JP3461538B2 - Super hard drill - Google Patents

Super hard drill

Info

Publication number
JP3461538B2
JP3461538B2 JP22854793A JP22854793A JP3461538B2 JP 3461538 B2 JP3461538 B2 JP 3461538B2 JP 22854793 A JP22854793 A JP 22854793A JP 22854793 A JP22854793 A JP 22854793A JP 3461538 B2 JP3461538 B2 JP 3461538B2
Authority
JP
Japan
Prior art keywords
drill
hard
ultra
angle
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22854793A
Other languages
Japanese (ja)
Other versions
JPH0780714A (en
Inventor
正保 日野
和正 阿部
寛 池内
Original Assignee
三菱マテリアル神戸ツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル神戸ツールズ株式会社 filed Critical 三菱マテリアル神戸ツールズ株式会社
Priority to JP22854793A priority Critical patent/JP3461538B2/en
Publication of JPH0780714A publication Critical patent/JPH0780714A/en
Application granted granted Critical
Publication of JP3461538B2 publication Critical patent/JP3461538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超硬質ドリルに係り、
特に焼入れされてHRC60前後の高硬度材の穿孔加工
に適した超硬質ドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super hard drill,
Particularly, the present invention relates to an ultra-hard drill suitable for drilling a hardened material having a hardness of around HRC60.

【0002】[0002]

【従来の技術・発明の解決課題】金型の高精度化・高品
質化の要求に伴い、素材の難削材化、特に高硬度化して
きている。これらの素材は、焼入れによりHRC60前
後の高硬度材となっている。HRC50程度の焼入れ鋼
であれば、従来の超硬質ドリルで浅穴加工が可能であっ
たが、HRC60以上になると、従来の超硬質ドリルで
は早期に折損するか、あるいは切削不能となる。このよ
うな高硬度材に対して穿孔加工をドリルで行うのは非常
に困難とされており、従来では主に放電加工法によって
いる。このため、加工の能率は極めて低いものに押さえ
られていた。
2. Description of the Related Art With the demand for higher precision and higher quality of molds, the materials have become difficult to cut, especially the hardness has increased. These materials are hardened to a hardness of around HRC60 by quenching. Hardened steel with an HRC of about 50 could be used for shallow hole drilling with a conventional ultra-hard drill, but with HRC of 60 or more, the conventional ultra-hard drill breaks early or becomes uncut. It is considered very difficult to perform drilling on such a high hardness material with a drill, and in the past, the electrical discharge machining method was mainly used. Therefore, the processing efficiency has been suppressed to be extremely low.

【0003】近年、HRC60前後の高硬度材の穿孔加
工を目的とした超硬質ドリルが製作されており、図4に
示すような端面切刃形状を有するものが知られている。
これらのドリルは、素材に超硬合金を用いると共に、通
常のドリルに比して弱い捩れ角(またはチップ取付角)
を採用することでドリル剛性を高めている。また、切れ
味をよくするためには、平面二段刃立てを行い、さらに
シンニングを施している。
In recent years, super hard drills have been manufactured for the purpose of drilling high hardness materials around HRC60, and those having end face cutting edge shapes as shown in FIG. 4 are known.
These drills use cemented carbide as the material and have a weaker twist angle (or tip mounting angle) than ordinary drills.
The drill rigidity is improved by adopting. In addition, in order to improve the sharpness, a flat two-stage blade is installed and further thinned.

【0004】ところで、上述の図4に示した三つの超硬
質ドリルについて、硬度がHRC63のダイス鋼(SK
D11)の穿孔加工行ったところ、2〜7個の貫通穴を
加工することができた。しかしながら、このような数穴
しか穿孔できないドリル寿命では、全体的なコストを考
慮すると放電加工に比して何等優位性がなく、実用的で
はないことも判明した。また、貫通穴の加工では、ドリ
ルが被削材を貫通するときに、ドリルが抜ける側の穴の
周囲に所謂こば欠けを生じてしまい易い傾向のあること
も判明した。
By the way, regarding the above three super hard drills shown in FIG. 4, the die steel (SK) having hardness HRC63 is used.
When the punching processing of D11) was performed, 2 to 7 through holes could be processed. However, it has also been found that such a drill life in which only a few holes can be drilled has no superiority to electrical discharge machining in view of the overall cost and is not practical. It has also been found that in the processing of through-holes, when the drill penetrates the work material, so-called chipping tends to occur around the hole on the side where the drill comes out.

【0005】本発明は上述のごとき従来の技術的課題に
鑑み、これを有効に解決すべく創案されたものである。
したがって本発明の目的は、HRC60前後の高硬度材
の穿孔加工を行っても、十分な寿命を達成することがで
き、しかも貫通穴の穿孔においては、ドリルが抜ける側
の面に所謂こば欠けを生じることがない超硬質ドリルを
提供することにある。
The present invention has been made in view of the above-mentioned conventional technical problems, and was devised to effectively solve the problems.
Therefore, an object of the present invention is to achieve a sufficient life even when drilling a high hardness material around HRC60, and in drilling a through hole, what is called a chipped surface on the side from which the drill comes out. It is to provide an ultra-hard drill that does not cause

【0006】[0006]

【課題を解決するための手段】本発明に係る超硬質ドリ
ルは、上述のごとき従来技術の課題を解決し、その目的
を達成するために以下のような構成を備えている。即
ち、超硬合金、サーメットまたはセラミック等の超硬質
材よりなり、先端面にシンニングが施された超硬質ドリ
ルにおいて、ドリル外径をDとして0.3D以上の径寸
法の心厚部を有し、先端角が135〜145°の範囲内
で設定され、切刃外周部には、0.1〜0.15Dの幅
で、先端面に対して10〜15°の角度で面取りが施さ
れ、切刃には、所謂刃殺しと呼ばれる面取りが施され
る。刃殺しの、軸方向に対する角度は通常20〜30°
であるが、一般的にその幅には種々の寸法が適用されて
おり、本発明では0.01〜0.05mmの範囲内で設定さ
れる。
The ultra-hard drill according to the present invention has the following constitution in order to solve the problems of the prior art as described above and to achieve the object thereof. That is, in a super hard drill made of a super hard material such as cemented carbide, cermet or ceramics, and having a thinned tip surface, with a drill outer diameter D, a core portion having a diameter of 0.3D or more is provided. , The tip angle is set within the range of 135 to 145 °, and the cutting edge outer peripheral portion is chamfered at an angle of 10 to 15 ° with respect to the tip surface with a width of 0.1 to 0.15D, The cutting edge is chamfered so-called blade-killing. The angle of the blade killing with respect to the axial direction is usually 20 to 30 °
However, various dimensions are generally applied to the width, and the width is set in the range of 0.01 to 0.05 mm in the present invention.

【0007】上記本発明の超硬質ドリルにおいて、さら
に切り屑排出溝の捩れ角が14〜16°であるのが好ま
しい。また、チタン化合物等の超硬薄膜がコーティング
されていれば、なお好ましい。
In the ultra-hard drill of the present invention, it is preferable that the chip discharge groove has a twist angle of 14 to 16 °. Further, it is more preferable if a super-hard thin film such as a titanium compound is coated.

【0008】[0008]

【作用および発明の効果】本発明に係る超硬質ドリルで
は、ドリルの剛性やチッピングに対する強度を高めつつ
切削抵抗を小さくするように、ドリルの材質や種々の諸
元を、HRC60前後の被削材でも切削できるような最
適形状を達成したので、これらの高硬度被削材の切削に
おいても従来技術には比類のない高い工具寿命を達成で
きる。
In the ultra-hard drill according to the present invention, the material of the drill and various specifications are set to the work material before and after HRC60 so as to reduce the cutting resistance while increasing the rigidity of the drill and the strength against chipping. However, since the optimum shape that can be cut is achieved, it is possible to achieve a long tool life, which is unparalleled in the prior art, even when cutting these high hardness work materials.

【0009】特に、切刃外周部に形成される面取り部
は、工具寿命を長くするのに寄与するだけでなく、貫通
穴の切削に際して、こば欠けの発生を抑えるのにも有効
である。
In particular, the chamfered portion formed on the outer peripheral portion of the cutting edge not only contributes to prolonging the service life of the tool, but is also effective for suppressing the occurrence of chipping when cutting the through hole.

【0010】[0010]

【実施例】以下、本発明に係る超硬質ドリルの一実施例
について、図1から図3を参照して説明する。図1は、
本実施例の超硬質ドリルの側面図であり、図2は、本実
施例の超硬質ドリルの端面形状を示す図であり、図3は
切刃の面取りを拡大して示す要部拡大側面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a super hard drill according to the present invention will be described below with reference to FIGS. Figure 1
It is a side view of the super hard drill of the present embodiment, FIG. 2 is a diagram showing an end face shape of the super hard drill of the present embodiment, and FIG. 3 is an enlarged side view of an essential part showing an enlarged chamfer of a cutting edge. Is.

【0011】本実施例のドリルは超硬合金製であり、2
条の切り屑排出溝1の捩れ角θは15°で弱捩れにされ
ている。ドリル外径Dは10mmにされている。先端角α
は140°で与えられる。先端面の外周部には先端面2
に対して角度β=12°の面取りが施されている。図2
に示すように、先端面2にはセミクロス型のシンニング
が施されている。面取り部3は、切刃4からヒール部5
に向かって形成されており、本実施例ではシンニング面
6に達するまで形成されている。面取り部3の幅は、切
刃4の位置で約0.125D=1.25mmにされており、
回転方向後方へ僅かに広がっている。面取り部3の幅
は、規定通りの先端角をもった先端面2が、少なくとも
径0.7D以上の中心部分を占めるようにしてドリル剛
性を維持する必要があり、且つ面取り部3は、確実にこ
ば欠けを防止するには0.1D以上の幅で形成されるの
が好ましい。したがって、面取り部3の幅の有効範囲
は、0.1〜0.15Dの範囲となる。なお、この外周面
取りがシンニングよりも後加工される場合で、面取り部
3よりもシンニング面6の方が高くなるようであれば、
この外周面取りはシンニング面6にも及ぶことになる。
The drill of this embodiment is made of cemented carbide, and
The chip discharge groove 1 of the strip has a twist angle θ of 15 ° and is slightly twisted. The outer diameter D of the drill is 10 mm. Tip angle α
Is given at 140 °. At the outer periphery of the tip surface, tip surface 2
Is chamfered at an angle β = 12 °. Figure 2
As shown in, the front end surface 2 is subjected to semi-cross type thinning. The chamfer 3 includes the cutting edge 4 to the heel 5
And is formed until reaching the thinning surface 6 in this embodiment. The width of the chamfer 3 is about 0.125D = 1.25mm at the position of the cutting edge 4,
It extends slightly backward in the direction of rotation. As for the width of the chamfered portion 3, it is necessary to maintain the drill rigidity such that the tip end surface 2 having the prescribed tip angle occupies at least the central portion having a diameter of 0.7D or more, and the chamfered portion 3 is reliable. In order to prevent the chipping of the knuckle, it is preferable to form the width of 0.1D or more. Therefore, the effective range of the width of the chamfered portion 3 is 0.1 to 0.15D. If the outer peripheral chamfer is processed later than the thinning, and the thinning surface 6 is higher than the chamfered portion 3,
This chamfering of the outer periphery also extends to the thinning surface 6.

【0012】心厚部7の直径は、0.363D=3.63
mmで与えられており、十分なドリル剛性が得られるよう
に設定されている。
The diameter of the core thickness portion 7 is 0.363D = 3.63.
It is given in mm and is set to obtain sufficient drill rigidity.

【0013】切刃4には、図3に示すように、所謂「刃
殺し」と呼ばれる微小幅の面取りがホーニングにより施
されている。この刃殺し8の幅Tは0.04〜0.05mm
程度であり、切刃の切れ味を損なわない程度でチッピン
グを防止するように施されている。また、軸方向に対す
る傾き角度γは大略25°であり、通常は±5°程度の
範囲内で与えられる。
As shown in FIG. 3, the cutting edge 4 is chamfered with a very small width, so-called "blade killing", by honing. The width T of this blade killer 8 is 0.04 to 0.05 mm
The degree is such that chipping is prevented without impairing the sharpness of the cutting edge. The inclination angle γ with respect to the axial direction is approximately 25 °, and is usually given within a range of about ± 5 °.

【0014】以上のように構成された本実施例の超硬質
ドリルにより切削テストを行ったところ、従来の超硬質
ドリルよりも優れた結果を得ることができた。テストに
は、被削材として、硬度がHRC63のSKD11を用
いた。切削速度は10m/minで、送り量は0.05mm/rev
であった。穴の加工長は20mmで、貫通穴とした。この
条件は、上述の従来技術の超硬質ドリルについて行った
テストと同じ条件である。本実施例の超硬質ドリルで
は、66個の穴が加工でき、しかも貫通側の穴周囲に
は、こば欠けが全く見られなかった。以下、上述の従来
技術品も含めた各種の試験的に作成された超硬質ドリル
を対象に行った上記テストについて、その結果を下記の
表1に示す。なお、表1においてドリルAは本実施例、
ドリルBは本発明の他の実施例、ドリルC〜Eは比較対
象として作成されたドリル、ドリルFは従来技術で示し
た図4の(I)のドリル、ドリルGは図4の(II)のド
リル、ドリルHは図4の(III)のドリルである。
When a cutting test was conducted using the ultra-hard drill of the present embodiment constructed as described above, excellent results were obtained as compared with the conventional ultra-hard drill. In the test, SKD11 having a hardness of HRC63 was used as a work material. Cutting speed is 10m / min, feed amount is 0.05mm / rev
Met. The processing length of the hole was 20 mm, which was a through hole. These conditions are the same as the tests performed on the prior art ultra-hard drill described above. With the ultra-hard drill of this example, 66 holes could be machined, and no chipping was observed around the through hole. Table 1 below shows the results of the above-mentioned tests conducted on various experimentally manufactured ultra-hard drills including the above-mentioned prior art products. In Table 1, the drill A is the present embodiment,
The drill B is another embodiment of the present invention, the drills C to E are comparative drills, the drill F is the drill of FIG. 4 (I) shown in the prior art, and the drill G is of FIG. 4 (II). 4 and the drill H are the drills of (III) in FIG.

【0015】[0015]

【表1】 [Table 1]

【0016】以上の結果を見ると、ドリルAおよびBは
従来技術の各ドリルF〜Hに比してドリル寿命が遥かに
長く、こば欠けの発生も無かった。本発明のドリルAと
比較例のドリルEとを比較すると、心厚や先端角、並び
に捩れ角やシンニングの点に関しては両ドリルとも大略
同等であるが、刃殺しを施している点、外周部の面取り
を施している点がドリルAはドリルEに対して異なって
おり、この差異によってドリル寿命およびこば欠けの有
無が大きく異なっている。また、比較例のドリルDは外
周部面取りを有している点以外は、条件が従来技術のド
リルFに最も近いが、外周部面取りの有無の相違だけで
寿命が約2倍延び、こば欠けの発生も無かった。これら
各ドリルの比較からすると、心厚がドリル径Dの0.3
倍以下ではドリル寿命が不十分であり、心厚が0.3D
以上であっても刃殺しが施されていないドリルも寿命が
不十分である。また、先端角は少なくとも135°以上
に大きくすることが必要であり、145°ぐらいまでは
寿命を延ばすのに有効である。さらに、刃殺しが施され
ていても、その幅が0.06mm以上になると切刃の抵抗
が大きくなってドリル寿命を低下させている。また、捩
れ角が弱捩れで14〜16°あることもドリル寿命にと
っては好ましい要件となっている。そして、外周部面取
りを有していることは、ドリル寿命にとって大きく作用
していると共に、こば欠けを防止するために必須の条件
となっている。
From the above results, the drills A and B have a far longer drill life than the conventional drills F to H, and there is no occurrence of chipping. Comparing the drill A of the present invention with the drill E of the comparative example, the core thickness, the tip angle, the twist angle, and the thinning point are almost the same for both drills, but the point where the blade is killed, the outer peripheral portion The drill A is different from the drill E in that the chamfering is performed, and the difference in the drill life and the presence or absence of a chipped chip greatly differ due to this difference. Further, the drill D of the comparative example is closest to the conventional drill F except that the drill D has the outer peripheral chamfer, but the life is approximately doubled only by the presence or absence of the outer peripheral chamfer. There was no chipping. Comparing these drills, the core thickness is 0.3 with the drill diameter D.
If it is less than twice, the drill life is insufficient and the core thickness is 0.3D.
Even if it is more than the above, the life of the drill which has not been blade-killed is insufficient. Further, it is necessary to increase the tip angle to at least 135 ° or more, and it is effective to extend the life up to about 145 °. Further, even if the blade is killed, if the width becomes 0.06 mm or more, the resistance of the cutting edge becomes large and the life of the drill is shortened. In addition, a twist angle of 14 to 16 ° with a slight twist is also a preferable requirement for drill life. The chamfering of the outer peripheral portion has a great effect on the life of the drill, and is an essential condition for preventing the chipping of the teeth.

【0017】これらの各条件を総合すると、素材が超硬
合金もしくは同等のサーメットやセラミック等の超硬質
材であり、先端面にはシンニングが施され、心厚部の直
径がドリル外径の0.3倍以上で、先端角は135〜1
45°の範囲内で設定され、切刃外周部には、0.1〜
0.15Dの幅で、先端面に対して少なくとも10°以
上で15°程度までの角度で面取りが施されていること
が必要である。また、切刃には、0.01〜0.05mmの
幅で刃殺しが施されていることも必要である。さらに、
捩れ角は14〜16°の範囲で設定されるのが好まし
い。さらに、ドリル表面に対してチタン化合物等の超硬
薄膜をコーティングすることも当然有効である。
Combining each of these conditions, the material is a superhard material such as cemented carbide or equivalent cermet or ceramic, the tip surface is thinned, and the diameter of the core thickness part is 0 of the drill outer diameter. .3 times or more, the tip angle is 135 to 1
It is set within the range of 45 °, and the outer circumference of the cutting edge is
It must be chamfered at an angle of at least 10 ° and up to about 15 ° with respect to the front end face with a width of 0.15D. Further, it is necessary that the cutting edge has a width of 0.01 to 0.05 mm. further,
The twist angle is preferably set in the range of 14 to 16 °. Further, it is naturally effective to coat the surface of the drill with an ultra-hard film such as a titanium compound.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例の超硬質ドリルの側面図である。FIG. 1 is a side view of an ultra-hard drill according to this embodiment.

【図2】 本実施例の超硬質ドリルの端面形状を示す図
である。
FIG. 2 is a view showing an end face shape of a super hard drill according to this embodiment.

【図3】 本実施例の超硬質ドリルにおける切刃の面取
りを拡大して示す要部拡大側面図である。
FIG. 3 is an enlarged side view of an essential part showing an enlarged chamfer of a cutting edge in the ultra-hard drill of the present embodiment.

【図4】 従来技術における各種超硬質ドリルの端面形
状を示す図である。
FIG. 4 is a view showing end face shapes of various ultra-hard drills in the related art.

【符号の説明】[Explanation of symbols]

1 切り屑排出溝 2 先端面 3 面取り部 4 切刃 5 ヒール部 6 シンニング面 7 心厚部 8 刃殺し 8 刃殺しの幅 α 先端角 β 面取り部の角度 γ 刃殺しの角度 θ 捩れ角 1 Chip discharge groove 2 Tip surface 3 Chamfer 4 Cutting edge 5 Heel 6 Thinning surface 7 Heart-thick part 8 Blade killing 8 Width of blade killing α Tip angle β Angle of chamfer γ Angle of blade cutting θ twist angle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−36010(JP,A) 引地力、新井実、小川誠,1992年度精 密工学会秋季大会学術講演会講演論文 集,1992年,519〜520 (58)調査した分野(Int.Cl.7,DB名) B23B 51/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-36010 (JP, A) Hikichi, Minoru Arai, Makoto Ogawa, Proc. Of the 1992 Precision Engineering Society Autumn Meeting, 1992, 519〜520 (58) Fields surveyed (Int.Cl. 7 , DB name) B23B 51/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超硬合金、サーメットまたはセラミック
等の超硬質材よりなり、先端面にシンニングが施された
超硬質ドリルにおいて、 ドリル外径をDとして0.3D以上の径寸法の心厚部
(7)を有し、 先端角(α)が135〜145°の範囲内で設定され、 切刃外周部には、0.1〜0.15Dの幅で、先端面に対
して10〜15°の角度(β)で面取り(3)が施さ
れ、 切刃(4)には、0.01〜0.05mmの幅(T)で、軸
方向に対して20〜30°の角度(γ)で面取り(8)
が施されたことを特徴とする超硬質ドリル。
1. A super hard drill made of a super hard material such as cemented carbide, cermet or ceramics, having a thinned tip surface, and a core thickness portion having a diameter of 0.3D or more where D is the outer diameter of the drill. (7), the tip angle (α) is set in the range of 135 to 145 °, the outer peripheral portion of the cutting edge has a width of 0.1 to 0.15D, and 10 to 15 with respect to the tip surface. The chamfer (3) is applied at an angle (β) of °, and the cutting edge (4) has a width (T) of 0.01 to 0.05 mm and an angle (γ of 20 to 30 ° with respect to the axial direction (γ. ) Chamfer (8)
A super hard drill characterized by being subjected to.
【請求項2】 切り屑排出溝(1)の捩れ角(θ)が1
4〜16°の範囲内で設定される請求項1記載の超硬質
ドリル。
2. The twist angle (θ) of the chip discharge groove (1) is 1
The ultra-hard drill according to claim 1, wherein the ultra-hard drill is set within a range of 4 to 16 °.
【請求項3】 チタン化合物等の超硬薄膜がコーティン
グされた請求項1または2記載の超硬質ドリル。
3. The ultra-hard drill according to claim 1, which is coated with an ultra-hard thin film of a titanium compound or the like.
JP22854793A 1993-09-14 1993-09-14 Super hard drill Expired - Lifetime JP3461538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22854793A JP3461538B2 (en) 1993-09-14 1993-09-14 Super hard drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22854793A JP3461538B2 (en) 1993-09-14 1993-09-14 Super hard drill

Publications (2)

Publication Number Publication Date
JPH0780714A JPH0780714A (en) 1995-03-28
JP3461538B2 true JP3461538B2 (en) 2003-10-27

Family

ID=16878095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22854793A Expired - Lifetime JP3461538B2 (en) 1993-09-14 1993-09-14 Super hard drill

Country Status (1)

Country Link
JP (1) JP3461538B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183335B2 (en) * 1999-05-10 2008-11-19 株式会社タンガロイ Drill with ultra high pressure sintered chip
JP2001300810A (en) * 2000-02-15 2001-10-30 Hitachi Tool Engineering Ltd Twist drill
JP2001341020A (en) * 2000-03-30 2001-12-11 Hitachi Tool Engineering Ltd Drilling tool
JP2002144125A (en) * 2000-08-31 2002-05-21 Mitsubishi Materials Corp Boring tool
JP5077996B2 (en) * 2006-12-14 2012-11-21 株式会社不二越 Carbide twist drill
JP5599390B2 (en) * 2008-06-28 2014-10-01 フィルマ ギューリング オーハーゲー Multi-blade drilling tool
JP2010115750A (en) * 2008-11-13 2010-05-27 Mitsubishi Materials Corp Cemented carbide twist drill
JP2010125592A (en) * 2008-12-01 2010-06-10 Hitachi Tool Engineering Ltd Drill for cast iron processing
JP5800477B2 (en) * 2010-08-06 2015-10-28 株式会社イワタツール drill
WO2014175396A1 (en) * 2013-04-26 2014-10-30 京セラ株式会社 Drill and method for manufacturing cut product using same
CN106853532A (en) * 2015-12-09 2017-06-16 自贡硬质合金有限责任公司 Cermet and/or cemented carbide sintered body of a kind of composite construction and preparation method thereof
US11407039B2 (en) * 2018-01-29 2022-08-09 Milwaukee Electric Tool Corporation Drill bit
US20210291282A1 (en) 2019-10-15 2021-09-23 Sumitomo Electric Hardmetal Corp. Drill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
引地力、新井実、小川誠,1992年度精密工学会秋季大会学術講演会講演論文集,1992年,519〜520

Also Published As

Publication number Publication date
JPH0780714A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
JP3461538B2 (en) Super hard drill
EP0559961B1 (en) Highly stiff end mill
US20020044843A1 (en) Hole forming tool
JP3352279B2 (en) Spiral end mill and method for manufacturing the same
EP3733334A1 (en) Drill
JP3337804B2 (en) End mill
JP2006231430A (en) Centering drill and machining method using the same
JP2949973B2 (en) Indexable tip
JP2623304B2 (en) Cermet twist drill
JP3166607B2 (en) Indexable drill
JP2559544B2 (en) End mill for cutting high hardness materials
JP3036343B2 (en) End mill
JP2002137108A (en) Drilling method for brittle material and drilling tool used therefor
JP2007007808A (en) Cemented carbide drill causing low work hardening
JP4053295B2 (en) Drilling tool
JPH09103918A (en) Boring tool
JP2001341022A (en) Drill for perforating high hardness material
JPS6147645B2 (en)
JPH0790410B2 (en) Cutting tool with small relief
JPS63216610A (en) Drill
JP3180574B2 (en) Gun Reamer
JP3166601B2 (en) Indexable drills and indexable inserts
JPH0125643B2 (en)
JP3149696B2 (en) Gun Reamer
JP3032863B2 (en) Drill

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10