JP2013022663A - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP2013022663A
JP2013022663A JP2011157847A JP2011157847A JP2013022663A JP 2013022663 A JP2013022663 A JP 2013022663A JP 2011157847 A JP2011157847 A JP 2011157847A JP 2011157847 A JP2011157847 A JP 2011157847A JP 2013022663 A JP2013022663 A JP 2013022663A
Authority
JP
Japan
Prior art keywords
drill
tip
drill body
diameter
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011157847A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeuchi
寛 池内
Kazuhisa Murata
和久 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011157847A priority Critical patent/JP2013022663A/en
Publication of JP2013022663A publication Critical patent/JP2013022663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a machined hole of high quality with a desired inner diameter according to a diameter of a cutting edge in a work material made of copper or copper alloy.SOLUTION: A cutting chip discharge groove 4 is formed in an outer circumference of a tip of a drill body 1 rotated around an axis O and made of one kind of superhard material among cemented carbide, cermet, and ceramics, or high-speed tool steel. From the inner circumferential side of the drill body 1 toward the outer circumferential side, the cutting edge 5 extended to the rear end is formed on a tip lateral edge of a wall surface facing a drill rotating direction T of the cutting chip discharge groove 4. With respect to a diameter D of the cutting edge 5, a tip X of the cutting edge 5 is radially deviated from the axis O by a gap δ within a range of 0.01×D or more to 0.03×D or less. When the drill body 1 is made of the superhard material, a core diameter is 0.2×D or more, and when the drill body 1 is made of the high-speed tool steel, the core diameter is 0.3×D or more.

Description

本発明は、特に銅や銅合金よりなる被削材に穴明け加工を行うのに用いて好適なドリルに関するものである。   The present invention relates to a drill suitable for use in drilling a workpiece made of copper or a copper alloy.

一般的な鋼材のドリルによる穴明け加工では、その切削機構に基づく要因や切刃のバランス等により切刃の直径に対して1〜2%の加工穴の拡大が発生するのに対し、銅や銅合金の穴明け加工では逆に加工穴が収縮することが知られている。そこで、特許文献1には、このような銅および銅合金の穴明けに適したツイストドリルとして、バックテーパを0.056/100〜0.187/100と大きくすることにより、収縮した被削材の加工穴側面との摩擦抵抗による折損を防ぐようにしたドリルが提案されている。   In the drilling process of a general steel material drill, due to factors based on the cutting mechanism and the balance of the cutting edge, the drilling hole expands by 1 to 2% with respect to the diameter of the cutting edge. On the other hand, it is known that the drilled hole of copper alloy contracts. Therefore, in Patent Document 1, as a twist drill suitable for drilling such copper and copper alloy, the work material shrunk by increasing the back taper to 0.056 / 100 to 0.187 / 100. There has been proposed a drill which prevents breakage due to frictional resistance with the side surface of the machined hole.

特開2008−000875号公報JP 2008-000875 A

ところで、このようなドリルは、切刃の摩耗が進行したときには先端逃げ面を研削して後退させることにより切刃に再研磨を施して再利用するのが一般的であるが、特許文献1に記載されたようにバックテーパを大きくしたドリルでは、再研磨によって先端逃げ面を所定量後退させたときの切刃の直径の縮小率が大きくなってしまう。従って、被削材に形成されるべき加工穴の内径も再研磨後では再研磨前に比べて著しく縮小してしまうため、特に銅や銅合金よりなる被削材に穴明け加工を行う場合には加工穴自体が収縮することも相俟って、少ない再研磨回数で加工穴の内径が所望の大きさに達しなくなって、ドリル寿命が短くなるという問題がある。   By the way, such a drill is generally reused by regrinding the cutting edge by grinding and retracting the tip flank when the cutting edge wear progresses. As described, in a drill having a large back taper, the reduction rate of the diameter of the cutting edge when the tip flank is retracted by a predetermined amount by regrinding becomes large. Therefore, the inner diameter of the processed hole to be formed in the work material is also significantly reduced after re-polishing compared to before re-polishing, especially when drilling a work material made of copper or copper alloy. In combination with the fact that the machining hole itself contracts, there is a problem that the inner diameter of the machining hole does not reach a desired size with a small number of re-polishings and the drill life is shortened.

本発明は、このような背景の下になされたもので、銅や銅合金よりなる被削材に対して切刃の直径に応じた所望の内径の加工穴を高品位に形成することが可能なドリルを提供することを目的としている。   The present invention has been made under such a background, and it is possible to form a high-quality machining hole having a desired inner diameter corresponding to the diameter of the cutting edge for a work material made of copper or a copper alloy. The purpose is to provide a simple drill.

上記課題を解決して、このような目的を達成するために、本発明は、第1に、軸線回りに回転させられる超硬合金、サーメット、およびセラミックスのうちいずれか1種よりなるドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の先端側辺稜部に上記ドリル本体の内周側から外周側に向かうに従い後端側に向けて延びる切刃が形成されており、この切刃の先端は、該切刃の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量で上記軸線から径方向にずらされているとともに、上記ドリル本体の心厚が0.2×D以上とされていることを特徴とする。   In order to solve the above problems and achieve such an object, the present invention firstly provides a drill body made of any one of cemented carbide, cermet, and ceramics rotated around an axis. A chip discharge groove is formed on the outer periphery of the tip part, and a chip extending toward the rear end side from the inner peripheral side of the drill body toward the outer peripheral side is formed on the tip side edge of the wall facing the drill rotation direction of the chip discharge groove. A blade is formed, and the tip of the cutting blade is displaced in the radial direction from the axis with a deviation amount in the range of 0.01 × D to 0.03 × D with respect to the diameter D of the cutting blade. And the core thickness of the drill body is 0.2 × D or more.

また、本発明は、第2に、軸線回りに回転させられる高速度工具鋼よりなるドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の先端側辺稜部に上記ドリル本体の内周側から外周側に向かうに従い後端側に向けて延びる切刃が形成されており、この切刃の先端は、該切刃の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量で上記軸線から径方向にずらされているとともに、上記ドリル本体の心厚が0.3×D以上とされていることを特徴とする。   In addition, the present invention secondly, a chip discharge groove is formed on the outer periphery of the tip of the drill body made of high-speed tool steel rotated around the axis, and the tip side of the wall surface of the chip discharge groove facing the drill rotation direction A cutting edge extending toward the rear end side from the inner peripheral side to the outer peripheral side of the drill main body is formed at the side ridge portion. It is shifted in the radial direction from the axis with a shift amount in the range of 01 × D or more and 0.03 × D or less, and the core thickness of the drill body is 0.3 × D or more. .

このように構成された本発明のドリルにおいては、ドリル本体の内周側から外周側に向かうに従い後端側に向けて延びる切刃の先端が、切刃の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量でドリル本体の回転軸線から径方向にずらされているので、この切刃の先端が被削材に食いつくと、切刃はこの先端を中心として、先端がずらされた側と反対側の切刃が直径Dよりも上記ずれ量に応じた分だけ大きな直径で回転させられることになる。   In the drill of the present invention configured as described above, the tip of the cutting edge extending toward the rear end side from the inner peripheral side to the outer peripheral side of the drill main body is 0.01 × with respect to the diameter D of the cutting edge. Since it is displaced in the radial direction from the rotation axis of the drill body by a deviation amount in the range of D or more and 0.03 × D or less, when the tip of the cutting blade bites into the work material, the cutting blade is centered on the tip. The cutting blade on the side opposite to the side on which the tip is shifted is rotated with a diameter larger than the diameter D by an amount corresponding to the amount of deviation.

従って、銅や銅合金よりなる被削材に対して、切刃自体の直径Dは変えることなく大きな内径の加工穴を形成することができ、加工穴が収縮したときに所望の内径とすることができる。その一方で、切刃の先端がドリル本体の軸線に対してずらされた側では、加工穴の内周面とドリル本体の先端部外周との間に上記ずれ量分のクリアランスが生じるので、特許文献1に記載のドリルのようにバックテーパを大きくしなくても、収縮した加工穴内周面との摩擦抵抗を抑えて折損等を防止することができ、再研磨による切刃の直径の収縮率を小さくしてドリル寿命の延長を図ることができる。   Therefore, it is possible to form a machining hole with a large inner diameter without changing the diameter D of the cutting blade itself for a work material made of copper or a copper alloy, and to obtain a desired inner diameter when the machining hole contracts. Can do. On the other hand, on the side where the tip of the cutting edge is shifted with respect to the axis of the drill body, a clearance corresponding to the amount of deviation occurs between the inner peripheral surface of the machining hole and the outer periphery of the tip of the drill body. Even if the back taper is not increased as in the drill described in Document 1, it is possible to suppress the frictional resistance against the shrunk inner peripheral surface of the machined hole and prevent breakage, etc., and the shrinkage rate of the diameter of the cutting edge by re-grinding The drill life can be extended by reducing the length of the drill.

ここで、上記ずれ量が切刃の直径Dに対して0.01×Dを下回るほど小さいと、上述のように加工穴が収縮したときに所望の内径とすることができないとともに、切刃の先端がずらされた側での加工穴内周面との上記クリアランスも不十分となり、加工穴内周面にキズが形成されたり、ドリルの外周に著しい損傷が発生したりする。一方、逆にずれ量が0.03×Dを上回るほど大きいと、切刃の振れ回りが大きくなって加工穴内周面にキズやライフリングマークが形成され、面粗さの劣化を招いたりするとともに、切刃の先端がずらされた側とその反対側とで切削負荷に偏りが生じて加工穴を安定して所望の内径に穿設することができなくなり、必要以上に内径の大きな加工穴が形成されてしまう。   Here, if the amount of deviation is so small that it is less than 0.01 × D with respect to the diameter D of the cutting edge, it is impossible to obtain a desired inner diameter when the machining hole contracts as described above, and The clearance with the inner peripheral surface of the processing hole on the side where the tip is shifted becomes insufficient, and scratches are formed on the inner peripheral surface of the processing hole, or the outer periphery of the drill is significantly damaged. On the other hand, if the amount of deviation is larger than 0.03 × D, the runout of the cutting blade becomes large and scratches and life ring marks are formed on the inner peripheral surface of the processed hole, leading to deterioration of surface roughness. At the same time, the cutting load is uneven on the side where the tip of the cutting edge is shifted and the opposite side, making it impossible to stably drill the processing hole to the desired inner diameter. Will be formed.

さらに、ドリル本体が超硬合金、サーメット、およびセラミックスのうちいずれか1種の超硬質材料よりなる場合はドリル本体の心厚が0.2×Dを下回ると、またドリル本体がこれら超硬質材料よりは硬度の低い高速度工具鋼よりなる場合はドリル本体の心厚が0.3×Dを下回ると、ドリル本体先端部の剛性が損なわれて穴明け加工時の挙動が不安定となり、所望の内径の加工穴が形成されなかったり、逆に内径が必要以上に大きくなったり、加工穴内周面にキズやライフリングマーク、面粗さの劣化が生じたりする。   Further, when the drill body is made of any one of super hard materials of cemented carbide, cermet, and ceramics, if the core thickness of the drill body is less than 0.2 × D, the drill body is made of these super hard materials. If it is made of high-speed tool steel with lower hardness, if the core thickness of the drill body is less than 0.3 x D, the rigidity of the drill body tip will be impaired and the behavior during drilling will become unstable, May not be formed, or the inner diameter may be unnecessarily large, or scratches, life ring marks, and surface roughness may be deteriorated on the inner peripheral surface of the processed hole.

なお、この心厚は大きいほどドリル本体先端部の剛性は高められるが、その一方で切屑排出性が損なわれて切屑詰まりにより加工穴内周面が傷つけられたり、切刃の欠損や、場合によってはドリル本体の折損に繋がるおそれもある。このため、ドリル本体が超硬合金、サーメット、またはセラミックスよりなる場合や高速度工具鋼よりなる場合でも、心厚は切刃の直径Dに対して0.5×D程度までとされるのが望ましい。   The greater the core thickness, the higher the rigidity of the tip of the drill body. On the other hand, the chip discharge performance is impaired, and the inner peripheral surface of the processing hole is damaged by chip clogging, the cutting edge is missing, and in some cases There is also a risk of breaking the drill body. For this reason, even when the drill body is made of cemented carbide, cermet, ceramics or high-speed tool steel, the core thickness is about 0.5 × D with respect to the diameter D of the cutting edge. desirable.

以上説明したように、本発明によれば、銅や銅合金よりなる被削材に対して、ドリル本体の折損を防ぐとともに、加工穴内周面の面精度を確保しつつ、安定して所望の内径の加工穴を形成することができる。   As described above, according to the present invention, a work material made of copper or a copper alloy can be stably and desired while preventing breakage of the drill body and ensuring the surface accuracy of the inner peripheral surface of the processed hole. A bore with an inner diameter can be formed.

本発明の一実施形態を示す側面図である。It is a side view which shows one Embodiment of this invention. 図1に示す実施形態の拡大正面図である。It is an enlarged front view of embodiment shown in FIG. 図2におけるZ−O−X−Y断面図である。FIG. 3 is a ZOXY sectional view in FIG. 2.

図1ないし図3は、本発明の一実施形態を示すものである。本実施形態のドリルは、そのドリル本体1が、超硬合金、サーメット、およびセラミックスのうちいずれか1種よりなる超硬質材料、または高速度工具鋼により一体に形成されて、外形が軸線Oを中心とした円柱状をなし、このドリル本体1の後端部(図1において左側部分)が円柱状のままのシャンク部2とされるとともに、先端部(図1において右側部分)は刃部3とされている。ただし、図示の例ではシャンク部2の後端面の外周に面取りが施されている。   1 to 3 show an embodiment of the present invention. In the drill of this embodiment, the drill body 1 is integrally formed of a superhard material made of any one of cemented carbide, cermet, and ceramics, or a high-speed tool steel, and the outer shape has an axis O. The drill body 1 has a cylindrical shape with the rear end portion (left side portion in FIG. 1) of the drill body 1 as a cylindrical shank portion 2 and the tip portion (right side portion in FIG. 1) is the blade portion 3. It is said that. However, in the illustrated example, the outer periphery of the rear end surface of the shank portion 2 is chamfered.

一方、刃部3には、その先端面から後端側に向けて、穴明け加工時のドリル回転方向Tに対する後方側に向かうように上記軸線O回りに捩れる一対の切屑排出溝4が軸線Oに関して180°回転対称に形成されており、これらの切屑排出溝4はドリル本体1の後端側で外周側に切れ上がって終端をなしている。従って、この切屑排出溝4の終端すなわち切上げ端の位置を境界として、これよりも後端側がシャンク部2とされ、先端側が刃部3とされる。   On the other hand, the blade portion 3 has a pair of chip discharge grooves 4 that are twisted around the axis O so as to go to the rear side with respect to the drill rotation direction T at the time of drilling from the front end surface toward the rear end side. These chips are formed so as to be 180 ° rotationally symmetric with respect to O, and the chip discharge grooves 4 are cut off to the outer peripheral side on the rear end side of the drill body 1 and terminate. Therefore, with the end of the chip discharge groove 4, that is, the position of the raised end as a boundary, the rear end side is the shank portion 2 and the tip end side is the blade portion 3.

また、刃部3の先端面は、内周側の軸線O周辺から外周側に向かうに従い後端側に向かうように傾斜させられるとともに、切屑排出溝4のドリル回転方向Tを向く壁面との交差稜線からドリル回転方向Tの後方側に向けても後端側に向かうように傾斜させられている。そして、この交差稜線すなわち上記壁面の先端側辺稜部に切刃5が形成され、従ってこの切刃5に連なる切屑排出溝4のドリル回転方向Tを向く上記壁面は切刃5のすくい面とされ、また切刃5に連なる先端面は該切刃5の先端逃げ面とされる。   Further, the front end surface of the blade portion 3 is inclined so as to go to the rear end side from the periphery of the axis O on the inner peripheral side toward the outer peripheral side, and intersects with the wall surface facing the drill rotation direction T of the chip discharge groove 4. Even if it goes to the rear side in the drill rotation direction T from the ridgeline, it is inclined so as to go to the rear end side. And the cutting edge 5 is formed in this intersection ridgeline, ie, the edge part edge part of the said wall surface, Therefore The said wall surface which faces the drill rotation direction T of the chip discharge groove | channel 4 continuing to this cutting edge 5 is the rake face of the cutting edge 5. In addition, the tip surface connected to the cutting blade 5 is a tip flank of the cutting blade 5.

なお、本実施形態では、この先端逃げ面にシンニングが施されることによって上記切刃5の内周側にシンニング刃5Aが形成されている。このシンニングは本実施形態ではX形シンニングと称されるもので、一対の切屑排出溝4の先端側辺稜部に形成された一対の上記切刃5のシンニング刃5A同士は、チゼルエッジを介することなく略1点の交点において交差させられ、この交点を先端Xとして切刃5は、内周側のシンニング刃5Aからドリル本体1の外周側に向かうに従い後端側に向かうように所定の先端角をもって傾斜させられている。   In this embodiment, the thinning blade 5A is formed on the inner peripheral side of the cutting blade 5 by thinning the tip flank. This thinning is referred to as X-type thinning in the present embodiment, and the thinning blades 5A of the pair of cutting blades 5 formed at the tip side ridges of the pair of chip discharge grooves 4 pass through chisel edges. Instead, the cutting edge 5 is crossed at an intersection of approximately one point, and with this intersection point as the tip X, the cutting edge 5 has a predetermined tip angle so as to go from the thinning blade 5A on the inner peripheral side toward the outer peripheral side of the drill body 1 toward the rear end It is inclined with.

そして、この切刃5の先端Xは、切刃5の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量δで上記軸線Oから径方向にずらされている。ここで、切刃5の直径Dは、切刃5の外周端が軸線O回りになす円の直径とされ、本実施形態では一対の切刃5同士の当該直径Dは互いに等しくされている。なお、本実施形態では上記先端Xは、図2に示すように一対の切刃5の外周端同士を結ぶ直径線Lに対しては、先端Xがずらされた側の切刃(図2において右側の切刃)5のドリル回転方向T後方側に位置させられているが、この直径線Lに対してドリル回転方向T側に位置していてもよく、また直径線L上に位置して軸線Oからずらされていてもよい。   The tip X of the cutting blade 5 is displaced from the axis O in the radial direction by a deviation amount δ in the range of 0.01 × D to 0.03 × D with respect to the diameter D of the cutting blade 5. . Here, the diameter D of the cutting blade 5 is a diameter of a circle formed by the outer peripheral end of the cutting blade 5 around the axis O, and in the present embodiment, the diameter D of the pair of cutting blades 5 is equal to each other. In the present embodiment, the tip X has a cutting edge on the side where the tip X is shifted with respect to the diameter line L connecting the outer peripheral ends of the pair of cutting edges 5 as shown in FIG. The right cutting edge) 5 is positioned on the rear side of the drill rotation direction T, but may be positioned on the drill rotation direction T side with respect to the diameter line L, or on the diameter line L. It may be shifted from the axis O.

一方、ドリル本体1先端部の切屑排出溝4が形成された上記刃部3において、軸線Oに直交する断面における該軸線Oを中心とした上記切屑排出溝4の溝底面に接する円の直径、すなわち心厚は、ドリル本体1が超硬合金、サーメット、およびセラミックスのうちいずれか1種の超硬質材料よりなる場合は、上記切刃5の直径Dに対して0.2×D以上とされている。また、ドリル本体1が、これら超硬質材料よりは硬度の低い高速度工具鋼よりなる場合は、上記心厚は0.3×D以上とされている。   On the other hand, in the blade part 3 in which the chip discharge groove 4 at the tip of the drill body 1 is formed, the diameter of a circle in contact with the groove bottom surface of the chip discharge groove 4 around the axis O in the cross section orthogonal to the axis O, That is, the core thickness is set to 0.2 × D or more with respect to the diameter D of the cutting blade 5 when the drill body 1 is made of any one of super hard materials of cemented carbide, cermet, and ceramics. ing. When the drill body 1 is made of high-speed tool steel having a hardness lower than that of these super hard materials, the core thickness is set to 0.3 × D or more.

このように構成されたドリルは、上記シャンク部2が工作機械の主軸に装着されて、軸線O回りにドリル回転方向Tに回転されつつ該軸線O方向先端側に送り出されることにより、上記一対の切刃5によって銅や銅合金よりなる被削材に穴明け加工を行う。ところが、これらの切刃5の先端Xは、ドリル本体1の回転中心となる軸線Oからずらされているので、この切刃5の先端Xが被削材に食いつくと、刃部3の先端部はこの先端Xを中心に軸線Oから偏心して回転しながら送り出されることになる。   In the drill constructed in this manner, the shank portion 2 is mounted on the main shaft of the machine tool, and is sent to the front end side in the axis O direction while being rotated in the drill rotation direction T around the axis O. Drilling is performed on the work material made of copper or copper alloy by the cutting blade 5. However, since the tips X of these cutting edges 5 are shifted from the axis O that is the center of rotation of the drill body 1, if the tips X of the cutting edges 5 bite the work material, the tips of the blade 3 Is sent out while rotating eccentrically from the axis O around the tip X.

従って、このように偏心した刃部3によって被削材に形成される加工穴の内径(直径)は、軸線Oからずらされた先端Xと、この先端Xがずらされた側の切刃5とは反対側の切刃(図2において左側の切刃)5の外周端との間の先端Xに対する径方向の距離の2倍となり、すなわち上記ずれ量δに応じて、切刃5の直径Dよりも大きな直径の加工穴が形成される。このため、切刃5の直径Dは変えることなく、こうして直径の大きな加工穴が形成されるので、銅や銅合金よりなる被削材の穴明け加工で加工穴が収縮しても、収縮後の加工穴の内径を切刃5の直径Dに、より等しくすることができる。   Accordingly, the inner diameter (diameter) of the machining hole formed in the work material by the eccentric blade portion 3 is such that the tip X shifted from the axis O and the cutting blade 5 on the side from which the tip X is shifted. Is twice the radial distance to the tip X between the outer peripheral edge of the opposite cutting edge (left cutting edge in FIG. 2) 5, that is, the diameter D of the cutting edge 5 according to the deviation δ. Larger diameter machining holes are formed. For this reason, the diameter D of the cutting edge 5 is not changed, and thus a machining hole with a large diameter is formed in this way. Therefore, even if the machining hole shrinks in drilling of a work material made of copper or copper alloy, The inner diameter of the processed hole can be made more equal to the diameter D of the cutting edge 5.

その一方で、先端Xがずらされた側の切刃5の外周端と先端Xとの径方向の距離は、上記先端Xがずらされた側とは反対側の切刃5の外周端との距離よりも短くなるので、この先端Xがずらされた側では、刃部3の外周面と加工穴の内周面との間に、やはり上記ずれ量δに応じたクリアランスが生じることになる。このため、特許文献1に記載されたドリルのような大きなバックテーパを与えなくても、加工穴内周面との摩擦抵抗を抑えてドリル本体1の著しい損傷等を防止することができ、従って再研磨による切刃5の直径Dの収縮率を小さくして長寿命のドリルを提供することが可能となる。   On the other hand, the radial distance between the outer peripheral end of the cutting blade 5 on the side where the tip X is shifted and the tip X is the distance from the outer peripheral end of the cutting blade 5 on the side opposite to the side where the tip X is shifted. Since the distance is shorter than the distance, on the side where the tip X is shifted, a clearance corresponding to the deviation δ is also generated between the outer peripheral surface of the blade portion 3 and the inner peripheral surface of the machining hole. For this reason, without giving a large back taper like the drill described in Patent Document 1, it is possible to suppress the frictional resistance with the inner peripheral surface of the processed hole and prevent the drill body 1 from being significantly damaged. It is possible to provide a long-life drill by reducing the shrinkage rate of the diameter D of the cutting edge 5 by polishing.

また、上記ずれ量δは、切刃5の直径Dに対して0.01×D以上0.03×D以下の範囲とされているので、加工穴の内径が必要以上に大きくなったり所望の内径に至らなかったりするのを防ぐことができるとともに、加工穴の面粗さや品位が損なわれるのも防止することができる。すなわち、このずれ量δが切刃5の直径Dに対して0.01×Dを下回るほど小さいと、銅や銅合金よりなる被削材において加工穴が収縮したときに所望の内径とすることができなくなるとともに、切刃5の先端Xがずらされた側での加工穴内周面との刃部3外周面との上記クリアランスも不十分となって摩擦を十分に抑えることができなくなり、加工穴内周面にキズが形成されたり、ドリル外周部に著しい損傷が発生したりする。   Further, since the deviation δ is in the range of 0.01 × D to 0.03 × D with respect to the diameter D of the cutting blade 5, the inner diameter of the processed hole becomes larger than necessary or desired. It is possible to prevent the inner diameter from being reached and to prevent the surface roughness and quality of the processed hole from being impaired. In other words, if the amount of deviation δ is so small that it is less than 0.01 × D with respect to the diameter D of the cutting edge 5, a desired inner diameter is obtained when the machining hole shrinks in the work material made of copper or copper alloy. In addition, the clearance between the inner peripheral surface of the processing hole and the outer peripheral surface of the blade portion 3 on the side where the tip X of the cutting blade 5 is shifted becomes insufficient, and the friction cannot be sufficiently suppressed. Scratches are formed on the inner peripheral surface of the hole, or significant damage occurs on the outer peripheral portion of the drill.

一方、逆にずれ量δが切刃5の直径Dに対して0.03×Dを上回るほど大きいと、先端Xを中心として回転する切刃5の振れ回りが大きくなり、必要以上に内径の大きな加工穴が形成されてしまうとともに、加工穴内周面にキズやライフリングマークが形成され易くなる。また、先端Xがずらされた側の切刃5とこれとは反対側の切刃5とで切削負荷に偏りが生じてしまうので、加工穴の中心が偏心したり歪んだ加工穴が形成されたりして、加工穴を安定して所望の内径に穿設することができなくなる。   On the other hand, when the deviation amount δ is larger than 0.03 × D with respect to the diameter D of the cutting blade 5, the swinging of the cutting blade 5 rotating around the tip X becomes large, and the inner diameter is larger than necessary. Large machining holes are formed, and scratches and life ring marks are easily formed on the inner circumferential surface of the machining holes. Further, since the cutting load is unbalanced between the cutting edge 5 on the side where the tip X is shifted and the cutting edge 5 on the opposite side, a machining hole in which the center of the machining hole is eccentric or distorted is formed. As a result, it becomes impossible to stably drill the processing hole to a desired inner diameter.

さらに、上記構成のドリルでは、切刃5が形成されるドリル本体1先端部の刃部3の心厚が、切刃5の上記直径Dに対して、ドリル本体1が超硬合金、サーメット、およびセラミックスのうちいずれか1種の超硬質材料よりなる場合は0.2×D以上とされ、ドリル本体1が高速度工具鋼よりなる場合はこれよりも大きく0.3×D以上とされているので、こうして切刃5の先端Xを軸線Oからずらしても、より安定した穴明け加工を行うことができる。   Furthermore, in the drill having the above-described configuration, the drill body 1 is formed of cemented carbide, cermet, or the like with respect to the diameter D of the cutting edge 5 when the core thickness of the tip 3 of the drill body 1 in which the cutting edge 5 is formed. When the drill body 1 is made of high-speed tool steel, it is set to 0.3 × D or more when the drill body 1 is made of high-speed tool steel. Therefore, even if the tip X of the cutting blade 5 is displaced from the axis O in this way, more stable drilling can be performed.

すなわち、ドリル本体1が高速度工具鋼のときには刃部3の心厚が0.3×Dより小さく、またこれよりも高硬度の上記超硬質材料によってドリル本体1が形成されているときでも刃部3の心厚が0.2×Dより小さいと、刃部3の剛性が損なわれてしまうため、特に上述のように切刃5の先端Xが軸線Oからずらされていると穴明け加工時の刃部3の挙動が不安定となってしまう。このため、やはり加工穴の直進度や真円度が損なわれて所望の加工穴が形成されなかったり、内径が必要以上に大きくなったり、加工穴内周面にキズやライフリングマーク、面粗さの劣化が生じたりする。   In other words, when the drill body 1 is a high-speed tool steel, the core thickness of the blade portion 3 is smaller than 0.3 × D, and even when the drill body 1 is formed of the above-mentioned super-hard material having a higher hardness than this, If the core thickness of the portion 3 is smaller than 0.2 × D, the rigidity of the blade portion 3 is impaired. Therefore, especially when the tip X of the cutting blade 5 is displaced from the axis O as described above, drilling is performed. The behavior of the blade 3 at the time becomes unstable. For this reason, the straightness and roundness of the machined hole are also impaired, the desired machined hole is not formed, the inner diameter becomes larger than necessary, and the inner surface of the machined hole is scratched, life ring mark, surface roughness Degradation may occur.

ただし、この心厚を大きくしすぎると、剛性は確保されても切屑排出溝4の断面積が小さくなって円滑な切屑排出に支障を来し、切屑詰まりによって却って加工穴内周面の面粗さが劣化したり、切刃5に欠損が生じたり、穴明け加工時の抵抗が増大して場合によってはドリル本体1の折損を招いたりするおそれもあるので、ドリル本体1が上述のような超硬質材料の場合でも、高速度工具鋼の場合でも、刃部3の心厚は切刃5の直径Dに対して0.5×D程度までとされるのが望ましい。   However, if the core thickness is increased too much, the cross-sectional area of the chip discharge groove 4 is reduced even if rigidity is ensured, thereby hindering smooth chip discharge. May be deteriorated, the cutting edge 5 may be damaged, or the resistance during drilling may increase, possibly leading to breakage of the drill body 1. Whether it is a hard material or a high-speed tool steel, it is desirable that the core thickness of the blade portion 3 is about 0.5 × D with respect to the diameter D of the cutting blade 5.

なお、本実施形態では、上述のように切刃5の内周側において先端逃げ面にX形シンニングが施されることにより、一対の切刃5のシンニング刃5Aがチゼルを介することなく交差して、その交点が切刃5の先端Xとされているが、シンニングが施されていない場合や施されている場合でも、一対の切刃の先端逃げ面が交差してチゼルが形成されて、このチゼルに切刃5が連なることにより、チゼルが切刃5の先端Xとされていてもよい。このときの先端Xのずれ量δは、チゼルの中心の軸線Oからのずれ量とすればよい。   In the present embodiment, as described above, the tip flank is subjected to X-shaped thinning on the inner peripheral side of the cutting blade 5 so that the thinning blades 5A of the pair of cutting blades 5 intersect without passing through the chisel. Thus, the intersection point is the tip X of the cutting edge 5, but even if not thinned or applied, the tip flank of the pair of cutting edges intersect to form a chisel, The chisel may be the tip X of the cutting blade 5 by connecting the cutting blade 5 to the chisel. The displacement amount δ of the tip X at this time may be a displacement amount from the axis O at the center of the chisel.

以下、本発明の実施例を挙げて、本発明の効果について実証する。本実施例では、基本構成が上記実施形態に基づいたドリルにおいて、心厚と、ずれ量δを0mmも含めて種々に変化させた複数種のドリルを、ドリル本体1が上記超硬質材料のうち超硬合金のものと高速度工具鋼のものとで製造し、これらのドリルによって銅または銅合金よりなる被削材に穴明け加工を行って、その際の加工穴の内径精度と内周面の状態とを確認して評価した。この結果を、ドリル本体1が超硬質材料のときの加工穴内径精度については表1に、内周面の状態については表2に、またドリル本体1が高速度工具鋼のときの加工穴内径精度については表3に、内周面の状態については表4に,それぞれ示す。   Examples of the present invention will be given below to demonstrate the effects of the present invention. In this example, in the drill whose basic configuration is based on the above-described embodiment, the drill body 1 includes a plurality of types of drills in which the core thickness and the deviation amount δ are variously changed including 0 mm. Manufactured with cemented carbide and high-speed tool steel, and drills the work material made of copper or copper alloy with these drills. It was confirmed and confirmed. The results are shown in Table 1 for drilling hole inner diameter accuracy when the drill body 1 is an ultra-hard material, Table 2 for inner peripheral surface condition, and the hole bore inner diameter when the drill body 1 is high-speed tool steel. The accuracy is shown in Table 3, and the state of the inner peripheral surface is shown in Table 4.

これらのドリルは、いずれも切刃5の直径Dが7.0mmとされており、従って表1〜4においてずれ量δが0.07mm(0.01×D)、0.14mm(0.02×D)、および0.21mm(0.03×D)のもので、表1、2では心厚が0.2×D以上のものが、また表3、4では心厚が0.3×D以上のものが本発明の実施例のドリルとなり、それ以外のものは実施例に対する比較例となる。なお、ドリル本体1の全長は90mm、切屑排出溝4の軸線O方向の長さすなわち刃部3の長さは48mm、切屑排出溝4の捩れ角は30°、切刃5の先端角は140°であった。   In any of these drills, the diameter D of the cutting edge 5 is 7.0 mm. Therefore, in Tables 1 to 4, the deviation δ is 0.07 mm (0.01 × D) and 0.14 mm (0.02). × D), and 0.21 mm (0.03 × D). In Tables 1 and 2, the core thickness is 0.2 × D or more, and in Tables 3 and 4, the core thickness is 0.3 ×. The thing of D or more becomes a drill of the Example of this invention, and a thing other than that becomes a comparative example with respect to an Example. The overall length of the drill body 1 is 90 mm, the length of the chip discharge groove 4 in the direction of the axis O, that is, the length of the blade 3 is 48 mm, the twist angle of the chip discharge groove 4 is 30 °, and the tip angle of the cutting edge 5 is 140. °.

また、表1、3の加工穴の内径精度の評価は、直径7.0mmの内径測定用のピンを用いて、加工穴にピンが入らないものはバツ印、かろうじてピンは入るがかなりきつめのものは丸印、ピンがスムーズに入ってなおかつ振れが生じたりしないものを二重丸、ピンは入っても振れやぐらつきを生じるものを三角印とした。さらに、表2、4の加工穴内周面の状態の評価は、内周面にキズやライフリングマークが確認されたものはバツ印、大きなキズやライフリングマークは認められないが面粗さが少し粗めのものを三角印、キズなどは認められず面粗さも滑らかなものを二重丸印とした。   In addition, the evaluation of the inner diameter accuracy of machining holes shown in Tables 1 and 3 was performed using an inner diameter measuring pin with a diameter of 7.0 mm. A round mark was used for the pin, a pin that smoothly entered and no wobbling occurred, a double circle, and a pin that wobbled or wobbled even when the pin was inserted was a triangular mark. Furthermore, in the evaluation of the condition of the inner peripheral surface of the machining holes in Tables 2 and 4, the surface roughness is evaluated as a cross mark when a scratch or a life ring mark is confirmed on the inner peripheral surface, but no large scratch or a life ring mark is recognized. Slightly rough ones were marked with triangles, scratches were not recognized, and smooth ones were marked with double circles.

なお、表1、2に評価を示した穴明け加工における被削材は、株式会社神戸製鋼所の商品名:HR750(銅合金)製の厚さ30mmの板材であって、立形マシニングセンタにより切削速度30m/min、送り量0.2mm/revで貫通穴を形成した。また、表3、4に評価を示した穴明け加工における被削材は、JIS H 3100:2006に規定される合金番号C2801の黄銅製の厚さ30mmの板材であって、立形マシニングセンタにより切削速度20m/min、送り量0.15mm/revで、やはり貫通穴を形成した。   In addition, the work material in the drilling process shown in Tables 1 and 2 is a 30 mm-thick plate material made by Kobe Steel Co., Ltd. trade name: HR750 (copper alloy), and is cut by a vertical machining center. A through hole was formed at a speed of 30 m / min and a feed amount of 0.2 mm / rev. Further, the work material in the drilling process shown in Tables 3 and 4 is a plate material made of brass having an alloy number C2801 specified in JIS H 3100: 2006 and having a thickness of 30 mm, which is cut by a vertical machining center. A through hole was also formed at a speed of 20 m / min and a feed amount of 0.15 mm / rev.

Figure 2013022663
Figure 2013022663

Figure 2013022663
Figure 2013022663

Figure 2013022663
Figure 2013022663

Figure 2013022663
Figure 2013022663

このうち、まず表1、3に示した加工穴の内径精度の結果については、ずれ量δが0.01×D以上0.03×D以下の範囲にあって、ドリル本体1が超硬合金のものでは心厚が0.2×D以上のもの、またドリル本体1が高速度工具鋼のものでは心厚が0.3×D以上のもの、すなわち本発明に係わる実施例のドリルにより穴明けされた加工穴は、評価がいずれも二重丸で、切刃5の直径D通りの精度の高い加工穴が形成されているのが確認できた。   Among these, first, as for the results of the bore hole accuracy shown in Tables 1 and 3, the deviation δ is in the range of 0.01 × D to 0.03 × D, and the drill body 1 is made of cemented carbide. The core thickness is 0.2 × D or more, and the drill body 1 is high-speed tool steel, the core thickness is 0.3 × D or more. It was confirmed that all of the drilled machining holes were evaluated as double circles, and the machining holes with high accuracy as the diameter D of the cutting blade 5 were formed.

これに対して、ずれ量が0mmであって、すなわち切刃の先端とドリル本体の軸線が一致した通常のドリルでは、いずれも加工穴が収縮してピンが入らず、また、ずれ量が0.035mm(0.005×D)と小さいドリルでも、加工穴の収縮によってピンが入らなかったり、入るにしてもかなりきつめであったりして所望の内径は得られておらず、これは、ずれ量が0.07mm(0.01×D)であっても心厚が小さいドリルでは同様であった。逆に、ずれ量が0.03×Dよりも大きい0.28mm(0.04×D)のものでは、心厚が大きいものでは二重丸の評価であったが、心厚の小さいものでは内径が拡大しすぎており、これはずれ量が0.21mm(0.03×D)のものでも心厚が小さいものでは同様であった。   On the other hand, in the case of a normal drill in which the deviation amount is 0 mm, that is, in the normal drill in which the tip of the cutting edge coincides with the axis of the drill body, the machining hole contracts and the pin does not enter, and the deviation amount is 0. Even with a drill as small as .035 mm (0.005 × D), the pin does not enter due to shrinkage of the processing hole, or it is quite tight even if it enters, so the desired inner diameter is not obtained, Even when the deviation amount was 0.07 mm (0.01 × D), the same was true for a drill with a small core thickness. On the contrary, in the case of 0.28 mm (0.04 × D) where the deviation amount is larger than 0.03 × D, the case where the core thickness is large was evaluated as a double circle, but in the case where the core thickness is small. The inner diameter was enlarged too much, and this was the same even when the deviation amount was 0.21 mm (0.03 × D) and the core thickness was small.

一方、加工穴の内周面の評価については、やはり本発明に係わる実施例のドリルにより形成された加工穴は、いずれもキズやライフリングマークがなく、また面粗さも良好で滑らかであったのに対し、ずれ量0mmの通常のドリルによって穴明けされた加工穴では、いずれも内周面にキズが認められ、これはずれ量が0.035mmと小さいもののうち心厚の大きいものも同様であった。また、逆にずれ量が0.28mmと大きくて心厚が小さいものにはライフリングマークが見られた。また、心厚が小さいものでは、ずれ量が0.01×D以上0.03×D以下の範囲にあるものでも、キズやライフリングマークが認められるものや、大きなキズはないものの面粗さが粗いものがある。   On the other hand, regarding the evaluation of the inner peripheral surface of the processed hole, the processed holes formed by the drills of the examples according to the present invention were all free from scratches and life ring marks, and had good surface roughness and smoothness. On the other hand, all of the drilled holes drilled with a normal drill with a deviation of 0 mm showed scratches on the inner peripheral surface, and this is the same for the small deviation of 0.035 mm with the larger core thickness. there were. On the other hand, a life ring mark was seen in the case where the deviation amount was as large as 0.28 mm and the core thickness was small. In addition, in the case where the core thickness is small, even if the deviation amount is in the range of 0.01 × D to 0.03 × D, the surface roughness of the case where scratches or life ring marks are recognized, or there are no large scratches. Some are rough.

従って、これら加工穴の内径精度と内周面の状態の総合評価により、ドリル本体1が超硬合金のものにあっては、ずれ量δが0.01×D以上0.03×D以下の範囲にあって、心厚が0.2×D以上のもの、またドリル本体1が高速度工具鋼のものでは、ずれ量δがやはり0.01×D以上0.03×D以下の範囲にあって、心厚が0.3×D以上のものである本発明の実施例のドリルが、銅合金に対して優れた内径精度と内周面品位の加工穴を形成することができるのが分かる。   Therefore, based on a comprehensive evaluation of the inner diameter accuracy and the state of the inner peripheral surface of these processed holes, when the drill body 1 is made of cemented carbide, the deviation δ is 0.01 × D or more and 0.03 × D or less. If the core thickness is 0.2 × D or more and the drill body 1 is high-speed tool steel, the deviation δ is still in the range of 0.01 × D to 0.03 × D. In addition, the drill of the embodiment of the present invention having a core thickness of 0.3 × D or more can form a bore having excellent inner diameter accuracy and inner surface quality with respect to a copper alloy. I understand.

1 ドリル本体
2 シャンク部
3 刃部
4 切屑排出溝
5 切刃
5A シンニング刃
O ドリル本体1の回転軸線
T ドリル回転方向
X 切刃5の先端
D 切刃5の直径
δ 先端Xの軸線Oからのずれ量
DESCRIPTION OF SYMBOLS 1 Drill main body 2 Shank part 3 Blade part 4 Chip discharge groove 5 Cutting blade 5A Thinning blade O The rotation axis of the drill body 1 T Drill rotation direction X Tip of the cutting blade D Diameter of the cutting blade 5 δ From the axis O of the tip X Deviation amount

Claims (2)

軸線回りに回転させられる超硬合金、サーメット、およびセラミックスのうちいずれか1種よりなるドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の先端側辺稜部に上記ドリル本体の内周側から外周側に向かうに従い後端側に向けて延びる切刃が形成されており、この切刃の先端は、該切刃の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量で上記軸線から径方向にずらされているとともに、上記ドリル本体の心厚が0.2×D以上とされていることを特徴とするドリル。   A chip discharge groove is formed on the outer periphery of the tip of the drill body made of any one of cemented carbide, cermet, and ceramics rotated around the axis, and the tip of the wall surface of the chip discharge groove faces the drill rotation direction. A cutting edge extending toward the rear end side from the inner peripheral side to the outer peripheral side of the drill main body is formed at the side ridge portion. It is shifted in the radial direction from the axis with a shift amount in a range of 01 × D or more and 0.03 × D or less, and the core thickness of the drill body is 0.2 × D or more. drill. 軸線回りに回転させられる高速度工具鋼よりなるドリル本体の先端部外周に切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の先端側辺稜部に上記ドリル本体の内周側から外周側に向かうに従い後端側に向けて延びる切刃が形成されており、この切刃の先端は、該切刃の直径Dに対して0.01×D以上0.03×D以下の範囲のずれ量で上記軸線から径方向にずらされているとともに、上記ドリル本体の心厚が0.3×D以上とされていることを特徴とするドリル。   A chip discharge groove is formed in the outer periphery of the tip of the drill body made of high-speed tool steel rotated about the axis, and the inner periphery of the drill body is formed on the edge of the tip side of the wall facing the drill rotation direction of the chip discharge groove. A cutting blade extending toward the rear end side from the side toward the outer peripheral side is formed, and the tip of the cutting blade is 0.01 × D or more and 0.03 × D or less with respect to the diameter D of the cutting blade. The drill is characterized in that it is displaced in the radial direction from the axis line by a deviation amount in the range of the above, and the core thickness of the drill body is 0.3 × D or more.
JP2011157847A 2011-07-19 2011-07-19 Drill Pending JP2013022663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157847A JP2013022663A (en) 2011-07-19 2011-07-19 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157847A JP2013022663A (en) 2011-07-19 2011-07-19 Drill

Publications (1)

Publication Number Publication Date
JP2013022663A true JP2013022663A (en) 2013-02-04

Family

ID=47781590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157847A Pending JP2013022663A (en) 2011-07-19 2011-07-19 Drill

Country Status (1)

Country Link
JP (1) JP2013022663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789418A1 (en) * 2013-04-10 2014-10-15 Alpen-Maykestag GmbH Cutting part for a drill
AT514119A1 (en) * 2013-04-10 2014-10-15 Alpen Maykestag Gmbh Cutting part for a drill
JP2016529113A (en) * 2013-05-29 2016-09-23 メカクローム・フランスMecachrome France Rotary cutting tool with cutting blades made of various materials
CN108262481A (en) * 2016-12-31 2018-07-10 上海名古屋精密工具股份有限公司 Green body made of powder metallurgy and its forming method and purposes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231692A (en) * 1977-09-19 1980-11-04 Siemens Aktiengesellschaft Drill comprised of hard metal for drilling contact holes in circuit boards and the like
JPH03228510A (en) * 1990-01-30 1991-10-09 Mazda Motor Corp Drilling tool and drilling method
JPH0556312U (en) * 1992-01-16 1993-07-27 株式会社ツボ万 Drill
JP2005088088A (en) * 2003-09-12 2005-04-07 Tungaloy Corp Drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring
US20080267726A1 (en) * 2005-07-20 2008-10-30 Norihiro Masuda Drill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231692A (en) * 1977-09-19 1980-11-04 Siemens Aktiengesellschaft Drill comprised of hard metal for drilling contact holes in circuit boards and the like
JPH03228510A (en) * 1990-01-30 1991-10-09 Mazda Motor Corp Drilling tool and drilling method
JPH0556312U (en) * 1992-01-16 1993-07-27 株式会社ツボ万 Drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring
JP2005088088A (en) * 2003-09-12 2005-04-07 Tungaloy Corp Drill
US20080267726A1 (en) * 2005-07-20 2008-10-30 Norihiro Masuda Drill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789418A1 (en) * 2013-04-10 2014-10-15 Alpen-Maykestag GmbH Cutting part for a drill
AT514119A1 (en) * 2013-04-10 2014-10-15 Alpen Maykestag Gmbh Cutting part for a drill
AT514119B1 (en) * 2013-04-10 2016-04-15 Alpen Maykestag Gmbh Cutting part for a drill
JP2016529113A (en) * 2013-05-29 2016-09-23 メカクローム・フランスMecachrome France Rotary cutting tool with cutting blades made of various materials
CN108262481A (en) * 2016-12-31 2018-07-10 上海名古屋精密工具股份有限公司 Green body made of powder metallurgy and its forming method and purposes

Similar Documents

Publication Publication Date Title
JP5951113B2 (en) 3-flute drill with cutting fluid supply hole
JP5926877B2 (en) drill
US9333565B2 (en) Rotary cutter
RU2487783C1 (en) Drill
US9901991B2 (en) Drill
US11413690B2 (en) Small-diameter drill bit
JPWO2005102572A1 (en) Ball end mill
EP3134224B1 (en) Diamond plated grinding endmill for advanced hardened ceramics machining
JP6268716B2 (en) drill
JP6287592B2 (en) Small diameter end mill
JP2011073129A (en) Boring drill
JP2017202541A (en) Drill reamer
JP2013022663A (en) Drill
KR102399372B1 (en) drill
JP4930313B2 (en) Reamer
CN109937105B (en) Metal drilling tool
JP6212863B2 (en) Radius end mill
JP6825400B2 (en) Taper ball end mill
JP6086180B1 (en) Replaceable blade cutting tool and insert
JP2013013962A (en) Cbn end mill
CN103143750A (en) Deep hole half-moon drill bit
JP2003117710A (en) Drilling tool with coolant hole
JP2011104772A (en) Cutting tool
JP2016147328A (en) drill
JP2005111642A (en) End mill for spot facing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150507