JPH0585502B2 - - Google Patents

Info

Publication number
JPH0585502B2
JPH0585502B2 JP63109212A JP10921288A JPH0585502B2 JP H0585502 B2 JPH0585502 B2 JP H0585502B2 JP 63109212 A JP63109212 A JP 63109212A JP 10921288 A JP10921288 A JP 10921288A JP H0585502 B2 JPH0585502 B2 JP H0585502B2
Authority
JP
Japan
Prior art keywords
silicon carbide
reaction tube
layer
reaction
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63109212A
Other languages
Japanese (ja)
Other versions
JPH01282153A (en
Inventor
Fukuji Matsumoto
Norio Hayashi
Yoshio Tawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63109212A priority Critical patent/JPH01282153A/en
Priority to US07/346,736 priority patent/US4999228A/en
Priority to DE89108265T priority patent/DE68909481T2/en
Priority to EP89108265A priority patent/EP0340802B1/en
Publication of JPH01282153A publication Critical patent/JPH01282153A/en
Publication of JPH0585502B2 publication Critical patent/JPH0585502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、半導体に熱処理を施す拡散炉に用い
られる反応管に関し、更に詳述するとシリコンウ
エハーに不純物による汚染に起因する欠陥を生じ
させるようなことのない炭化珪素質反応管に関す
る。 従来の技術及び発明が解決しようとする課題 従来、半導体拡散炉用の反応管としては、石英
製、炭化珪素質製のものが使用されている。これ
ら反応管を用いて半導体に熱処理を施す場合、反
応管に不純物が存在するとシリコンウエハーに欠
陥が生じ、結果として半導体の熱処理工程の歩留
まりを大きく低下させることになるため、これら
反応管の材料としては高純度の石英又は炭化珪素
が要求され、これらの純度は高ければ高いほど良
い。ここで、純度の点においては、石英が炭化珪
素に優るため、一般に石英製の反応管が多用され
ている。 しかし、石英でも未だ不純物の点において満足
できるものではなく、更に石英の場合、高温下で
は変形し易く、その寿命が短いという欠点を有し
ている。特に処理温度が1200℃を超えると変形、
失透等により消耗が激しく、反応管を頻繁に交換
しなければならず、一方処理温度を下げると処理
時間を大巾に延ばさなければならず、いずれにし
ても半導体の製造コストを引き上げるという不都
合を生じる。 これに対して、炭化珪素質の反応管は高温下で
も変形しにくく、また石英製反応管に見られるよ
うな失透現像を生じることがなく、このため一つ
の反応管の使用可能期間を石英製のものに比べて
大巾に延ばすことができる。しかし、純度の点に
関しては、従来の技術では石英製のものに比べて
劣るためにその使用に制限がある。 本発明は上記事情に鑑みてなされたもので、高
温下においても変形、失透現像などの不都合を生
じることがなく、かつ不純物の存在に起因する欠
陥をシリコンウエハーに生じさせることのない半
導体拡散炉用として有効な炭化珪素質反応管を提
供することを目的とする。 課題を解決するための手段及び作用 本発明者らは、上記目的を達成するため鋭意検
討を重ねた結果、反応焼結炭化珪素質反応管の内
面をまずSi除去処理して炭化珪素のみからなるSi
除去層を形成した後、このSi除去層上に気相合成
法等により高純度炭化珪素被膜を形成して、厚さ
0.5〜2mmの炭化珪素層を形成することが有効で
あることを見い出した。即ち、炭化珪素質反応管
はSiCとSiとの複合材料であり、不純物は高温下
での拡散係数がSi中の方がSiC中よりも!?かに大
きいため主としてSi層中を通過して反応管内に汚
染をもたらすものであるが、反応管の内表面をま
ずSi除去処理し、炭化珪素のみからなる層を形成
した後に気相合成法などにより高純度の炭化珪素
被膜を析出させることにより、コスト的に安価に
厚い(0.5〜2mm)炭化珪素層を形成することが
でき、該層によつて反応管基材及び外部から反応
管内への不純物の拡散を遮断することができる
上、反応管は反応焼結炭化珪素質からなるもので
あるので、高温下においても変形したり、失透現
象を生じるようなことのない半導体拡散炉用反応
管とすることができることを知見した。 この場合、炭化珪素被膜を反応管内表面に形成
するに際し、反応管内表面にSi除去処理を施して
Si除去層(炭化珪素層)を形成し、その上に
CVD法により高純度炭化珪素被膜を析出させ、
結果として厚さ0.5〜2mmの炭化珪素層とするこ
とにより、コスト高となるCVD法による被膜の
析出を少なくすることができ、従つて全体の製造
コストを低減化することができる。 ここで、炭化珪素質反応管内面に炭化珪素被膜
を形成するという技術は特公昭61−20128号公報
等で公知であるが、これは洗浄の際の耐食性の向
上を目的としたものであり、また、炭化珪素被膜
の膜厚も500μm以下とされている。これに対し
て本発明者らは、上記Si除去層の形成及び炭化珪
素被膜の形成により厚さ0.5〜2mmの炭化珪素層
を形成することが不純物の遮断に大きな効果を示
すことを見い出したものである。また従来、炭化
珪素被膜を炭化珪素質反応管表面に形成する方法
としては、ポーラスな再結晶炭化珪素質反応管表
面に炭化珪素被膜を形成した後、Siを含浸させる
方法等が知られているが、かかる再結晶炭化珪素
は強度に劣るため(反応焼結炭化珪素は曲げ強度
35〜45Kg/mm2であるのに対し、再結晶炭化珪素は
15〜25Kg/mm2と約1/2である)、炭化珪素被膜の膜
厚を0.5mm以上とするとその使用に際し、熱サイ
クルによつて破損し易くなつてしまう。これに対
して反応焼結炭化珪素は強度が高いため炭化珪素
層の厚さを0.5mm以上、更には1mm以上としても
何ら問題ないということを本発明者らは見い出し
たものである。 従つて、本発明は、反応焼結炭化珪素質からな
る反応管の内表面にSi除去処理を施すことにより
炭化珪素のみからなるSi除去層を形成すると共
に、該Si除去層上に高純度炭化珪素質被膜を形成
して、厚さ0.5〜2mmの炭化珪素層を形成したこ
とを特徴とする炭化珪素質反応管を提供するもの
である。 以下、本発明につき更に詳しく説明する。 本発明の反応管は、上述のようにその内面に形
成されたSi除去層及び炭化珪素被膜の形成で厚さ
0.5〜2mmの炭化珪素層を形成することにより、
反応管基材及び外部からの不純物の拡散を遮断
し、半導体に熱処理を施す際にシリコンウエハー
が不純物によつて汚染されるのを防止するもので
ある。 本発明の反応管は、その基材として反応焼結炭
化珪素質を用いているため高温下においても変形
し難く、また失透現象を生じるようなこともない
ものであるが、ここで従来炭化珪素質反応管の製
造は、特公昭61−20129号公報等に見られるよう
に、再結晶法による製造が一般的であり、この方
法により得られた再結晶炭化珪素は前述したよう
にその強度が低いため、この炭化珪素を用いて反
応管を作製し、その内面に厚肉(0.5〜2mm)の
炭化珪素層を形成すると使用の際に破損し易くな
つてしまう。これに対して本発明の反応管は反応
焼結炭化珪素質を基材とするために強度が高く、
その内面に厚肉の炭化珪素層を形成しても破損し
難いものであるが、かかる反応焼結炭化珪素質反
応管は、特公昭45−38061号公報に記載されてい
るように、初期に多量(15〜40重量%)の炭素質
を添加し、かつ約1500〜1900℃で反応させるもの
であり(一方、再結晶法は少量(一般には10%以
下)の炭素質を添加し、かつ約2000℃の熱処理が
必要である)、この多量の炭素の反応により生成
されたSiCが結果として粒子の結合を強化し、そ
の強度を高いものとしており、これにより厚肉の
炭化珪素層を形成することを可能にしている。こ
のように、反応焼結炭化珪素と再結晶炭化珪素と
はその製法及び特性が明らかに異なる。 本発明においては、かかる反応焼結炭化珪素質
からなる反応管の内表面に予めSi除去処理を施し
てSi除去層(炭化珪素層)を形成した後、その上
に気相合成による炭化珪素被膜を析出させ、厚さ
0.5〜2mmの炭化珪素層を形成するもので、これ
によれば気相合成により析出させる炭化珪素被膜
を少なくすることができ、従つて製造コストを低
減化することができる。この場合、処理層(Si除
去層)は0.4〜0.7mmに制御することが好ましい。
処理層の厚さが0.4mm未満であると、所定の厚さ
の炭化珪素を得るために過剰の気相合成による炭
化珪素被膜の析出が必要となり、製造コストの低
減化というメリツトが得られない場合がある。一
方、処理層の厚さが0.7mmを超えると、反応管内
面に気孔が残存し易くなり、この気孔が強度低下
をもたらし、破損の原因となつたり、更には気孔
自身がガス発生源、即ち不純物発生源となる場合
がある。この場合Si除去処理の方法としては、溶
液処理、高温での塩酸ガス処理等が好適に採用さ
れる。なお、これらの方法でSi除去処理を行つた
場合、反応管内表面に酸が残留しないように十分
に水洗した後にCVD法による被膜形成処理を施
すことが必要である。 本発明においては、次に上記Si除去層上に高純
度炭化珪素被膜を形成する。 この場合、炭化珪素層の純度は高い程よいが、
かかる高純度の炭化珪素層を得るため、炭化珪素
被膜を形成する手段として気相合成法を採用する
ことが好ましい。ここで、炭化珪素層の純度の目
安としては、層内の鉄含量を5ppm以下とするこ
とが好適である。即ち、鉄は反応管がその製造に
おいて最も汚染を受け易い物質であり、鉄を
5ppm以下とすることにより、他の有害な不純物
も5ppm以下とすることができる。 上記炭化珪素層は上述のように厚さ0.5〜2mm
とされるが、この炭化珪素層の厚さが0.5mm未満
であると不純物の遮断効果が不十分となり、一方
2mmを超えると反応管使用の際に破損し易くな
り、その寿命が短くなつてしまう。 上記炭化珪素被膜を形成する方法としては上述
したように高純度の炭化珪素被膜が得られること
から気相合成により反応管内面に炭化珪素被膜を
析出させる方法が好適に採用される。この方法
は、一般にCVD(Chemical Vapor Deposition)
法と呼ばれ、CH3SiCl3、CH3SiHCl2、(CH32
SiCl2、SiCl4+CH4,SiCl4+C3H8等の原料ガス
をCVD炉に装填された反応焼結炭化珪素質反応
管内面に流してSiCを反応管内表面に析出させる
ものである。なお、原料ガスは上記したものに限
られるものではなく、CVD法に一般的に用いら
れるものであればよく、また温度は1000〜1400℃
が好ましく、圧力は常圧又は減圧のいずれでもよ
い。 発明の効果 以上説明したように、本発明の炭化珪素質反応
管は、高温下においても変形、失透現象などの不
都合を生じることなく、かつ不純物の存在に起因
する欠陥をシリコンウエハーに生じさせることが
ない。従つて、本発明の反応管を用いて半導体に
熱処理を施すことにより半導体製造における歩留
まりを向上させることができる。 また、Si除去層の形成により、コスト高となる
CVD法による被膜の析出を少なくすることがで
き、従つて全体の製造コストを低減化することが
できる。 以下、実施例及び比較例を示し、本発明を具体
的に説明するが、本発明は下記実施例に制限され
るものではない。 〔実施例及び比較例1〜4〕 外径184mm、内径170mm、長さ2300mmの絞り
部を有する反応焼結炭化珪素質反応管を3本準備
し、HF:HNO3:水=1:1:1(重量比)の水
溶液にそれぞれ1,16,15時間浸漬し、表面のSi
を除去した。この時、同時に処理されたダミーサ
ンプルを調べた結果、侵食層(Si除去層)はそれ
ぞれ表面より0.15mm、0.5mm、0.8mmであつた。次
いで十分に水洗、乾燥した後、CVD炉内に装填
した。炉内を30Torr迄減圧し、抵抗加熱によつ
て1300℃に保持した反応管内面にトリクロルメチ
ルシラン1/min、水素ガス10/minを流し
て内面上に炭化珪素被膜を形成した。この際、処
理時間を変えることにより炭化珪素層の厚さを変
えて3本の反応管を得た。この時、同時に処理さ
れたダミーサンプルの炭化珪素層の膜厚を測定し
た結果、それぞれ0.35mm、1.1mm、2.1mmであつた。
これは、後述するウエハーのライフタイム試験を
行つた後、反応管破損検査により測定した結果と
一致した。また、このダミーサンプルの炭化珪素
膜の純度を測定したところ、Feが4ppm含有され
ていた。 次に、上記3本の反応管をそれぞれ拡散炉内に
装填し、この反応管内にシリコンウエハー(CZ
−P型〈111〉)を挿入した後、ウエハーにドライ
酸素中、1100℃×4minの条件で熱処理を施した。
このシリコンウエハーの汚染度を調べるためウエ
ハーのライフタイムを測定した。結果を第1表に
示す。 また、比較のため石英反応管及び内面に炭化珪
素被膜を形成しない炭化珪素質反応管についても
同様の試験を行つた。結果を第1表に併記する。 なお、ウエハーのライフタイムは汚染が少ない
程長くなるものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a reaction tube used in a diffusion furnace for heat-treating semiconductors, and more specifically to a silicon carbide reaction tube that does not cause defects in silicon wafers due to contamination with impurities. Regarding. BACKGROUND ART Conventionally, reaction tubes for semiconductor diffusion furnaces have been made of quartz or silicon carbide. When heat-treating semiconductors using these reaction tubes, the presence of impurities in the reaction tube will cause defects in the silicon wafers, which will greatly reduce the yield of the semiconductor heat treatment process. requires high-purity quartz or silicon carbide, and the higher the purity, the better. Here, since quartz is superior to silicon carbide in terms of purity, generally reaction tubes made of quartz are often used. However, even quartz is still unsatisfactory in terms of impurities, and furthermore, quartz has the disadvantage of being easily deformed at high temperatures and having a short lifespan. In particular, if the processing temperature exceeds 1200℃, it will deform.
It is subject to heavy consumption due to devitrification, etc., and the reaction tube must be replaced frequently. On the other hand, lowering the processing temperature requires significantly longer processing time, which is an inconvenience that increases semiconductor manufacturing costs. occurs. On the other hand, reaction tubes made of silicon carbide are difficult to deform even at high temperatures, and do not cause devitrification development that occurs in quartz reaction tubes. It can be extended to a wider width than the made ones. However, in terms of purity, conventional techniques are inferior to those made of quartz, which limits their use. The present invention has been made in view of the above circumstances, and is a semiconductor diffusion method that does not cause disadvantages such as deformation and devitrification development even at high temperatures, and does not cause defects in silicon wafers due to the presence of impurities. The purpose of the present invention is to provide a silicon carbide reaction tube that is effective for use in a furnace. Means and Effects for Solving the Problems In order to achieve the above object, the inventors of the present invention have made intensive studies and found that the inner surface of a reaction tube made of reaction sintered silicon carbide is first treated to remove Si, and is made only of silicon carbide. Si
After forming the removal layer, a high-purity silicon carbide film is formed on this Si removal layer by vapor phase synthesis, etc., and the thickness is
It has been found that forming a silicon carbide layer of 0.5 to 2 mm is effective. In other words, the silicon carbide reaction tube is a composite material of SiC and Si, and impurities mainly pass through the Si layer because the diffusion coefficient at high temperatures is much larger in Si than in SiC. Although it causes contamination inside the reaction tube, the inner surface of the reaction tube is first treated to remove Si, a layer consisting only of silicon carbide is formed, and then a high-purity silicon carbide film is deposited using a vapor phase synthesis method. , it is possible to form a thick (0.5 to 2 mm) silicon carbide layer at low cost, and this layer can block the diffusion of impurities from the reaction tube base material and the outside into the reaction tube. It has been found that since the tube is made of reactive sintered silicon carbide, it is possible to make a reaction tube for a semiconductor diffusion furnace that does not deform or cause devitrification even at high temperatures. In this case, when forming a silicon carbide film on the inner surface of the reaction tube, the inner surface of the reaction tube is subjected to Si removal treatment.
Form a Si removal layer (silicon carbide layer), and then
A high-purity silicon carbide film is deposited using the CVD method,
As a result, by forming a silicon carbide layer with a thickness of 0.5 to 2 mm, it is possible to reduce the deposition of a coating film by the CVD method, which is expensive, and therefore, the overall manufacturing cost can be reduced. Here, the technique of forming a silicon carbide film on the inner surface of a silicon carbide reaction tube is known from Japanese Patent Publication No. 61-20128, etc., but this is aimed at improving corrosion resistance during cleaning. Furthermore, the thickness of the silicon carbide film is also 500 μm or less. In contrast, the present inventors have found that forming a silicon carbide layer with a thickness of 0.5 to 2 mm by forming the above-mentioned Si removal layer and silicon carbide film has a great effect on blocking impurities. It is. Furthermore, conventionally known methods for forming a silicon carbide film on the surface of a silicon carbide reaction tube include forming a silicon carbide film on the surface of a porous recrystallized silicon carbide reaction tube and then impregnating it with Si. However, such recrystallized silicon carbide has poor strength (reaction sintered silicon carbide has low bending strength
35-45Kg/ mm2 , whereas recrystallized silicon carbide
If the thickness of the silicon carbide film is 0.5 mm or more , it will easily be damaged by thermal cycles during use. On the other hand, the present inventors have found that since reactive sintered silicon carbide has high strength, there is no problem even if the thickness of the silicon carbide layer is 0.5 mm or more, or even 1 mm or more. Therefore, the present invention forms a Si removal layer made only of silicon carbide by performing Si removal treatment on the inner surface of a reaction tube made of reaction sintered silicon carbide, and also forms a high purity carbide layer on the Si removal layer. The present invention provides a silicon carbide reaction tube characterized in that a silicon coating is formed to form a silicon carbide layer with a thickness of 0.5 to 2 mm. The present invention will be explained in more detail below. The reaction tube of the present invention has a thickness due to the formation of the Si removal layer and the silicon carbide coating formed on the inner surface as described above.
By forming a silicon carbide layer of 0.5 to 2 mm,
It blocks the diffusion of impurities from the reaction tube base material and the outside, and prevents silicon wafers from being contaminated by impurities when heat-treating semiconductors. Since the reaction tube of the present invention uses reactive sintered silicon carbide as its base material, it is difficult to deform even at high temperatures and does not cause devitrification phenomenon. Siliceous reaction tubes are generally manufactured by the recrystallization method, as seen in Japanese Patent Publication No. 61-20129, etc., and the recrystallized silicon carbide obtained by this method has a high strength as described above. Since the reaction tube is made of silicon carbide and a thick silicon carbide layer (0.5 to 2 mm) is formed on the inner surface of the reaction tube, it becomes easily damaged during use. In contrast, the reaction tube of the present invention has high strength because it is made of reactive sintered silicon carbide as a base material.
Although it is difficult to break even if a thick silicon carbide layer is formed on the inner surface of the reaction tube, such a reaction tube made of reaction sintered silicon carbide is A large amount (15 to 40% by weight) of carbonaceous material is added and the reaction is carried out at approximately 1500 to 1900°C (on the other hand, the recrystallization method adds a small amount (generally 10% or less) of carbonaceous material and (requires heat treatment at approximately 2000°C), SiC produced by the reaction of this large amount of carbon strengthens the bond between the particles and increases its strength, thereby forming a thick silicon carbide layer. making it possible to do so. As described above, reaction-sintered silicon carbide and recrystallized silicon carbide are clearly different in their manufacturing method and characteristics. In the present invention, the inner surface of the reaction tube made of the reaction sintered silicon carbide material is subjected to Si removal treatment in advance to form a Si removal layer (silicon carbide layer), and then a silicon carbide coating is formed on the Si removal layer (silicon carbide layer) by vapor phase synthesis. The thickness of
A silicon carbide layer having a thickness of 0.5 to 2 mm is formed. According to this method, the amount of silicon carbide film deposited by vapor phase synthesis can be reduced, and therefore manufacturing costs can be reduced. In this case, it is preferable to control the treatment layer (Si removal layer) to 0.4 to 0.7 mm.
If the thickness of the treated layer is less than 0.4 mm, it will be necessary to deposit a silicon carbide film by excessive vapor phase synthesis in order to obtain silicon carbide of a predetermined thickness, and the advantage of reducing manufacturing costs will not be obtained. There are cases. On the other hand, if the thickness of the treated layer exceeds 0.7 mm, pores tend to remain on the inner surface of the reaction tube, and these pores may reduce strength and cause damage, or even become a source of gas generation. May be a source of impurities. In this case, as a method for Si removal treatment, solution treatment, hydrochloric acid gas treatment at high temperature, etc. are suitably employed. In addition, when performing Si removal treatment by these methods, it is necessary to perform film formation treatment by CVD method after thorough washing with water to prevent acid from remaining on the inner surface of the reaction tube. In the present invention, next, a high purity silicon carbide film is formed on the Si removed layer. In this case, the higher the purity of the silicon carbide layer, the better;
In order to obtain such a highly pure silicon carbide layer, it is preferable to employ a vapor phase synthesis method as a means for forming a silicon carbide film. Here, as a guideline for the purity of the silicon carbide layer, it is preferable that the iron content in the layer is 5 ppm or less. In other words, iron is the material that is most susceptible to contamination in reaction tubes during its manufacture;
By setting the content to 5 ppm or less, other harmful impurities can also be reduced to 5 ppm or less. The silicon carbide layer has a thickness of 0.5 to 2 mm as described above.
However, if the thickness of this silicon carbide layer is less than 0.5 mm, the effect of blocking impurities will be insufficient, while if it exceeds 2 mm, it will easily break when the reaction tube is used, and its life will be shortened. Put it away. As a method for forming the silicon carbide film, a method in which a silicon carbide film is deposited on the inner surface of a reaction tube by vapor phase synthesis is preferably employed since a high purity silicon carbide film can be obtained as described above. This method is generally CVD (Chemical Vapor Deposition)
It is called CH 3 SiCl 3 , CH 3 SiHCl 2 , (CH 3 ) 2
A raw material gas such as SiCl 2 , SiCl 4 +CH 4 , SiCl 4 +C 3 H 8 is flowed onto the inner surface of a reaction tube made of sintered silicon carbide loaded into a CVD furnace, and SiC is deposited on the inner surface of the reaction tube. Note that the raw material gas is not limited to those mentioned above, and may be any gas commonly used in CVD methods, and the temperature is 1000 to 1400°C.
is preferable, and the pressure may be either normal pressure or reduced pressure. Effects of the Invention As explained above, the silicon carbide reaction tube of the present invention does not cause inconveniences such as deformation and devitrification even at high temperatures, and can cause defects in silicon wafers due to the presence of impurities. Never. Therefore, by heat-treating a semiconductor using the reaction tube of the present invention, the yield in semiconductor manufacturing can be improved. In addition, the formation of the Si removal layer increases the cost.
It is possible to reduce deposition of a film by CVD method, and therefore the overall manufacturing cost can be reduced. EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples. [Examples and Comparative Examples 1 to 4] Three reactive sintered silicon carbide reaction tubes having a constricted portion with an outer diameter of 184 mm, an inner diameter of 170 mm, and a length of 2300 mm were prepared, and HF:HNO 3 :water = 1:1: 1 (weight ratio) for 1, 16, and 15 hours, respectively.
was removed. At this time, as a result of examining the dummy samples that were treated at the same time, the erosion layers (Si removed layers) were 0.15 mm, 0.5 mm, and 0.8 mm from the surface, respectively. Then, after thoroughly washing with water and drying, it was loaded into a CVD furnace. The pressure inside the furnace was reduced to 30 Torr, and trichloromethylsilane was flowed at 1/min and hydrogen gas at 10/min onto the inner surface of the reaction tube, which was maintained at 1300° C. by resistance heating, to form a silicon carbide film on the inner surface. At this time, three reaction tubes were obtained by changing the thickness of the silicon carbide layer by changing the treatment time. At this time, the thicknesses of the silicon carbide layers of the dummy samples treated at the same time were measured and found to be 0.35 mm, 1.1 mm, and 2.1 mm, respectively.
This was consistent with the results measured by a reaction tube breakage test after performing a wafer lifetime test to be described later. Furthermore, when the purity of the silicon carbide film of this dummy sample was measured, it was found that it contained 4 ppm of Fe. Next, each of the above three reaction tubes is loaded into a diffusion furnace, and a silicon wafer (CZ) is placed inside the reaction tube.
-P type <111>) was inserted, and then the wafer was heat-treated in dry oxygen at 1100° C. for 4 minutes.
In order to investigate the degree of contamination of this silicon wafer, the lifetime of the wafer was measured. The results are shown in Table 1. For comparison, similar tests were also conducted on a quartz reaction tube and a silicon carbide reaction tube without a silicon carbide film formed on its inner surface. The results are also listed in Table 1. Note that the lifetime of the wafer becomes longer as the amount of contamination decreases.

【表】【table】

【表】 次に、長時間運転による影響を調べるため上記
実施例及び比較例1、2の反応管を拡散炉に装填
し、800℃(2時間保持)←→1200℃(4時間保持)
のヒートサイクルを50回繰り返した後、上記と同
様のライフタイム測定を行つた。結果を第2表に
示す。なお、比較例2の反応管については27サイ
クル目に破損してしまつた。
[Table] Next, in order to investigate the effects of long-term operation, the reaction tubes of the above Examples and Comparative Examples 1 and 2 were loaded into a diffusion furnace, and the temperature was 800°C (held for 2 hours)←→1200°C (held for 4 hours).
After repeating the heat cycle 50 times, the same lifetime measurements as above were performed. The results are shown in Table 2. Note that the reaction tube of Comparative Example 2 was damaged at the 27th cycle.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 反応焼結炭化珪素質からなる反応管の内表面
にSi除去処理を施すことにより炭化珪素のみから
なるSi除去層を形成すると共に、該Si除去層上に
高純度炭化珪素被膜を形成して、厚さ0.5〜2mm
の炭化珪素層を形成したことを特徴とする炭化珪
素質反応管。
1. By performing Si removal treatment on the inner surface of a reaction tube made of reactive sintered silicon carbide, a Si removal layer made only of silicon carbide is formed, and a high purity silicon carbide coating is formed on the Si removal layer. , thickness 0.5~2mm
A silicon carbide reaction tube characterized in that a silicon carbide layer is formed thereon.
JP63109212A 1988-05-06 1988-05-06 Silicon carbide-based reaction tube Granted JPH01282153A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63109212A JPH01282153A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube
US07/346,736 US4999228A (en) 1988-05-06 1989-05-03 Silicon carbide diffusion tube for semi-conductor
DE89108265T DE68909481T2 (en) 1988-05-06 1989-05-08 Silicon carbide diffusion tube for semiconductors.
EP89108265A EP0340802B1 (en) 1988-05-06 1989-05-08 Silicon carbide diffusion tube for semi-conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109212A JPH01282153A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube

Publications (2)

Publication Number Publication Date
JPH01282153A JPH01282153A (en) 1989-11-14
JPH0585502B2 true JPH0585502B2 (en) 1993-12-07

Family

ID=14504437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109212A Granted JPH01282153A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube

Country Status (1)

Country Link
JP (1) JPH01282153A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486938B1 (en) * 1990-11-20 1999-05-19 Asahi Glass Company Ltd. Heat treating apparatuses for semiconductors and high purity silicon carbide parts for the apparatuses and a method of making thereof
JPH05279123A (en) * 1992-02-04 1993-10-26 Shin Etsu Chem Co Ltd Siliceous carbide member for producing semiconductor
CA2099788A1 (en) * 1992-07-31 1994-02-01 Michael A. Pickering Ultra pure silicon carbide and high temperature semiconductor processing equipment made therefrom
JP3642446B2 (en) * 1996-08-01 2005-04-27 東芝セラミックス株式会社 Semiconductor wafer processing tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189622A (en) * 1983-04-13 1984-10-27 Toshiba Ceramics Co Ltd Diffusion furnace process tube for semiconductor
JPS6311589A (en) * 1986-07-01 1988-01-19 イビデン株式会社 Heat resistant tool and manufacture
JPS6335452A (en) * 1986-07-31 1988-02-16 東芝セラミツクス株式会社 Manufacture of structural member for semiconductor diffusion furnace
JPS6385075A (en) * 1986-09-26 1988-04-15 宇部興産株式会社 Diffusion furnace process tube for semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189622A (en) * 1983-04-13 1984-10-27 Toshiba Ceramics Co Ltd Diffusion furnace process tube for semiconductor
JPS6311589A (en) * 1986-07-01 1988-01-19 イビデン株式会社 Heat resistant tool and manufacture
JPS6335452A (en) * 1986-07-31 1988-02-16 東芝セラミツクス株式会社 Manufacture of structural member for semiconductor diffusion furnace
JPS6385075A (en) * 1986-09-26 1988-04-15 宇部興産株式会社 Diffusion furnace process tube for semiconductor

Also Published As

Publication number Publication date
JPH01282153A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
JP5103178B2 (en) Method for purifying silicon carbide structure
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP5281027B2 (en) Method of processing semiconductor processing components and components formed by this method
US4999228A (en) Silicon carbide diffusion tube for semi-conductor
KR100284105B1 (en) Jig for semiconductor and method of manufacturing thereof
JPH118216A (en) Method of cleaning semiconductor manufacturing member
KR20100101640A (en) Method for treating semiconductor processing components and components formed thereby
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
JPH1045474A (en) Production of graphite material coated with pyrolyzed carbon
JPH0585502B2 (en)
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JP2002274983A (en) Member for semiconductor manufacturing apparatus coated with sic film and method of manufacturing the same
JP2005223292A (en) High purification method of rapid thermal annealing jig for semiconductor
JP3642446B2 (en) Semiconductor wafer processing tool
JP3389514B2 (en) Aluminum nitride sintered body, method of manufacturing the same, and member for semiconductor manufacturing apparatus using the same
JPH01282152A (en) Silicon carbide-based reaction tube
US20070028945A1 (en) High purification method of jig for semiconductor heat treatment
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
KR20140118905A (en) Silicon member and method of producing the same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JPH10256108A (en) Silicon carbide dummy wafer
JP2003277933A (en) Method of purifying silicon carbide-coated member
JP2008282861A (en) Corrosive member and its production process
JP3156581B2 (en) Recycling method of silicon carbide coated graphite member