JP2007007808A - Cemented carbide drill causing low work hardening - Google Patents

Cemented carbide drill causing low work hardening Download PDF

Info

Publication number
JP2007007808A
JP2007007808A JP2005193432A JP2005193432A JP2007007808A JP 2007007808 A JP2007007808 A JP 2007007808A JP 2005193432 A JP2005193432 A JP 2005193432A JP 2005193432 A JP2005193432 A JP 2005193432A JP 2007007808 A JP2007007808 A JP 2007007808A
Authority
JP
Japan
Prior art keywords
tip
cutting edge
work hardening
angle
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005193432A
Other languages
Japanese (ja)
Inventor
Jiro Osawa
二朗 大沢
Takehiro Yamamoto
剛広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2005193432A priority Critical patent/JP2007007808A/en
Publication of JP2007007808A publication Critical patent/JP2007007808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve shortage of strength in the central part of the tip in the case of machining a large-diameter hole in a cemented carbide drill causing low work hardening, in which work hardening amount is comparatively smaller even in drilling an easy-to-quench material such as high carbon steel. <P>SOLUTION: The tip angle α1 of a chamfer blade part 54 provided inside the central part of a drill tip, that is, a predetermined boundary diameter dimension (d), ranges from 135° to 150°, and it is set larger than the tip angle α2 of the peripheral blade part 56, so that the strength of the central part is made higher without impairing the strength of a shoulder part 22, whereby even in a large-diameter cemented carbide drill for machining a large-diameter hole (e.g. a bore diameter 12 mm or more), which requires high load in drilling, loss of the cutting blade 52 of the tip central part, that is, the chamfer blade part 54 is restrained to obtain practically satisfactory durability. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超硬ドリルに係り、特に、被加工物の加工硬化量が少ない低加工硬化超硬ドリルに関するものである。   The present invention relates to a cemented carbide drill, and more particularly to a low-work-hardening cemented carbide drill with a small work-hardening amount of a workpiece.

超硬合金にて構成されている超硬ドリルが、例えば特許文献1等に記載されており、自動車のハブに対する穴明け加工では、一般に先端角が140°程度で、切り屑排出溝のねじれ角が30°程度の超硬ドリルが使用されている。
特開2001−300808号公報
A cemented carbide drill made of cemented carbide is described in, for example, Patent Document 1 and the like, and in drilling a hub of an automobile, the tip angle is generally about 140 °, and the twist angle of the chip discharge groove Carbide drills of about 30 ° are used.
JP 2001-300808 A

しかしながら、ドリルによる穴明け加工では、被加工物の弾性などで加工穴の内周面とドリル(リーディングエッジ)とが接触することが避けられず、高炭素鋼等の焼入れし易い材料の場合、摩擦熱による焼入れ効果で表面が加工硬化する。例えば、前記ハブ等に用いられるS55C炭素鋼の場合、内部硬度が300HV程度であるのに対し、加工穴の表面は750HV以上にもなることがあり、後工程のタップ加工においてタップ寿命が短くなったり、ボルト等の圧入が不可になったりすることがあった。なお、このような加工硬化は、新品の超硬ドリルでは殆ど問題にならないが、使用によって特に肩部(切れ刃とリーディングエッジとのコーナー部分)が摩耗したり欠けたりすることにより、顕著となる。   However, in drilling with a drill, it is inevitable that the inner peripheral surface of the drilled hole and the drill (leading edge) are in contact with each other due to the elasticity of the workpiece, and in the case of a material that is easy to quench, such as high carbon steel, The surface is work hardened by the quenching effect of frictional heat. For example, in the case of S55C carbon steel used for the hub or the like, the internal hardness is about 300 HV, but the surface of the processed hole may be 750 HV or more, and the tap life is shortened in the subsequent tap processing. Or press fitting such as bolts may become impossible. Such work hardening hardly becomes a problem with a new cemented carbide drill, but becomes noticeable particularly when the shoulder (the corner between the cutting edge and the leading edge) is worn or chipped by use. .

これに対し、未だ公知ではないが、本願出願人は、先に出願した特願2004−242446号において、先端角αが125°〜135°の範囲内で、切り屑排出溝のねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であることを特徴とする低加工硬化超硬ドリルを提案した。このような低加工硬化超硬ドリルによれば、先端角αが125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ肩部のコーナー角度θが大きくなり、肩欠けや肩だれが抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部およびシンニング部分を含む切れ刃の刃先強度と切れ味が両立し、肩部の欠けや切れ刃の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。そして、このように肩部の欠けや切れ刃の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることから、長期に亘って優れた加工精度が得られるようになり、リーディングエッジと加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   On the other hand, although not yet known, the applicant of the present application described in Japanese Patent Application No. 2004-242446 filed earlier, the tip angle α is in the range of 125 ° to 135 °, and the twist angle β of the chip discharge groove is Low work hardening cemented carbide drill, characterized in that the axial rake angle γ of the cutting edge near the axial center formed by thinning is within the range of -5 ° to + 5 ° within the range of 20 ° to 30 °. Proposed. According to such a low work hardening carbide drill, since the tip angle α is smaller than the conventional 140 ° within the range of 125 ° to 135 °, the corner angle θ of the shoulder is increased accordingly. , Lack of shoulders and drooping are suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °, the shoulder portion and The edge strength and sharpness of the cutting edge including the thinning portion are compatible, and a predetermined sharpness can be secured while suppressing chipping of the shoulder, cutting edge of the cutting edge, chipping, and the like. And since the chipping of the shoulder portion, chipping of the cutting edge, chipping and the like are suppressed in this way and a predetermined sharpness is obtained, excellent machining accuracy can be obtained over a long period of time, and the leading edge and Friction with the machining hole is reduced, and work hardening due to frictional heat is suppressed.

しかしながら、このように先端角αが比較的小さい低加工硬化超硬ドリルにおいては、例えば穴径が12mm以上の大径穴を加工する場合、穴明け加工時の負荷(スラスト荷重)が大きくなるため、先端角αが130°程度では強度が不足し、先端中心部分で切れ刃が早期に欠損して加工不可になることがあった。   However, in such a low work hardening cemented carbide drill with a relatively small tip angle α, for example, when machining a large-diameter hole having a hole diameter of 12 mm or more, the load (thrust load) during drilling becomes large. When the tip angle α is about 130 °, the strength is insufficient, and the cutting edge may be damaged early in the center of the tip, making it impossible to process.

本発明は以上の事情を背景として為されたもので、その目的とするところは、高炭素鋼等の焼入れし易い材料に対する穴明け加工においても加工硬化量が比較的少ない低加工硬化超硬ドリルにおいて、大径穴を加工する場合の先端中心部分の強度不足を改善することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is a low work hardening carbide drill with a relatively small work hardening amount even in the drilling process for easily hardened materials such as high carbon steel. Is to improve the lack of strength at the center of the tip when machining a large-diameter hole.

かかる目的を達成するために、第1発明は、少なくとも先端の刃部が超硬合金にて構成されている超硬ドリルであって、(a) ドリル先端の中心部分に設けられた先端角α1が135°〜150°の範囲内の食付き刃部と、(b) その食付き刃部の外周側に連続して設けられるとともに、先端角α2が125°〜135°の範囲内で且つ前記先端角α1よりも小さい周辺刃部と、を有して切れ刃が構成されているとともに、(c) それ等の食付き刃部と周辺刃部との境界の径寸法dは、ドリル径Dに対して0.2Dより大きく且つ0.9Dより小さい一方、(d) 切り屑排出溝のねじれ角βは20°〜30°の範囲内で、(e) シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γは−5°〜+5°の範囲内であることを特徴とする。   In order to achieve this object, the first invention is a cemented carbide drill in which at least the tip of the blade is made of cemented carbide, and (a) a tip angle α1 provided at the center of the drill tip. Biting blade portion within the range of 135 ° to 150 °, and (b) continuously provided on the outer peripheral side of the biting blade portion, and the tip angle α2 within the range of 125 ° to 135 ° and the above The cutting edge is configured to have a peripheral cutting edge smaller than the tip angle α1, and (c) the diameter d of the boundary between the biting cutting edge and the peripheral cutting edge is defined as a drill diameter D Is larger than 0.2D and smaller than 0.9D, while (d) the torsion angle β of the chip discharge groove is within the range of 20 ° to 30 °, and (e) near the axis formed by thinning. The axial rake angle γ of the cutting edge is in the range of −5 ° to + 5 °.

第2発明は、第1発明の低加工硬化超硬ドリルにおいて、切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされていることを特徴とする。   The second invention is characterized in that, in the low work hardening cemented carbide drill of the first invention, the width dimension L of the negative land provided at the cutting edge of the cutting edge is in the range of 0.05 to 0.15 mm. .

このような低加工硬化超硬ドリルにおいては、ドリル先端の外周部分に設けられる周辺刃部の先端角α2が125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ肩部のコーナー角度θ(図2参照)が大きくなり、肩欠けや肩だれが抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部およびシンニング部分を含む切れ刃の刃先強度と切れ味が両立し、肩部の欠けや切れ刃の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。そして、このように肩部の欠けや切れ刃の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることにより、長期に亘って優れた加工精度が得られるようになり、リーディングエッジと加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   In such a low work hardening carbide drill, the tip angle α2 of the peripheral cutting edge provided at the outer peripheral portion of the tip of the drill is smaller than the conventional 140 ° within the range of 125 ° to 135 °. The corner angle θ of the shoulder portion (see FIG. 2) is increased by that amount, and shoulder chipping and shoulder slip are suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °, the shoulder portion and The edge strength and sharpness of the cutting edge including the thinning portion are compatible, and a predetermined sharpness can be secured while suppressing chipping of the shoulder, cutting edge of the cutting edge, chipping, and the like. In addition, by suppressing the chipping of the shoulder portion, the chipping of the cutting edge, chipping, etc. and obtaining a predetermined sharpness, excellent machining accuracy can be obtained over a long period of time, and the leading edge and Friction with the machining hole is reduced, and work hardening due to frictional heat is suppressed.

一方、ドリル先端の中心部分、すなわちドリル径Dに対して0.2Dより大きく且つ0.9Dより小さい範囲内で定められた所定の境界径寸法dよりも内側に設けられる食付き刃部の先端角α1は、135°〜150°の範囲内で、上記先端角α2よりも大きくされているため、前記肩部の強度を損なうことなく中心部分の強度を高くすることができ、穴明け加工時の負荷が大きい大径穴(例えば穴径が12mm以上)を加工する大径の超硬ドリルにおいても、先端中心部分の切れ刃(食付き刃部)の欠損が抑制されて、実用上満足できる耐久性が得られるようになる。   On the other hand, the center portion of the drill tip, that is, the tip of the biting blade provided inside the predetermined boundary diameter dimension d determined within a range larger than 0.2D and smaller than 0.9D with respect to the drill diameter D Since the angle α1 is larger than the tip angle α2 within the range of 135 ° to 150 °, the strength of the central portion can be increased without impairing the strength of the shoulder, Even in large-diameter carbide drills that process large-diameter holes with a large load (for example, a hole diameter of 12 mm or more), chipping of the cutting edge (cutting edge portion) at the center of the tip is suppressed, which is practically satisfactory. Durability can be obtained.

なお、このように先端角を途中で変化させると、その境界部分には先端角α1、α2の相違に基づいて角部が生じるが、先端角α1は135°〜150°の範囲内で、先端角α2は125°〜135°の範囲内であるため、角部の交差角度(外角)は最大でも25°であり、応力集中による欠損等が抑制される。但し、食付き刃部と周辺刃部とを所定の円弧で滑らかに接続することも可能で、その場合には境界角部の欠損等が一層効果的に防止される。   In addition, when the tip angle is changed in the middle as described above, a corner portion is generated at the boundary portion based on the difference between the tip angles α1 and α2, and the tip angle α1 is within the range of 135 ° to 150 °. Since the angle α2 is in the range of 125 ° to 135 °, the crossing angle (outer angle) of the corner is 25 ° at the maximum, and defects due to stress concentration are suppressed. However, it is also possible to smoothly connect the biting blade portion and the peripheral blade portion with a predetermined arc, and in this case, the breakage of the boundary corner portion and the like can be more effectively prevented.

第2発明では、ホーニング等により切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされているため、切れ刃の刃先強度と切れ味が両立し、長期に亘って優れた加工精度が得られるようになって、摩擦熱による加工硬化が一層抑制される。   In the second invention, the width L of the negative land provided at the cutting edge of the cutting edge by honing or the like is in the range of 0.05 to 0.15 mm. Thus, excellent processing accuracy can be obtained, and work hardening due to frictional heat is further suppressed.

本発明の低加工硬化超硬ドリルは、例えばシャンクを含むドリル全体が超硬合金にて一体に構成されるが、シャンクや溝部を超硬合金以外の材料製として、超硬合金製の先端刃部をろう付や焼き嵌め等の結合手段により一体的に結合したものでも良い。また、2枚刃の超硬ドリルに好適に適用されるが、3枚刃以上のドリルに適用することも可能である。   The low work hardening cemented carbide drill of the present invention, for example, the entire drill including the shank is integrally formed of cemented carbide, but the tip of the cemented carbide is made with the shank and the groove made of a material other than cemented carbide. The part may be integrally coupled by a coupling means such as brazing or shrink fitting. Although it is suitably applied to a two-blade carbide drill, it can also be applied to a three-blade or more drill.

本発明は、ドリル径Dが12mm以上の大径の低加工硬化超硬ドリルに好適に適用されるが、12mmより小さい低加工硬化超硬ドリルにも適用され得る。   The present invention is suitably applied to a low work hardening cemented carbide drill having a large drill diameter D of 12 mm or more, but can also be applied to a low work hardening carbide drill smaller than 12 mm.

中心部分の食付き刃部における先端角α1が135°より小さいと、その中心部分の強度不足を改善することができない一方、150°よりも大きいと、食付き性が悪くなって心振れが生じ易くなり、穴が拡大したり加工硬化量が大きくなったりする。   If the tip angle α1 at the biting edge of the central portion is smaller than 135 °, insufficient strength at the central portion cannot be improved. On the other hand, if it is larger than 150 °, the biting property is deteriorated and the runout occurs. It becomes easy and the hole is enlarged or the work hardening amount is increased.

外周側の周辺刃部における先端角α2が135°よりも大きいと、コーナー角度θが小さくなって肩部の強度が低下し、肩欠けや肩だれが生じ易くなる一方、125°よりも小さいと、先端角α1の食付き刃部を設けたとしても中心部分の強度が不足し勝ちになるとともに、食付き刃部との境界の角部の交差角度が大きくなって、その境界角部で刃欠けやチッピング等が生じ易くなる。周辺刃部と食付き刃部とを所定の円弧で滑らかに接続すれば、境界角部の刃欠けやチッピング等が一層効果的に防止される。   When the tip angle α2 at the peripheral edge portion on the outer peripheral side is larger than 135 °, the corner angle θ is decreased, the strength of the shoulder portion is lowered, and shoulder chipping and shoulder swelling are likely to occur. Even if a chamfered blade portion having a tip angle α1 is provided, the strength of the central portion tends to be insufficient, and the intersection angle of the boundary portion with the chamfered blade portion becomes large, and the blade at the boundary corner portion Chipping and chipping are likely to occur. If the peripheral blade portion and the biting blade portion are smoothly connected with a predetermined arc, blade chipping or chipping at the boundary corner portion can be more effectively prevented.

先端角α1が大きい食付き刃部と先端角α2が小さい周辺刃部との境界の径寸法dが0.2D以下では、大きい先端角α1の食付き刃部を設けることによる効果が十分に得られず、中心部分の強度不足を十分に改善することができない一方、0.9D以上になると、小さい先端角α2の周辺刃部の領域が狭くなり、肩部の強度が不足して肩欠け等が生じ易くなる。この境界径寸法dは、0.2Dより大きく且つ0.9Dより小さい範囲内であれば良いが、0.3D〜0.7Dの範囲内が一層望ましい。なお、食付き刃部と周辺刃部とを円弧により滑らかに接続した場合の境界径寸法dの位置は、直線状の食付き刃部および周辺刃部をそれぞれ延長した交点の位置である。   When the diameter d of the boundary between the cutting edge portion having a large tip angle α1 and the peripheral blade portion having a small tip angle α2 is 0.2 D or less, the effect obtained by providing the cutting blade portion having a large tip angle α1 is sufficiently obtained. Insufficient strength at the center portion cannot be sufficiently improved, but when it becomes 0.9D or more, the area of the peripheral blade portion with a small tip angle α2 becomes narrow, the strength of the shoulder portion becomes insufficient, and the shoulder portion is lost. Is likely to occur. The boundary diameter d may be in a range larger than 0.2D and smaller than 0.9D, but more preferably in a range of 0.3D to 0.7D. In addition, the position of the boundary diameter dimension d when the biting blade portion and the peripheral blade portion are smoothly connected by an arc is the position of the intersection where the linear biting blade portion and the peripheral blade portion are respectively extended.

切り屑排出溝のねじれ角βは、30°よりも大きいと肩部を含む切れ刃の刃先強度が低下して刃欠けやチッピング、肩欠けが生じ易くなる一方、20°よりも小さいと切れ味が悪くなって耐久性能、加工精度が低下する。   When the twist angle β of the chip discharge groove is larger than 30 °, the cutting edge strength of the cutting edge including the shoulder portion is reduced, and chipping, chipping and shoulder chipping are likely to occur. It becomes worse and durability performance and processing accuracy decrease.

シンニングにより形成された中心部分の切れ刃の軸方向すくい角γは、+5°よりも大きいと刃先強度が低下して刃欠けやチッピングが生じ易くなる一方、−5°よりも小さいと切れ味が悪くなって切削抵抗が増大するとともに、加工精度が低下する。   When the axial rake angle γ of the central cutting edge formed by thinning is larger than + 5 °, the strength of the blade edge is reduced and chipping and chipping are likely to occur, whereas when it is smaller than −5 °, the sharpness is poor. As a result, the cutting resistance increases and the processing accuracy decreases.

切れ刃の刃先に設けられるネガランドの幅寸法Lは、0.15mmよりも大きいと切れ味が悪くなって加工精度が低下する一方、0.05mmよりも小さいと刃先強度が低下して刃欠けやチッピングが生じ易くなる。この切れ刃の刃先のネガランドの形成(丸み付け)にはホーニングが好適に用いられる。   If the width L of the negative land provided at the cutting edge of the cutting edge is larger than 0.15 mm, the sharpness is deteriorated and the machining accuracy is lowered. On the other hand, if the width dimension L is smaller than 0.05 mm, the cutting edge strength is lowered and the chipping or chipping is reduced. Is likely to occur. Honing is preferably used for forming (rounding) the negative land of the cutting edge.

また、本発明の低加工硬化超硬ドリルには、必要に応じてTiAlN等の硬質被膜が設けられる。   Further, the low work hardening cemented carbide drill of the present invention is provided with a hard coating such as TiAlN if necessary.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図2は、本発明の前提となる低加工硬化超硬ドリル10を説明する図で、先端部分を示す図であり、中央の(a) はドリル先端側から見た正面図、その周囲の(b) 〜(d) はそれぞれ軸心Oと直角方向から見た側面図である。この低加工硬化超硬ドリル10は、全体が超硬合金にて一体に構成されているもので、外周面には一対の切り屑排出溝14が設けられているとともに、切り屑排出溝14のドリル先端側の開口部にはそれぞれ切れ刃16が形成されている。切れ刃16の中心側部分にはシンニング18が施されて、軸心O付近まで達しているとともに、この切れ刃16にはホーニングが施されて刃先にネガランド17(図3参照)が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a diagram for explaining a low work hardening carbide drill 10 which is a premise of the present invention, and is a view showing a tip portion. (A) in the center is a front view seen from the drill tip side, and (( b) to (d) are side views as seen from the direction perpendicular to the axis O, respectively. The low work hardening cemented carbide drill 10 is integrally formed of a cemented carbide alloy, and a pair of chip discharge grooves 14 are provided on the outer peripheral surface. A cutting edge 16 is formed in each opening on the drill tip side. A thinning 18 is applied to the central portion of the cutting edge 16 to reach the vicinity of the axis O, and the cutting edge 16 is subjected to honing and a negative land 17 (see FIG. 3) is provided at the cutting edge. Yes.

そして、この低加工硬化超硬ドリル10の先端角αは125°〜135°の範囲内で、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成された軸心付近の切れ刃16の軸方向すくい角γは−5°〜+5°の範囲内(図2はすくい角γ<0の場合)で、ホーニングによって形成される切れ刃16の刃先のネガランド17の幅寸法(ネガランド幅)Lは0.05〜0.15mmの範囲内である。ネガランド幅Lは、図3に示すように切れ刃16の刃先の稜線に直角な断面において、切れ刃16のすくい面24と逃げ面26との交点部分にホーニングによって形成される比較的平坦な部分の幅寸法である。なお、この低加工硬化超硬ドリル10の表面には、ホーニングの後にTiAlN等の硬質被膜28が数μmの膜厚でコーティングされているが、上記ネガランド幅Lは、硬質被膜28で被覆された後の状態の寸法である。   The tip angle α of the low work hardening carbide drill 10 is formed by the thinning 18 within a range of 125 ° to 135 °, and the twist angle β of the chip discharge groove 14 is within a range of 20 ° to 30 °. The rake angle γ in the axial direction of the cutting edge 16 near the center of the axis is in the range of −5 ° to + 5 ° (FIG. 2 shows a rake angle γ <0), and the negative land of the cutting edge 16 formed by honing. The width dimension (negative land width) L of 17 is in the range of 0.05 to 0.15 mm. The negative land width L is a relatively flat portion formed by honing at the intersection of the rake face 24 and the flank face 26 of the cutting edge 16 in a cross section perpendicular to the edge line of the cutting edge 16 as shown in FIG. Is the width dimension. The surface of the low work hardening cemented carbide drill 10 is coated with a hard coating 28 such as TiAlN with a thickness of several μm after honing, but the negative land width L is coated with the hard coating 28. It is the dimension in the later state.

このような低加工硬化超硬ドリル10においては、先端角αが125°〜135°の範囲内で、従来の140°に比較して小さいため、その分だけ切れ刃16とリーディングエッジ20とが交差する肩部22のコーナー角度θが大きくなり、肩部22の欠損や微小チッピング(肩欠け)、或いはそれに伴う肩部22のだれ(肩だれ)が抑制される。また、ねじれ角βが20°〜30°の範囲内で、シンニング18により形成された軸心付近の切れ刃16の軸方向すくい角γが−5°〜+5°の範囲内であるため、肩部22およびシンニング部分を含む切れ刃16の刃先強度と切れ味が両立し、肩部22の欠けや切れ刃16の刃欠け、チッピング等を抑制しつつ所定の切れ味を確保することができる。更に、ホーニングによって形成される切れ刃16の刃先のネガランド17の幅寸法Lが0.05〜0.15mmの範囲内であるため、切れ刃16の刃先強度と切れ味が両立する。   In such a low work hardening cemented carbide drill 10, the tip angle α is smaller than the conventional 140 ° within the range of 125 ° to 135 °, so that the cutting edge 16 and the leading edge 20 are correspondingly reduced. The corner angle θ of the intersecting shoulder portions 22 is increased, and loss of the shoulder portions 22 and minute chipping (shoulder missing), or the accompanying sagging (shouldering) of the shoulder portion 22 is suppressed. Further, since the twist angle β is in the range of 20 ° to 30 ° and the axial rake angle γ of the cutting edge 16 near the axis formed by the thinning 18 is in the range of −5 ° to + 5 °, the shoulder The cutting edge 16 including the portion 22 and the thinning portion has both cutting edge strength and sharpness, and a predetermined sharpness can be secured while suppressing chipping of the shoulder 22, cutting of the cutting edge 16, chipping, and the like. Furthermore, since the width dimension L of the negative land 17 of the cutting edge 16 of the cutting edge 16 formed by honing is in the range of 0.05 to 0.15 mm, the cutting edge strength and sharpness of the cutting edge 16 are compatible.

このように、肩部22の欠けや切れ刃16の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られることにより、長期に亘って優れた加工精度が得られるようになり、リーディングエッジ20と加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される。   As described above, the chipping of the shoulder portion 22, the chipping of the cutting edge 16, chipping and the like are suppressed and a predetermined sharpness is obtained, so that excellent processing accuracy can be obtained over a long period of time, leading edge Friction between 20 and the machining hole is reduced, and work hardening due to frictional heat is suppressed.

図4は、14種類の試験品を用いて、以下に示す加工条件で穴明け加工を行い、耐久性能および加工硬化量を調べた結果を説明する図である。試験品No1〜No14のうち、試験品No4〜No7、No9、およびNo10の6種類が、前記低加工硬化超硬ドリル10の各部の諸元を満足し、本発明の前提となる試験品(以下、発明前提品という)で、その他は比較品である。また、各試験品の先端角αおよびねじれ角βは、図4に示す通りであるが、シンニング18の軸方向すくい角γ、およびホーニングによって設けられる切れ刃16の刃先のネガランド17の幅寸法Lについては、総ての試験品についてγ=0°、L=0.10mmである。なお、発明前提品(試験品No4〜No7、No9、No10)は、ドリル先端の中心部分に135°〜150°の先端角α1の食付き刃部を備えていない点を除いて本発明を満足するもので、切れ刃16の外周側部分(周辺刃部)の先端角α(=α2)は125°〜135°の範囲内で、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成された軸心O付近の切れ刃16の軸方向すくい角γは−5°〜+5°の範囲内である。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :10.8mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
FIG. 4 is a diagram for explaining the results of drilling under the following processing conditions using 14 types of test products and examining the durability performance and the work hardening amount. Among the test products No1 to No14, 6 types of test products No4 to No7, No9, and No10 satisfy the specifications of each part of the low work hardening carbide drill 10 and are the test products that are the premise of the present invention (hereinafter referred to as the test products). Others are comparative products. Further, the tip angle α and the twist angle β of each test product are as shown in FIG. 4, but the axial rake angle γ of the thinning 18 and the width dimension L of the negative land 17 of the cutting edge 16 provided by honing. For all the test products, γ = 0 ° and L = 0.10 mm. In addition, invention premise products (test products No. 4 to No. 7, No. 9, and No. 10) satisfy the present invention except that the central portion of the drill tip is not provided with a biting blade portion having a tip angle α1 of 135 ° to 150 °. The tip angle α (= α2) of the outer peripheral side portion (peripheral blade portion) of the cutting edge 16 is in the range of 125 ° to 135 °, and the twist angle β of the chip discharge groove 14 is 20 ° to 30 °. In this range, the axial rake angle γ of the cutting edge 16 near the axis O formed by the thinning 18 is in the range of −5 ° to + 5 °.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 10.8mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図4において、「耐久性能(穴数)」は、4000を定数として穴明け加工を行い、それまでにドリルが寿命に達した場合は、その寿命に達するまでの加工穴数で、寿命原因は「備考」に記載した通りである。「加工硬化量(HV0.2)」は、穴明け加工を行った後の加工表面のビッカース硬さXと、加工硬化している表層部を除去した内部のビッカース硬さYを、1.96N(200gf)の試験荷重でそれぞれ測定し、XからYを引き算した値(X−Y)であり、「初期」は加工開始当初の加工穴について調べた結果で、「定数/寿命時」は、4000まで加工できた場合はその4000番目の加工穴について調べた結果で、途中で寿命に達したものは、その寿命に達した時の加工穴について調べた結果である。また、図5は、図4の各試験品No1〜No14について、「定数/寿命時」における加工硬化量を加工穴数(耐久性能)との関係でグラフにしたもので、「○」は発明前提品、「×」は比較品であり、それ等の右側の数字は試験品Noである。   In FIG. 4, “durability (number of holes)” is the number of holes until the end of the drill when the drill has reached the end of its life with a constant of 4000. As described in “Remarks”. The “work hardening amount (HV0.2)” is 1.96 N of the Vickers hardness X of the processed surface after drilling and the internal Vickers hardness Y after removing the work hardened surface layer portion. It is a value (XY) obtained by subtracting Y from X, each measured at a test load of (200 gf). “Initial” is a result of examining the machining hole at the beginning of machining, and “constant / lifetime” is When processing was performed up to 4000, the 4000th processing hole was examined, and the one that reached the end of its life was the result of examining the processing hole when that life was reached. FIG. 5 is a graph showing the amount of work hardening at “constant / lifetime” in relation to the number of processed holes (durability) for each of the test products No. 1 to No. 14 in FIG. The prerequisite product, “×” is a comparative product, and the numbers on the right side of them are the test product No.

そして、図4、図5から明らかなように、試験品No4〜No7、No9、およびNo10の発明前提品は、何れも定数4000まで穴明け加工を行うことができる。また、加工硬化量については、「初期」の段階では発明前提品、比較品共に大差がないが、「定数/寿命時」では、発明前提品は4000個加工した段階で191〜259の範囲内であるのに対し、4000個加工の比較品(試験品No12、13、14)の加工硬化量は380〜455であり、発明前提品は比較品に比べて加工硬化量が100以上低下する。先端角α=120°の試験品No1〜No3については、早期に先端部に欠けが発生して穴精度が悪化し、十分な耐久性が得られない。   As is clear from FIGS. 4 and 5, all of the test prerequisites No. 4 to No. 7, No. 9 and No. 10 can be drilled to a constant of 4000. Regarding the work hardening amount, there is no great difference between the premise invention and the comparative product at the “initial” stage, but within the range of 191 to 259 at the stage where 4000 premise inventions were processed at the “constant / lifetime” stage. On the other hand, the work-curing amount of the 4000 processed comparative products (test products No. 12, 13, and 14) is 380 to 455, and the work-hardening amount of the invention premise product is reduced by 100 or more compared to the comparative product. For the test products No1 to No3 with the tip angle α = 120 °, the tip portion is chipped early, the hole accuracy is deteriorated, and sufficient durability cannot be obtained.

また、発明前提品(試験品No6)および比較品(試験品No14)を用いて形成した加工穴に対してタップ立てを行ったところ、比較品ではタップ寿命が1000穴程度であったのに対し、発明前提品では1250穴以上加工することが可能で、タップ寿命が25%以上向上することが確認できた。   Further, when tapping was performed on a processed hole formed using the invention premise product (test product No. 6) and the comparative product (test product No. 14), the comparative product had a tap life of about 1000 holes. In the invention premise product, it was possible to process 1250 holes or more, and it was confirmed that the tap life was improved by 25% or more.

また、別の試験結果によれば、定数加工3200穴加工した段階で、比較品(先端角α=140°、ねじれ角β=35°)では加工硬化量が405(HV0.2)で、硬化層厚さが0.02mmであったのに対し、発明前提品(先端角α=130°、ねじれ角β=25°)では加工硬化量が162(HV0.2)で、硬化層厚さが0.01mmであり、加工硬化量については240(HV0.2)低下し、硬化層厚さについては半分になるという結果も得られた。これは初期の加工硬化と同等の数値である。   Further, according to another test result, at the stage of constant machining 3200 holes, the comparative product (tip angle α = 140 °, torsion angle β = 35 °) has a work hardening amount of 405 (HV 0.2) and is cured. Whereas the layer thickness was 0.02 mm, the precondition of the invention (tip angle α = 130 °, helix angle β = 25 °) had a work hardening amount of 162 (HV 0.2), and the cured layer thickness was The result was that the thickness was 0.01 mm, the work hardening amount was reduced by 240 (HV 0.2), and the cured layer thickness was halved. This is a numerical value equivalent to the initial work hardening.

一方、このような低加工硬化超硬ドリル10においても、例えば穴径が12mm以上の大径穴を加工する場合には、穴明け加工時の負荷が大きくなり、先端角αが130°程度では強度が不足して、先端中心部分で切れ刃16が早期に欠損して加工不可になることがあった。このため、本実施例では、図1に示す低加工硬化超硬ドリル50のように、ドリル先端の中心部分に先端角α1が135°〜150°の範囲内の食付き刃部54を設けた。この食付き刃部54は、点線で示す発明前提品(低加工硬化超硬ドリル10)に対して、先端角α1に応じて逃げ面(二番面)の研削加工を施すことによって設けられ、その後に前記シンニング18やホーニングを施せば良い。食付き刃部54は、ドリル径Dに対して0.2Dより大きく且つ0.9Dより小さい範囲内で定められた所定の境界径寸法dよりも中心側部分に設けられており、それよりも外側の周辺刃部56の先端角α2は、前記低加工硬化超硬ドリル10の先端角αと同じであり、これ等の食付き刃部54および周辺刃部56によって切れ刃52が構成されている。また、大きな先端角α1(>α2)の食付き刃部54が設けられていること以外は前記低加工硬化超硬ドリル10と同じ構成であり、実質的に共通する部分には同一の符号を付して詳しい説明を省略するが、切り屑排出溝14のねじれ角βは20°〜30°の範囲内で、シンニング18により形成される軸心O付近の切れ刃52の軸方向すくい角γは−5°〜+5°の範囲内で、ホーニングにより切れ刃52の刃先に設けられるネガランドの幅寸法Lは0.05〜0.15mmの範囲内である。図1は、図2の(b) に相当する図である。   On the other hand, even in such a low work hardening carbide drill 10, for example, when machining a large diameter hole having a hole diameter of 12 mm or more, the load at the time of drilling becomes large, and the tip angle α is about 130 °. Insufficient strength sometimes caused the cutting edge 16 to break early in the center of the tip, making machining impossible. For this reason, in this embodiment, like the low work hardening carbide drill 50 shown in FIG. 1, a chamfered blade portion 54 having a tip angle α1 in the range of 135 ° to 150 ° is provided at the center of the tip of the drill. . The biting blade portion 54 is provided by grinding the flank (second surface) according to the tip angle α1 with respect to the invention premise product (low work hardening carbide drill 10) indicated by a dotted line, Thereafter, the thinning 18 and honing may be performed. The biting blade portion 54 is provided in the center side portion of a predetermined boundary diameter dimension d determined within a range larger than 0.2D and smaller than 0.9D with respect to the drill diameter D, and more than that. The tip angle α2 of the outer peripheral blade portion 56 is the same as the tip angle α of the low work hardening carbide drill 10, and the cutting edge 52 is constituted by the biting blade portion 54 and the peripheral blade portion 56. Yes. Moreover, it is the same structure as the said low work hardening cemented carbide drill 10 except the biting blade part 54 of big tip angle | corner (alpha) 1 (> (alpha) 2) being provided, and the same code | symbol is attached to a substantially common part. However, the twist angle β of the chip discharge groove 14 is in the range of 20 ° to 30 °, and the axial rake angle γ of the cutting edge 52 near the axis O formed by the thinning 18 is omitted. Is in the range of −5 ° to + 5 °, and the width dimension L of the negative land provided at the cutting edge of the cutting edge 52 by honing is in the range of 0.05 to 0.15 mm. FIG. 1 corresponds to (b) of FIG.

そして、このような本実施例の低加工硬化超硬ドリル50によれば、ドリル先端の中心部分、すなわち境界径寸法dよりも内側に設けられる食付き刃部54の先端角α1が135°〜150°の範囲内で、周辺刃部56の先端角α2(=α)よりも大きくされているため、肩部22の強度を損なうことなく中心部分の強度が高くなり、穴明け加工時の負荷が大きい大径穴(例えば穴径が12mm以上)を加工する大径の超硬ドリルにおいても、先端中心部分の切れ刃52すなわち食付き刃部54の欠損が抑制されて、実用上満足できる耐久性が得られるようになる。   And according to such a low work hardening cemented carbide drill 50 of a present Example, the front-end | tip angle (alpha) 1 of the biting blade part 54 provided inside the center part of the drill front-end | tip, ie, the boundary diameter dimension d, is 135 degrees-. Since it is larger than the tip angle α2 (= α) of the peripheral blade 56 within the range of 150 °, the strength of the central portion is increased without impairing the strength of the shoulder portion 22, and the load during drilling Even in large-diameter carbide drills that process large-diameter holes with a large diameter (for example, a hole diameter of 12 mm or more), chipping of the cutting edge 52 at the center of the tip, that is, the chamfered blade portion 54 is suppressed, and durability that can be satisfied in practice Sex can be obtained.

なお、このように先端角を途中で変化させると、その境界部分には先端角α1、α2の相違に基づいて角部が生じるが、先端角α1は135°〜150°の範囲内で、先端角α2は125°〜135°の範囲内であるため、角部の交差角度(外角)は最大でも25°であり、応力集中による欠損等が抑制される。特に、その角部、すなわち食付き刃部54と周辺刃部56との境界部分を、例えばドリル径Dに対して0.02D〜0.3D程度の半径Rの凸円弧により滑らかに接続すれば、境界角部の欠損等が一層効果的に防止される。   In addition, when the tip angle is changed in the middle as described above, a corner portion is generated at the boundary portion based on the difference between the tip angles α1 and α2, and the tip angle α1 is within the range of 135 ° to 150 °. Since the angle α2 is in the range of 125 ° to 135 °, the crossing angle (outer angle) of the corner is 25 ° at the maximum, and defects due to stress concentration are suppressed. In particular, if the corner portion, that is, the boundary portion between the biting blade portion 54 and the peripheral blade portion 56 is connected smoothly by a convex arc having a radius R of about 0.02D to 0.3D with respect to the drill diameter D, for example. In addition, the loss of the boundary corner portion is prevented more effectively.

また、ドリル先端の外周部分に設けられる周辺刃部56の先端角α2は125°〜135°の範囲内で、ねじれ角βは20°〜30°の範囲内で、シンニング18により形成される軸心付近の切れ刃52の軸方向すくい角γは−5°〜+5°の範囲内で、ホーニングによって形成される切れ刃52の刃先のネガランド17の幅寸法Lは0.05〜0.15mmの範囲内であるため、肩部22の欠けや切れ刃52の刃欠け、チッピング等が抑制されるとともに所定の切れ味が得られ、長期に亘って優れた加工精度が得られるようになり、リーディングエッジ20と加工穴との摩擦が軽減されて摩擦熱による加工硬化が抑制される点は、前記低加工硬化超硬ドリル10と同じである。   Further, the axis formed by the thinning 18 is such that the tip angle α2 of the peripheral cutting edge 56 provided at the outer peripheral portion of the drill tip is in the range of 125 ° to 135 ° and the twist angle β is in the range of 20 ° to 30 °. The axial rake angle γ of the cutting edge 52 near the center is in the range of −5 ° to + 5 °, and the width dimension L of the negative land 17 at the cutting edge of the cutting edge 52 formed by honing is 0.05 to 0.15 mm. Since it is within the range, chipping of the shoulder portion 22, chipping of the cutting edge 52, chipping, etc. are suppressed and a predetermined sharpness is obtained, and excellent machining accuracy can be obtained over a long period of time, leading edge The point that the work hardening due to frictional heat is suppressed by reducing the friction between the work hole 20 and the work hole is the same as the low work hardening carbide drill 10.

ここで、前記食付き刃部54の先端角α1=140°、周辺刃部56の先端角α2=130°で、それ等の境界径寸法dを0.1D、0.2D、0.3D、0.5D、0.7D、0.9Dとした6種類の試験品を用いて、以下の加工条件で穴明け加工を行い、ドリル寿命および加工硬化量を調べたところ、図6に示す結果が得られた。図6の「先端140°部径」は、境界径寸法dを意味している。なお、各試験品のねじれ角β=25°、シンニング18の軸方向すくい角γ=0°、切れ刃52の刃先のネガランド17の幅寸法L=0.10mmで、食付き刃部54と周辺刃部56との境界は半径R=0.1Dの凸円弧により滑らかに接続されている。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :13.9mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
Here, the tip angle α1 = 140 ° of the biting blade portion 54 and the tip angle α2 = 130 ° of the peripheral blade portion 56, and the boundary diameter dimension d thereof is 0.1D, 0.2D, 0.3D, Using six types of test products of 0.5D, 0.7D, and 0.9D, drilling was performed under the following processing conditions, and the drill life and work hardening amount were examined. The results shown in FIG. Obtained. The “diameter of 140 ° at the tip” in FIG. 6 means the boundary diameter dimension d. In addition, the torsion angle β = 25 ° of each test product, the axial rake angle γ = 0 ° of the thinning 18 and the width dimension L of the negative land 17 of the cutting edge 52 of the cutting edge 52 are L = 0.10 mm. The boundary with the blade 56 is smoothly connected by a convex arc having a radius R = 0.1D.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 13.9mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図6から明らかなように、d=0.1Dの場合には、大きい先端角α1の食付き刃部54を設けることによる効果が十分に得られず、中心部分の強度不足で早期に切れ刃52が欠損して加工不可になる。図7の(a) は、この時のドリル先端中心部分の写真で、切れ刃52の中心部分が完全に潰れていることが分かる。d=0.2Dの場合は、3000穴まで加工可能であったが、同じく切れ刃52の中心部分に刃欠けが生じるとともに、求心性が悪くなって心振れにより加工硬化量が大きくなり、4000穴加工前に加工不可になった。d=0.3D、0.5D、0.7Dでは、何れも4000穴以上の穴明け加工が可能で、加工硬化量も少ない。図7の(b) は、d=0.5Dの場合の4000穴加工時のドリル先端中心部分の写真で、中心部分まで殆ど刃欠けが認められない。d=0.9Dの場合は、3550穴まで加工可能であったが、肩部22の強度が不足して欠けが生じ、切れ味が悪くなって加工精度が低下するとともに加工硬化量が大きくなり、4000穴加工前に加工不可になった。この結果から、境界径寸法dは、0.2Dより大きく且つ0.9Dより小さい必要がある。   As can be seen from FIG. 6, when d = 0.1D, the effect of providing the biting blade portion 54 with the large tip angle α1 cannot be sufficiently obtained, and the cutting edge is cut early due to insufficient strength of the central portion. 52 is missing and cannot be processed. FIG. 7A is a photograph of the center portion of the drill tip at this time, and it can be seen that the center portion of the cutting edge 52 is completely crushed. In the case of d = 0.2D, it was possible to machine up to 3000 holes, but similarly, a chip was generated at the center portion of the cutting edge 52, the centripetality was deteriorated, and the amount of work hardening was increased due to the runout. Processing was not possible before drilling. When d = 0.3D, 0.5D, and 0.7D, any of 4000 holes or more can be drilled, and the amount of work hardening is small. FIG. 7B is a photograph of the center part of the drill tip when processing 4000 holes in the case of d = 0.5D, and almost no chipping is observed up to the center part. In the case of d = 0.9D, it was possible to process up to 3550 holes, but the strength of the shoulder portion 22 was insufficient and chipping occurred, the sharpness deteriorated and the processing accuracy decreased and the work hardening amount increased. Processing was not possible before processing 4000 holes. From this result, the boundary diameter dimension d needs to be larger than 0.2D and smaller than 0.9D.

また、図8は、周辺刃部56の先端角α2=130°、境界径寸法d=0.5D、ねじれ角β=25°、シンニング18の軸方向すくい角γ=0°、切れ刃52の刃先のネガランド17の幅寸法L=0.10mmの低加工硬化超硬ドリル50において、食付き刃部54の先端角α1を135°、140°、145°、150°、155°とした5種類の試験品を用いて、以下の加工条件で穴明け加工を行い、加工穴数と穴拡大量との関係を調べた結果である。なお、何れの試験品も、食付き刃部54と周辺刃部56との境界は半径R=0.1Dの凸円弧により滑らかに接続されている。
(加工条件)
・被削材 :S55C(炭素鋼)
・穴深さ :11mm貫通穴
・穴径 :13.9mm
・切削速度 :70m/min
・送り量 :0.25mm/rev
Further, FIG. 8 shows that the peripheral edge 56 has a tip angle α2 = 130 °, a boundary diameter d = 0.5D, a torsion angle β = 25 °, an axial rake angle γ = 0 ° of the thinning 18, and the cutting edge 52 In the low work hardening carbide drill 50 having a width L of the cutting edge negative land 17 of 0.10 mm, the cutting edge 54 has a tip angle α1 of 135 °, 140 °, 145 °, 150 °, and 155 °. This is a result of examining the relationship between the number of holes to be drilled and the amount of expansion of holes by drilling with the following test conditions under the following processing conditions. In all the test products, the boundary between the biting blade portion 54 and the peripheral blade portion 56 is smoothly connected by a convex arc having a radius R = 0.1D.
(Processing conditions)
-Work material: S55C (carbon steel)
-Hole depth: 11mm through hole-Hole diameter: 13.9mm
・ Cutting speed: 70 m / min
・ Feeding amount: 0.25mm / rev

図8において、α1=135°、140°、145°の場合、1000穴までの加工では何れも穴拡大量が0.015mm以下で、高い加工精度が得られ、刃欠けによる心振れが殆ど無いと考えられる。α1=150°では、食付き性が悪くなるとともに負荷(スラスト荷重)が大きくなり、摩耗或いは刃欠けなどで求心性が低下し、加工に伴って徐々に穴拡大量が増加しているが、1000穴までの加工では穴拡大量が0.02mm以下で、実用上許容できる範囲である。α1=155°になると、食付き性が悪いとともに負荷(スラスト荷重)が大きく、1000穴以下の加工初期においても心振れなどで穴拡大量が0.02mm以上になり、許容範囲を超えている。   In FIG. 8, in the case of α1 = 135 °, 140 °, 145 °, in the processing up to 1000 holes, the hole enlargement amount is 0.015 mm or less, high processing accuracy is obtained, and there is almost no runout due to the chipping of the blade. it is conceivable that. When α1 = 150 °, the biting property deteriorates and the load (thrust load) increases, the centripetality decreases due to wear or blade chipping, and the amount of hole expansion gradually increases with processing. In processing up to 1000 holes, the hole enlargement amount is 0.02 mm or less, which is practically acceptable. When α1 = 155 °, the bite resistance is poor and the load (thrust load) is large. Even in the initial processing of 1000 holes or less, the amount of expansion of the hole becomes 0.02 mm or more due to runout, which exceeds the allowable range. .

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

本発明の一実施例を説明する図で、前提となる低加工硬化超硬ドリルを示す図2の(b) に相当する図である。It is a figure explaining one Example of this invention, and is a figure equivalent to (b) of FIG. 2 which shows the low work hardening carbide drill used as a premise. 本発明の前提となる低加工硬化超硬ドリルの先端部形状を示す図である。It is a figure which shows the front-end | tip part shape of the low work hardening carbide drill used as the premise of this invention. 図2の超硬ドリルにおいてホーニングにより切れ刃に設けられたネガランドを説明する断面図である。It is sectional drawing explaining the negative land provided in the cutting blade by honing in the cemented carbide drill of FIG. 図2の超硬ドリルを基本とする幾つかの試験品について耐久性および加工硬化量を調べた結果を示す図である。It is a figure which shows the result of having investigated durability and the amount of work hardening about some test goods based on the cemented carbide drill of FIG. 図4の「定数/寿命時」の加工硬化量を加工穴数との関係でグラフにした図である。FIG. 5 is a graph showing the work hardening amount of “constant / lifetime” in FIG. 4 in relation to the number of processed holes. 図1における食付き刃部と周辺刃部との境界径寸法dを変更した幾つかの試験品を用いて穴明け加工を行い、ドリル寿命および加工硬化量を調べた結果を示す図である。It is a figure which shows the result of having drilled using several test goods which changed the boundary diameter dimension d of a biting blade part and a peripheral blade part in FIG. 1, and having investigated the drill lifetime and work hardening amount. 図6において、d=0.1D、0.5Dの場合の穴明け加工後の切れ刃の状態を示す写真である。In FIG. 6, it is a photograph which shows the state of the cutting edge after drilling in case of d = 0.1D and 0.5D. 図1における食付き刃部の先端角α1を変更した幾つかの試験品を用いて穴明け加工を行い、加工穴数と穴拡大量との関係を調べた結果を示す図である。It is a figure which shows the result of having drilled using some test goods which changed the front-end | tip angle (alpha) 1 of the biting blade part in FIG. 1, and having investigated the relationship between the number of process holes and a hole expansion amount.

符号の説明Explanation of symbols

14:切り屑排出溝 17:ネガランド 18:シンニング 50:低加工硬化超硬ドリル 52:切れ刃 54:食付き刃部 56:周辺刃部   14: Chip discharge groove 17: Negative land 18: Thinning 50: Low work hardening carbide drill 52: Cutting edge 54: Chamfering edge 56: Peripheral edge

Claims (2)

少なくとも先端の刃部が超硬合金にて構成されている超硬ドリルであって、
ドリル先端の中心部分に設けられた先端角α1が135°〜150°の範囲内の食付き刃部と、
該食付き刃部の外周側に連続して設けられるとともに、先端角α2が125°〜135°の範囲内で且つ前記先端角α1よりも小さい周辺刃部と、
を有して切れ刃が構成されているとともに、該食付き刃部と該周辺刃部との境界の径寸法dは、ドリル径Dに対して0.2Dより大きく且つ0.9Dより小さい一方、
切り屑排出溝のねじれ角βは20°〜30°の範囲内で、
シンニングにより形成された軸心付近の切れ刃の軸方向すくい角γは−5°〜+5°の範囲内である
ことを特徴とする低加工硬化超硬ドリル。
It is a carbide drill in which at least the tip of the blade is made of a cemented carbide,
A biting blade portion having a tip angle α1 provided at the center of the tip of the drill in a range of 135 ° to 150 °;
A peripheral blade portion continuously provided on the outer peripheral side of the biting blade portion and having a tip angle α2 within a range of 125 ° to 135 ° and smaller than the tip angle α1;
A cutting edge is formed, and a diameter d of a boundary between the biting blade and the peripheral blade is larger than 0.2D and smaller than 0.9D with respect to the drill diameter D. ,
The twist angle β of the chip discharge groove is in the range of 20 ° to 30 °,
A low work hardening carbide drill characterized in that the axial rake angle γ of the cutting edge near the axis formed by thinning is in the range of −5 ° to + 5 °.
切れ刃の刃先に設けられたネガランドの幅寸法Lが0.05〜0.15mmの範囲内とされている
ことを特徴とする請求項1に記載の低加工硬化超硬ドリル。
The low work hardening cemented carbide drill according to claim 1, wherein a width L of a negative land provided at a cutting edge of the cutting edge is in a range of 0.05 to 0.15 mm.
JP2005193432A 2005-07-01 2005-07-01 Cemented carbide drill causing low work hardening Pending JP2007007808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193432A JP2007007808A (en) 2005-07-01 2005-07-01 Cemented carbide drill causing low work hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193432A JP2007007808A (en) 2005-07-01 2005-07-01 Cemented carbide drill causing low work hardening

Publications (1)

Publication Number Publication Date
JP2007007808A true JP2007007808A (en) 2007-01-18

Family

ID=37746931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193432A Pending JP2007007808A (en) 2005-07-01 2005-07-01 Cemented carbide drill causing low work hardening

Country Status (1)

Country Link
JP (1) JP2007007808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526213A (en) * 2008-06-28 2011-10-06 フィルマ ギューリング オーハーゲー Multi-blade drilling tool
JP2014012317A (en) * 2012-07-05 2014-01-23 Sumitomo Electric Hardmetal Corp Drill
JPWO2016043098A1 (en) * 2014-09-19 2017-07-06 住友電工ハードメタル株式会社 drill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526213A (en) * 2008-06-28 2011-10-06 フィルマ ギューリング オーハーゲー Multi-blade drilling tool
JP2014012317A (en) * 2012-07-05 2014-01-23 Sumitomo Electric Hardmetal Corp Drill
JPWO2016043098A1 (en) * 2014-09-19 2017-07-06 住友電工ハードメタル株式会社 drill

Similar Documents

Publication Publication Date Title
US20060039767A1 (en) Carbide drill capable of drilling hole with reduced degree of work hardening
US9511424B2 (en) Drill
JP4418408B2 (en) Step drill
US6857832B2 (en) Drill bit with pilot point
WO2013035166A1 (en) Drill
EP2698219B1 (en) Drill
JP4471894B2 (en) Low work hardening carbide drill
JP2009241190A (en) Cbn radius end mill
KR20060009921A (en) Drilling tool for cutting cast materials
US20020044843A1 (en) Hole forming tool
JP2005118991A (en) High speed boring ceramic bit
WO2010086988A1 (en) Double angle drill
KR100323549B1 (en) taper taps for pipes with high hardness materials
JP2017202541A (en) Drill reamer
KR102399372B1 (en) drill
JP5077996B2 (en) Carbide twist drill
JP2009255211A (en) Female screw machining tool and female screw machining method using it
JP2008142834A (en) Drill
JPH0780714A (en) Ultra-hard drill
JP3985713B2 (en) Drill
JP2007007808A (en) Cemented carbide drill causing low work hardening
JP2009095922A (en) Tool for processing bore diameter
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
JP2006326752A (en) Drill
JP2013022663A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908