JP2016147328A - drill - Google Patents

drill Download PDF

Info

Publication number
JP2016147328A
JP2016147328A JP2015024446A JP2015024446A JP2016147328A JP 2016147328 A JP2016147328 A JP 2016147328A JP 2015024446 A JP2015024446 A JP 2015024446A JP 2015024446 A JP2015024446 A JP 2015024446A JP 2016147328 A JP2016147328 A JP 2016147328A
Authority
JP
Japan
Prior art keywords
drill
outer peripheral
cutting edge
tip
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015024446A
Other languages
Japanese (ja)
Inventor
義孝 中ノ原
Yoshitaka Nakanohara
義孝 中ノ原
宗平 高橋
Sohei Takahashi
宗平 高橋
康一郎 成毛
Koichiro Naruge
康一郎 成毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015024446A priority Critical patent/JP2016147328A/en
Publication of JP2016147328A publication Critical patent/JP2016147328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cutting resistance by improving sharpness of this cutting edge, needless to say to be capable of executing stable hole drilling, in a drill used, for example, for draft hole drilling and in which an outer peripheral part of the cutting edge has a tip angle of 180° or more.SOLUTION: A chip discharge groove 5 of extending to the rear end side by opening on a tip flank 4 of a drill body 1, is formed on the tip part outer periphery of the drill body 1 rotated around the axis O, and an outer peripheral part of a wall surface 5A of turning in the drill rotational direction T of this chip discharge groove 5, extends so as to turn to the opposite side on the drill rotational direction T toward the inner peripheral side of the drill body 1, and an outer peripheral cutting edge 7A is formed in a crossing ridge line part between the outer peripheral part 6A and the tip flank 4 of this wall surface 5A, and a positive radial directional rake angle α and a tip angle of 180° or more, are imparted to this outer peripheral cutting edge 7A.SELECTED DRAWING: Figure 2

Description

本発明は、例えばアルミニウム等の鋳物の鋳抜き穴部分に穴加工を行うのに用いられるドリルに関するものである。   The present invention relates to a drill used for drilling a hole in a cast hole such as aluminum.

このような鋳抜き穴は鋳物の鋳造の際に形成されるものであるため、所定の位置に正確に形成するのは難しく、一般的な180°未満の先端角が切刃に与えられた2枚刃のドリルを鋳抜き穴に挿入して所定の位置に所望の内径の加工穴を形成しようとすると、ドリルと鋳抜き穴との芯ずれによって一方の切刃が先に鋳抜き穴に当たる、片当たりを生じてしまうおそれがある。片当たりが生じたドリルには、上記一方の切刃への切削力の分力としてドリル本体の内周側に向けた力が作用して振れが生じ、これによって加工穴に倒れや曲がりが発生して加工精度を損なうことになる。   Since such a punched hole is formed when casting a casting, it is difficult to accurately form in a predetermined position, and a general tip angle of less than 180 ° is given to the cutting edge. If you insert a single-edged drill into a hole and try to form a hole with a desired inner diameter at a predetermined position, one of the cutting edges will hit the hole first due to misalignment between the drill and the hole. There is a risk of hitting. For drills that come into contact with one piece, the force toward the inner periphery of the drill body acts as a component of the cutting force on the one of the cutting edges, causing deflection, which causes the drilled hole to bend or bend. As a result, machining accuracy is impaired.

そこで、例えば特許文献1には、このような鋳抜き穴加工におけるドリルの振れを防いで加工精度の向上を図るために、ドリル本体の切削部が、複数条の刃部と、刃部の間の溝部とを備えて、各刃部の外周部に、ドリル回転方向の前方から反対側(後方)へ順に、180°以上の先端角を有する第1の粗切刃と、この第1の粗切刃に対してドリル本体の軸線方向後端側にずれて形成された仕上げ刃と、第1の粗切刃に対して軸線方向に関し同一で形成された180°以上の先端角を有する第2の粗切刃を設けたドリルが提案されている。また、この特許文献1には、第1の粗切刃の内周部に180°以下の先端角を有して第1の粗切刃より先端側に突出する底切刃を設けることも記載されている。   Therefore, for example, in Patent Document 1, in order to prevent drill runout in such a punched hole processing and improve processing accuracy, the cutting portion of the drill body includes a plurality of blade portions and a blade portion. A first rough cutting edge having a tip angle of 180 ° or more in order from the front side to the opposite side (rear side) in the drill rotation direction on the outer peripheral part of each blade part, and the first rough cutting edge. A finishing blade formed to be shifted toward the rear end side in the axial direction of the drill body with respect to the cutting blade, and a second blade having a tip angle of 180 ° or more formed identically with respect to the axial direction with respect to the first rough cutting blade. A drill having a rough cutting edge is proposed. Further, this Patent Document 1 also describes that a bottom cutting edge having a tip angle of 180 ° or less at the inner peripheral portion of the first rough cutting blade and projecting to the tip side from the first rough cutting blade is provided. Has been.

特許第3847109号公報Japanese Patent No. 3847109

しかしながら、この特許文献1に記載されたドリルでは、上記第1、第2の粗切刃が、ドリル本体の軸線を含む平面上に形成されたすくい面を有しており、これら第1、第2の粗切刃の径方向すくい角はいずれも0°となる。このため、第1、第2の粗切刃は、それぞれその全長が軸線方向先端側から見て該軸線に対する半径線上に位置して、ドリル回転方向に等しい位置で鋳抜き穴の周りに切り込まれながら切削を行うことになり、切れ味が鈍くなって切削抵抗の増大を招くことになる。そして、このように切削抵抗が増大すると切削熱も増大してしまい、特にアルミニウム鋳物のような被削材の鋳抜き穴加工の場合には切屑の溶着が発生してドリル寿命を損なうおそれがある。   However, in the drill described in Patent Document 1, the first and second rough cutting blades have a rake face formed on a plane including the axis of the drill body. The rake angle in the radial direction of the two rough cutting edges is 0 °. For this reason, the first and second rough cutting edges are located on a radial line with respect to the axial line when viewed from the front end side in the axial direction, and cut around the core hole at a position equal to the drill rotation direction. In rare cases, cutting will be performed, resulting in dullness and increased cutting resistance. And when cutting resistance increases in this way, cutting heat will also increase, especially in the case of the cast hole processing of a work material like an aluminum casting, there exists a possibility that chip | tip welding may generate | occur | produce and the lifetime of a drill may be impaired. .

本発明は、このような背景の下になされたもので、例えば鋳抜き穴加工に用いられる、切刃の外周部が180°以上の先端角を有するドリルにおいて、安定した穴加工を行うことができるのは勿論、この切刃の切れ味を向上して切削抵抗の低減を図ることが可能なドリルを提供することを目的としている。   The present invention has been made under such a background. For example, in a drill having a tip angle of 180 ° or more on the outer peripheral portion of a cutting edge, which is used for, for example, punching holes, stable drilling can be performed. Of course, the object is to provide a drill capable of improving the sharpness of the cutting edge and reducing the cutting resistance.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるドリル本体の先端部外周に、該ドリル本体の先端逃げ面に開口して後端側に延びる切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の外周部は上記ドリル本体の内周側に向かうに従いドリル回転方向の反対側に向かうように延びており、この壁面の外周部と上記先端逃げ面との交差稜線部に外周切刃が形成されていて、この外周切刃には正の径方向すくい角と180°以上の先端角が与えられていることを特徴とする。   In order to solve the above-described problems and achieve such an object, the present invention provides an outer periphery of a tip end of a drill body that is rotated around an axis, an opening at a tip flank of the drill body, and a rear end side. An extended chip discharge groove is formed, and an outer peripheral portion of the wall of the chip discharge groove facing the drill rotating direction extends toward the opposite side of the drill rotating direction toward the inner peripheral side of the drill body. An outer peripheral cutting edge is formed at the intersection ridge line portion between the outer peripheral portion and the tip flank, and the outer peripheral cutting edge is given a positive radial rake angle and a tip angle of 180 ° or more. To do.

このようなドリルにおいては、まず特許文献1に記載されたドリルの第1、第2粗切刃と同様に、外周切刃に180°以上の先端角が与えられており、この外周切刃が鋳抜き穴の周りに切り込まれた際に切削力の上記軸線に対する径方向の分力としてドリル本体の内周側に向けた力が作用することがなく、振れが生じるのを抑制することができる。特に、先端角が180°よりも大きくて外周切刃がドリル本体の内周側に向かうに従い後端側に向かって延びている場合には、外周切刃による切削力の上記分力によってドリル本体には該外周切刃に対して外周側に向かう力が作用し、この外周切刃に隣接するドリル本体先端部の外周面が加工穴に押し付けられることになるので、安定した穴加工を行うことができて加工精度も向上する。   In such a drill, first, like the first and second rough cutting edges of the drill described in Patent Document 1, a tip angle of 180 ° or more is given to the outer peripheral cutting edge. It is possible to suppress the occurrence of run-out without a force directed toward the inner peripheral side of the drill body acting as a radial component of the cutting force on the axis when cut around the punched hole. it can. In particular, when the tip angle is larger than 180 ° and the outer peripheral cutting edge extends toward the rear end side toward the inner peripheral side of the drill main body, the drill main body uses the component force of the cutting force by the outer peripheral cutting edge. Since a force toward the outer peripheral side acts on the outer peripheral cutting edge and the outer peripheral surface of the drill body tip adjacent to the outer peripheral cutting edge is pressed against the processing hole, stable drilling is performed. And processing accuracy is improved.

そして、上記構成のドリルでは、この外周切刃のすくい面となる切屑排出溝のドリル回転方向を向く壁面の外周部が、ドリル本体の内周側に向かうに従いドリル回転方向の反対側に向かうように延びており、これによって外周切刃には正の径方向すくい角が与えられる。このため、外周切刃は、ドリル回転方向側に位置するその外周端から内周側に向けて徐々に鋳抜き穴の周りに切り込まれつつ切削を行うことになるので、切れ味が鋭くなって切削抵抗および切削熱の低減を図ることができる。従って、アルミニウム鋳物の鋳抜き穴加工などでも切刃に溶着が発生するのを防いで、長期に亙って円滑な加工を促すことが可能となる。   And in the drill of the said structure, the outer peripheral part of the wall surface which faces the drill rotation direction of the chip discharge groove used as the rake face of this outer peripheral cutting edge goes to the opposite side of the drill rotation direction toward the inner peripheral side of the drill body. This gives the outer peripheral cutting edge a positive radial rake angle. For this reason, the outer peripheral cutting edge performs cutting while being gradually cut around the core hole from the outer peripheral end located on the drill rotation direction side toward the inner peripheral side, so the sharpness becomes sharper. Cutting resistance and cutting heat can be reduced. Accordingly, it is possible to prevent welding from occurring on the cutting edge even in the case of punching a hole in an aluminum casting, and to facilitate smooth machining over a long period of time.

また、ドリル本体の先端逃げ面にはドリル回転方向の反対側に向かうに従いドリル本体後端側に向かう逃げ角が与えられているので、この先端逃げ面と、上述のようにドリル本体の内周側に向かうに従いドリル回転方向の反対側に向けて延びる切屑排出溝の上記壁面の外周部との交差稜線部に形成される外周切刃に、容易に180°以上の先端角を与えることが可能となる。このため、特許文献1に記載されたドリルのようにドリル本体の外周部に複数条(3条)の刃部と、刃部の間の複数条(2条)の溝部とを形成するのに対し、たとえ小径のドリルであっても確実かつ容易に上述のような外周切刃を形成することが可能となる。   Also, since the clearance angle toward the rear end side of the drill body is given to the tip clearance surface of the drill body toward the opposite side of the drill rotation direction, this tip clearance surface and the inner periphery of the drill body as described above are provided. It is possible to easily give a tip angle of 180 ° or more to the outer peripheral cutting edge formed at the crossing ridge line portion with the outer peripheral portion of the wall surface of the chip discharge groove extending toward the opposite side of the drill rotation direction toward the side It becomes. For this reason, like the drill described in Patent Document 1, a plurality of (three) blade portions and a plurality of (two) groove portions between the blade portions are formed on the outer peripheral portion of the drill body. On the other hand, even if it is a small diameter drill, it becomes possible to form the above-mentioned peripheral cutting edge reliably and easily.

ここで、このように外周切刃に正の径方向すくい角を与えるには、切屑排出溝のドリル回転方向を向く上記壁面の外周部に、該壁面の内周部に対してドリル回転方向の反対側に凹む副溝を形成し、外周切刃を、この副溝のドリル回転方向を向く副溝壁面と上記先端逃げ面との交差稜線部に形成すればよい。すなわち、この副溝壁面が、外周切刃のすくい面としての切屑排出溝のドリル回転方向を向く壁面の外周部となって、ドリル本体の内周側に向かうに従いドリル回転方向の反対側に向かうように延びることになり、例えば切屑排出溝のドリル回転方向を向く壁面を1つの平面や凹曲面状としつつドリル本体の内周側に向けてドリル回転方向の反対側に向かうように形成するのに比べ、切屑排出溝の溝幅が小さくなって切屑詰まりを生じ易くなるようなことがない。   Here, in order to give a positive radial rake angle to the outer peripheral cutting edge in this way, the outer peripheral portion of the wall surface facing the drill rotating direction of the chip discharge groove is arranged in the drill rotating direction with respect to the inner peripheral portion of the wall surface. A sub-groove recessed on the opposite side is formed, and the outer peripheral cutting edge may be formed at the intersecting ridge line portion of the sub-groove wall surface facing the drill rotation direction of the sub-groove and the tip flank. That is, this sub-groove wall surface becomes the outer peripheral part of the wall surface facing the drill rotation direction of the chip discharge groove as the rake face of the outer peripheral cutting edge, and goes toward the opposite side of the drill rotation direction toward the inner peripheral side of the drill body. For example, the wall surface facing the drill rotation direction of the chip discharge groove is formed as one flat surface or a concave curved surface toward the inner peripheral side of the drill body and toward the opposite side of the drill rotation direction. Compared to the above, there is no such a case that the chip width of the chip discharge groove becomes small and chip clogging is likely to occur.

また、特許文献1に記載されたドリルにおける底切刃と同様に、切屑排出溝のドリル回転方向を向く上記壁面の内周部と上記先端逃げ面との交差稜線部に180°以下の先端角が与えられた内周切刃を形成すれば、鋳抜き穴加工だけではなく下穴が形成されていない被削材に穴加工を行う通常の無垢穴の加工にも使用することができる。特に、この場合には、外周切刃の先端角を180°よりも大きく、内周切刃の先端角を180°よりも小さくすることにより、これら外周切刃に作用する上記分力と内周切刃に作用する径方向の分力とが打ち消し合うので、さらにドリル本体の振れを抑えて安定した穴加工を行うことができる。   Further, similarly to the bottom cutting edge in the drill described in Patent Document 1, the tip angle of 180 ° or less at the intersecting ridge line portion between the inner peripheral portion of the wall surface facing the drill rotation direction of the chip discharge groove and the tip flank surface If the inner peripheral cutting edge provided with is formed, it can be used not only for punching holes, but also for ordinary solid holes for drilling holes in workpieces where pilot holes are not formed. In particular, in this case, by making the tip angle of the outer peripheral cutting edge larger than 180 ° and making the tip angle of the inner peripheral cutting edge smaller than 180 °, the above component force and inner peripheral force acting on these outer peripheral cutting blades can be obtained. Since the radial component force acting on the cutting edge cancels out, stable drilling can be performed while further suppressing the deflection of the drill body.

そして、こうして内周切刃を形成する場合には、この内周切刃と上記外周切刃に交差する上記先端逃げ面が連続するように、すなわち内周切刃に交差する先端逃げ面と外周切刃に交差する先端逃げ面とが軸線方向に間隔をあけた段差などを介することなく連なるように形成することにより、内外周切刃が摩耗して先端逃げ面を再研磨するときでも、その逃げ角に沿った研磨を施すだけで容易に新しい内外周切刃を研ぎ付けることができる。この点、特許文献1に記載されたドリルでは、上述のように底切刃が第1の粗切刃より先端側に突出していて両切刃の間には段差が形成されており、再研磨の際には両切刃の先端逃げ面の研磨と段差の研磨とを行わなければならない。   When the inner peripheral cutting edge is formed in this way, the inner peripheral cutting edge and the distal end flank intersecting the outer peripheral cutting edge are continuous, that is, the distal flank and outer periphery intersecting the inner peripheral cutting edge. By forming the tip flank that intersects the cutting edge so as to be continuous without any step in the axial direction, even when the inner and outer peripheral cutting blades wear and the tip flank is re-polished, New inner and outer peripheral cutting edges can be easily sharpened simply by polishing along the clearance angle. In this respect, in the drill described in Patent Document 1, the bottom cutting edge protrudes from the first rough cutting edge to the tip side as described above, and a step is formed between the two cutting edges. In this case, it is necessary to polish the tip flank and the step of both cutting edges.

さらにまた、上記構成のドリルでは、上記切屑排出溝のドリル回転方向とドリル回転方向の反対側とに連なる上記ドリル本体の外周面にマージン部を形成することにより、これらのマージン部を加工穴の内周に摺接させることができて、一層安定した穴加工を行うことができる。   Furthermore, in the drill having the above-described configuration, margin portions are formed on the outer peripheral surface of the drill body that is continuous with the drill rotation direction of the chip discharge groove and the opposite side of the drill rotation direction, so that these margin portions are formed in the machining holes. It can be slidably contacted with the inner periphery, and more stable drilling can be performed.

以上説明したように、本発明によれば、鋳抜き穴加工を行う場合でもドリル本体の振れによる加工穴の倒れや曲がりを防ぐことができるとともに、外周切刃による切れ味の向上を図って切削抵抗と切削熱を低減し、アルミニウム鋳物などにおいても溶着を生じることなく円滑な穴加工を行うことが可能となる。   As described above, according to the present invention, it is possible to prevent the drilling hole from being bent or bent due to the deflection of the drill body even when performing the punching hole processing, and to improve the cutting performance by the outer peripheral cutting edge. As a result, it is possible to reduce the cutting heat and to perform smooth drilling without causing welding even in an aluminum casting or the like.

本発明のドリルの一実施形態を示す側面図である。It is a side view which shows one Embodiment of the drill of this invention. 図1に示すドリルの拡大正面図である。It is an enlarged front view of the drill shown in FIG. 図2における矢線X方向視の側面図である。It is a side view of the arrow X direction view in FIG. 図2における矢線Y方向視の側面図である。It is a side view of the arrow Y direction view in FIG. 図3におけるZZ断面図である。It is ZZ sectional drawing in FIG. 図1ないし図5に示す実施形態の変形例を示す側面図である。FIG. 6 is a side view showing a modification of the embodiment shown in FIGS. 1 to 5.

図1ないし図5は、本発明の一実施形態を示すものである。本実施形態において、ドリル本体1は、超硬合金等の硬質材料により形成されて軸線Oを中心とした外形略円柱状をなし、その後端部(図1において右側部分)は円柱状のままのシャンク部2とされるとともに、先端部(図1において左側部分)は切刃部3とされる。このようなドリルは、上記シャンク部2がマシニングセンタやボール盤等の工作機械の主軸に取り付けられ、軸線O回りにドリル回転方向Tに回転されつつ該軸線O方向先端側に送り出されることにより、上記切刃部3によって被削材に穴加工を行う。   1 to 5 show an embodiment of the present invention. In this embodiment, the drill body 1 is formed of a hard material such as cemented carbide and has a substantially cylindrical shape centered on the axis O, and the rear end portion (right side portion in FIG. 1) remains cylindrical. The tip portion (left side portion in FIG. 1) is the cutting blade portion 3 while being the shank portion 2. In such a drill, the shank portion 2 is attached to the main shaft of a machine tool such as a machining center or a drilling machine, and is rotated around the axis O in the drill rotation direction T and is sent to the front end side in the axis O direction. Hole processing is performed on the work material by the blade portion 3.

切刃部3はシャンク部2よりも外径が僅かに小さく形成されていて、その外周には、ドリル本体1の先端面である先端逃げ面4に開口して後端側に延びる切屑排出溝5が形成されている。本実施形態における切屑排出溝5は、軸線Oに平行に延びるストレート溝であり、シャンク部2の手前で外周側に切れ上がっている。本実施形態では、2条の切屑排出溝5が軸線Oに関して対称に形成されている。   The cutting edge portion 3 is formed to have an outer diameter slightly smaller than that of the shank portion 2, and a chip discharge groove that extends to the rear end side of the outer periphery of the cutting blade portion 3 that opens to the front end flank 4 that is the front end surface of the drill body 1. 5 is formed. The chip discharge groove 5 in the present embodiment is a straight groove extending in parallel to the axis O, and is cut out on the outer peripheral side in front of the shank portion 2. In the present embodiment, the two chip discharge grooves 5 are formed symmetrically with respect to the axis O.

切屑排出溝5は、ドリル回転方向Tを向く壁面5Aと、このドリル回転方向Tとは反対側を向く壁面5Bと、これらの壁面5A、5Bの間に位置してドリル本体1の外周側を向く底面5Cとを有している。ただし、このうちドリル回転方向Tを向く壁面5Aの外周部には、該壁面5Aに対してドリル回転方向Tの反対側に凹む副溝6が形成されていて、この副溝6が壁面5Aの外周側の一部または全部を占めており、特に本実施形態では副溝6が壁面5Aの全部を占めている。なお、上記壁面5Bは軸線Oに平行に延びる平面状に形成されるとともに、上記底面5Cはこの壁面5Bに接する凹円筒面等の凹曲面状に形成されている。   The chip discharge groove 5 is located between the wall surface 5A facing the drill rotation direction T, the wall surface 5B facing the opposite side of the drill rotation direction T, and the wall surfaces 5A and 5B. And a bottom surface 5C. However, a sub-groove 6 that is recessed on the opposite side of the drill rotation direction T with respect to the wall surface 5A is formed on the outer peripheral portion of the wall surface 5A facing the drill rotation direction T. Part or all of the outer peripheral side is occupied, and in this embodiment, in particular, the auxiliary groove 6 occupies the entire wall surface 5A. The wall surface 5B is formed in a planar shape extending parallel to the axis O, and the bottom surface 5C is formed in a concave curved surface shape such as a concave cylindrical surface in contact with the wall surface 5B.

副溝6は、図2および図5に示すように軸線Oに直交する断面が断面V字状をなしており、ドリル本体1の外周側に位置して内周側に向かうに従いドリル回転方向Tの反対側に向けて延びる第1副溝壁面6Aと、この第1副溝壁面6Aの内周側に位置して内周側に向かうに従いドリル回転方向Tに向けて延びる第2副溝壁面6Bとを有している。これら第1、第2副溝壁面6A、6Bは軸線Oに平行に延びる平面状に形成され、第2副溝壁面6Bは切屑排出溝5の上記底面5Cと鈍角に交差している。なお、これら第1、第2副溝壁面6A、6Bは角度をもって交差していてもよく、また図5に示すように切屑排出溝5の底面5Cよりは小さな半径の凹円筒面等の凹曲面に接して連なっていてもよい。   As shown in FIGS. 2 and 5, the sub-groove 6 has a V-shaped cross section perpendicular to the axis O, and is positioned on the outer peripheral side of the drill body 1 and toward the inner peripheral side in the drill rotation direction T. The first sub-groove wall surface 6A extending toward the opposite side of the first sub-groove wall surface and the second sub-groove wall surface 6B extending toward the drill rotation direction T toward the inner periphery side of the first sub-groove wall surface 6A And have. The first and second sub-groove wall surfaces 6A and 6B are formed in a planar shape extending in parallel with the axis O, and the second sub-groove wall surface 6B intersects the bottom surface 5C of the chip discharge groove 5 at an obtuse angle. The first and second sub-groove wall surfaces 6A and 6B may intersect with each other at an angle, and a concave curved surface such as a concave cylindrical surface having a smaller radius than the bottom surface 5C of the chip discharge groove 5 as shown in FIG. You may be in contact with each other.

第1副溝壁面6Aは、図5に示すように軸線Oに直交する断面において、該軸線Oと第1副溝壁面6Aの外周端とを結ぶ直線(半径線)Lに対する傾斜角αが、同直線Lに対する第2副溝壁面6Bの傾斜角βよりも小さくなるように形成されている。また、この直線L方向に沿った第1副溝壁面6Aの幅と、第1副溝壁面6Aに沿った実際の幅とは、ともに第2副溝壁面6Bよりも幅広となるように形成されている。   The first sub-groove wall surface 6A has an inclination angle α with respect to a straight line (radius line) L connecting the axis O and the outer peripheral end of the first sub-groove wall surface 6A in a cross section orthogonal to the axis O as shown in FIG. The second sub-groove wall surface 6B is formed so as to be smaller than the inclination angle β with respect to the straight line L. The width of the first sub-groove wall surface 6A along the straight line L direction and the actual width along the first sub-groove wall surface 6A are both wider than the second sub-groove wall surface 6B. ing.

一方、切屑排出溝5の上記壁面5Bと上記底面5Cとの先端部には、これらの壁面5Bおよび底面5Cから先端側に向かうに従いドリル本体1の内周側に向かうようにシンニング面5Dが形成されており、このシンニング面5Dは軸線O方向先端側から見て図2に示すように先端逃げ面4にL字状に交差している。また、副溝6の第2副溝壁面6Bは、ドリル本体1の先端部においてはこのシンニング面5Dに交差している。   On the other hand, a thinning surface 5D is formed at the tip of the wall surface 5B and the bottom surface 5C of the chip discharge groove 5 so as to go to the inner peripheral side of the drill body 1 from the wall surface 5B and the bottom surface 5C toward the tip side. The thinning surface 5D intersects the tip flank 4 in an L shape as shown in FIG. 2 when viewed from the tip side in the axis O direction. Further, the second sub-groove wall surface 6B of the sub-groove 6 intersects the thinning surface 5D at the tip of the drill body 1.

そして、切屑排出溝5のドリル回転方向Tを向く壁面5Aと先端逃げ面4との交差稜線部には切刃7が形成されており、本実施形態では副溝6の第1副溝壁面6Aと先端逃げ面4との交差稜線部に外周切刃7Aが形成されるとともに、上記シンニング面5Dと先端逃げ面4とのL字状をなす交差稜線部のうちドリル回転方向Tを向く部分には内周切刃7Bが形成され、副溝6の第2副溝壁面6Bと先端逃げ面4との交差稜線部には、これら外周切刃7Aと内周切刃7Bとの間に延びる中間切刃7Cが形成されている。従って、外周切刃7Aは、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向かうように延びることになり、この外周切刃7Aには第1副溝壁面6Aが上記直線Lに対してなす傾斜角αと等しい正の径方向すくい角αが与えられる。   And the cutting edge 7 is formed in the intersection ridgeline part of the wall surface 5A which faces the drill rotation direction T of the chip discharge groove 5, and the front-end | tip flank 4, The 1st sub groove wall surface 6A of the sub groove 6 in this embodiment. The outer peripheral cutting edge 7A is formed at the intersecting ridge line portion between the tip flank 4 and the tip flank 4 and the portion of the intersecting ridge line portion that is L-shaped between the thinning surface 5D and the tip flank 4 faces the drill rotation direction T. The inner peripheral cutting edge 7B is formed, and the intermediate ridge line portion between the second auxiliary groove wall surface 6B and the tip flank 4 of the auxiliary groove 6 extends between the outer peripheral cutting edge 7A and the inner peripheral cutting edge 7B. A cutting edge 7C is formed. Accordingly, the outer peripheral cutting edge 7A extends toward the opposite side of the drill rotation direction T as it goes toward the inner peripheral side of the drill body 1, and the first auxiliary groove wall surface 6A is formed on the outer peripheral cutting edge 7A by the straight line. A positive radial rake angle α equal to the tilt angle α made with respect to L is given.

また、先端逃げ面4には、切刃7からドリル回転方向Tの反対側に向かうに従いドリル本体1の後端側に向かうように逃げ角が与えられており、このような逃げ角が与えられることにより、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向かうように延びる外周切刃7Aは、軸線Oに垂直な仮想平面に沿って延びるように、またはドリル本体1の内周側に向かうに従い後端側に向けて延びるように形成されて、該外周切刃7Aには180°以上の先端角γが与えられることになる。本実施形態では、図3に示すように、外周切刃7Aはドリル本体1の内周側に向かうに従い後端側に向けて延びており、180°よりも大きな先端角γが与えられている。   Moreover, the clearance angle is given to the front-end flank 4 so that it may go to the rear-end side of the drill main body 1 as it goes to the opposite side of the drill rotation direction T from the cutting blade 7, and such a clearance angle is given. Accordingly, the outer peripheral cutting edge 7A extending toward the opposite side of the drill rotation direction T toward the inner peripheral side of the drill main body 1 extends along a virtual plane perpendicular to the axis O, or the drill main body 1 The outer peripheral cutting edge 7A is provided with a tip angle γ of 180 ° or more as it extends toward the rear end side toward the inner peripheral side. In the present embodiment, as shown in FIG. 3, the outer peripheral cutting edge 7 </ b> A extends toward the rear end side toward the inner peripheral side of the drill body 1, and is given a tip angle γ greater than 180 °. .

なお、本実施形態では、先端逃げ面4は、内周切刃7Bに交差してドリル回転方向Tの反対側に連なる幅狭で一定幅の第1先端逃げ面4Aと、この第1先端逃げ面4Aのドリル回転方向Tの反対側に連なって外周切刃7Aおよび中間切刃7Cに交差する第2先端逃げ面4Bとを備えている。第2先端逃げ面4Bの逃げ角は第1先端逃げ面4Aよりも大きく設定され、図2に示したように第1、第2先端逃げ面4A、4Bは軸線Oに交差する直線を介して、また図4に示すように段差を有することなく折れ曲がるようにして連続している。従って、内周切刃7Bには負の径方向すくい角が与えられることになり、さらに中間切刃7Cにも上記直線Lに対する第2副溝壁面6Bの傾斜角βと等しい、内周切刃7Bよりも負角側に大きな負の径方向すくい角βが与えられる。   In the present embodiment, the tip flank 4 has a narrow and constant first tip flank 4A that intersects the inner peripheral cutting edge 7B and continues to the opposite side of the drill rotation direction T, and the first tip flank. A second tip flank 4B is provided which is connected to the opposite side of the surface 4A in the drill rotation direction T and intersects the outer peripheral cutting edge 7A and the intermediate cutting edge 7C. The clearance angle of the second tip flank 4B is set to be larger than that of the first tip flank 4A, and the first and second tip flank 4A, 4B are connected via a straight line intersecting the axis O as shown in FIG. Moreover, as shown in FIG. 4, it is continuing so that it may be bent without having a level | step difference. Therefore, a negative radial rake angle is given to the inner peripheral cutting edge 7B, and the inner peripheral cutting edge is equal to the inclination angle β of the second auxiliary groove wall surface 6B with respect to the straight line L in the intermediate cutting edge 7C. A larger negative radial rake angle β is provided on the negative angle side than 7B.

さらに、本実施形態では、内周切刃7Bには180°以下の先端角θが与えられるとともに、中間切刃7Cにはこの内周切刃7Bの先端角θよりも小さな先端角が与えられている。本実施形態における先端逃げ面4は、軸線Oからドリル本体1の外周側に向けても後端側に向かうように傾斜しており、これにより内周切刃7Bには180°よりも小さな先端角θが与えられている。なお、外周切刃7Aの上記先端角γ(°)は、360°−γ(°)がこの内周切刃7Bの先端角θ(°)より小さくなるように設定されている。また、内周切刃7Bの外周端は外周切刃7Aの外周端と軸線O方向に等しい位置か、ドリル本体1の後端側に配置される。   Furthermore, in this embodiment, the inner peripheral cutting edge 7B is given a tip angle θ of 180 ° or less, and the intermediate cutting edge 7C is given a tip angle smaller than the tip angle θ of the inner peripheral cutting edge 7B. ing. The tip flank 4 in the present embodiment is inclined so as to be directed toward the rear end side from the axis O toward the outer peripheral side of the drill main body 1, whereby the tip smaller than 180 ° is formed on the inner peripheral cutting edge 7B. An angle θ is given. The tip angle γ (°) of the outer peripheral cutting edge 7A is set so that 360 ° −γ (°) is smaller than the tip angle θ (°) of the inner peripheral cutting edge 7B. Further, the outer peripheral end of the inner peripheral cutting edge 7B is disposed at a position equal to the outer peripheral end of the outer peripheral cutting edge 7A in the direction of the axis O or on the rear end side of the drill body 1.

さらにまた、図2に示すように、2つの切屑排出溝5の先端部のシンニング面5Dは、軸線O方向先端側から見て先端逃げ面4との交差稜線部に形成される内周切刃7B同士が外周側から軸線Oを僅かに越えて互いに行き違うように形成されている。また、ドリル本体1には、周方向において切刃部3の2つの切屑排出溝5の間を通って2つのクーラント穴8がシャンク部2の後端面(ドリル本体1の後端面)から軸線Oに平行に延びていて、2つの先端逃げ面4の第2先端逃げ面4Bにそれぞれ開口している。   Furthermore, as shown in FIG. 2, the thinning surface 5D at the tip of the two chip discharge grooves 5 is an inner peripheral cutting edge formed at a crossing ridge line portion with the tip flank 4 when viewed from the tip side in the axis O direction. 7B are formed so as to pass each other slightly beyond the axis O from the outer peripheral side. Further, in the drill body 1, two coolant holes 8 pass between the two chip discharge grooves 5 of the cutting edge portion 3 in the circumferential direction, and the axis O extends from the rear end surface of the shank portion 2 (rear end surface of the drill body 1). And open to the second tip flank 4B of the two tip flank 4 respectively.

一方、切刃部3の外周面には、切屑排出溝5のドリル回転方向Tに連なる部分に第1マージン部9Aが形成されるとともに、切屑排出溝5のドリル回転方向Tの反対側に連なる部分には第2マージン部9Bが形成されている。これら第1、第2マージン部9A、9Bは、その外周面が、切刃7の直径(外周切刃7Aの外周端が軸線O回りになす円の直径)と等しい直径の軸線Oを中心とした円筒面上に位置するように形成されたものであって、合計4つの第1、第2マージン部9A、9Bはドリル本体1の周方向に概ね等間隔に配置されている。   On the other hand, on the outer peripheral surface of the cutting edge portion 3, a first margin portion 9 </ b> A is formed in a portion continuous with the drill rotation direction T of the chip discharge groove 5, and continues to the opposite side of the chip discharge groove 5 with respect to the drill rotation direction T. A second margin portion 9B is formed in the portion. The first and second margin portions 9A and 9B have an outer peripheral surface centered on an axis O having a diameter equal to the diameter of the cutting edge 7 (the diameter of a circle formed by the outer peripheral end of the outer peripheral cutting edge 7A around the axis O). A total of four first and second margin portions 9A and 9B are arranged at approximately equal intervals in the circumferential direction of the drill body 1.

なお、第2マージン部9Bは、周方向の幅が第1マージン部9Aよりも僅かに幅広に形成されている。また、ドリル回転方向T側の切屑排出溝5の第1マージン部9Aからドリル回転方向Tの反対側に向けて、ドリル本体1の外周面には、上記切刃7の直径よりも一段小さな直径の軸線Oを中心とした円筒面上に位置する第1外周逃げ面10Aと、この第1外周逃げ面10Aが位置する円筒面に対してドリル本体1の内周側に凹む平面状の第2外周逃げ面10Bとが形成されている。   The second margin portion 9B is formed so that the circumferential width is slightly wider than the first margin portion 9A. Further, the diameter of the drill body 1 is smaller than the diameter of the cutting edge 7 on the outer peripheral surface of the drill body 1 from the first margin portion 9A of the chip discharge groove 5 on the drill rotation direction T side toward the opposite side of the drill rotation direction T. The first outer peripheral flank 10A located on the cylindrical surface centering on the axis O of this, and the planar second concave recessed toward the inner peripheral side of the drill body 1 with respect to the cylindrical surface on which the first outer peripheral flank 10A is located. An outer peripheral flank 10B is formed.

さらに、この第2外周逃げ面10Bとドリル回転方向Tの反対側の第2マージン部9Bの外周面との間には、軸線Oを含む平面上に略位置してドリル回転方向Tを向く外周壁面10Cが形成されており、この外周壁面10Cと先端逃げ面4の第2先端逃げ面4Bとの交差稜線部には、図3に示すように切刃7よりもドリル本体1の後端側に位置するように副切刃7Dが形成されている。従って、この副切刃7Dの先端角は180°以下とされ、本実施形態では180°よりも小さくて、内周切刃7Bの先端角θよりも小さい角度とされている。   Further, an outer periphery that is substantially located on a plane including the axis O and faces the drill rotation direction T between the second outer periphery flank 10B and the outer periphery of the second margin portion 9B opposite to the drill rotation direction T. A wall surface 10C is formed, and at the intersecting ridge line portion between the outer peripheral wall surface 10C and the second tip flank 4B of the tip flank 4 as shown in FIG. A secondary cutting edge 7D is formed so as to be located at the position. Therefore, the tip angle of the auxiliary cutting edge 7D is set to 180 ° or less, and in this embodiment, is smaller than 180 ° and smaller than the tip angle θ of the inner peripheral cutting edge 7B.

このように構成されたドリルでは、切刃7のうち外周切刃7Aに180°以上の先端角γが与えられており、例えば鋳物の鋳抜き穴部分に所定の内径の加工穴を形成するような場合に、この外周切刃7Aが鋳抜き穴の周りに切り込まれた際、切削力の軸線Oに対する径方向の分力として外周切刃7Aからドリル本体1の内周側に向けた力が作用することがない。このため、穴加工時のドリル本体1の振れを抑えて加工穴の倒れや曲がりを防ぐことができ、加工精度の向上を図ることができる。   In the drill configured as described above, a tip angle γ of 180 ° or more is given to the outer peripheral cutting edge 7A of the cutting edges 7, and for example, a processing hole having a predetermined inner diameter is formed in a cast hole portion of a casting. In this case, when the outer peripheral cutting edge 7A is cut around the punched hole, a force directed from the outer peripheral cutting edge 7A toward the inner peripheral side of the drill body 1 as a radial component force with respect to the axis O of the cutting force. Does not work. For this reason, it is possible to suppress the deflection of the drill body 1 during drilling to prevent the drilling and bending of the drilled hole, and to improve the machining accuracy.

特に、本実施形態では、先端角γが180°よりも大きくて、外周切刃7Aがドリル本体1の内周側に向かうに従い後端側に向かって延びており、外周切刃7Aが鋳抜き穴の周りに切り込まれたときには、切削力の分力が軸線Oに対する径方向においては外周切刃7Aに隣接するドリル本体1の外周面すなわち第1マージン部9Aに向けて作用することになる。従って、この第1マージン部9Aの外周面が加工穴の内周に押し付けられることにより、一層安定した穴加工を行うことができる。しかも、このような外周切刃7Aが2つ軸線Oに関して対称に形成されているので、片当たりを生じることもない。   In particular, in the present embodiment, the tip angle γ is larger than 180 °, the outer peripheral cutting edge 7A extends toward the rear end side toward the inner peripheral side of the drill body 1, and the outer peripheral cutting edge 7A is cast. When cut around the hole, the component of the cutting force acts in the radial direction with respect to the axis O toward the outer peripheral surface of the drill body 1 adjacent to the outer peripheral cutting edge 7A, that is, the first margin portion 9A. . Accordingly, the outer peripheral surface of the first margin portion 9A is pressed against the inner periphery of the processing hole, so that more stable hole processing can be performed. In addition, since the outer peripheral cutting edge 7A is formed symmetrically with respect to the two axes O, no one-sided contact occurs.

さらに、上記構成のドリルにおいては、このような外周切刃7Aのすくい面となる、切屑排出溝5のドリル回転方向Tを向く壁面5Aの外周部に形成された副溝6の第1副溝壁面6Aが、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向けて延びている。そして、これに伴い外周切刃7Aも、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向けて延びることになり、この外周切刃7Aに正の径方向すくい角αが与えられる。   Further, in the drill having the above-described configuration, the first sub-groove of the sub-groove 6 formed on the outer peripheral portion of the wall surface 5A facing the drill rotation direction T of the chip discharge groove 5 and serving as a rake face of the outer peripheral cutting edge 7A. The wall surface 6 </ b> A extends toward the opposite side of the drill rotation direction T toward the inner peripheral side of the drill body 1. Accordingly, the outer peripheral cutting edge 7A also extends toward the opposite side of the drill rotation direction T toward the inner peripheral side of the drill body 1, and the outer peripheral cutting edge 7A has a positive radial rake angle α. Given.

従って、穴加工時に外周切刃7Aが鋳抜き穴の周りに切り込まれる際には、ドリル本体1の回転に伴いドリル回転方向T側に位置する該外周切刃7Aの外周端から内周側に向けて徐々に切り込まれることになり、切れ味を鋭くして切削抵抗を低減することができる。このため、切削時の熱の発生を抑えることができて、被削材がアルミニウム鋳物のような場合でも外周切刃7Aに溶着が生じるのを防ぐことができ、さらに安定的で円滑な穴加工を長期に亙って行うことができる。また、本実施形態では、穴加工時にクーラント穴8を介して先端逃げ面4から切刃7や被削材の切削部位にクーラントを供給することによっても、切削熱を抑えることができる。   Therefore, when the outer peripheral cutting edge 7A is cut around the punched hole during drilling, the outer peripheral end of the outer peripheral cutting edge 7A located on the drill rotation direction T side with the rotation of the drill body 1 is changed to the inner peripheral side. The cutting force is gradually cut toward the point, and the cutting resistance can be sharpened to reduce the cutting resistance. For this reason, generation | occurrence | production of the heat at the time of cutting can be suppressed, and even when a work material is an aluminum casting, it can prevent that outer periphery cutting blade 7A produces welding, and also more stable and smooth hole processing. Can be done for a long time. Moreover, in this embodiment, cutting heat can also be suppressed by supplying a coolant from the front flank 4 to the cutting edge 7 or the cutting site of the work material through the coolant hole 8 at the time of drilling.

さらに、ドリル本体1の先端逃げ面4にはドリル回転方向Tの反対側に向かうに従い後端側に向かうように逃げ角が与えられるので、この先端逃げ面4と、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向けて延びる上記壁面5Aの外周部との交差稜線部に形成される外周切刃7Aに、容易に180°あるいは180°よりも大きな先端角γを与えられることができる。このため、たとえ切刃7の上記直径が小さい小径のドリルであっても、確実に上述のような外周切刃7Aを形成することが可能となる。   Furthermore, since the clearance angle is given to the front end flank 4 of the drill body 1 so as to go to the rear end side toward the opposite side of the drill rotation direction T, the front end flank 4 and the inner peripheral side of the drill main body 1 are provided. A tip angle γ greater than 180 ° or greater than 180 ° is easily given to the outer peripheral cutting edge 7A formed at the intersecting ridge line portion with the outer peripheral portion of the wall surface 5A extending toward the opposite side of the drill rotation direction T toward Can be done. For this reason, even if it is a small diameter drill with the said diameter of the cutting blade 7 small, it becomes possible to form the above-mentioned outer peripheral cutting blade 7A reliably.

また、こうして外周切刃7Aに正の径方向すくい角αを与えるのに、本実施形態では上述のように切屑排出溝5のドリル回転方向Tを向く壁面5Aの外周部に副溝6を形成し、この副溝6の外周側のドリル回転方向Tを向く第1副溝壁面6Aを、ドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向けて延びるように形成している。しかるに、このような副溝6を形成せずに、例えば切屑排出溝5の上記壁面5Aを底面5Cに接する平面や凹曲面として、この壁面5A自体をドリル本体1の内周側に向かうに従いドリル回転方向Tの反対側に向けて延びるように形成することにより、先端逃げ面4との交差稜線部に形成される外周切刃7Aに正の径方向すくい角αを与えることも可能であるが、その場合には切屑排出溝5の溝幅が小さくなって切屑詰まりを生じるおそれがあるのに対し、本実施形態ではそのような事態が生じることがない。   Further, in order to give a positive radial rake angle α to the outer peripheral cutting edge 7A in this way, in the present embodiment, the auxiliary groove 6 is formed in the outer peripheral portion of the wall surface 5A facing the drill rotation direction T of the chip discharging groove 5 as described above. The first sub-groove wall surface 6A facing the drill rotation direction T on the outer peripheral side of the sub-groove 6 is formed so as to extend toward the opposite side of the drill rotation direction T toward the inner peripheral side of the drill body 1. Yes. However, without forming such a secondary groove 6, for example, the wall surface 5 </ b> A of the chip discharge groove 5 is formed as a flat surface or a concave curved surface in contact with the bottom surface 5 </ b> C, and the wall surface 5 </ b> A itself is drilled toward the inner peripheral side of the drill body 1. It is possible to give a positive radial rake angle α to the outer peripheral cutting edge 7A formed at the crossing ridge line part with the tip flank 4 by forming it so as to extend toward the opposite side of the rotation direction T. In such a case, the groove width of the chip discharge groove 5 may be reduced and chip clogging may occur, but such a situation does not occur in the present embodiment.

さらに、本実施形態では副溝6が断面V字状に形成されていて、ドリル回転方向Tを向く第1副溝壁面6Aの内周側に、この第1副溝壁面6Aの上記直線Lに対する傾斜角αよりも大きな傾斜角βで傾斜する第2副溝壁面6Bが形成されており、例えば鋳物の穴加工ではない通常の穴加工の場合などに外周切刃7Aによって連続した切屑が生成されても、この切屑を第2副溝壁面6Bに摺接させて抵抗を与えることにより分断し、良好な切屑排出性を確保することができるという効果も期待できる。また、この第2副溝壁面6Bの先端部に形成された中間切刃7Cまでも使用して穴加工を行う場合には、切屑が断面V字に生成されるので分断され易く、やはり切屑処理性の向上を図ることができる。ただし、第2副溝壁面6Bは凹曲面状であってもよく、さらに第1副溝壁面6Aも含めて副溝6の溝壁面全体が凹曲面状であってもよい。   Further, in the present embodiment, the sub-groove 6 is formed in a V-shaped cross section, and on the inner peripheral side of the first sub-groove wall surface 6A facing the drill rotation direction T, the first sub-groove wall surface 6A with respect to the straight line L A second sub-groove wall surface 6B inclined at an inclination angle β larger than the inclination angle α is formed, and continuous chips are generated by the outer peripheral cutting edge 7A, for example, in the case of a normal hole processing that is not a casting hole processing. However, it is possible to expect an effect that the chips can be divided by being brought into sliding contact with the second sub-groove wall surface 6B and imparting resistance to ensure good chip dischargeability. In addition, when drilling is performed using even the intermediate cutting edge 7C formed at the tip of the second sub-groove wall surface 6B, the chips are generated in a V-shaped cross section, so that they are easily divided. It is possible to improve the performance. However, the second sub-groove wall surface 6B may have a concave curved surface shape, and the entire groove wall surface of the sub-groove 6 including the first sub-groove wall surface 6A may have a concave curved surface shape.

また、本実施形態では、この第2副溝壁面6Bと先端逃げ面4との交差稜線部に形成される中間切刃7Cの内周側において、シンニング面5Dと先端逃げ面4との交差稜線部のドリル回転方向Tを向く部分に内周切刃7Bが形成されている。このため、鋳抜き穴のような下穴が形成されていない被削材に穴あけ加工を行う無垢穴の加工の場合や、止まり穴状の下穴の開口していない側から穴あけ加工を行うにも、この内周切刃7Bから中間切刃7Cおよび外周切刃7Aに亙って切削を行って、本実施形態のドリルを使用することができる。   In the present embodiment, the intersecting ridge line between the thinning surface 5D and the tip flank 4 is formed on the inner peripheral side of the intermediate cutting edge 7C formed at the intersecting ridge line portion between the second sub-groove wall surface 6B and the tip flank 4. An inner peripheral cutting edge 7B is formed at a portion of the portion facing the drill rotation direction T. For this reason, in the case of processing a solid hole that drills a work material that does not have a pilot hole such as a punched hole, or from the side where a blind hole-shaped pilot hole is not opened, Alternatively, the drill of this embodiment can be used by cutting from the inner peripheral cutting edge 7B to the intermediate cutting edge 7C and the outer peripheral cutting edge 7A.

そして、この内周切刃7Bには180°以下の先端角θが与えられているので、特に本実施形態のように外周切刃7Aの先端角γが180°よりも大きくて、内周切刃7Bの先端角θが180°よりも小さい場合には、これら外周切刃7Aと内周切刃7Bに作用する切削力の径方向の上記分力同士を打ち消し合わせることができ、さらにドリル本体1の振れを抑制して精度の高い穴加工を行うことができる。   Since the inner peripheral cutting edge 7B is provided with a tip angle θ of 180 ° or less, the tip angle γ of the outer peripheral cutting blade 7A is particularly larger than 180 ° as in the present embodiment. When the tip angle θ of the blade 7B is smaller than 180 °, the component forces in the radial direction of the cutting force acting on the outer peripheral cutting blade 7A and the inner peripheral cutting blade 7B can be canceled out, and the drill body It is possible to perform highly accurate drilling while suppressing the swing of 1.

また、こうして内周切刃7Bを形成する場合に、本実施形態では、ドリル本体1の先端逃げ面4において、この内周切刃7Bに交差する第1先端逃げ面4Aと、外周切刃7Aに交差する第2先端逃げ面4Bとが、軸線O方向に凹凸するような段差を介することなく折れ曲がるだけで連続している。このため、切刃7に摩耗が生じて再研磨をする場合でも、こうして折れ曲がった第1、第2先端逃げ面4A、4Bとシンニング面5Dを軸線O方向に後退させるように研磨を施すだけで、容易に新しい外周切刃7A、内周切刃7B、および中間切刃7Cを研ぎ付けることができる。   Further, when forming the inner peripheral cutting edge 7B in this way, in the present embodiment, in the distal end flank 4 of the drill body 1, the first distal flank 4A intersecting the inner peripheral cutting edge 7B and the outer peripheral cutting edge 7A. The second tip flank 4B intersecting with the second end flank 4B is continuous only by being bent without passing through a step that is uneven in the direction of the axis O. For this reason, even when the cutting edge 7 is worn and re-polished, the first and second tip flank surfaces 4A and 4B and the thinning surface 5D thus bent are simply polished so as to recede in the direction of the axis O. The new outer peripheral cutting edge 7A, inner peripheral cutting edge 7B, and intermediate cutting edge 7C can be easily sharpened.

なお、本実施形態では、このように先端逃げ面4が第1、第2先端逃げ面4A、4Bによって形成されているが、連続した1つの先端逃げ面によって形成されていてもよく、逆に3つ以上の先端逃げ面が形成されていてもよい。また、切刃7にホーニングやRチャンファー等のチャンファーを施して刃先強度を向上させてもよい。一方、鋳抜き穴加工などの予め被削材に形成された下穴を所定の内径に加工するのに専用のドリルであれば、内周切刃7Bは形成されていなくてもよい。   In the present embodiment, the tip flank 4 is formed by the first and second tip flank 4A and 4B as described above, but may be formed by one continuous tip flank. Three or more tip flank surfaces may be formed. Further, the cutting edge 7 may be subjected to chamfering such as honing or R chamfering to improve the cutting edge strength. On the other hand, the inner peripheral cutting edge 7B may not be formed as long as it is a dedicated drill for processing a prepared hole previously formed in a work material such as a cast hole into a predetermined inner diameter.

また、本実施形態のドリルでは、切屑排出溝5のドリル回転方向Tとその反対側とに連なるドリル本体1の外周面に第1、第2マージン部9A、9Bが形成されており、ドリル本体1先端の切刃7によって形成された加工穴の内周面にこれら第1、第2マージン部9A、9Bの外周面を摺接させることにより、ドリル本体1の切刃部3を支持することができて、一層安定した穴加工を行うことが可能となる。   Moreover, in the drill of this embodiment, the 1st, 2nd margin parts 9A and 9B are formed in the outer peripheral surface of the drill main body 1 connected to the drill rotation direction T of the chip discharge groove 5 and the opposite side, and the drill main body Supporting the cutting edge 3 of the drill body 1 by bringing the outer peripheral faces of the first and second margin parts 9A and 9B into sliding contact with the inner peripheral face of the machining hole formed by the cutting edge 7 at one end. And more stable drilling can be performed.

しかも、このうち第2マージン部9Bに連なる外周面のドリル回転方向Tを向く外周壁面10Cと先端逃げ面4の第2先端逃げ面4Bとの交差稜線部には、ドリル本体1先端の上記切刃7よりも後端側に位置するように副切刃7Dが形成されており、この切刃7によって形成された加工穴の内周面を副切刃7Dによって仕上げ加工することができる。このため、本実施形態によれば、加工穴の真直度などの加工精度の向上とともに加工穴の品位の向上も図ることができる。   In addition, the above-mentioned cut at the tip of the drill body 1 is formed on the crossed ridge line portion between the outer peripheral wall surface 10C of the outer peripheral surface continuous with the second margin portion 9B and facing the drill rotation direction T and the second tip flank 4B of the tip flank 4. The auxiliary cutting edge 7D is formed so as to be positioned on the rear end side of the blade 7, and the inner peripheral surface of the processing hole formed by the cutting edge 7 can be finished by the auxiliary cutting edge 7D. For this reason, according to the present embodiment, it is possible to improve the processing accuracy such as straightness of the processed hole and improve the quality of the processed hole.

次に、図6は、図1ないし図5に示した一実施形態の変形例を示すものであり、この一実施形態と共通する部分には同一の符号を配して説明を省略する。この変形例のドリルでは、ドリル本体1先端部の切刃部3が、その外径が後端側に向けて段階的に大きくなる段付形状とされていて、各段の先端には段付刃11が形成されている。   Next, FIG. 6 shows a modification of the embodiment shown in FIGS. 1 to 5, and the same reference numerals are assigned to parts common to the embodiment, and the description is omitted. In the drill of this modified example, the cutting edge portion 3 at the tip end portion of the drill body 1 has a stepped shape in which the outer diameter increases stepwise toward the rear end side. A blade 11 is formed.

ここで、この変形例では、第1、第2マージン部9A、9Bの外径がドリル本体1の後端側に向けて複数段(2段)に大きくなるように形成されており、こうして外径が大きくなる部分では、第1、第2マージン部9A、9Bの外周面と第1外周逃げ面10Aがドリル本体1の後端側に向けて内周側に一旦僅かに凹んだ後、後端側に向かうに従い外周側に向けて傾斜するように形成されていて、この傾斜した部分と、切屑排出溝5のドリル回転方向Tを向く壁面5Aの外周部(副溝6の第1副溝壁面6A)および上記外周壁面10Cとの交差稜線部に、それぞれ段付刃11が形成されている。従って、これらの段付刃11の先端角は180°未満である。   Here, in this modified example, the outer diameters of the first and second margin portions 9A and 9B are formed so as to increase in a plurality of steps (two steps) toward the rear end side of the drill body 1, and thus the outer diameter is increased. In the portion where the diameter is increased, after the outer peripheral surfaces of the first and second margin portions 9A and 9B and the first outer peripheral flank 10A are once slightly recessed toward the inner peripheral side toward the rear end side of the drill body 1, the rear It forms so that it may incline toward an outer peripheral side as it goes to an end side, and the outer peripheral part (the 1st subgroove of the subgroove 6) of this inclined part and the wall surface 5A which faces the drill rotation direction T of the chip discharge groove 5 Stepped blades 11 are respectively formed at the intersecting ridge lines with the wall surface 6A) and the outer peripheral wall surface 10C. Therefore, the tip angle of these stepped blades 11 is less than 180 °.

このような変形例のドリルによれば、上記段付刃によって加工穴を穴底側に向けて内径が段階的に小さくなる段付穴に形成することができる。そして、切刃部3の先端部の構成は上記実施形態と同じであるので、この段付穴の穴底側ではドリル本体1の振れによる加工穴の倒れや曲がりを生じることがなく、穴底側によってドリル本体1をガイドして同心度や真直度の高い段付穴を形成することができるとともに、上記実施形態と同様に切削抵抗の増大による溶着の発生も防ぐことができる。   According to the drill of such a modified example, the machining hole can be formed into a stepped hole whose inner diameter is gradually reduced toward the bottom of the hole by the stepped blade. And since the structure of the front-end | tip part of the cutting blade part 3 is the same as the said embodiment, in the hole bottom side of this step hole, the fall and bending of the processing hole by the fluctuation | variation of the drill main body 1 do not arise, and a hole bottom The drill body 1 can be guided by the side to form a stepped hole having high concentricity and straightness, and the occurrence of welding due to an increase in cutting resistance can be prevented as in the above embodiment.

1 ドリル本体
2 シャンク部
3 切刃部
4 先端逃げ面
4A 第1先端逃げ面
4B 第2先端逃げ面
5 切屑排出溝
5A 切屑排出溝5のドリル回転方向Tを向く壁面
5B 切屑排出溝5のドリル回転方向Tの反対側を向く壁面
5C 切屑排出溝5のドリル本体1外周側を向く底面
6 副溝
6A 第1副溝壁面
6B 第2副溝壁面
7 切刃
7A 外周切刃
7B 内周切刃
7C 中間切刃
7D 副切刃
8 クーラント穴
9A 第1マージン部
9B 第2マージン部
10A 第1外周逃げ面
10B 第2外周逃げ面
10C 外周壁面
11 段付刃
O ドリル本体1の軸線
T ドリル回転方向
α 外周切刃7Aの径方向すくい角
γ 外周切刃7Aの先端角
θ 内周切刃7Bの先端角
DESCRIPTION OF SYMBOLS 1 Drill main body 2 Shank part 3 Cutting blade part 4 Tip flank 4A 1st tip flank 4B 2nd tip flank 5 Chip discharge groove 5A Wall surface 5B of chip discharge groove 5 facing the drill rotation direction T 5B Drill of chip discharge groove 5 Wall surface facing opposite side of rotation direction 5C Bottom surface of chip discharge groove 5 facing outer peripheral side of drill body 1 6 Sub groove 6A First sub groove wall surface 6B Second sub groove wall surface 7 Cutting edge 7A Outer peripheral cutting edge 7B Inner peripheral cutting edge 7C Intermediate cutting edge 7D Sub cutting edge 8 Coolant hole 9A First margin portion 9B Second margin portion 10A First outer peripheral flank surface 10B Second outer peripheral flank surface 10C Outer peripheral wall surface 11 Stepped blade O Drill shaft 1 axis T Drill rotation direction α Radial rake angle of outer peripheral cutting edge 7A γ Tip angle of outer peripheral cutting edge 7A θ Tip angle of inner peripheral cutting edge 7B

Claims (4)

軸線回りに回転されるドリル本体の先端部外周に、該ドリル本体の先端逃げ面に開口して後端側に延びる切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く壁面の外周部は上記ドリル本体の内周側に向かうに従いドリル回転方向の反対側に向かうように延びており、この壁面の外周部と上記先端逃げ面との交差稜線部に外周切刃が形成されていて、この外周切刃には正の径方向すくい角と180°以上の先端角が与えられていることを特徴とするドリル。   A chip discharge groove is formed on the outer periphery of the tip of the drill body that is rotated around the axis, and the chip discharge groove extends to the rear end side of the drill body and extends toward the rear end. The outer periphery of the wall surface of the chip discharge groove faces the drill rotation direction. The portion extends toward the opposite side of the drill rotation direction as it goes toward the inner peripheral side of the drill body, and an outer peripheral cutting edge is formed at the intersection ridge line portion between the outer peripheral portion of the wall surface and the tip flank surface. The outer peripheral cutting edge is provided with a positive radial rake angle and a tip angle of 180 ° or more. 上記壁面の外周部には、該壁面の内周部に対してドリル回転方向の反対側に凹む副溝が形成されており、上記外周切刃は、この副溝のドリル回転方向を向く副溝壁面と上記先端逃げ面との交差稜線部に形成されていることを特徴とする請求項1に記載のドリル。   The outer peripheral portion of the wall surface is formed with a sub-groove that is recessed on the opposite side of the drill rotation direction with respect to the inner peripheral portion of the wall surface, and the outer peripheral cutting edge is a sub-groove that faces the drill rotation direction of the sub-groove. The drill according to claim 1, wherein the drill is formed at a crossing ridge line portion between the wall surface and the tip flank. 上記壁面の内周部と上記先端逃げ面との交差稜線部には180°以下の先端角が与えられた内周切刃が形成されていて、この内周切刃と上記外周切刃に交差する上記先端逃げ面が連続していることを特徴とする請求項1または請求項2に記載のドリル。   An inner peripheral cutting edge having a tip angle of 180 ° or less is formed at an intersecting ridge line portion between the inner peripheral portion of the wall surface and the tip flank, and intersects the inner peripheral cutting blade and the outer peripheral cutting blade. The drill according to claim 1 or 2, wherein the tip flank is continuous. 上記切屑排出溝のドリル回転方向とドリル回転方向の反対側とに連なる上記ドリル本体の外周面にはマージン部が形成されていることを特徴とする請求項1から請求項3のうちいずれか一項に記載のドリル。   The margin part is formed in the outer peripheral surface of the said drill main body connected with the drill rotation direction and the opposite side of a drill rotation direction of the said chip | tip discharge groove | channel, The any one of Claims 1-3 characterized by the above-mentioned. Drill according to item.
JP2015024446A 2015-02-10 2015-02-10 drill Pending JP2016147328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024446A JP2016147328A (en) 2015-02-10 2015-02-10 drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024446A JP2016147328A (en) 2015-02-10 2015-02-10 drill

Publications (1)

Publication Number Publication Date
JP2016147328A true JP2016147328A (en) 2016-08-18

Family

ID=56690937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024446A Pending JP2016147328A (en) 2015-02-10 2015-02-10 drill

Country Status (1)

Country Link
JP (1) JP2016147328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053783A (en) * 2019-10-01 2021-04-08 三菱マテリアル株式会社 Drill

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183108U (en) * 1984-05-16 1985-12-05 三菱マテリアル株式会社 double-blade drill
JPH0294015U (en) * 1989-01-11 1990-07-26
JP2003275913A (en) * 2002-03-20 2003-09-30 Mitsubishi Materials Kobe Tools Corp Drill
JP2005177891A (en) * 2003-12-17 2005-07-07 Mitsubishi Materials Corp Drill
JP3847109B2 (en) * 2001-06-19 2006-11-15 愛三工業株式会社 Drill
JP2008149412A (en) * 2006-12-18 2008-07-03 Mitsubishi Materials Corp Drill
US20100092259A1 (en) * 2006-10-13 2010-04-15 Bernhard Borschert Drill bit for drilling having at least two cutting edges, each with two cutting portions and a non-cutting portion between the two cutting portions
JP2011073129A (en) * 2009-10-01 2011-04-14 Hitachi Tool Engineering Ltd Boring drill
JP2012030306A (en) * 2010-07-29 2012-02-16 Hitachi Tool Engineering Ltd Drill and drilling method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183108U (en) * 1984-05-16 1985-12-05 三菱マテリアル株式会社 double-blade drill
JPH0294015U (en) * 1989-01-11 1990-07-26
JP3847109B2 (en) * 2001-06-19 2006-11-15 愛三工業株式会社 Drill
JP2003275913A (en) * 2002-03-20 2003-09-30 Mitsubishi Materials Kobe Tools Corp Drill
JP2005177891A (en) * 2003-12-17 2005-07-07 Mitsubishi Materials Corp Drill
US20100092259A1 (en) * 2006-10-13 2010-04-15 Bernhard Borschert Drill bit for drilling having at least two cutting edges, each with two cutting portions and a non-cutting portion between the two cutting portions
JP2013252610A (en) * 2006-10-13 2013-12-19 Kennametal Inc Bit for drill tool
JP2008149412A (en) * 2006-12-18 2008-07-03 Mitsubishi Materials Corp Drill
JP2011073129A (en) * 2009-10-01 2011-04-14 Hitachi Tool Engineering Ltd Boring drill
JP2012030306A (en) * 2010-07-29 2012-02-16 Hitachi Tool Engineering Ltd Drill and drilling method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053783A (en) * 2019-10-01 2021-04-08 三菱マテリアル株式会社 Drill
JP7423965B2 (en) 2019-10-01 2024-01-30 三菱マテリアル株式会社 Drill

Similar Documents

Publication Publication Date Title
JP5365298B2 (en) Drill inserts and insert drills
WO2010050391A1 (en) Ball end mill
JP2007030074A (en) Radius end mill and cutting method
WO2010143595A1 (en) Drilling tool
JP2012518549A (en) Rotating tools and cutting inserts for cutting
US11400524B2 (en) Drill and method of producing drilled product
WO2017179689A1 (en) Small-diameter drill bit
JP6268716B2 (en) drill
JP2011073129A (en) Boring drill
JP2017109274A (en) drill
JP2010105119A (en) Drill reamer
JP4125909B2 (en) Square end mill
JP5940205B1 (en) drill
JPS625726B2 (en)
JP2013202748A (en) End mill
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
KR102399372B1 (en) drill
JP2016064477A (en) drill
JP2018176360A (en) Rotary cutting type drilling tool
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
JP6825400B2 (en) Taper ball end mill
JP2016147328A (en) drill
US20220063004A1 (en) Drill and method of producing drilled product
JP2010162643A (en) Drill and grinding method of the drill
JP2009202288A (en) Drilling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205