JP2010125592A - Drill for cast iron processing - Google Patents

Drill for cast iron processing Download PDF

Info

Publication number
JP2010125592A
JP2010125592A JP2008328671A JP2008328671A JP2010125592A JP 2010125592 A JP2010125592 A JP 2010125592A JP 2008328671 A JP2008328671 A JP 2008328671A JP 2008328671 A JP2008328671 A JP 2008328671A JP 2010125592 A JP2010125592 A JP 2010125592A
Authority
JP
Japan
Prior art keywords
drill
chamfering blade
cutting
chamfering
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008328671A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kondo
芳弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008328671A priority Critical patent/JP2010125592A/en
Publication of JP2010125592A publication Critical patent/JP2010125592A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill for cast iron processing capable of having a long life by considerably reducing thermal stress generated in the drill, processing with high efficiency at high cutting velocity, and further performing dry machining or semi-dry machining with less damages for the environment in the drilling of cast iron. <P>SOLUTION: In the drill for cast iron processing having a chamfering tooth at the peripheral corner, as to the shape of the chamfering viewed from a rake face side, the width of the chamfering tooth is &ge;0.06 and &le;0.15 times of the drill diameter, and the angle of the chamfering tooth to a rotary shaft center of the drill is &ge;35&deg; and &le;55&deg;. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は鋳鉄の穴明け加工に適した鋳鉄加工用ドリルに関する。  The present invention relates to a cast iron machining drill suitable for drilling of cast iron.

鋳鉄を用いる自動車部品をはじめとする構造材は、バーミキュラ黒鉛鋳鉄(GGV)、オーステンパした可鍛鋳鉄、球状黒鉛鋳鉄(FCD)など、燃料の使用量削減を目的とした軽量化のための薄肉化や、構造材の高強度化のために、より高い強度と耐摩耗性の大きい方向へと進んでいる。鋳鉄の加工を行う超硬ドリルは鋳鉄専用のものは少なく、鋼加工用超硬ドリルを用いるのが一般的であるが、鋳鉄用または鋳造材切削用のドリルとして下記のような提案がある。  Structural materials such as automobile parts that use cast iron are thinned for weight reduction to reduce the amount of fuel used, such as vermicular graphite cast iron (GGV), austempered malleable cast iron, and spheroidal graphite cast iron (FCD). In addition, in order to increase the strength of structural materials, they are moving toward higher strength and greater wear resistance. Carbide drills that process cast iron are rarely used for cast iron. Generally, cemented carbide drills for steel processing are used, but the following proposals have been proposed for drills for cast iron or cast material cutting.

特許文献1は、鋳鉄用超硬合金ドリルに関し、一般の鋼加工用に用いられる超硬素材よりも高い耐摩耗性を有する超硬素材を使用することで不足する刃先強度を補い、切れ刃の外周コーナーの欠けを防止するための切れ刃の形状を提案している。  Patent Document 1 relates to a cemented carbide drill for cast iron, and compensates for insufficient cutting edge strength by using a cemented carbide material having higher wear resistance than a cemented carbide material used for general steel processing. The shape of the cutting edge to prevent chipping of the outer corner is proposed.

また、特許文献2は、硬質材用ドリルであって、切れ刃が切削角部を起点とし軸心方向にチゼルエッジまで連続して凸状として、切削角部より先は補助切削刃とすることで主切削刃を長くし、切削角部は鈍角とするので、特に外周領域内での切れ刃への負荷が低減するとしている。  Further, Patent Document 2 is a hard material drill, in which the cutting edge starts from the cutting corner and is continuously convex to the chisel edge in the axial direction, and the tip of the cutting corner is an auxiliary cutting blade. Since the main cutting blade is lengthened and the cutting corner portion is obtuse, the load on the cutting blade is reduced particularly in the outer peripheral region.

特許文献3は、先端切れ刃を凸状とし、且つ、該凸状部の最凸部とシンニング刃とを結ぶ仮想線に対して、先端切れ刃を刃径の1〜10%回転方向後方側に設け、先端刃と外周の繋ぎ部を面取り状の面としたことを特徴とする高硬度材穴明け用ドリルが提案されている。
特開2005−103738 特表2006−525127 特開2001−341022
In Patent Document 3, the tip cutting edge is convex, and the tip cutting edge is 1 to 10% of the blade diameter rearward with respect to a virtual line connecting the most convex portion of the convex portion and the thinning blade. There has been proposed a drill with high hardness material drilling, characterized in that the connecting portion between the tip blade and the outer periphery is a chamfered surface.
JP 2005-103738 A Special table 2006-525127 JP 2001-341022 A

最近の鋳鉄は、より高い強度と耐摩耗性を有する傾向にあることから、切削工具の対策は、この特性に対処する手段が主体である。例えば、前記の特許文献1では、超硬製ドリルの切れ刃逃げ面とマージン面との境界部に極小面取り刃を設け、切れ刃の前縁にはホーニングを設けることで、刃先強度の向上が図れるとしている。また、特許文献2では、切れ刃を凸状に曲線を描く主切削刃と工具外周側の補助切削刃に分けた形状として、その繋ぎ目である切削角部を十分な鈍角として主切削刃を長くし、外周領域内の切削を低減することを提案している。特許文献1および2の提案はいずれも切削刃または外周の切削角部での大きな負荷を低減して、刃先のチッピングまたは機械的摩耗を低減することが主体である。
また特許文献3では、先端刃と外周の繋ぎ部分に20度〜60度の面取り状の面を設けることで、貫通穴の切削に際して、被加工物の微小な欠けやバリを抑えることを提案しており、貫通穴における切れ刃の耐欠損性を高めている。
しかし、本発明者の検討結果によると、鋳鉄は硬い相(パーライト、マルテンサイト、炭化物など)を多く含むため、これらの穴明け加工では、硬い相と切れ刃との擦過により大量の切削熱が発生して工具寿命が劣化するという発熱による工具劣化の問題が生じていることが明らかになってきた。
この発熱の問題の背景には、近年、製造物の加工コストを削減するために切削速度の高速化が進むとともに、環境への負荷を軽減するために切削油剤の使用量を削減できるドライ加工およびエアーとミスト状の油や低温のエアーを供給するセミドライ加工が普及しつつあるという事情もある。切削熱の発生の観点から見ると、高速切削や切削油剤の使用量の削減は、より工具の切れ刃に大量の切削熱を発生させる方向へ移行しているといえる。これら、鋳鉄の切削加工を取り巻く環境の変化により、工具の切れ刃は過酷な環境で加工を行うことになるが、特にドリルの場合には、最も切削速度の速い切れ刃の外周コーナーが高温にさらされ、熱による工具の摩耗が著しく進行することになり、面取り刃における逃げ面最大摩耗幅は外周側に大きく発生していた。
Since recent cast iron tends to have higher strength and wear resistance, measures for cutting tools are mainly means for dealing with these characteristics. For example, in Patent Document 1 described above, the edge strength is improved by providing a minimum chamfering blade at the boundary between the cutting edge flank and the margin surface of the carbide drill and providing honing at the leading edge of the cutting edge. It is going to be planned. Moreover, in patent document 2, as the shape which divided the cutting edge into the main cutting edge which draws a curve in a convex shape, and the auxiliary cutting edge on the tool outer peripheral side, the main cutting edge is made with a cutting angle part which is the joint as a sufficient obtuse angle. It has been proposed to lengthen and reduce cutting in the outer peripheral region. The proposals in Patent Documents 1 and 2 are mainly to reduce the chipping or mechanical wear of the cutting edge by reducing a large load at the cutting edge or the cutting corner portion of the outer periphery.
Patent Document 3 proposes that a chamfered surface of 20 degrees to 60 degrees is provided at the connecting portion between the tip blade and the outer periphery to suppress minute chipping and burrs of the workpiece when cutting through holes. This improves the breakage resistance of the cutting edge in the through hole.
However, according to the results of the study by the present inventor, cast iron contains a lot of hard phases (pearlite, martensite, carbides, etc.), and in these drilling operations, a large amount of cutting heat is generated due to abrasion between the hard phase and the cutting edge. It has become clear that there is a problem of tool deterioration due to heat generation that occurs and the tool life is deteriorated.
The background of this heat generation problem is the recent increase in cutting speed in order to reduce the processing cost of products, and the dry processing that can reduce the amount of cutting fluid used to reduce the burden on the environment. There is also a situation that semi-dry processing for supplying air and mist-like oil or low-temperature air is becoming widespread. From the viewpoint of generation of cutting heat, it can be said that reduction in the amount of high-speed cutting and the amount of cutting fluid used has shifted to a direction in which a large amount of cutting heat is generated in the cutting edge of the tool. Due to these changes in the environment surrounding the cutting of cast iron, the cutting edge of the tool will be processed in a harsh environment, but especially in the case of a drill, the outer peripheral corner of the cutting edge with the fastest cutting speed will be hot. As a result, the wear of the tool due to heat progressed remarkably, and the maximum flank wear width of the chamfered blade was greatly generated on the outer peripheral side.

従来のドリルの例では、面取り刃やホーニングで刃先強度を向上させることや、切れ刃の形状の工夫で刃先の機械的応力の負荷を減らす提案はなされているものの、本発明のように鋳鉄用ドリル切れ刃の外周コーナーの発熱現象に主に着目して面取り刃の逃げ面摩耗形態についての工具形状を検討している例はない。本発明は、最近の新しい鋳鉄の使い方、ドリルによる高速切削の傾向に鑑み、高い強度をもつ鋳鉄の穴加工において、ドリルの外周コーナーで発生する切削熱を分散および軽減することにより、切削熱により面取り刃の外周側に発生する逃げ面摩耗を面取り刃全体に均一に発生をさせることで、面取り刃の逃げ面最大摩耗幅が小さくなる工具形状を検討した結果として生まれたものである。
本発明はドリルに発生する熱的応力を大きく低減することで、ドリルの長寿命化ができ、または高い切削速度での高能率な加工ができ、さらには環境への負荷が少ないドライ加工やセミドライ加工を行うことのできる鋳鉄加工用ドリルを提供することを目的とする。
In the case of conventional drills, although proposals have been made to improve the cutting edge strength with chamfering blades and honing, and to reduce the mechanical stress load on the cutting edge by devising the shape of the cutting edge, as in the present invention, There is no example examining the tool shape of the flank wear mode of the chamfering blade mainly focusing on the heat generation phenomenon at the outer peripheral corner of the drill cutting edge. In view of recent usage of new cast iron and the trend of high-speed cutting with a drill, the present invention can reduce the cutting heat generated at the outer peripheral corner of the drill in the drilling of high-strength cast iron. This is a result of studying a tool shape in which the flank wear generated on the outer peripheral side of the chamfering blade is uniformly generated in the entire chamfering blade to reduce the maximum flank wear width of the chamfering blade.
The present invention greatly reduces the thermal stress generated in the drill, thereby extending the life of the drill, enabling high-efficiency machining at a high cutting speed, and further reducing the environmental impact of dry machining and semi-drying. It aims at providing the drill for cast iron processing which can be processed.

本発明は鋳鉄の切削加工に特化した発明であり、その第1の発明は、外周コーナーに面取り刃を有するドリルであって、すくい面側から見た前記面取り刃の形状は、前記面取り刃の幅がドリル直径の0.06倍以上ないし0.15倍以下、前記面取り刃の前記ドリルの回転軸心に対する角度が35°以上55°以下であることを特徴とする鋳鉄加工用ドリルである。  The present invention is an invention specializing in cutting of cast iron, and a first invention thereof is a drill having a chamfering blade at an outer peripheral corner, and the shape of the chamfering blade viewed from the rake face side is the chamfering blade. The cast iron drill is characterized in that the width of the drill is 0.06 to 0.15 times the diameter of the drill, and the angle of the chamfering blade with respect to the rotation axis of the drill is 35 ° to 55 °. .

本発明の第2の発明は、外周コーナーに面取り刃を有するドリルであって、前記面取り刃の長さが、前記ドリル直径の0.07倍以上0.26倍以下であり、前記面取り刃の前記ドリルの回転軸心に対する角度が35°以上55°以下であることを特徴とする鋳鉄加工用ドリルである。  2nd invention of this invention is a drill which has a chamfering blade in an outer periphery corner, Comprising: The length of the said chamfering blade is 0.07 times or more and 0.26 times or less of the said drill diameter, The drill for cast iron processing is characterized in that an angle with respect to a rotation axis of the drill is not less than 35 ° and not more than 55 °.

本発明の第3の発明は、切れ刃の外周コーナーに面取り刃を有するドリルであって、前記面取り刃の形状は、前記面取り刃の幅がドリル直径の0.06倍以上0.15倍以下、前記面取り刃の前記ドリルの回転軸心に対する角度が35°以上55°以下、前記面取り刃の逃げ角が8°以上12°以下であることを特徴とする鋳鉄加工用ドリルである。  3rd invention of this invention is a drill which has a chamfering blade in the outer periphery corner of a cutting blade, Comprising: As for the shape of the said chamfering blade, the width | variety of the said chamfering blade is 0.06 times or more and 0.15 times or less of a drill diameter. The cast iron machining drill is characterized in that an angle of the chamfering blade with respect to a rotation axis of the drill is 35 ° or more and 55 ° or less, and a relief angle of the chamfering blade is 8 ° or more and 12 ° or less.

本発明の新しい形状のドリルを使用することによって、高い強度や硬さの大きい鋳鉄のドリルによる穴加工において、ドリルの外周コーナー付近で発生する切削熱を分散及び軽減させることができる。本発明の鋳鉄加工用ドリルは、特に外周コーナーに面取り刃を有するドリルの面取り刃の逃げ面摩耗を抑制することで、ドリルの長寿命化、または高い切削速度での高能率な加工を可能にする。さらに、切削油などを使用しないドライ切削や、ミスト状の油とエアーを供給するセミドライ切削で穴加工が容易にできるので、環境にやさしい切削工具を提供することが出来る。  By using the drill of the new shape of the present invention, the cutting heat generated near the outer peripheral corner of the drill can be dispersed and reduced in drilling with a cast iron drill having high strength and hardness. The drill for cast iron machining according to the present invention makes it possible to extend the life of the drill or perform highly efficient machining at a high cutting speed by suppressing the flank wear of the chamfering blade of a drill having a chamfering blade at the outer corner. To do. Furthermore, since the drilling can be easily performed by dry cutting that does not use cutting oil or the like and semi-dry cutting that supplies mist-like oil and air, an environment-friendly cutting tool can be provided.

前述したように、本発明は特に鋳鉄を対象としたドリルの外周コーナーに発生する切削熱をいかに分散し放出させるかの課題に対して検討を行った成果から生まれたものである。本発明者は、いろいろなドリルの形状と切れ刃の摩耗の測定を繰り返し、ドリルの外周コーナーに面取り刃を設けることで、切削速度が速くなり、切削熱の発生が激しい部分での切れ刃長さを長くすることが切削熱の分散に有効であることを見出した。面取り刃の最適な大きさと形状け切削試験と面取り刃の逃げ面摩耗状況の観察から決定した。  As described above, the present invention was born from the result of studying the problem of how to disperse and release the cutting heat generated at the outer peripheral corner of a drill, particularly for cast iron. The present inventor repeatedly measured various drill shapes and cutting edge wear, and provided a chamfering blade at the outer peripheral corner of the drill, so that the cutting speed was increased and the cutting edge length at a portion where the generation of cutting heat was severe. It has been found that increasing the length is effective for dispersion of cutting heat. The optimum size and shape of the chamfering blade were determined from the cutting test and observation of the flank wear situation of the chamfering blade.

本発明の一例として図1〜4を用いて説明する。図1は本発明の正面図、図2は本発明の先端切れ刃の側面図、図3は本発明のマージン17方向から見た先端切れ刃の正面図、図4は本発明のすくい面19方向から見た先端切れ刃の正面図を示す。図1に示すように、本発明は、切れ刃18、ボデー16、シャンク15を有し、ボデー15には切りくずを排出するための2条の溝6が設けられている。溝6は1条、あるいは2条より多くても良く、直線状でもよい。また、図5は本発明の他の一例である先端切れ刃が3枚の場合の側面図を示す。図5に本発明の面取り刃の特徴を図示するように、本発明のドリルの切れ刃は3枚以上でも良い。また、切れ刃18は図2に示すように直線状だけではなく、ドリル回転方向に凸曲線状または凹曲線状でも良い。  An example of the present invention will be described with reference to FIGS. 1 is a front view of the present invention, FIG. 2 is a side view of the tip cutting edge of the present invention, FIG. 3 is a front view of the tip cutting edge viewed from the margin 17 direction of the present invention, and FIG. 4 is a rake face 19 of the present invention. The front view of the front-end | tip cutting blade seen from the direction is shown. As shown in FIG. 1, the present invention has a cutting edge 18, a body 16, and a shank 15, and the body 15 is provided with two grooves 6 for discharging chips. The number of grooves 6 may be one or more than two, or may be linear. FIG. 5 shows a side view of the case where there are three tip cutting edges as another example of the present invention. As illustrated in FIG. 5, the features of the chamfering blade of the present invention may include three or more cutting blades of the drill of the present invention. Further, the cutting edge 18 is not limited to a straight line as shown in FIG. 2, but may be a convex curve or a concave curve in the drill rotation direction.

図1〜5に示すように外周コーナー10には面取り刃11が設けられている。面取り刃11の形状は、図2に示すように、面取り刃の幅12をドリル直径の0.06倍以上0.15倍以下に設ける。面取り刃の幅12は次のように定義される。図2および図5に示すドリルの側面視を平面に投影した状態で、回転軸心28と外周コーナー10を通る直線25を引く。この直線25と垂直で、面取り刃の切れ刃22と切れ刃18の境界(交点)を通る直線26を引く。直線26と平行であり外周コーナー10を通る直線27を引く。この直線26と直線27の幅が面取り刃の幅12である。適正な面取り刃の幅12により、切削速度が速く切削熱の発生が激しい外周コーナー付近の面取り刃の切れ刃22が長くなるため、切削熱が分散され急激な摩耗の進行を抑制することができる。面取り刃の幅12が直径の0.06倍未満の場合、切削速度が速い切れ刃の領域の切削熱を十分に分散できないため、面取り刃の幅12が小さいほど摩耗が急激に進行して工具寿命が短くなる。面取り刃の幅12が工具直径の0.15倍を超えると面取り刃の切れ刃22が長くなりすぎるため、切削抵抗が増大することで、加工中に振動が発生し、切れ刃のチッピングにより安定して加工を行うことができない。  As shown in FIGS. 1 to 5, a chamfering blade 11 is provided at the outer peripheral corner 10. As shown in FIG. 2, the shape of the chamfering blade 11 is such that the width 12 of the chamfering blade is 0.06 to 0.15 times the drill diameter. The width 12 of the chamfering blade is defined as follows. A straight line 25 passing through the rotation axis 28 and the outer corner 10 is drawn with the side view of the drill shown in FIGS. A straight line 26 perpendicular to the straight line 25 and passing through the boundary (intersection) between the cutting edge 22 of the chamfering blade and the cutting edge 18 is drawn. A straight line 27 that is parallel to the straight line 26 and passes through the outer corner 10 is drawn. The width of the straight line 26 and the straight line 27 is the width 12 of the chamfered blade. With an appropriate chamfering blade width 12, the cutting edge 22 of the chamfering blade near the outer corner where the cutting speed is high and the generation of cutting heat is long becomes long, so that the cutting heat is dispersed and the progress of rapid wear can be suppressed. . If the width 12 of the chamfering blade is less than 0.06 times the diameter, the cutting heat in the cutting edge region where the cutting speed is high cannot be sufficiently dispersed. Therefore, the smaller the width 12 of the chamfering blade, the more rapidly the wear proceeds. Life is shortened. When the width 12 of the chamfering blade exceeds 0.15 times the diameter of the tool, the cutting edge 22 of the chamfering blade becomes too long, so that the cutting resistance increases, so that vibration is generated during machining and stable due to chipping of the cutting edge. Can not be processed.

図4に示す、面取り刃のドリルの回転軸心に対する角度13(以下、面取り刃の角度ともいう)は35°〜55°が望ましく、40°〜50°の範囲がより好ましい。
本発明の面取り刃の回転軸心に対する角度13は次のように定義される。図3に示す本発明のマージン方向から見た先端切れ刃の正面図の状態で、ドリル1を切削回転方向と反対方向へ90°回転させた状態が、図4である。すなわち、すくい面19方向から見た先端切れ刃の正面図を示す。図4に示すドリルの正面視を平面に投影した状態で、面取り刃の切れ刃22と切れ刃18の境界と、外周コーナー10を通る直線29を引く。直線29と回転軸心28とのなす角度が面取り刃の角度13である。
前記面取り刃の角度13が35°未満の場合、切れ刃18の逃げ面20と面取り刃11とのなす角度が小さくなるため、面取り刃11の先端側での摩耗の進行が早まり、工具寿命が低下する。また、面取り刃の角度13が55°を超える場合、十分な面取り刃の長さ23を設けることができず、切削熱を分散することができないため、面取り刃の外周側での摩耗の急速な進行により工具寿命が低下する。
The angle 13 (hereinafter also referred to as the angle of the chamfering blade) of the chamfering blade with respect to the rotation axis of the drill shown in FIG. 4 is preferably 35 ° to 55 °, and more preferably 40 ° to 50 °.
The angle 13 with respect to the rotational axis of the chamfering blade of the present invention is defined as follows. FIG. 4 shows a state in which the drill 1 is rotated 90 ° in the direction opposite to the cutting rotation direction in the front view of the cutting edge viewed from the margin direction of the present invention shown in FIG. That is, the front view of the tip cutting edge seen from the rake face 19 direction is shown. With the front view of the drill shown in FIG. 4 projected on a plane, a boundary between the cutting edge 22 and the cutting edge 18 of the chamfering edge and a straight line 29 passing through the outer peripheral corner 10 are drawn. The angle formed by the straight line 29 and the rotation axis 28 is the angle 13 of the chamfering blade.
When the angle 13 of the chamfering blade is less than 35 °, the angle formed between the flank 20 of the cutting edge 18 and the chamfering blade 11 becomes small, so that the progress of wear on the tip side of the chamfering blade 11 is accelerated and the tool life is shortened. descend. In addition, when the angle 13 of the chamfering blade exceeds 55 °, a sufficient chamfering blade length 23 cannot be provided and the cutting heat cannot be dispersed. The tool life decreases with progress.

図4に示すように、切れ刃18と面取り刃の切れ刃22の境界から、外周コーナー10までの長さを面取り刃の長さ23とする。面取り刃の長さ23は、ドリル直径3の0.07倍以上から0.27倍以下の範囲が望ましい。面取り刃の長さ23がドリル直径23の0.07倍未満の場合、切削速度が速い面取り刃の切れ刃22の切削熱を十分に分散できないため、面取り刃の摩耗が急激に進行して工具寿命が短くなる。また、面取り刃の長さ23がドリル直径3の0.27倍を超える場合、面取り刃の切れ刃22が長くなりすぎるため、切削抵抗が増大することで加工中に振動が発生し、切れ刃のチッピングも発生しやすく安定して加工を行うことができない。  As shown in FIG. 4, the length from the boundary between the cutting edge 18 and the cutting edge 22 of the chamfering blade to the outer peripheral corner 10 is defined as a chamfering blade length 23. The length 23 of the chamfering blade is desirably in the range of 0.07 times to 0.27 times the drill diameter 3. When the chamfering blade length 23 is less than 0.07 times the drill diameter 23, the cutting heat of the chamfering blade 22 having a high cutting speed cannot be sufficiently dispersed. Life is shortened. Further, when the length 23 of the chamfering blade exceeds 0.27 times the diameter of the drill 3, the cutting edge 22 of the chamfering blade becomes too long, so that the cutting resistance increases and vibration is generated during the machining. Chipping is likely to occur, and stable processing cannot be performed.

図3に示す、面取り刃の逃げ角14は8°以上12°以下に設けるとよい。これにより、切削中に被削材と逃げ面が接触する面積が小さくなることで、大量に発生する熱を抑制することができ、外周コーナー10で発生する熱を面取り刃11の切れ刃に十分に分散することができる。
面取り刃の逃げ角14が8°未満の場合、被削材と逃げ面が接触する面積を十分に小さくすることができず、面取り刃11を設けても切削熱を分散しきれず、工具寿命の低下をまねく。面取り刃の逃げ角14が15°を超える場合、切削中の被削材と逃げ面の接触する面積は小さくなり、切削熱の発生を抑えることができるが、熱が集中しやすく摩耗の進行が早まり、また、切れ刃の強度が不足するためにチッピングの発生もしやすく、切削寿命が低下する。以下、本発明を、実施例に基づき具体的に説明する。
The clearance angle 14 of the chamfering blade shown in FIG. 3 is preferably 8 ° or more and 12 ° or less. As a result, the area of contact between the work material and the flank surface during cutting is reduced, so that a large amount of heat can be suppressed, and the heat generated at the outer peripheral corner 10 is sufficiently applied to the cutting edge of the chamfering blade 11. Can be dispersed.
When the clearance angle 14 of the chamfering blade is less than 8 °, the contact area between the work material and the clearance surface cannot be made sufficiently small, and even if the chamfering blade 11 is provided, the cutting heat cannot be dispersed and the tool life is reduced. It causes a decline. When the clearance angle 14 of the chamfering blade exceeds 15 °, the contact area between the work material being cut and the clearance surface is reduced, and generation of cutting heat can be suppressed. However, heat tends to concentrate and wear progresses. In addition, the cutting edge is not strong enough to cause chipping and the cutting life is shortened. Hereinafter, the present invention will be specifically described based on examples.

(実施例1)
本発明例、比較例として、工具本体を通してクーラントを供給するためのオイルホールを有し、ドリル直径を6.0mm、全長を100mm、溝長を50mm、溝のねじれ角を30°、心厚を1.5mm、シャンク径を6.0mm、先端角を140°に設けたドリルにおいて、ドリルの外周コーナーに設けた面取り刃の幅、面取り刃の角度、面取り刃の逃げ角について、表1に示すものを種々作成した。比較例17は面取り刃を設けていないドリル、すなわち一般的な鋼の切削に用いられる汎用の形状のドリルである。ドリルの母材はいずれもWCの平均粒径が0.8μm以下、Co量は12w%の超微粒子超硬合金とし、AlCrN膜を被覆した。試験条件は、被削材にFCD700の長方形のブロック材を用意し穴加工を行った。そして、横型マシニングセンターにて、切削条件を回転数6400min−1(切削速度約120m/min)、一回転当たり送り量0.24mm/回転、穴明け深さ24mm(ドリル径の4倍)の止まり穴の加工を行った。クーラントは、ミスト状の油をオイルホールに通して供給した。
評価方法として、加工穴数が1000穴および1500穴加工後の面取り刃の逃げ面最大摩耗幅(以下、最大摩耗幅と称す。)を光学顕微鏡で100倍に拡大して測定し、評価を行った。切削途中で欠けが発生した場合は、その時点で加工を中止とし穴数を記入した。結果を表1に示す。
Example 1
As an example of the present invention and a comparative example, it has an oil hole for supplying coolant through the tool body, the drill diameter is 6.0 mm, the total length is 100 mm, the groove length is 50 mm, the groove twist angle is 30 °, and the core thickness is Table 1 shows the width of the chamfering blade, the angle of the chamfering blade, and the clearance angle of the chamfering blade provided at the outer peripheral corner of the drill in a drill having a 1.5 mm shank diameter of 6.0 mm and a tip angle of 140 °. Various things were made. Comparative Example 17 is a drill having no chamfering blade, that is, a general-purpose drill used for cutting general steel. The base materials of the drills were all ultra-fine cemented carbides with an average particle diameter of WC of 0.8 μm or less and a Co amount of 12 w%, and were coated with an AlCrN film. As test conditions, a rectangular block material of FCD700 was prepared as a work material, and drilling was performed. And at a horizontal machining center, the cutting conditions are a blind hole with a rotation speed of 6400 min −1 (cutting speed of about 120 m / min), a feed amount per rotation of 0.24 mm / rotation, and a drilling depth of 24 mm (4 times the drill diameter). Was processed. As the coolant, mist oil was supplied through the oil hole.
As an evaluation method, the flank maximum wear width (hereinafter referred to as the maximum wear width) of the chamfered blade after processing 1000 holes and 1500 holes was measured with an optical microscope to be magnified 100 times and evaluated. It was. When chipping occurred during cutting, the processing was stopped at that point and the number of holes was entered. The results are shown in Table 1.

Figure 2010125592
Figure 2010125592

その結果、本発明例1〜12は全て1500穴まで加工でき、最大摩耗幅も0.2mm以下と良好であった。本発明のドリルであれば、外周コーナーで大量の熱が発生するミスト状の油を用いたセミドライ加工において、本発明のドリルは面取り刃の効果により切削熱が十分に分散され工具寿命は良好であった。特に、面取り刃の角度が40°〜50°に設けた、本発明例2および本発明例6、7は、1500穴加工での最大摩耗幅が0.12mm以下と良好であった。  As a result, Examples 1 to 12 of the present invention were all capable of processing up to 1500 holes, and the maximum wear width was also good at 0.2 mm or less. In the case of the drill of the present invention, in the semi-dry machining using mist-like oil that generates a large amount of heat at the outer corner, the drill of the present invention has a good tool life because the cutting heat is sufficiently dispersed by the effect of the chamfering blade. there were. In particular, Invention Example 2 and Invention Examples 6 and 7 in which the angle of the chamfering blade was set to 40 ° to 50 ° were good, with the maximum wear width in 1500 hole processing being 0.12 mm or less.

表1の本発明例11、12は、面取り刃の幅、面取り刃の角度は本発明の範囲内であるものの、切削結果は本発明例9、10と比較して、面取り刃の外周側へ最大摩耗幅が大きくなった。従って、面取り刃の逃げ角の範囲は8〜12°が望ましい。
比較例13は、前記特許文献1に記載されるドリルに設けられた極小面取り刃、すなわち本発明である面取り刃の幅の意味に相当する値を評価したものである。
面取り刃の幅の影響を確認するために行った、面取り刃の幅をドリル直径の0.05倍、すなわち0.3mmに設けた比較例13は、1427穴加工を行ったところで、外周コーナーに欠けが発生していた。その原因は、比較例13は面取り刃の幅が狭く、切削熱が十分に分散されなかったためと考えられる。比較例14は、本発明例1〜4と比較して最大摩耗幅が大きくなった。これは面取り刃の幅が広すぎ、面取り刃の切れ刃が長くなり、切削抵抗の増大したためと推察される。従って、面取り刃の幅の範囲は、他の本発明例も含めて評価するとドリル直径3の0.06〜0.15倍が望ましい。
面取り刃の角度の影響を確認するために行った、比較例15、16は、最大摩耗幅が0.2mmを超えていた。比較例15は、切れ刃の逃げ面と面取り刃とのなす角度が小さくなるため、面取り刃の先端側での最大摩耗幅が0.32mmと0.2mmを超え大きくなった。比較例16は、十分な面取り刃の長さを設けることができず、切削熱を分散することができないため、面取り刃の外周側での最大摩耗幅が0.34mmと0.2mmを超えて大きくなった。この原因は、面取り刃の角度が不適切なためと考えられる。また、面取り刃を設けていない、一般的な鋼用とした汎用の形状のドリルである従来例17は862穴の加工を行ったところで、外周コーナーに欠けが発生した。
Invention Examples 11 and 12 in Table 1 show that the width of the chamfering blade and the angle of the chamfering blade are within the scope of the present invention, but the cutting result is compared with Examples 9 and 10 of the present invention toward the outer peripheral side of the chamfering blade. Maximum wear width increased. Therefore, the range of the clearance angle of the chamfering blade is desirably 8 to 12 °.
The comparative example 13 evaluated the value equivalent to the meaning of the width | variety of the minimum chamfering blade provided in the drill described in the said patent document 1, ie, the chamfering blade which is this invention.
In Comparative Example 13 in which the width of the chamfering blade was set to 0.05 times the drill diameter, that is, 0.3 mm, in order to confirm the influence of the width of the chamfering blade, when the 1427 hole was processed, Chipping occurred. The reason is considered that the width of the chamfering blade was narrow in Comparative Example 13 and the cutting heat was not sufficiently dispersed. In Comparative Example 14, the maximum wear width was increased as compared with Invention Examples 1 to 4. This is presumably because the width of the chamfering blade was too wide, the cutting edge of the chamfering blade became longer, and the cutting resistance increased. Therefore, the range of the width of the chamfering blade is preferably 0.06 to 0.15 times the drill diameter 3 when other examples of the present invention are evaluated.
In Comparative Examples 15 and 16, which were performed in order to confirm the influence of the angle of the chamfering blade, the maximum wear width exceeded 0.2 mm. In Comparative Example 15, since the angle formed between the flank face of the cutting edge and the chamfering blade was small, the maximum wear width on the tip side of the chamfering blade was larger than 0.32 mm and 0.2 mm. Since the comparative example 16 cannot provide sufficient chamfering blade length and cannot disperse cutting heat, the maximum wear width on the outer peripheral side of the chamfering blade exceeds 0.34 mm and 0.2 mm. It became bigger. This is probably because the angle of the chamfering blade is inappropriate. Further, in the conventional example 17, which is a general-purpose drill for general steel that is not provided with a chamfering blade, chipping occurred in the outer peripheral corner when machining 862 holes.

(実施例2)
次に、本発明例、比較例として、実施例1と同じ仕様で、ドリルの溝長を140mm、面取り刃の長さと面取り刃の角度を表2に示すものを種々作成した。
試験条件は、被削材にFCD700の長方形のブロック材を用意し穴加工を行った。そして、横型マシニングセンターにて、切削条件を回転数4200min−1(切削速度約80m/min)、一回転当たり送り量0.24mm/回転、穴明け深さ120mm(ドリル径の20倍)の止まり穴の加工を行った。クーラントは、ミスト状の油をオイルホールに通して供給した。
評価方法は、実施例1と同様の方法で、200穴加工後の最大摩耗幅を光学顕微鏡で100倍に拡大して測定し、評価を行った。結果を表2に示す。
(Example 2)
Next, as examples of the present invention and comparative examples, various types of drills having the same specifications as in Example 1 and having a drill groove length of 140 mm and chamfering blade lengths and chamfering blade angles shown in Table 2 were prepared.
As test conditions, a rectangular block material of FCD700 was prepared as a work material, and drilling was performed. Then, in a horizontal machining center, a blind hole with a cutting speed of 4200 min −1 (cutting speed of about 80 m / min), a feed amount per rotation of 0.24 mm / rotation, and a drilling depth of 120 mm (20 times the drill diameter). Was processed. As the coolant, mist oil was supplied through the oil hole.
The evaluation method was the same as in Example 1, and the maximum wear width after 200-hole processing was measured with an optical microscope enlarged 100 times and evaluated. The results are shown in Table 2.

Figure 2010125592
Figure 2010125592

その結果、本発明例18〜29は全て200穴まで加工でき、最大摩耗幅も0.2mm以下と良好であった。これは、外周コーナーで大量の熱が発生するミスト状の油を用いたセミドライ加工であり、さらに、連続して切削を行う時間が長くなるためより長時間、切れ刃が高温にさらされる深穴加工においても、面取り刃の効果により切削熱が十分に分散されるため、工具寿命は良好であったと考えられる。特に、面取り刃の長さを、ドリル直径の0.15倍と0.2倍に設けた、本発明例19および本発明例20は、200穴加工での最大摩耗幅が0.15mm以下と良好であった。As a result, all of Examples 18 to 29 of the present invention could be processed up to 200 holes, and the maximum wear width was as good as 0.2 mm or less. This is a semi-dry process using mist-like oil that generates a large amount of heat at the outer corners, and further, the longer the continuous cutting time is, the deeper the cutting edge is exposed to high temperature for a longer time. Also in machining, the cutting heat is sufficiently dispersed due to the effect of the chamfering blade, so it is considered that the tool life was good. In particular, the present invention example 19 and the present invention example 20 in which the length of the chamfering blade is set to 0.15 times and 0.2 times the diameter of the drill have a maximum wear width of 0.15 mm or less in the 200 hole machining. It was good.

比較例30は、181穴の加工を行ったところで、外周コーナーに欠けが発生していた。これは、面取り刃の長さが短すぎるため、切削熱が十分に分散されなかったためと考えられる。
比較例31は、最大摩耗幅が0.2mmを超えて実用性能として不十分であった。これは面取り刃の切れ刃が長くなりすぎ、切削抵抗が増大し、振動が発生したため面取り刃の先端側に最大摩耗幅が発生したと推察される。
比較例32は、面取り刃の外周側に0.2mmを超えて最大摩耗幅が発生していた。これは、切れ刃の逃げ面と面取り刃とのなす角度が小さくなるため、面取り刃の先端側での最大摩耗幅が0.29mmと0.2mmを超え大きくなった
比較例33は、168穴の加工を行ったところで、外周コーナー付近に欠けが発生していた。これは、回転軸心に対する面取り刃の角度が小さく、面取り刃の外周側の長さが短いため、面取り刃の外周側の切削熱を十分に分散しきれなかったためと考えられる。
In Comparative Example 30, chipping occurred in the outer peripheral corner when the 181 hole was processed. This is presumably because the cutting heat was not sufficiently dispersed because the length of the chamfering blade was too short.
In Comparative Example 31, the maximum wear width exceeded 0.2 mm, and the practical performance was insufficient. This is presumed that the maximum wear width occurred on the tip side of the chamfering blade because the cutting edge of the chamfering blade became too long, the cutting resistance increased, and vibration occurred.
In Comparative Example 32, the maximum wear width occurred over 0.2 mm on the outer peripheral side of the chamfered blade. This is because the angle formed between the flank face of the cutting edge and the chamfering blade is small, so that the maximum wear width on the tip side of the chamfering blade is larger than 0.29 mm and 0.2 mm. When the above processing was performed, chipping occurred in the vicinity of the outer corner. This is probably because the angle of the chamfering blade with respect to the rotation axis is small and the length of the outer peripheral side of the chamfering blade is short, so that the cutting heat on the outer peripheral side of the chamfering blade cannot be sufficiently dispersed.

図1は、本発明の正面図を示す。FIG. 1 shows a front view of the present invention. 図2は、本発明の先端切れ刃の側面図を示す。FIG. 2 shows a side view of the tip cutting edge of the present invention. 図3は、本発明のマージン方向から見た先端切れ刃の正面図を示す。FIG. 3 shows a front view of the cutting edge viewed from the margin direction of the present invention. 図4は、本発明のすくい面19方向から見た先端切れ刃の正面図を示す。FIG. 4: shows the front view of the front-end | tip cutting edge seen from the rake face 19 direction of this invention. 図5は、本発明の他の一例である先端切れ刃が3枚の場合の側面図を示す。FIG. 5 shows a side view in the case of three tip cutting edges as another example of the present invention.

符号の説明Explanation of symbols

1 ドリル
2 オイルホール
3 ドリル直径
4 全長
5 溝長
6 溝
7 ねじれ角
8 心厚
9 シャンク径
10 外周コーナー
11 面取り刃
12 面取り刃の幅
13 面取り刃の角度
14 面取り刃の逃げ角
15 シャンク
16 ボデー
17 マージン
18 切れ刃
19 すくい面
20 逃げ面
21 シンニング切れ刃
22 面取り刃の切れ刃
23 面取り刃の長さ
24 先端角
25 回転軸心と外周コーナーを通る直線
26 回転軸心と外周コーナーを通る直線に垂直で、面取り刃と切れ刃の境界を通る直線
27 回転軸心と外周コーナーを通る直線に垂直で、面取り刃と切れ刃の境界を通る直線と平行であり、外周コーナーを通る直線
28 回転軸心
29 面取り刃と切れ刃の境界と外周コーナーを通る直線
1 Drill 2 Oil hole 3 Drill diameter 4 Overall length 5 Groove length 6 Groove 7 Torsion angle 8 Center thickness 9 Shank diameter 10 Peripheral corner 11 Chamfering blade 12 Chamfering blade width 13 Chamfering blade angle 14 Chamfering blade clearance angle 15 Shank 16 Body 17 Margin 18 Cutting edge 19 Rake face 20 Relief face 21 Thinning cutting edge 22 Cutting edge of chamfering edge 23 Length of chamfering edge 24 Tip angle 25 Straight line passing through rotation axis and outer corner 26 Straight line passing through rotation axis and outer corner A straight line that passes through the boundary between the chamfering blade and the cutting edge, is perpendicular to the straight line that passes through the boundary between the rotation axis and the outer peripheral corner, is parallel to the straight line that passes through the boundary between the chamfering blade and the cutting edge, and rotates through a straight line that passes through the outer corner. Axis 29 Straight line passing the boundary between the chamfering edge and the cutting edge and the outer corner

Claims (3)

外周コーナーに面取り刃を有するドリルであって、すくい面側から見た前記面取りの形状は、前記面取り刃の幅がドリル直径の0.06倍以上0.15倍以下であり、前記面取り刃の前記ドリルの回転軸心に対する角度が35°以上55°以下であることを特徴とする鋳鉄加工用ドリル。A drill having a chamfering blade at an outer peripheral corner, wherein the chamfering shape viewed from the rake face side has a width of the chamfering blade of 0.06 to 0.15 times the drill diameter, A cast iron drill for drilling, characterized in that an angle with respect to the rotation axis of the drill is not less than 35 ° and not more than 55 °. 外周コーナーに面取り刃を有するドリルであって、前記面取り刃の長さが、前記ドリル直径の0.07倍以上0.26倍以下であり、前記面取り刃の前記ドリルの回転軸心に対する角度が35°以上55°以下であることを特徴とする鋳鉄加工用ドリル。A drill having a chamfering blade at an outer corner, wherein the chamfering blade has a length of 0.07 to 0.26 times the drill diameter, and the angle of the chamfering blade with respect to the rotation axis of the drill is A cast iron machining drill characterized by being in the range of 35 ° to 55 °. 請求項1記載のドリルにおいて、前記面取り刃の逃げ角が8°以上12°以下であることを特徴とする鋳鉄加工用ドリル。The drill for machining a cast iron according to claim 1, wherein a relief angle of the chamfering blade is 8 ° or more and 12 ° or less.
JP2008328671A 2008-12-01 2008-12-01 Drill for cast iron processing Pending JP2010125592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328671A JP2010125592A (en) 2008-12-01 2008-12-01 Drill for cast iron processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328671A JP2010125592A (en) 2008-12-01 2008-12-01 Drill for cast iron processing

Publications (1)

Publication Number Publication Date
JP2010125592A true JP2010125592A (en) 2010-06-10

Family

ID=42326322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328671A Pending JP2010125592A (en) 2008-12-01 2008-12-01 Drill for cast iron processing

Country Status (1)

Country Link
JP (1) JP2010125592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150232988A1 (en) * 2012-10-04 2015-08-20 TAIYO NIPPON SANSO CORPORATION et al. Vapor phase growth apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174809U (en) * 1986-04-25 1987-11-06
JPH0780714A (en) * 1993-09-14 1995-03-28 Kobe Steel Ltd Ultra-hard drill
JPH0796411A (en) * 1993-09-24 1995-04-11 Topy Ind Ltd Drill
JP2001347411A (en) * 2000-06-08 2001-12-18 Toshiba Tungaloy Co Ltd Gun drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring
JP2006231430A (en) * 2005-02-22 2006-09-07 Tungaloy Corp Centering drill and machining method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174809U (en) * 1986-04-25 1987-11-06
JPH0780714A (en) * 1993-09-14 1995-03-28 Kobe Steel Ltd Ultra-hard drill
JPH0796411A (en) * 1993-09-24 1995-04-11 Topy Ind Ltd Drill
JP2001347411A (en) * 2000-06-08 2001-12-18 Toshiba Tungaloy Co Ltd Gun drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring
JP2006231430A (en) * 2005-02-22 2006-09-07 Tungaloy Corp Centering drill and machining method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150232988A1 (en) * 2012-10-04 2015-08-20 TAIYO NIPPON SANSO CORPORATION et al. Vapor phase growth apparatus
TWI633202B (en) * 2012-10-04 2018-08-21 大陽日酸股份有限公司 Vapor phase growth apparatus

Similar Documents

Publication Publication Date Title
JP5013435B2 (en) Ball end mill
JP6611260B2 (en) drill
KR100767831B1 (en) Drill bit
JP2009241190A (en) Cbn radius end mill
JP2019181615A (en) Drill
JP5451831B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP2009056533A (en) Long neck radius endmill
JP6428406B2 (en) drill
JP2007296588A (en) High hardness end mill
JP4471894B2 (en) Low work hardening carbide drill
JP2010264592A (en) End mill for high-hardness materials
JP6179165B2 (en) Radius end mill
KR101406612B1 (en) Indexable Drill insert
JP2010125592A (en) Drill for cast iron processing
JP5975340B2 (en) drill
JP5448241B2 (en) Ball end mill and cutting method using the same
JP2009039810A (en) Method for drilling hole in fiber-reinforced composite material
JP2005319544A (en) Hole machining tool, and method of grinding outer periphery of the tool
JP4834183B1 (en) Drill
JPH11170106A (en) Drill
JP5444265B2 (en) Cutting tools
JP2007290105A (en) End mill
JP2010058179A (en) Cutting tool and method of manufacturing the same
JP5013434B2 (en) Ball end mill
JP3835902B2 (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111014

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Effective date: 20130402

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130725

Free format text: JAPANESE INTERMEDIATE CODE: A02