JP4471894B2 - Low work hardening carbide drill - Google Patents

Low work hardening carbide drill Download PDF

Info

Publication number
JP4471894B2
JP4471894B2 JP2005193433A JP2005193433A JP4471894B2 JP 4471894 B2 JP4471894 B2 JP 4471894B2 JP 2005193433 A JP2005193433 A JP 2005193433A JP 2005193433 A JP2005193433 A JP 2005193433A JP 4471894 B2 JP4471894 B2 JP 4471894B2
Authority
JP
Japan
Prior art keywords
cutting edge
work hardening
angle
range
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005193433A
Other languages
Japanese (ja)
Other versions
JP2007007809A (en
Inventor
二朗 大沢
剛広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2005193433A priority Critical patent/JP4471894B2/en
Publication of JP2007007809A publication Critical patent/JP2007007809A/en
Application granted granted Critical
Publication of JP4471894B2 publication Critical patent/JP4471894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

本発明は超硬ドリルに係り、特に、被加工物の加工硬化量が少ない低加工硬化超硬ドリルに関するものである。   The present invention relates to a cemented carbide drill, and more particularly to a low-work-hardening cemented carbide drill with a small work-hardening amount of a workpiece.

超硬合金にて構成されている超硬ドリルが、例えば特許文献1等に記載されており、自動車のハブに対する穴明け加工では、一般に先端角が140°程度で、切り屑排出溝のねじれ角が30°程度の超硬ドリルが使用されている。
特開2001−300808号公報
A cemented carbide drill made of cemented carbide is described in, for example, Patent Document 1 and the like, and in drilling a hub of an automobile, the tip angle is generally about 140 °, and the twist angle of the chip discharge groove Carbide drills of about 30 ° are used.
JP 2001-300808 A

しかしながら、ドリルによる穴明け加工では、被加工物の弾性などで加工穴の内周面とドリル(リーディングエッジ)とが接触することが避けられず、高炭素鋼等の焼入れし易い材料の場合、摩擦熱による焼入れ効果で表面が加工硬化する。例えば、前記ハブ等に用いられるS55C炭素鋼の場合、内部硬度が300HV程度であるのに対し、加工穴の表面は750HV以上にもなることがあり、後工程のタップ加工においてタップ寿命が短くなったり、ボルト等の圧入が不可になったりすることがあった。なお、このような加工硬化は、新品の超硬ドリルでは殆ど問題にならないが、使用によって特に肩部(切れ刃とリーディングエッジとのコーナー部分)が摩耗したり欠けたりすることにより、顕著となる。   However, in drilling with a drill, it is inevitable that the inner peripheral surface of the drilled hole and the drill (leading edge) are in contact with each other due to the elasticity of the workpiece, and in the case of a material that is easy to quench, such as high carbon steel, The surface is work hardened by the quenching effect of frictional heat. For example, in the case of S55C carbon steel used for the hub or the like, the internal hardness is about 300 HV, but the surface of the processed hole may be 750 HV or more, and the tap life is shortened in the subsequent tap processing. Or press fitting such as bolts may become impossible. Such work hardening hardly becomes a problem with a new cemented carbide drill, but becomes noticeable particularly when the shoulder (the corner between the cutting edge and the leading edge) is worn or chipped by use. .

これに対し、未だ公知ではないが、本願出願人は、先に出願した特願2004−242446号において、先端角αが125°〜135°の範囲内で、切り屑排出溝のねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であることを特徴とする低加工硬化超硬ドリルを提案した。このような低加工硬化超硬ドリルによれば、先端角αが125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ肩部のコーナー角度θが大きくなり、肩欠けや肩だれが抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部およびシンニング部分を含む切れ刃の刃先強度と切れ味が両立し、肩部の欠けや切れ刃の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。そして、このように肩部の欠けや切れ刃の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることから、長期に亘って優れた加工精度が得られるようになり、リーディングエッジと加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   On the other hand, although not yet known, the applicant of the present application described in Japanese Patent Application No. 2004-242446 filed earlier, the tip angle α is in the range of 125 ° to 135 °, and the twist angle β of the chip discharge groove is Low work hardening cemented carbide drill, characterized in that the axial rake angle γ of the cutting edge near the axial center formed by thinning is within the range of -5 ° to + 5 ° within the range of 20 ° to 30 °. Proposed. According to such a low work hardening carbide drill, since the tip angle α is smaller than the conventional 140 ° within the range of 125 ° to 135 °, the corner angle θ of the shoulder is increased accordingly. , Lack of shoulders and drooping are suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °, the shoulder portion and The edge strength and sharpness of the cutting edge including the thinning portion are compatible, and a predetermined sharpness can be secured while suppressing chipping of the shoulder, cutting edge of the cutting edge, chipping, and the like. And since the chipping of the shoulder portion, chipping of the cutting edge, chipping and the like are suppressed in this way and a predetermined sharpness is obtained, excellent machining accuracy can be obtained over a long period of time, and the leading edge and Friction with the machining hole is reduced, and work hardening due to frictional heat is suppressed.

しかしながら、このように先端角αが比較的小さい低加工硬化超硬ドリルにおいては、例えば穴径が12mm以上の大径穴を加工する場合、穴明け加工時の負荷(スラスト荷重)が大きくなるため、先端角αが130°程度では強度が不足し、先端中心部分で切れ刃が早期に欠損して加工不可になることがあった。   However, in such a low work hardening cemented carbide drill with a relatively small tip angle α, for example, when machining a large-diameter hole having a hole diameter of 12 mm or more, the load (thrust load) during drilling becomes large. When the tip angle α is about 130 °, the strength is insufficient, and the cutting edge at the center portion of the tip may be damaged early, making it impossible to process.

本発明は以上の事情を背景として為されたもので、その目的とするところは、高炭素鋼等の焼入れし易い材料に対する穴明け加工においても加工硬化量が比較的少ない低加工硬化超硬ドリルにおいて、大径穴を加工する場合の先端中心部分の強度不足を改善することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is a low work hardening carbide drill with a relatively small work hardening amount even in the drilling process for easily hardened materials such as high carbon steel. Is to improve the lack of strength at the center of the tip when machining a large-diameter hole.

かかる目的を達成するために、第1発明は、少なくとも先端の刃部が超硬合金にて構成されているとともに、被加工物の加工硬化量が少ない低加工硬化超硬ドリルであって、(a) ドリル先端の中心部分に設けられた先端角α1が135°〜150°の範囲内の食付き刃部と、(b) その食付き刃部よりも外周側に設けられるとともに、先端角α2が125°〜135°の範囲内で且つ前記先端角α1よりも小さい周辺刃部と、(c) それ等の食付き刃部と周辺刃部との境界に設けられ、軸心と直角方向から見た側面視において、前記先端角α1で傾斜しているその食付き刃部と前記先端角α2で傾斜しているその周辺刃部とを、ドリル径Dに対して0.01Dより大きく且つ0.4Dより小さい半径Rで滑らかに接続する凸円弧形状の接続刃部と、を有して切れ刃が構成されている一方、(d) 切り屑排出溝のねじれ角βは20°〜30°の範囲内で、(e) シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γは−5°〜+5°の範囲内であることを特徴とする。 In order to achieve such an object, the first invention is a low work hardening cemented carbide drill having at least a cutting edge portion made of a cemented carbide and having a small work hardening amount of a workpiece , a) a chamfered blade portion having a tip angle α1 provided in the center portion of the drill tip in a range of 135 ° to 150 °; and (b) a chamfered blade portion provided on the outer peripheral side than the chamfered blade portion, In the range of 125 ° to 135 ° and smaller than the tip angle α1, (c) provided at the boundary between the biting blade portion and the peripheral blade portion, and from the direction perpendicular to the axis. In the viewed side view, the biting blade portion inclined at the tip angle α1 and the peripheral blade portion inclined at the tip angle α2 are larger than 0.01D with respect to the drill diameter D and 0 comprises a connecting edge portion of the convex arcuate shape connected by .4D smaller radius R to smooth Laka, the While (d) the twist angle β of the chip discharge groove is in the range of 20 ° to 30 °, (e) the axial rake angle of the cutting blade near the axis formed by thinning γ is in the range of −5 ° to + 5 °.

第2発明は、第1発明の低加工硬化超硬ドリルにおいて、切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされていることを特徴とする。   The second invention is characterized in that, in the low work hardening cemented carbide drill of the first invention, the width dimension L of the negative land provided at the cutting edge of the cutting edge is in the range of 0.05 to 0.15 mm. .

このような低加工硬化超硬ドリルにおいては、ドリル先端の外周部分に設けられる周辺刃部の先端角α2が125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ肩部のコーナー角度θ(図2参照)が大きくなり、肩欠けや肩だれが抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部およびシンニング部分を含む切れ刃の刃先強度と切れ味が両立し、肩部の欠けや切れ刃の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。そして、このように肩部の欠けや切れ刃の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることにより、長期に亘って優れた加工精度が得られるようになり、リーディングエッジと加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   In such a low work hardening carbide drill, the tip angle α2 of the peripheral cutting edge provided at the outer peripheral portion of the tip of the drill is smaller than the conventional 140 ° within the range of 125 ° to 135 °. The corner angle θ of the shoulder portion (see FIG. 2) is increased by that amount, and shoulder chipping and shoulder slip are suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °, the shoulder portion and The edge strength and sharpness of the cutting edge including the thinning portion are compatible, and a predetermined sharpness can be secured while suppressing chipping of the shoulder, cutting edge of the cutting edge, chipping, and the like. In addition, by suppressing the chipping of the shoulder portion, the chipping of the cutting edge, chipping, etc. and obtaining a predetermined sharpness, excellent machining accuracy can be obtained over a long period of time, and the leading edge and Friction with the machining hole is reduced, and work hardening due to frictional heat is suppressed.

一方、ドリル先端の中心部分に設けられる食付き刃部の先端角α1は、135°〜150°の範囲内で、上記先端角α2よりも大きくされているため、前記肩部の強度を損なうことなく中心部分の強度を高くすることができ、穴明け加工時の負荷が大きい大径穴(例えば穴径が12mm以上)を加工する大径の超硬ドリルにおいても、先端中心部分の切れ刃(食付き刃部)の欠損が抑制されて、実用上満足できる耐久性が得られるようになる。   On the other hand, the tip angle α1 of the biting blade provided at the center of the drill tip is larger than the tip angle α2 within the range of 135 ° to 150 °, so that the strength of the shoulder is impaired. Even in the case of large-diameter carbide drills that can increase the strength of the central part and process large-diameter holes (for example, a hole diameter of 12 mm or more) that has a heavy load during drilling, the cutting edge ( The chipping edge portion) is suppressed from being lost, and durability that is practically satisfactory can be obtained.

また、このように先端角を途中で変化させると、その境界部分には先端角α1、α2の相違に基づいて角部が生じるため、その角部に応力が集中して欠損等が生じたり摩耗が急進行したりする恐れがあるが、先端角α1は135°〜150°の範囲内で、先端角α2は125°〜135°の範囲内であるため、角部の交差角度(外角)は最大でも25°であり、且つ、その角部には0.01Dより大きく且つ0.4Dより小さい半径Rの凸円弧形状の接続刃部が設けられ、食付き刃部と周辺刃部とが滑らかに接続されるようになっているため、上記応力集中による欠損や摩耗の急進行等が防止される。   In addition, when the tip angle is changed in the middle as described above, a corner portion is generated at the boundary portion based on the difference between the tip angles α1 and α2, and therefore stress is concentrated on the corner portion to cause defects or wear. However, since the tip angle α1 is in the range of 135 ° to 150 ° and the tip angle α2 is in the range of 125 ° to 135 °, the crossing angle (outer angle) of the corner is Convex arcuate connecting blades with a radius R greater than 0.01D and smaller than 0.4D are provided at the corners at a maximum of 25 °, and the biting blades and peripheral blades are smooth Therefore, the chipping due to the stress concentration, the rapid progress of wear, and the like are prevented.

第2発明では、ホーニング等により切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされているため、切れ刃の刃先強度と切れ味が両立し、長期に亘って優れた加工精度が得られるようになって、摩擦熱による加工硬化が一層抑制される。   In the second invention, the width L of the negative land provided at the cutting edge of the cutting edge by honing or the like is in the range of 0.05 to 0.15 mm. Thus, excellent processing accuracy can be obtained, and work hardening due to frictional heat is further suppressed.

本発明の低加工硬化超硬ドリルは、例えばシャンクを含むドリル全体が超硬合金にて一体に構成されるが、シャンクや溝部を超硬合金以外の材料製として、超硬合金製の先端刃部をろう付や焼き嵌め等の結合手段により一体的に結合したものでも良い。また、2枚刃の超硬ドリルに好適に適用されるが、3枚刃以上のドリルに適用することも可能である。   The low work hardening cemented carbide drill of the present invention, for example, the entire drill including the shank is integrally formed of cemented carbide, but the tip of the cemented carbide is made with the shank and the groove made of a material other than cemented carbide. The part may be integrally coupled by a coupling means such as brazing or shrink fitting. Although it is suitably applied to a two-blade carbide drill, it can also be applied to a three-blade or more drill.

本発明は、ドリル径Dが12mm以上の大径の低加工硬化超硬ドリルに好適に適用されるが、12mmより小さい低加工硬化超硬ドリルにも適用され得る。   The present invention is suitably applied to a low work hardening cemented carbide drill having a large drill diameter D of 12 mm or more, but can also be applied to a low work hardening carbide drill smaller than 12 mm.

中心部分の食付き刃部における先端角α1が135°より小さいと、その中心部分の強度不足を改善することができない一方、150°よりも大きいと、食付き性が悪くなって心振れが生じ易くなり、穴が拡大したり加工硬化量が大きくなったりする。   If the tip angle α1 at the biting edge of the central portion is smaller than 135 °, insufficient strength at the central portion cannot be improved. On the other hand, if it is larger than 150 °, the biting property is deteriorated and the runout occurs. It becomes easy and the hole is enlarged or the work hardening amount is increased.

外周側の周辺刃部における先端角α2が135°よりも大きいと、コーナー角度θが小さくなって肩部の強度が低下し、肩欠けや肩だれが生じ易くなる一方、125°よりも小さいと、先端角α1の食付き刃部を設けたとしても中心部分の強度が不足し勝ちになるとともに、食付き刃部との境界の角部の交差角度が大きくなって、その境界角部で刃欠けやチッピング等が生じ易くなる。   When the tip angle α2 at the peripheral edge portion on the outer peripheral side is larger than 135 °, the corner angle θ is decreased, the strength of the shoulder portion is lowered, and shoulder chipping and shoulder swelling are likely to occur. Even if a chamfered blade portion having a tip angle α1 is provided, the strength of the central portion tends to be insufficient, and the intersection angle of the boundary portion with the chamfered blade portion becomes large, and the blade at the boundary corner portion Chipping and chipping are likely to occur.

食付き刃部と周辺刃部との境界に設けられる凸円弧形状の接続刃部の半径Rが0.01D以下では、円弧とする効果が十分に得られず、応力集中による欠損や摩耗の急進行等を防止することができない一方、0.4D以上になると、摩耗進行時に接触面積が急激に増加し、切削抵抗が大きくなることによりドリルが折損し易くなるとともに加工硬化量も大きくなる。   When the radius R of the convex arc-shaped connecting blade provided at the boundary between the chamfered blade and the peripheral blade is 0.01 D or less, the effect of forming an arc is not sufficiently obtained, and the chipping and wear due to stress concentration are not obtained. On the other hand, when it becomes 0.4D or more, the contact area increases rapidly as wear progresses, and the cutting resistance increases, so that the drill is easily broken and the work hardening amount increases.

また、先端角が大きい食付き刃部の範囲が小さいと、食付き刃部の存在に拘らず中心部分の強度が十分に得られない一方、食付き刃部の範囲が大きくて周辺刃部が小さくなると、肩部の強度が損なわれるため、それ等の境界すなわち接続刃部の中心位置(直線状の食付き刃部および周辺刃部をそれぞれ延長した交点の位置)の径寸法は、例えばドリル径Dに対して0.3D〜0.7D程度の範囲内とすることが望ましい。   In addition, if the range of the cutting edge portion with a large tip angle is small, the strength of the central portion cannot be sufficiently obtained regardless of the presence of the cutting edge portion. Since the strength of the shoulder is reduced when it becomes smaller, the diameter of the boundary, that is, the center position of the connecting blade (the position of the intersection extending from the straight biting blade and the peripheral blade) is, for example, a drill. The diameter D is preferably within a range of about 0.3D to 0.7D.

切り屑排出溝のねじれ角βは、30°よりも大きいと肩部を含む切れ刃の刃先強度が低下して刃欠けやチッピング、肩欠けが生じ易くなる一方、20°よりも小さいと切れ味が悪くなって耐久性能、加工精度が低下する。   When the twist angle β of the chip discharge groove is larger than 30 °, the cutting edge strength of the cutting edge including the shoulder portion is reduced, and chipping, chipping, and shoulder chipping are liable to occur. It becomes worse and durability performance and processing accuracy decrease.

シンニングにより形成された中心部分の切れ刃の軸方向すくい角γは、+5°よりも大きいと刃先強度が低下して刃欠けやチッピングが生じ易くなる一方、−5°よりも小さいと切れ味が悪くなって切削抵抗が増大するとともに、加工精度が低下する。   When the axial rake angle γ of the central cutting edge formed by thinning is larger than + 5 °, the strength of the blade edge is reduced and chipping and chipping are likely to occur, whereas when it is smaller than −5 °, the sharpness is poor. As a result, the cutting resistance increases and the processing accuracy decreases.

切れ刃の刃先に設けられるネガランドの幅寸法Lは、0.15mmよりも大きいと切れ味が悪くなって加工精度が低下する一方、0.05mmよりも小さいと刃先強度が低下して刃欠けやチッピングが生じ易くなる。この切れ刃の刃先のネガランドの形成(丸み付け)にはホーニングが好適に用いられる。   If the width L of the negative land provided at the cutting edge of the cutting edge is larger than 0.15 mm, the sharpness is deteriorated and the machining accuracy is lowered. On the other hand, if the width dimension L is smaller than 0.05 mm, the cutting edge strength is lowered and the chipping or chipping is reduced. Is likely to occur. Honing is preferably used for forming (rounding) the negative land of the cutting edge.

また、本発明の低加工硬化超硬ドリルには、必要に応じてTiAlN等の硬質被膜が設けられる。   Further, the low work hardening cemented carbide drill of the present invention is provided with a hard coating such as TiAlN if necessary.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図2は、本発明の前提となる低加工硬化超硬ドリル10を説明する図で、先端部分を示す図であり、中央の(a) はドリル先端側から見た正面図、その周囲の(b) 〜(d) はそれぞれ軸心Oと直角方向から見た側面図である。この低加工硬化超硬ドリル10は、全体が超硬合金にて一体に構成されているもので、外周面には一対の切り屑排出溝14が設けられているとともに、切り屑排出溝14のドリル先端側の開口部にはそれぞれ切れ刃16が形成されている。切れ刃16の中心側部分にはシンニング18が施されて、軸心O付近まで達しているとともに、この切れ刃16にはホーニングが施されて刃先にネガランド17(図3参照)が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a diagram for explaining a low work hardening carbide drill 10 which is a premise of the present invention, and is a view showing a tip portion. (A) in the center is a front view seen from the drill tip side, and (( b) to (d) are side views as seen from the direction perpendicular to the axis O, respectively. The low work hardening cemented carbide drill 10 is integrally formed of a cemented carbide alloy, and a pair of chip discharge grooves 14 are provided on the outer peripheral surface. A cutting edge 16 is formed in each opening on the drill tip side. A thinning 18 is applied to the central portion of the cutting edge 16 to reach the vicinity of the axis O, and the cutting edge 16 is subjected to honing and a negative land 17 (see FIG. 3) is provided at the cutting edge. Yes.

そして、この低加工硬化超硬ドリル10の先端角αは125°〜135°の範囲内で、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成された軸心付近の切れ刃16の軸方向すくい角γは−5°〜+5°の範囲内(図2はすくい角γ<0の場合)で、ホーニングによって形成される切れ刃16の刃先のネガランド17の幅寸法(ネガランド幅)Lは0.05〜0.15mmの範囲内である。ネガランド幅Lは、図3に示すように切れ刃16の刃先の稜線に直角な断面において、切れ刃16のすくい面24と逃げ面26との交点部分にホーニングによって形成される比較的平坦な部分の幅寸法である。なお、この低加工硬化超硬ドリル10の表面には、ホーニングの後にTiAlN等の硬質被膜28が数μmの膜厚でコーティングされているが、上記ネガランド幅Lは、硬質被膜28で被覆された後の状態の寸法である。   The tip angle α of the low work hardening carbide drill 10 is formed by the thinning 18 within a range of 125 ° to 135 °, and the twist angle β of the chip discharge groove 14 is within a range of 20 ° to 30 °. The rake angle γ in the axial direction of the cutting edge 16 near the center of the axis is in the range of −5 ° to + 5 ° (FIG. 2 shows a rake angle γ <0), and the negative land of the cutting edge 16 formed by honing. The width dimension (negative land width) L of 17 is in the range of 0.05 to 0.15 mm. The negative land width L is a relatively flat portion formed by honing at the intersection of the rake face 24 and the flank face 26 of the cutting edge 16 in a cross section perpendicular to the edge line of the cutting edge 16 as shown in FIG. Is the width dimension. The surface of the low work hardening cemented carbide drill 10 is coated with a hard coating 28 such as TiAlN with a thickness of several μm after honing, but the negative land width L is coated with the hard coating 28. It is the dimension in the later state.

このような低加工硬化超硬ドリル10においては、先端角αが125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ切れ刃16とリーディングエッジ20とが交差する肩部22のコーナー角度θが大きくなり、肩部22の欠損や微小チッピング(肩欠け)、或いはそれに伴う肩部22のだれ(肩だれ)が抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニング18により形成された軸心付近の切れ刃16の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部22およびシンニング部分を含む切れ刃16の刃先強度と切れ味が両立し、肩部22の欠けや切れ刃16の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。更に、ホーニングによって形成される切れ刃16の刃先のネガランド17の幅寸法Lが0.05〜0.15mmの範囲内であるため、切れ刃16の刃先強度と切れ味が両立する。   In such a low work hardening cemented carbide drill 10, the tip angle α is smaller than the conventional 140 ° within the range of 125 ° to 135 °, so that the cutting edge 16 and the leading edge 20 are correspondingly reduced. The corner angle θ of the intersecting shoulder portions 22 is increased, and loss of the shoulder portions 22 and minute chipping (shoulder missing), or the accompanying sagging (shouldering) of the shoulder portion 22 is suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge 16 near the axis formed by the thinning 18 is in the range of −5 ° to + 5 °, the shoulder The cutting edge 16 including the portion 22 and the thinning portion has both cutting edge strength and sharpness, and a predetermined sharpness can be secured while suppressing chipping of the shoulder 22, cutting of the cutting edge 16, chipping, and the like. Furthermore, since the width dimension L of the negative land 17 of the cutting edge 16 of the cutting edge 16 formed by honing is in the range of 0.05 to 0.15 mm, the cutting edge strength and sharpness of the cutting edge 16 are compatible.

このように、肩部22の欠けや切れ刃16の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることにより、長期に亘って優れた加工精度が得られるようになり、リーディングエッジ20と加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   As described above, the chipping of the shoulder portion 22, the chipping of the cutting edge 16, chipping and the like are suppressed and a predetermined sharpness is obtained, so that excellent processing accuracy can be obtained over a long period of time, leading edge Friction between 20 and the machining hole is reduced, and work hardening due to frictional heat is suppressed.

図4は、14種類の試験品を用いて、以下に示す加工条件で穴明け加工を行い、耐久性能および加工硬化量を調べた結果を説明する図である。試験品No1〜No14のうち、試験品No4〜No7、No9、およびNo10の6種類が、前記低加工硬化超硬ドリル10の各部の諸元を満足し、本発明の前提となる試験品(以下、発明前提品という)で、その他は比較品である。また、各試験品の先端角αおよびねじれ角βは、図4に示す通りであるが、シンニング18の軸方向すくい角γ、およびホーニングによって設けられる切れ刃16の刃先のネガランド17の幅寸法Lについては、総ての試験品についてγ=0°、L=0.10mmである。なお、発明前提品(試験品No4〜No7、No9、No10)は、ドリル先端の中心部分に135°〜150°の先端角α1の食付き刃部を備えていない点を除いて本発明を満足するもので、切れ刃16の外周側部分(周辺刃部)の先端角α(=α2)は125°〜135°の範囲内で、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成された軸心O付近の切れ刃16の軸方向すくい角γは−5°〜+5°の範囲内である。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :10.8mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
FIG. 4 is a diagram for explaining the results of drilling under the following processing conditions using 14 types of test products and examining the durability performance and the work hardening amount. Among the test products No1 to No14, 6 types of test products No4 to No7, No9, and No10 satisfy the specifications of each part of the low work hardening carbide drill 10 and are the test products that are the premise of the present invention (hereinafter referred to as the test products). Others are comparative products. Further, the tip angle α and the twist angle β of each test product are as shown in FIG. 4, but the axial rake angle γ of the thinning 18 and the width dimension L of the negative land 17 of the cutting edge 16 provided by honing. For all the test products, γ = 0 ° and L = 0.10 mm. In addition, invention premise products (test products No. 4 to No. 7, No. 9, and No. 10) satisfy the present invention except that the central portion of the drill tip is not provided with a biting blade portion having a tip angle α1 of 135 ° to 150 °. The tip angle α (= α2) of the outer peripheral side portion (peripheral blade portion) of the cutting edge 16 is in the range of 125 ° to 135 °, and the twist angle β of the chip discharge groove 14 is 20 ° to 30 °. In this range, the axial rake angle γ of the cutting edge 16 near the axis O formed by the thinning 18 is in the range of −5 ° to + 5 °.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 10.8mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図4において、「耐久性能(穴数)」は、4000を定数として穴明け加工を行い、それまでにドリルが寿命に達した場合は、その寿命に達するまでの加工穴数で、寿命原因は「備考」に記載した通りである。「加工硬化量(HV0.2)」は、穴明け加工を行った後の加工表面のビッカース硬さXと、加工硬化している表層部を除去した内部のビッカース硬さYを、1.96N(200gf)の試験荷重でそれぞれ測定し、XからYを引き算した値(X−Y)であり、「初期」は加工開始当初の加工穴について調べた結果で、「定数/寿命時」は、4000まで加工できた場合はその4000番目の加工穴について調べた結果で、途中で寿命に達したものは、その寿命に達した時の加工穴について調べた結果である。また、図5は、図4の各試験品No1〜No14について、「定数/寿命時」における加工硬化量を加工穴数(耐久性能)との関係でグラフにしたもので、「○」は発明前提品、「×」は比較品であり、それ等の右側の数字は試験品Noである。   In FIG. 4, “durability (number of holes)” is the number of holes until the end of the drill when the drill has reached the end of its life with a constant of 4000. As described in “Remarks”. The “work hardening amount (HV0.2)” is 1.96 N of the Vickers hardness X of the processed surface after drilling and the internal Vickers hardness Y after removing the work hardened surface layer portion. It is a value (XY) obtained by subtracting Y from X, each measured at a test load of (200 gf). “Initial” is a result of examining the machining hole at the beginning of machining, and “constant / lifetime” is When processing was performed up to 4000, the 4000th processing hole was examined, and the one that reached the end of its life was the result of examining the processing hole when that life was reached. FIG. 5 is a graph showing the amount of work hardening at “constant / lifetime” in relation to the number of processed holes (durability) for each of the test products No. 1 to No. 14 in FIG. The prerequisite product, “×” is a comparative product, and the numbers on the right side of them are the test product No.

そして、図4、図5から明らかなように、試験品No4〜No7、No9、およびNo10の発明前提品は、何れも定数4000まで穴明け加工を行うことができる。また、加工硬化量については、「初期」の段階では発明前提品、比較品共に大差がないが、「定数/寿命時」では、発明前提品は4000個加工した段階で191〜259の範囲内であるのに対し、4000個加工の比較品(試験品No12、13、14)の加工硬化量は380〜455であり、発明前提品は比較品に比べて加工硬化量が100以上低下する。先端角α=120°の試験品No1〜No3については、早期に先端部に欠けが発生して穴精度が悪化し、十分な耐久性が得られない。   As is clear from FIGS. 4 and 5, all of the test prerequisites No. 4 to No. 7, No. 9 and No. 10 can be drilled to a constant of 4000. Regarding the work hardening amount, there is no great difference between the premise invention and the comparative product at the “initial” stage, but within the range of 191 to 259 at the stage where 4000 premise inventions were processed at the “constant / lifetime” stage. On the other hand, the work-curing amount of the 4000 processed comparative products (test products No. 12, 13, and 14) is 380 to 455, and the work-hardening amount of the invention premise product is reduced by 100 or more compared to the comparative product. For the test products No1 to No3 with the tip angle α = 120 °, the tip portion is chipped early, the hole accuracy is deteriorated, and sufficient durability cannot be obtained.

また、発明前提品(試験品No6)および比較品(試験品No14)を用いて形成した加工穴に対してタップ立てを行ったところ、比較品ではタップ寿命が1000穴程度であったのに対し、発明前提品では1250穴以上加工することが可能で、タップ寿命が25%以上向上することが確認できた。   Further, when tapping was performed on a processed hole formed using the invention premise product (test product No. 6) and the comparative product (test product No. 14), the comparative product had a tap life of about 1000 holes. In the premise of the invention, it was possible to process 1250 holes or more, and it was confirmed that the tap life was improved by 25% or more.

また、別の試験結果によれば、定数加工3200穴加工した段階で、比較品(先端角α=140°、ねじれ角β=35°)では加工硬化量が405(HV0.2)で、硬化層厚さが0.02mmであったのに対し、発明前提品(先端角α=130°、ねじれ角β=25°)では加工硬化量が162(HV0.2)で、硬化層厚さが0.01mmであり、加工硬化量については240(HV0.2)低下し、硬化層厚さについては半分になるという結果も得られた。これは初期の加工硬化と同等の数値である。   Further, according to another test result, at the stage of constant machining 3200 holes, the comparative product (tip angle α = 140 °, torsion angle β = 35 °) has a work hardening amount of 405 (HV 0.2) and is cured. Whereas the layer thickness was 0.02 mm, the precondition of the invention (tip angle α = 130 °, helix angle β = 25 °) had a work hardening amount of 162 (HV 0.2), and the cured layer thickness was The result was that the thickness was 0.01 mm, the work hardening amount was reduced by 240 (HV 0.2), and the cured layer thickness was halved. This is a numerical value equivalent to the initial work hardening.

一方、このような低加工硬化超硬ドリル10においても、例えば穴径が12mm以上の大径穴を加工する場合には、穴明け加工時の負荷が大きくなり、先端角αが130°程度では強度が不足して、先端中心部分で切れ刃16が早期に欠損して加工不可になることがあった。このため、本実施例では、図1に示す低加工硬化超硬ドリル50のように、ドリル先端の中心部分に先端角α1が135°〜150°の範囲内の食付き刃部54を設けた。この食付き刃部54は、点線で示す発明前提品(低加工硬化超硬ドリル10)に対して、先端角α1に応じて逃げ面(二番面)の研削加工を施すことによって設けられ、その後に前記シンニング18やホーニングを施せば良い。食付き刃部54は、ドリル径Dに対して0.3D〜0.7D程度の範囲内で定められた所定の境界径寸法よりも中心側部分に設けられており、それよりも外側の周辺刃部56の先端角α2は、前記低加工硬化超硬ドリル10の先端角αと同じである。また、これ等の食付き刃部54と周辺刃部56との境界部分には、ドリル径Dに対して0.01Dより大きく且つ0.4Dより小さい半径Rでそれ等を滑らかに接続する凸円弧形状の接続刃部58が設けられており、これ等の食付き刃部54、周辺刃部56、および接続刃部58によって切れ刃52が構成されている。   On the other hand, even in such a low work hardening carbide drill 10, for example, when machining a large diameter hole having a hole diameter of 12 mm or more, the load at the time of drilling becomes large, and the tip angle α is about 130 °. Insufficient strength sometimes caused the cutting edge 16 to break early in the center of the tip, making machining impossible. For this reason, in this embodiment, like the low work hardening carbide drill 50 shown in FIG. 1, a chamfered blade portion 54 having a tip angle α1 in the range of 135 ° to 150 ° is provided at the center of the tip of the drill. . The biting blade portion 54 is provided by grinding the flank (second surface) according to the tip angle α1 with respect to the invention premise product (low work hardening carbide drill 10) indicated by a dotted line, Thereafter, the thinning 18 and honing may be performed. The biting blade portion 54 is provided at a center side portion with respect to a drill diameter D at a center side portion with respect to a predetermined boundary diameter dimension determined within a range of about 0.3D to 0.7D. The tip angle α2 of the blade portion 56 is the same as the tip angle α of the low work hardening carbide drill 10. Further, a convex portion that smoothly connects them with a radius R that is larger than 0.01D and smaller than 0.4D with respect to the drill diameter D is formed at the boundary portion between the biting blade portion 54 and the peripheral blade portion 56. An arc-shaped connecting blade portion 58 is provided, and the cutting edge 52 is constituted by the biting blade portion 54, the peripheral blade portion 56, and the connecting blade portion 58.

大きな先端角α1(>α2)の食付き刃部54が、接続刃部58を介してドリル先端の中心部分に設けられていること以外は、前記低加工硬化超硬ドリル10と同じ構成であり、実質的に共通する部分には同一の符号を付して詳しい説明を省略するが、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成される軸心O付近の切れ刃52の軸方向すくい角γは−5°〜+5°の範囲内で、ホーニングにより切れ刃52の刃先に設けられるネガランドの幅寸法Lは0.05〜0.15mmの範囲内である。図1は、図2の(b) に相当する図である。   Except that the biting blade portion 54 having a large tip angle α1 (> α2) is provided at the center portion of the drill tip via the connecting blade portion 58, it has the same configuration as the low work hardening carbide drill 10. The substantially common portions are denoted by the same reference numerals, and detailed description thereof is omitted. However, the twist angle β of the chip discharge groove 14 is in the range of 20 ° to 30 °, and the shaft formed by the thinning 18. The axial rake angle γ of the cutting edge 52 near the center O is in the range of −5 ° to + 5 °, and the width dimension L of the negative land provided at the cutting edge of the cutting edge 52 by honing is in the range of 0.05 to 0.15 mm. Is within. FIG. 1 corresponds to (b) of FIG.

そして、このような本実施例の低加工硬化超硬ドリル50によれば、ドリル先端の中心部分に設けられる食付き刃部54の先端角α1が135°〜150°の範囲内で、周辺刃部56の先端角α2(=α)よりも大きくされているため、肩部22の強度を損なうことなく中心部分の強度が高くなり、穴明け加工時の負荷が大きい大径穴(例えば穴径が12mm以上)を加工する大径の超硬ドリルにおいても、先端中心部分の切れ刃52すなわち食付き刃部54の欠損が抑制されて、実用上満足できる耐久性が得られるようになる。   And according to such a low work hardening cemented carbide drill 50 of a present Example, the front-end | tip angle (alpha) 1 of the biting blade part 54 provided in the center part of a drill front-end | tip is in the range of 135 degrees-150 degrees, a peripheral blade Since it is larger than the tip angle α2 (= α) of the portion 56, the strength of the central portion is increased without impairing the strength of the shoulder portion 22, and a large-diameter hole (for example, hole diameter) with a large load during drilling Even in a large-diameter cemented carbide drill that processes a diameter of 12 mm or more), the cutting edge 52 at the center of the tip, that is, the chamfered blade portion 54 is prevented from being broken, and durability that is practically satisfactory can be obtained.

また、このように先端角を途中で変化させると、その境界部分には先端角α1、α2の相違に基づいて角部が生じるため、その角部に応力が集中して欠損等が生じたり摩耗が急進行したりする恐れがあるが、先端角α1は135°〜150°の範囲内で、先端角α2は125°〜135°の範囲内であるため、角部の交差角度(外角)は最大でも25°であり、且つ、その角部には0.01Dより大きく且つ0.4Dより小さい半径Rの凸円弧形状の接続刃部58が設けられ、食付き刃部54と周辺刃部56とが滑らかに接続されるようになっているため、上記応力集中による欠損や摩耗の急進行等が防止される。   In addition, when the tip angle is changed in the middle as described above, a corner portion is generated at the boundary portion based on the difference between the tip angles α1 and α2, and therefore stress is concentrated on the corner portion to cause defects or wear. However, since the tip angle α1 is in the range of 135 ° to 150 ° and the tip angle α2 is in the range of 125 ° to 135 °, the crossing angle (outer angle) of the corner is A convex arcuate connecting blade portion 58 having a radius R larger than 0.01D and smaller than 0.4D is provided at the corner portion at a maximum of 25 °, and the biting blade portion 54 and the peripheral blade portion 56 are provided. Are smoothly connected to each other, so that chipping due to the stress concentration, rapid progress of wear, and the like are prevented.

また、ドリル先端の外周部分に設けられる周辺刃部56の先端角α2は125°〜135°の範囲内で、ねじれ角βは20°〜30°の範囲内で、シンニング18により形成される軸心付近の切れ刃52の軸方向すくい角γは−5°〜+5°の範囲内で、ホーニングによって形成される切れ刃52の刃先のネガランド17の幅寸法Lは0.05〜0.15mmの範囲内であるため、肩部22の欠けや切れ刃52の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られ、長期に亘って優れた加工精度が得られるようになり、リーディングエッジ20と加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される点は、前記低加工硬化超硬ドリル10と同じである。   Further, the axis formed by the thinning 18 is such that the tip angle α2 of the peripheral cutting edge 56 provided at the outer peripheral portion of the drill tip is in the range of 125 ° to 135 ° and the twist angle β is in the range of 20 ° to 30 °. The axial rake angle γ of the cutting edge 52 near the center is in the range of −5 ° to + 5 °, and the width dimension L of the negative land 17 at the cutting edge of the cutting edge 52 formed by honing is 0.05 to 0.15 mm. Since it is within the range, chipping of the shoulder portion 22, chipping of the cutting edge 52, chipping, etc. are suppressed and a predetermined sharpness is obtained, and excellent machining accuracy can be obtained over a long period of time, leading edge The point that the work hardening due to frictional heat is suppressed by reducing the friction between the work hole 20 and the work hole is the same as the low work hardening carbide drill 10.

ここで、前記食付き刃部54の先端角α1=140°、周辺刃部56の先端角α2=130°で、それ等の境界の接続刃部58の半径Rを0.01D、0.02D、0.1D、0.2D、0.3D、0.4Dとした6種類の試験品を用いて、以下の加工条件で穴明け加工を行い、ドリル寿命および加工硬化量を調べたところ、図6に示す結果が得られた。なお、各試験品のねじれ角β=25°、シンニング18の軸方向すくい角γ=0°、切れ刃52の刃先のネガランド17の幅寸法L=0.10mmで、接続刃部58は径方向の中央部分すなわち軸心Oを中心とする径寸法が0.5D程度付近に設けられている。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :13.9mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
Here, the tip angle α1 = 140 ° of the biting blade portion 54 and the tip angle α2 = 130 ° of the peripheral blade portion 56, the radius R of the connecting blade portion 58 at the boundary between them is 0.01D, 0.02D. , 0.1D, 0.2D, 0.3D, and 0.4D test pieces were drilled under the following processing conditions and the drill life and work hardening amount were examined. The result shown in 6 was obtained. In addition, the torsion angle β = 25 ° of each test product, the axial rake angle γ = 0 ° of the thinning 18, the width L of the negative land 17 of the cutting edge of the cutting edge 52 L = 0.10 mm, and the connecting blade portion 58 is in the radial direction The diameter of the center portion of the shaft center, that is, the axis O is about 0.5D.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 13.9mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図6から明らかなように、R=0.01Dの場合には、円弧形状の接続刃部58を設けることによる効果が十分に得られず、食付き刃部54と周辺刃部56との境界部分に比較的シャープな角部が生じるため、その角部に応力が集中して欠けが生じ易く、1250穴で加工不可になった。R=0.02D、0.1D、0.2D、0.3Dでは、何れも4000穴以上の穴明け加工が可能で、加工硬化量も少ない。R=0.4Dの場合は、摩耗進行時に接触面積が急激に増加し、切削抵抗が大きくなることによりドリルが折損するとともに加工硬化量も大きくなり、2566穴で加工不可になった。この結果から、半径Rは、0.01Dより大きく且つ0.4Dより小さい必要がある。   As apparent from FIG. 6, when R = 0.01D, the effect of providing the arc-shaped connecting blade portion 58 is not sufficiently obtained, and the boundary between the biting blade portion 54 and the peripheral blade portion 56 is obtained. Since a relatively sharp corner portion is generated in the portion, stress is concentrated on the corner portion, so that chipping easily occurs. With R = 0.02D, 0.1D, 0.2D, and 0.3D, all can be drilled with 4000 holes or more, and the amount of work hardening is small. In the case of R = 0.4D, the contact area increased abruptly as the wear progressed, and the drill was broken and the work hardening amount increased due to an increase in cutting resistance, making it impossible to work with 2566 holes. From this result, the radius R needs to be larger than 0.01D and smaller than 0.4D.

また、図7は、周辺刃部56の先端角α2=130°、接続刃部58の半径R=0.1D、ねじれ角β=25°、シンニング18の軸方向すくい角γ=0°、切れ刃52の刃先のネガランド17の幅寸法L=0.10mmの低加工硬化超硬ドリル50において、食付き刃部54の先端角α1を135°、140°、145°、150°、155°とした5種類の試験品を用いて、以下の加工条件で穴明け加工を行い、加工穴数と穴拡大量との関係を調べた結果である。なお、何れの試験品も、接続刃部58は径方向の中央部分すなわち軸心Oを中心とする径寸法が0.5D程度付近に設けられている。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :13.9mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
Further, FIG. 7 shows the tip angle α2 = 130 ° of the peripheral blade 56, the radius R = 0.1D of the connecting blade 58, the twist angle β = 25 °, the axial rake angle γ = 0 ° of the thinning 18, In the low work hardening cemented carbide drill 50 with the width L of the negative land 17 at the cutting edge of the blade 52 of 0.10 mm, the tip angle α1 of the biting blade portion 54 is 135 °, 140 °, 145 °, 150 °, 155 °. It is the result of examining the relationship between the number of holes to be drilled and the amount of hole expansion by performing drilling using the five types of test products under the following processing conditions. In any of the test products, the connecting blade portion 58 is provided in the radial central portion, that is, in the vicinity of the radial dimension about the axis O of about 0.5D.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 13.9mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図7において、α1=135°、140°、145°の場合、1000穴までの加工では何れも穴拡大量が0.015mm以下で、高い加工精度が得られ、刃欠けによる心振れが殆ど無いと考えられる。α1=150°では、食付き性が悪くなるとともに負荷(スラスト荷重)が大きくなり、摩耗或いは刃欠けなどで求心性が低下し、加工に伴って徐々に穴拡大量が増加しているが、1000穴までの加工では穴拡大量が0.02mm以下で、実用上許容できる範囲である。α1=155°になると、食付き性が悪いとともに負荷(スラスト荷重)が大きく、1000穴以下の加工初期においても心振れなどで穴拡大量が0.02mm以上になり、許容範囲を超えている。   In FIG. 7, when α1 = 135 °, 140 °, and 145 °, all the processing up to 1000 holes has a hole expansion amount of 0.015 mm or less, high processing accuracy is obtained, and there is almost no runout due to the chipping of the blade. it is conceivable that. When α1 = 150 °, the biting property deteriorates and the load (thrust load) increases, the centripetality decreases due to wear or blade chipping, and the amount of hole expansion gradually increases with processing. In processing up to 1000 holes, the hole enlargement amount is 0.02 mm or less, which is practically acceptable. When α1 = 155 °, the bite resistance is poor and the load (thrust load) is large. Even in the initial processing of 1000 holes or less, the amount of expansion of the hole becomes 0.02 mm or more due to runout, which exceeds the allowable range. .

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

本発明の一実施例を説明する図で、前提となる低加工硬化超硬ドリルを示す図2の(b) に相当する図である。It is a figure explaining one Example of this invention, and is a figure equivalent to (b) of FIG. 2 which shows the low work hardening carbide drill used as a premise. 本発明の前提となる低加工硬化超硬ドリルの先端部形状を示す図である。It is a figure which shows the front-end | tip part shape of the low work hardening carbide drill used as the premise of this invention. 図2の超硬ドリルにおいてホーニングにより切れ刃に設けられたネガランドを説明する断面図である。It is sectional drawing explaining the negative land provided in the cutting blade by honing in the cemented carbide drill of FIG. 図2の超硬ドリルを基本とする幾つかの試験品について耐久性および加工硬化量を調べた結果を示す図である。It is a figure which shows the result of having investigated durability and the amount of work hardening about some test goods based on the cemented carbide drill of FIG. 図4の「定数/寿命時」の加工硬化量を加工穴数との関係でグラフにした図である。FIG. 5 is a graph showing the work hardening amount of “constant / lifetime” in FIG. 4 in relation to the number of processed holes. 図1における接続刃部の半径Rを変更した幾つかの試験品を用いて穴明け加工を行い、ドリル寿命および加工硬化量を調べた結果を示す図である。It is a figure which shows the result of having drilled using some test goods which changed the radius R of the connection blade part in FIG. 1, and having investigated the drill lifetime and work hardening amount. 図1における食付き刃部の先端角α1を変更した幾つかの試験品を用いて穴明け加工を行い、加工穴数と穴拡大量との関係を調べた結果を示す図である。It is a figure which shows the result of having drilled using some test goods which changed the front-end | tip angle (alpha) 1 of the biting blade part in FIG. 1, and having investigated the relationship between the number of process holes and a hole expansion amount.

符号の説明Explanation of symbols

14:切り屑排出溝 17:ネガランド 18:シンニング 50:低加工硬化超硬ドリル 52:切れ刃 54:食付き刃部 56:周辺刃部 58:接続刃部   14: Chip discharge groove 17: Negative land 18: Thinning 50: Low work hardening carbide drill 52: Cutting edge 54: Chamfering edge 56: Peripheral edge 58: Connection edge

Claims (2)

少なくとも先端の刃部が超硬合金にて構成されているとともに、被加工物の加工硬化量が少ない低加工硬化超硬ドリルであって、
ドリル先端の中心部分に設けられた先端角α1が135°〜150°の範囲内の食付き刃部と、
該食付き刃部よりも外周側に設けられるとともに、先端角α2が125°〜135°の範囲内で且つ前記先端角α1よりも小さい周辺刃部と、
該食付き刃部と該周辺刃部との境界に設けられ、軸心と直角方向から見た側面視において、前記先端角α1で傾斜している該食付き刃部と前記先端角α2で傾斜している該周辺刃部とを、ドリル径Dに対して0.01Dより大きく且つ0.4Dより小さい半径Rで滑らかに接続する凸円弧形状の接続刃部と、
を有して切れ刃が構成されている一方、
切り屑排出溝のねじれ角βは20°〜30°の範囲内で、
シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γは−5°〜+5°の範囲内である
ことを特徴とする低加工硬化超硬ドリル。
At least the cutting edge of the tip is made of cemented carbide and is a low work hardening cemented carbide drill with a small amount of work hardening of the workpiece ,
A chamfered blade portion having a tip angle α1 provided at the center of the drill tip in a range of 135 ° to 150 °;
A peripheral blade provided on the outer peripheral side of the biting blade and having a tip angle α2 within a range of 125 ° to 135 ° and smaller than the tip angle α1;
Provided at the boundary between the biting blade portion and the peripheral blade portion, and inclined at the tip angle α1 and the tip angle α2 when tilted at the tip angle α1 in a side view viewed from a direction perpendicular to the axis. and the peripheral edge portion that is, a connecting edge portion of the convex arcuate shape connected by large and 0.4D smaller radius R than 0.01D relative to the drill diameter D slidability Laka,
While the cutting edge is configured with
The twist angle β of the chip discharge groove is in the range of 20 ° to 30 °,
A low work hardening carbide drill characterized in that the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °.
切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされている
ことを特徴とする請求項1に記載の低加工硬化超硬ドリル。
The low work hardening cemented carbide drill according to claim 1, wherein a width L of a negative land provided at a cutting edge of the cutting edge is in a range of 0.05 to 0.15 mm.
JP2005193433A 2005-07-01 2005-07-01 Low work hardening carbide drill Active JP4471894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193433A JP4471894B2 (en) 2005-07-01 2005-07-01 Low work hardening carbide drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193433A JP4471894B2 (en) 2005-07-01 2005-07-01 Low work hardening carbide drill

Publications (2)

Publication Number Publication Date
JP2007007809A JP2007007809A (en) 2007-01-18
JP4471894B2 true JP4471894B2 (en) 2010-06-02

Family

ID=37746932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193433A Active JP4471894B2 (en) 2005-07-01 2005-07-01 Low work hardening carbide drill

Country Status (1)

Country Link
JP (1) JP4471894B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384873B2 (en) 2007-06-04 2013-02-26 Sharp Kabushiki Kaisha Drill for repairing point defect in liquid crystal device and method of manufacturing liquid crystal device
JP5599390B2 (en) * 2008-06-28 2014-10-01 フィルマ ギューリング オーハーゲー Multi-blade drilling tool
JP5823840B2 (en) * 2011-11-30 2015-11-25 富士重工業株式会社 Drill and cutting method
JP6011849B2 (en) * 2012-09-11 2016-10-19 株式会社不二越 Step drill
JP5584790B1 (en) * 2013-02-27 2014-09-03 株式会社タンガロイ Drill tip structure and drill and drill head having the tip structure
CN106573317B (en) * 2014-09-19 2018-10-16 住友电工硬质合金株式会社 Drill bit
CN118613341A (en) 2022-06-29 2024-09-06 住友电工硬质合金株式会社 Drill bit and cutting method

Also Published As

Publication number Publication date
JP2007007809A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4418408B2 (en) Step drill
US9511424B2 (en) Drill
WO2010050391A1 (en) Ball end mill
US20060039767A1 (en) Carbide drill capable of drilling hole with reduced degree of work hardening
JP4471894B2 (en) Low work hardening carbide drill
WO2013035166A1 (en) Drill
WO2010038279A1 (en) Drill
EP2698219B1 (en) Drill
KR20060009921A (en) Drilling tool for cutting cast materials
WO2010086988A1 (en) Double angle drill
JP2017202541A (en) Drill reamer
JP2006281407A (en) Machining drill for nonferrous metal
JP5077996B2 (en) Carbide twist drill
KR20200096983A (en) drill
JP3985713B2 (en) Drill
JP2008142834A (en) Drill
JP2007007808A (en) Cemented carbide drill causing low work hardening
JP2006326752A (en) Drill
JP2002126925A (en) Twist drill
JP2002126927A (en) Twist drill
JP4725369B2 (en) Drill
JP4053295B2 (en) Drilling tool
JP2002126926A (en) Twist drill
WO2010050390A1 (en) Ball end mill
JP2005205526A (en) Deep hole boring tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250