及び図3,図4に
示す。
[Example 2] A sample piece treated in the same manner as in Example 1 was subjected to a CVD method (treatment condition: trichlorosilane + hydrogen gas: treatment temperature 1150 ° C, treatment time 3Hr) on the surface to form a SiC coat layer (layer thickness). 100 μm) was formed. These SiC surface-coated sample pieces were brought into contact with the wafer in the same manner as in Example 1, and the amount of released impurities in the higher temperature region than in Example 1 was measured. The results are shown in Table 2 and FIGS.

【0025】「比較例2」比較例1で用いた試料片と同
様の試料片を用い、その表面を実施例2と同様にCVD
処理してSiCコート層(層厚さ約100μm)を形成
し、不純物放出量を測定した。その結果を表2及び図
3、図4に示す。
"Comparative Example 2" A sample piece similar to that used in Comparative Example 1 was used, and the surface thereof was subjected to CVD in the same manner as in Example 2.
A SiC coat layer (layer thickness: about 100 μm) was formed by treatment, and the amount of released impurities was measured. The results are shown in Table 2 and FIGS. 3 and 4.

【0026】表1、表2及び図1乃至4の結果から、炭
化珪素焼結体を酸素雰囲気中で酸化し、生成した表面酸
化層をHF洗浄により除去した後、Ar雰囲気中で熱処
理を行うことによって、不純物の放出を広い温度領域に
おいて大幅に低減できることが判る。これは、この種の
焼結体では、加工表面層中に不純物が内部に比べて多く
含まれており、その不純物が加熱によって放出され、放
出不純物量値が高いのに対し、この表面加工層を除去し
た本発明にかかる焼結体では、不純物は、主に焼結体内
部に固溶されて存在し、SiC結晶相中の不純物は拡散
係数が小さいところから、放出量が大幅に低減したもの
と考えられる。更に、Arガス中で熱処理することによ
って、粒界やマイクロクラックに存在する比較的移行し
やすい不純物が除去され、一層低いレベルまで放出不純
物値が低減されたものと考えられる。
From the results shown in Tables 1 and 2 and FIGS. 1 to 4, the silicon carbide sintered body is oxidized in an oxygen atmosphere, the generated surface oxide layer is removed by HF cleaning, and then heat treatment is performed in an Ar atmosphere. Thus, it can be seen that the emission of impurities can be significantly reduced in a wide temperature range. This is because, in this type of sintered body, the processed surface layer contains more impurities than the inside, and the impurities are released by heating, and the amount of released impurities is high. In the sintered body according to the present invention, in which the impurities are removed, the impurities mainly exist as a solid solution in the inside of the sintered body, and the impurity in the SiC crystal phase has a small diffusion coefficient. It is considered to be a thing. Further, it is considered that the heat treatment in Ar gas removed the relatively easily migrated impurities existing in the grain boundaries and the microcracks, and the released impurity value was reduced to a lower level.

【0027】炭化珪素焼結体の高温領域(900乃至1
200℃)における不純物放出量を低減させるために、
焼結体表面をSiCコーティングする方法は従来から行
われていたが、従来のコーティング品では、該コーティ
ング処理時に焼結体から不純物が多量に放出され、これ
がコーティング層中に移行してコーティング層が汚染さ
れるため使用時における放出不純物値が高くなるのに対
し、本発明の処理を行った炭化珪素焼結体では、コーテ
ィング時における汚染がないことから、クリーンなコー
ティング膜が得られ、使用時において、高い清浄度を得
ることができるものと考えられる。
High temperature region (900 to 1) of the silicon carbide sintered body
200 ° C.) to reduce the amount of impurities released,
Conventionally, the method of coating the surface of the sintered body with SiC has been performed. However, in the case of a conventional coated product, a large amount of impurities are released from the sintered body during the coating treatment, and this is transferred to the coating layer to form a coating layer. Contamination results in a high released impurity value at the time of use, whereas the silicon carbide sintered body treated according to the present invention has no contamination at the time of coating, so that a clean coating film can be obtained at the time of use. In, it is considered that high cleanliness can be obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】上記の通り、本発明の方法により製造さ
れた炭化珪素焼結体部材は、炭化珪素焼結体が本来的に
有する優れた耐熱性、緻密生、高熱伝導性、耐食性、強
度、耐摩耗性等の諸特性をそのまま備え、且つ、低温域
から高温域までの広い温度領域にわたって顕著な不純物
放出抑制効果を示す。従って、周辺環境に高度な清浄性
を必要とする精密工業分野において使用される部材、特
に半導体製造工業分野において使用されるウエハ移送用
のフォーク治具、ラッププレート、サセプタ等の他、ウ
エハボート、炉心管等の半導体熱処理用部材として好適
に使用できる。
As described above, the silicon carbide sintered body member produced by the method of the present invention has excellent heat resistance, compactness, high thermal conductivity, corrosion resistance, and strength inherently possessed by the silicon carbide sintered body. It has various characteristics such as abrasion resistance as it is, and exhibits a remarkable effect of suppressing impurity emission over a wide temperature range from a low temperature range to a high temperature range. Therefore, members used in the precision industrial field that requires high cleanliness in the surrounding environment, especially fork jigs for wafer transfer, lap plates, susceptors and the like used in the semiconductor manufacturing industry field, as well as a wafer boat, It can be suitably used as a semiconductor heat treatment member such as a core tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1と比較例1との炭化珪素焼結
体部材における加熱温度と不純物硼素放出量との関係を
示した線図である。
FIG. 1 is a diagram showing the relationship between the heating temperature and the amount of impurity boron emission in the silicon carbide sintered body members of Example 1 and Comparative Example 1.

【図2】図2は、実施例1と比較例1との炭化珪素焼結
体部材における加熱温度と不純物Fe放出量との関係を
示した線図である。
FIG. 2 is a diagram showing the relationship between the heating temperature and the amount of impurity Fe emission in the silicon carbide sintered body members of Example 1 and Comparative Example 1.

【図3】図3は、実施例2と比較例2との炭化珪素焼結
体部材における加熱温度と不純物硼素放出量との関係を
示した線図である。
FIG. 3 is a diagram showing the relationship between the heating temperature and the amount of impurity boron emission in the silicon carbide sintered body members of Example 2 and Comparative Example 2.

【図4】図4は、実施例2と比較例2との炭化珪素焼結
体部材における加熱温度と不純物Fe放出量との関係を
示した線図である。
FIG. 4 is a diagram showing the relationship between the heating temperature and the amount of impurity Fe emission in the silicon carbide sintered body members of Example 2 and Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉崎 重明 神奈川県秦野市曽屋30番地 東芝セラミ ックス株式会社 開発研究所内 (56)参考文献 特開 平10−194876(JP,A) 特開 平3−83861(JP,A) 特開 平5−339080(JP,A) 特開 平6−116072(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 41/80 - 41/91 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeaki Sugisaki 30 Soya, Hadano City, Kanagawa Prefecture, Research & Development Laboratory, Toshiba Ceramics Co., Ltd. (56) Reference JP-A-10-194876 (JP, A) JP-A-3- 83861 (JP, A) JP 5-339080 (JP, A) JP 6-116072 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 41/80-41 / 91

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼結後に機械加工を施した焼結助剤含有
炭化珪素焼結体部材の表面を洗浄して付着したパーティ
クルを除去し、乾燥後、酸化雰囲気中で加熱処理してそ
の表面を酸化し、生成した酸化膜層を酸洗浄により除去
した後、更に不活性ガス雰囲気中、あるいは塩化水素含
有ガス雰囲気中で加熱純化処理することを特徴とする炭
化珪素焼結体部材の製造方法。
1. A surface of a sintering aid-containing silicon carbide sintered body member that has been machined after sintering is cleaned to remove adhering particles, dried, and then heat-treated in an oxidizing atmosphere. Method for producing a silicon carbide sintered body member, characterized in that after the oxide film is oxidized and the generated oxide film layer is removed by acid cleaning, it is further heated and purified in an inert gas atmosphere or a hydrogen chloride-containing gas atmosphere. .
【請求項2】 前記加熱純化処理後の炭化珪素焼結体部
材表面を、更に炭化珪素コーティング処理することを特
徴とする請求項1に記載された炭化珪素焼結体部材の製
造方法。
2. The method for manufacturing a silicon carbide sintered body member according to claim 1, wherein the surface of the silicon carbide sintered body member after the heat purification treatment is further subjected to a silicon carbide coating treatment.
【請求項3】 前記炭化珪素コーティング処理が化学的
蒸着法で行われることを特徴とする請求項2に記載され
た炭化珪素焼結体部材の製造方法。
3. The method for manufacturing a silicon carbide sintered body member according to claim 2, wherein the silicon carbide coating treatment is performed by a chemical vapor deposition method.
【請求項4】 前記炭化珪素焼結体部材に含まれている
焼結助剤が硼素から成ることを特徴とする請求項1乃至
請求項3のいずれかに記載された炭化珪素焼結体部材の
製造方法。
4. The silicon carbide sintered body member according to claim 1, wherein the sintering aid contained in the silicon carbide sintered body member is composed of boron. Manufacturing method.
【請求項5】 前記炭化珪素焼結体部材に含まれている
硼素焼結助剤の含有量が1重量%未満であることを特徴
とする請求項4に記載された炭化珪素焼結体部材の製造
方法。
5. The silicon carbide sintered body member according to claim 4, wherein the content of the boron sintering aid contained in the silicon carbide sintered body member is less than 1% by weight. Manufacturing method.
【請求項6】 前記酸化雰囲気中での加熱処理温度が6
00乃至1300℃であることを特徴とする請求項1乃
至請求項5のいずれかに記載された炭化珪素焼結体部材
の製造方法。
6. The heat treatment temperature in the oxidizing atmosphere is 6
The method for manufacturing a silicon carbide sintered body member according to any one of claims 1 to 5, wherein the temperature is from 00 to 1300 ° C.
【請求項7】 前記酸洗浄に用いる洗浄液がフッ酸を含
む水溶液であることを特徴とする請求項1乃至請求項6
のいずれかに記載された炭化珪素焼結体部材の製造方
法。
7. The cleaning solution used for the acid cleaning is an aqueous solution containing hydrofluoric acid.
A method for manufacturing a silicon carbide sintered body member according to any one of 1.
【請求項8】 前記加熱純化処理が1200℃以上の温
度で実施されることを特徴とする請求項1乃至請求項7
のいずれかに記載された炭化珪素焼結体部材の製造方
法。
8. The heat purification treatment is carried out at a temperature of 1200 ° C. or higher.
A method for manufacturing a silicon carbide sintered body member according to any one of 1.
JP06403298A 1998-02-26 1998-02-26 Method for manufacturing silicon carbide sintered body member Expired - Fee Related JP3467723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06403298A JP3467723B2 (en) 1998-02-26 1998-02-26 Method for manufacturing silicon carbide sintered body member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06403298A JP3467723B2 (en) 1998-02-26 1998-02-26 Method for manufacturing silicon carbide sintered body member

Publications (2)

Publication Number Publication Date
JPH11240780A JPH11240780A (en) 1999-09-07
JP3467723B2 true JP3467723B2 (en) 2003-11-17

Family

ID=13246389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06403298A Expired - Fee Related JP3467723B2 (en) 1998-02-26 1998-02-26 Method for manufacturing silicon carbide sintered body member

Country Status (1)

Country Link
JP (1) JP3467723B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890232B2 (en) * 2012-04-06 2016-03-22 株式会社ブリヂストン Method for manufacturing silicon carbide member
TWI468238B (en) * 2012-08-22 2015-01-11 China Steel Corp Casting mold and heat-treating method of the same
JP6631498B2 (en) 2016-12-26 2020-01-15 株式会社Sumco Method of evaluating silicon material manufacturing process and method of manufacturing silicon material
CN114395458A (en) * 2022-01-24 2022-04-26 惠风酒业发展(上海)有限公司 Maotai-flavor liquor and production method thereof

Also Published As

Publication number Publication date
JPH11240780A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP2843111B2 (en) Abrasive material coated with refractory metal oxide, and a grinding wheel manufactured from the abrasive material
EP1791799B1 (en) Method for purifying silicon carbide structures
JP2000505043A (en) Hot compressed silicon carbide wafers and their use as dummy wafers
JPH0686333U (en) Diffusion furnace components
US7053411B2 (en) Method for treating semiconductor processing components and components formed thereby
JP3494554B2 (en) Jig for semiconductor and manufacturing method thereof
EP1184355B1 (en) METHOD FOR MANUFACTURING Si-SiC MEMBER FOR SEMICONDUCTOR HEAT TREATMENT
JP3467723B2 (en) Method for manufacturing silicon carbide sintered body member
JPH1012692A (en) Dummy wafer
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
KR20120123991A (en) The High permeability Porous ceramics for vacuum chuck and method for manufacturing the same
US20030233977A1 (en) Method for forming semiconductor processing components
JP3642446B2 (en) Semiconductor wafer processing tool
JPS5942071B2 (en) Method for forming a carbide layer on the surface of iron alloy and cemented carbide materials
JP2008007350A (en) Yttria ceramic sintered compact
JP2002037684A (en) Regenerating method of silicon carbide-coated graphite element and silicon carbide-coated graphite element by the method
JPH10194876A (en) Production of jig for semiconductor
JP3956291B2 (en) Semiconductor processing components
JPH09162146A (en) Cleaning method of jig for semiconductor
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JPS5950086B2 (en) Semiconductor jig
JPH0585502B2 (en)
JPS62100477A (en) Silicon carbide base parts for dry etching equipment
JPH06135786A (en) Ceramic member for semiconductor producing device and its production
KR20200018840A (en) Method of coating cubic boron nitride with titanium nitride

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees