JP2009039810A - Method for drilling hole in fiber-reinforced composite material - Google Patents

Method for drilling hole in fiber-reinforced composite material Download PDF

Info

Publication number
JP2009039810A
JP2009039810A JP2007206517A JP2007206517A JP2009039810A JP 2009039810 A JP2009039810 A JP 2009039810A JP 2007206517 A JP2007206517 A JP 2007206517A JP 2007206517 A JP2007206517 A JP 2007206517A JP 2009039810 A JP2009039810 A JP 2009039810A
Authority
JP
Japan
Prior art keywords
end mill
drilling
hole
fiber
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007206517A
Other languages
Japanese (ja)
Inventor
Shigehiko Sakamoto
重彦 坂本
Junya Okita
淳也 沖田
Hideki Moriguchi
秀樹 森口
Makoto Abe
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Kumamoto University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Kumamoto University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Kumamoto University NUC, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2007206517A priority Critical patent/JP2009039810A/en
Publication of JP2009039810A publication Critical patent/JP2009039810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To drill a high-grade hole with reduced burrs and fuzz in a fiber-reinforced composite material represented by FRP, and maintaining excellent hole drilling quality for a long period of time by extending the service life of a tool while suppressing an increase in economic burden. <P>SOLUTION: The hole is drilled in the fiber-reinforced composite material comprising reinforced fiber and matrix resin by using a ball end mill 1 or a radius end mill. The feed of the tool per one blade, and a ratio of the radius of the inscribed circle of a cutting edge to the feed are appropriately selected, and hole drilling is performed while sucking chips. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、炭素繊維などの補強繊維を用いてマトリックス樹脂を強化した繊維強化複合材にいわゆるバリや毛羽立ち、むしれ、チッピングの少ない高品位な穴を回転切削工具であけることを可能ならしめる繊維強化複合材の穴あけ方法に関する。   This invention is a fiber that makes it possible to drill so-called burrs, fluff, flaking, and high-quality holes with less chipping with a rotary cutting tool in a fiber-reinforced composite material reinforced with a matrix resin using a reinforcing fiber such as carbon fiber. The present invention relates to a method for drilling a reinforced composite material.

FRP(繊維強化プラスチックス)に代表される繊維強化複合材、中でも、CFRP(炭素繊維強化プラスチックス)は、比強度、比弾性率が大きいことから、近年、航空機や車両の外板などとして多用される傾向にある。このFRPで形成された部材は、ボルトやリベットなどの締結要素を用いて構造体に固定される。このため、航空機部品などの構造体にFRP材を使用するときには、締結要素を通すための穴をFRP材に多数あけることが必要になる。   Fiber reinforced composite materials represented by FRP (Fiber Reinforced Plastics), especially CFRP (Carbon Fiber Reinforced Plastics), because of their large specific strength and specific elastic modulus, have recently been widely used as outer panels for aircraft and vehicles. Tend to be. The member formed by this FRP is fixed to the structure using fastening elements such as bolts and rivets. For this reason, when using FRP material for structures, such as aircraft parts, it is necessary to make many holes for passing a fastening element in FRP material.

FRP材に対するその穴あけは、通常ドリルを用いてなされるが、一般的なドリルによる穴あけでは、加工した穴の出口部に図7に示すような繊維の毛羽立ちが発生しやすい。また、積層された補強繊維の層間剥離も発生しやすく、加工品位上の問題が生じる可能性が高い。これに対し、航空機用の構造体などの製造では特に、高品位加工が求められており、上記の毛羽立ちや層間剥離などを回避することが極めて重要になる。   The drilling of the FRP material is usually performed by using a drill. However, in the drilling by a general drill, fiber fluff as shown in FIG. 7 is likely to occur at the exit portion of the processed hole. Further, delamination of the laminated reinforcing fibers is likely to occur, and there is a high possibility that a problem in processing quality will occur. On the other hand, high-quality processing is particularly required in the manufacture of aircraft structures and the like, and it is extremely important to avoid the fuzz and delamination described above.

加工品位を悪くする上記の毛羽立ちなどは、工具摩耗が進展して加工抵抗が増大するほど発生し易くなる。一方、高強度のCFRP材の加工などでは工具の摩耗進行が速くなりがちであり、結果的に加工品位維持のために工具交換を早めることになり、加工コストに占める工具費の割合が高くなっているのが実情である。   The above-described fuzzing that deteriorates the processing quality is more likely to occur as the tool wear progresses and the processing resistance increases. On the other hand, in the processing of high-strength CFRP material, etc., the wear of the tool tends to be accelerated, and as a result, the tool change is accelerated in order to maintain the processing quality, and the ratio of the tool cost to the processing cost becomes high. It is the actual situation.

このような問題を解消するために、既にいくつかの技術が提案されている(例えば、下記特許文献1〜3参照)。これらのうち、特許文献1は、ねじれ溝を通常とは逆ねじれの溝(先端側から基端側に向ってドリル回転方向にねじれる溝)にするとともに、先端の切れ刃を回転方向から見て内周部と外周部とがそれらの中間部で交差するV字状に形成したツイストドリルを提案しており、そのドリルは、ねじれ溝を逆ねじれの溝にすることで切れ刃のアキシャルレーキが負の角度になってFRP中の繊維が押し切るような形で切断され、また、切れ刃をV字形状にすることで加工中の振動が防止され、穴縁部のバリ、むしれを抑制できるとしている。   In order to solve such a problem, several techniques have already been proposed (for example, see Patent Documents 1 to 3 below). Among these, in Patent Document 1, the twisted groove is a reversely twisted groove (a groove twisted in the drill rotation direction from the distal end side toward the proximal end side) and the cutting edge at the distal end is viewed from the rotation direction. We have proposed a twist drill formed in a V shape in which the inner periphery and the outer periphery intersect each other at the intermediate portion. The drill has an axial rake of the cutting edge by making the twist groove into a reverse twist groove. A negative angle cuts the fiber in the FRP so as to push it out, and the cutting edge has a V-shape to prevent vibration during processing and suppress burrs and whips at the hole edge. It is said.

また、特許文献2は、先端の切れ刃を径方向に区画された複数の切れ刃部によって構成し、外周側切れ刃部の先端角を回転中心側の切れ刃部の先端角よりも小さくし、さらに、
切れ刃の外周側に回転中心側よりも高硬度部材を配置したドリルを提案している。そのドリルは、切削速度が大きくなる切れ刃外周部の耐摩耗性が高硬度部材によって高められ、
この高硬度部材に案内されつつ回転中心部の切れ刃の摩耗が進行するので、ドリル回転の振れが抑えられるとしている。さらに、外周側切れ刃部の先端角が回転中心側の切れ刃部の先端角よりも小さいために切れ刃外周部による穴の押し広げ作用が低減されてバリの発生が抑制されるとしている。
In Patent Document 2, the cutting edge at the tip is constituted by a plurality of cutting edges that are radially divided, and the tip angle of the outer peripheral cutting edge is made smaller than the tip angle of the cutting edge on the rotation center side. ,further,
A drill is proposed in which a member having a higher hardness than the center of rotation is disposed on the outer peripheral side of the cutting edge. In the drill, the wear resistance of the outer peripheral portion of the cutting edge where the cutting speed is increased is enhanced by the high hardness member,
The wear of the cutting edge at the center of rotation proceeds while being guided by the high hardness member, so that the runout of the drill can be suppressed. Furthermore, since the tip angle of the outer peripheral side cutting edge portion is smaller than the tip angle of the cutting edge portion on the rotation center side, the action of expanding the hole by the outer peripheral portion of the cutting edge is reduced and the generation of burrs is suppressed.

さらに、特許文献3は、先端からシャンク部に向うに従って外径が所定の割合で減少するバックテーパ部を、ドリル径の0.5〜1.0倍の軸方向長さ範囲にわたってドリルの先端部に形成し、そのバックテーパ部に続く部分の径を一定にすること、さらには、特許文献2と同様に切れ刃を先端角の大きい先端切れ刃部と先端角の小さい外周側切れ刃部の2部分に分け、各切れ刃部に切屑分断用の複数のニックを設ける構造を提案している。このドリルは、前記バックテーパ部の設置やニックによる切屑の分断によって切削抵抗が低減され、そのために工具摩耗が減少して良好な加工品位を維持できる時間を長くすることが可能になるとしている。
特許第2699527号公報 特許第2984446号公報 特許第3534839号公報
Further, Patent Document 3 discloses that a back taper portion whose outer diameter decreases at a predetermined rate as it goes from the tip toward the shank portion is a tip portion of the drill over an axial length range of 0.5 to 1.0 times the drill diameter. In addition, the diameter of the portion following the back taper portion is made constant. Further, similarly to Patent Document 2, the cutting edge is divided into a cutting edge portion having a large tip angle and an outer cutting edge portion having a small tip angle. A structure in which a plurality of nicks for cutting chips are provided in each of the two cutting edges is proposed. In this drill, the cutting resistance is reduced by the installation of the back taper portion or the cutting of chips by nicking, so that it is possible to reduce the tool wear and increase the time during which a good machining quality can be maintained.
Japanese Patent No. 2699527 Japanese Patent No. 2984446 Japanese Patent No. 3534839

前掲の特許文献1〜3が開示しているようなドリルは、繊維強化複合材の加工で良好な加工品位をより長時間にわたって維持する要求に十分に応えたものとは言えない。例えば、特許文献1のドリルは、加工時の負荷が切れ刃の尖った外周部に集中し、同部に摩耗やチッピングが生じやすい。また、刃先が損傷している状態で加工がなされるとバリや毛羽立ちが不可避的に発生するが、切れ刃の外周部の全域が同時に被削材を切り抜ける上に、アキシャルレーキが負の角度になっているために、発生したバリや毛羽立ちが除去されずに残り、良好な加工品位を維持することが難しい。   The drills disclosed in the above-mentioned Patent Documents 1 to 3 cannot be said to sufficiently meet the demand for maintaining good processing quality for a longer time in processing of fiber-reinforced composite materials. For example, in the drill of Patent Document 1, the load during processing is concentrated on the outer peripheral portion having a sharp cutting edge, and wear and chipping are likely to occur in the same portion. In addition, burrs and fluffing inevitably occur if machining is performed with the blade edge damaged, but the entire outer periphery of the cutting edge cuts through the work piece at the same time, and the axial rake has a negative angle. Therefore, the generated burrs and fluff remain without being removed, and it is difficult to maintain good processing quality.

また、特許文献2,3のドリルは、外周側切れ刃で加工穴を徐々に拡大していくので、一旦発生したバリ、毛羽立ちの後続の刃による再切削が繰り返され、その再切削によってバリ、毛羽立ちを削り取ることが可能である。しかし、切れ刃の各部のつなぎ目(先端角が変化した部分)が被削材を切り抜ける際に大きなバリが発生しやすく、穴加工数が増えてそのつなぎ目部が損傷したときに、外周側切れ刃によるバリの除去が不十分になって加工品位が低下する。また、ダイヤモンドなどの高硬度部材を外周部に配置することは摩耗の抑制に関しては効果があるが、工具のコストアップを招くため、摩耗量の抑制は、超硬合金等で形成される基材のみでの対応や、その基材に対する硬質膜のコーティング処理程度にとどめるべきである。   In addition, since the drills of Patent Documents 2 and 3 gradually enlarge the processing hole with the outer peripheral cutting edge, burrs once generated, and recutting with subsequent blades of fluffing are repeated, and by the recutting, burrs, It is possible to scrape fluff. However, when the joints (parts where the tip angle is changed) of the cutting blades cut through the work material, large burrs are likely to occur, and when the number of holes is increased and the joints are damaged, the outer peripheral cutting blades As a result, the removal of burrs becomes insufficient and the processing quality deteriorates. In addition, disposing a high-hardness member such as diamond on the outer peripheral portion is effective in suppressing wear, but increases the cost of the tool, so the wear amount is suppressed by a substrate made of cemented carbide or the like. It should be limited to just handling and coating the hard film on the base material.

なお、FRP材そのものをバリや毛羽立ちの起こり難いものに改善する試みもなされているが、航空機用材料などとして利用実績のある既存の材料の穴あけにおいて上記の問題を無くすには、工具の改善や穴あけ方法の改善で対処する必要がある。   Although attempts have been made to improve the FRP material itself so that burrs and fluff are less likely to occur, in order to eliminate the above problems in drilling existing materials that have been used as aircraft materials, etc. It is necessary to cope with improvement of the drilling method.

この発明は、繊維強化複合材にバリや毛羽立ち、むしれ、チッピングの少ない高品位な穴をあけることができ、しかも、工具寿命を経済負担の増加を抑えながら延ばして優れた加工品位を長時間維持できるようにすることを課題としている。   This invention can drill high-quality holes with few burrs, fluffs, flaking and chipping in fiber reinforced composite materials, and also prolongs the tool life while suppressing an increase in economic burden, resulting in excellent machining quality for a long time. The challenge is to be able to maintain it.

発明者等は、種々の工具形状による穴あけテストを繰り返した結果、上記の課題を解決できる穴あけ方法を見出した。その方法では、補強繊維とマトリックス樹脂を含む繊維強化複合材に、ボールエンドミルもしくはラジアスエンドミルを用いて穴あけ加工を行う。この発明は、かかる繊維強化複合材の穴あけ方法を提供する。   As a result of repeating drilling tests with various tool shapes, the inventors have found a drilling method that can solve the above problems. In this method, a fiber reinforced composite material containing reinforcing fibers and a matrix resin is drilled using a ball end mill or a radius end mill. The present invention provides a method for drilling such a fiber reinforced composite.

エンドミルは、通常、型彫り、段差加工などに用いられるものであるが、回転中心から外周に至る切れ刃を先端側に有しているので、原理的には穴加工も可能である。通常は切削抵抗が高くなり、切屑処理性も悪いため、穴加工用には適しておらず、穴あけ工具として使用されることはないが、炭素繊維などで強化したFRP材の加工においては切屑が粉状になって生成されるため、切屑処理で問題が起こることはない。また、通常の金属加工とは切削のメカニズムが大きく異なって補強繊維の切断によって加工が行われることと、一般に加工品位を維持するため低送り条件が適用されることから、エンドミルを穴加工に用いても後述するように切削抵抗は増大せず、むしろ長期間にわたってその切削抵抗の増大を抑制することが可能である。   The end mill is usually used for die-cutting, step machining, and the like, but has a cutting edge on the tip side from the center of rotation to the outer periphery, so in principle, drilling is also possible. Usually, the cutting resistance is high and the chip disposability is poor, so it is not suitable for drilling and is not used as a drilling tool. However, in the processing of FRP material reinforced with carbon fiber, chips are not generated. Since it is produced in the form of powder, there is no problem with chip disposal. In addition, the end mill is used for drilling because the cutting mechanism is significantly different from normal metal processing, and processing is performed by cutting reinforcing fibers, and low feed conditions are generally applied to maintain the processing quality. However, as will be described later, the cutting force does not increase, but it is possible to suppress the increase of the cutting force over a long period of time.

この発明の穴あけ方法は、穴あけ時の工具(ボールエンドミルもしくはラジアスエンドミル)の1刃当たりの送り量fを、0.03mm以下にして加工を行うと好ましい。また、工具の1刃当たりの送り量fを0.03mm以下にするのに加えてさらに、前記ボールエンドミルもしくはラジアスエンドミルの円弧形状をなす切れ刃の内接円半径をRとして、そのRと前記1刃当たりの送り量fの比f/Rを0.03以下にして加工を行うとより好ましい。
さらに、外径がシャンク側に向って減少するバックテーパを有したボールエンドミルやラジアスエンドミルを使用するのも好ましく、切屑吸引手段を用いて穴あけ時に発生する切屑を吸引しながら穴あけ加工を行うのも好ましい。
In the drilling method of the present invention, it is preferable that the feed amount per blade of a tool (ball end mill or radius end mill) at the time of drilling is set to 0.03 mm or less for processing. In addition to setting the feed amount f per blade of the tool to 0.03 mm or less, the inscribed circle radius of the cutting edge forming the arc shape of the ball end mill or the radius end mill is defined as R, and R and the It is more preferable to perform processing with the ratio f / R of the feed amount f per tooth being 0.03 or less.
Furthermore, it is also preferable to use a ball end mill or a radius end mill having a back taper whose outer diameter decreases toward the shank side, and it is possible to perform drilling while suctioning chips generated at the time of drilling using a chip suction means. preferable.

なお、この発明は、GFRP(ガラス繊維強化プラスチックス)やKFRP(ポリエステル繊維強化プラスチックス)などに対する穴あけにも勿論利用できるが、他のFRPの加工に比べて工具が摩耗し易く、加工品位の長時間の維持が難しくなるCFRP材の貫通穴加工に利用すると特に大きな効果を期待できる。   This invention can of course be used for drilling GFRP (glass fiber reinforced plastics), KFRP (polyester fiber reinforced plastics), etc., but the tool is more easily worn than other FRP processing, and the quality of the processing is high. A particularly large effect can be expected when used for through-hole processing of a CFRP material that is difficult to maintain for a long time.

繊維強化複合材の加工においては、上述したように繊維を切断する必要があり、良好な繊維切断のために、繊維の向き(長手方向)に対して切れ刃が極力垂直に近い角度で当たることが望まれる。穴あけをボールエンドミルやラジアスエンドミルで行うと、その要求に応えることが可能になる。   In the processing of fiber reinforced composite materials, it is necessary to cut the fibers as described above, and in order to cut the fibers well, the cutting edge should be as close to the vertical as possible with respect to the fiber direction (longitudinal direction). Is desired. When drilling is performed with a ball end mill or a radius end mill, it becomes possible to meet the demand.

繊維強化複合材にあける穴は、繊維の向きに対して垂直となる。一方、ボールエンドミルやラジアスエンドミルは、切れ刃の外周側が徐々に立ち上がる円弧形状をなし、外周刃に接続する外端部においては切れ刃の向きが工具軸心とほぼ平行(ねじれ角などの影響を受けたものは完全な平行にはならない)になっている。これは、穴の縁を加工するときに切れ刃が限りなく繊維に垂直な状態になることを意味する。よって切れ刃の外周側が円弧形状であることは理想的であり、穴広げの加工がその円弧形状の切れ刃によってなされて徐々に進行するため、加工開始後の早い段階で発生したバリ、毛羽立ちが、穴広げが終わるまでの間に後続の刃によって効果的に削り取られる。また、切れ刃は外周刃に近づくほど立ち上がり角(繊維に対する交差角)が急になるので、外周側の被削域が加工されるときの新たなバリの発生が抑えられ、穴面のさらえ効果も得られるようになって穴の面粗さも良くなる。これに加えて、円弧状切れ刃による加工では、外周部での切り取り厚さが小さいため、単位切れ刃長当たりの切削抵抗(スラスト力)が低減され、被削材がプリプレグを数枚積層して構成されている場合に出やすい層間剥離が抑制されるなど、穴の加工品位向上が期待できる。   Holes in the fiber reinforced composite are perpendicular to the fiber orientation. On the other hand, ball end mills and radius end mills have an arc shape in which the outer periphery of the cutting edge rises gradually, and the direction of the cutting edge is almost parallel to the tool axis at the outer end connected to the outer cutting edge (the influence of the twist angle etc.). The one received is not perfectly parallel). This means that the cutting edge is infinitely perpendicular to the fiber when machining the edge of the hole. Therefore, it is ideal that the outer peripheral side of the cutting edge has an arc shape, and since the hole expanding process is performed gradually by the arc-shaped cutting edge, burrs and fluffing that occurred at an early stage after the start of processing are generated. It is effectively scraped off by the subsequent blade until the hole expansion is completed. In addition, as the cutting edge gets closer to the outer cutting edge, the rising angle (crossing angle to the fiber) becomes steeper, so that the generation of new burrs when the outer peripheral work area is machined can be suppressed, and the hole surface can be wiped off. And the surface roughness of the hole is improved. In addition, when machining with arc-shaped cutting edges, the cutting thickness at the outer periphery is small, so the cutting resistance (thrust force) per unit cutting edge length is reduced, and the work material consists of several prepreg layers. It can be expected to improve the processing quality of the hole, such as suppressing delamination that is likely to occur when it is configured.

また、ボールエンドミルやラジアスエンドミルは、特許文献1〜3が開示しているドリルと違って切れ刃部に特異な段形状が無い。従って、バリの発生は回転中心が初期に穴を加工し始めた頃に最も発生しやすく、その後は単調に加工性が良くなっていく。このため、
バリを削り残すことが少なく、前述の層間剥離抑制にも有効である。また、切れ刃部に特異な段形状が無いため、特定箇所で異常な損傷が生じる可能性も小さい。
Further, unlike the drills disclosed in Patent Documents 1 to 3, the ball end mill and the radius end mill do not have a specific step shape in the cutting edge portion. Therefore, the generation of burrs is most likely to occur when the center of rotation starts machining a hole in the initial stage, and thereafter the workability is monotonously improved. For this reason,
It is less likely to leave burrs and is effective in suppressing delamination as described above. In addition, since there is no unique step shape in the cutting edge, the possibility of abnormal damage occurring at a specific location is small.

また、ボールエンドミルやラジアスエンドミルで穴あけを行うと、切れ刃の全域が切削に関与する。そのために、切れ刃の各部の損傷状況に大きな差がつくことが少なく、また、仮に一部分が損傷したとしても後続の切れ刃によるさらえ(仕上げ)がなされ、加工品位に与える悪影響が小さく抑えられる。   When drilling with a ball end mill or a radius end mill, the entire cutting edge is involved in the cutting. For this reason, there is little difference in the damage status of each part of the cutting edge, and even if a part of the cutting edge is damaged, the subsequent cutting edge is struck (finished), and the adverse effect on the machining quality is suppressed to a small level.

このほか、板材の加工では複数枚を重ねて一度に穴をあけることがあるが、このような加工でも円弧の切れ刃を有するエンドミルを使用すると、上側の板材を貫通して下側の板材の加工に移る際の切削抵抗の変化(増加)が緩やかになるため、重ねた板材の浮き上がりが抑えられ、その浮き上がりによる加工品位、穴精度の低下も抑制されるようになる。   In addition, in the processing of the plate material, a plurality of sheets may be stacked to make a hole at a time, but even in such processing, if an end mill having an arc cutting edge is used, the upper plate material is penetrated to the lower plate material. Since the change (increase) in the cutting force at the time of processing is moderated, the lift of the stacked plate materials is suppressed, and the deterioration of the processing quality and hole accuracy due to the lift is also suppressed.

また、ボールエンドミルやラジアスエンドミルは、ドリルと違って外周にマージンがないので、例えば、CFRPを加工したときに発生する粉状の切屑がランド部と穴壁面間に詰まることが少なく、これも穴壁面の品位向上に対して好結果をもたらす。   Also, unlike a drill, the ball end mill and radius end mill have no margin on the outer periphery. For example, powdered chips generated when machining CFRP are less likely to clog between the land and the hole wall surface. Good results for improving the quality of the wall.

さらに、繊維強化複合材の加工では切断や切断した縁のトリミングなどの加工を行うことも多く、その加工はエンドミルを用いてなされているが、穴あけ加工をボールエンドミルやラジアスエンドミルで行うと、そのエンドミルを切断やトリミングにも利用することができ、穴あけと切断、トリミングを必要とするケースでは、工具統合、工具交換の面で有利になるメリットもある。   Furthermore, in the processing of fiber reinforced composite materials, processing such as cutting and trimming of cut edges is often performed, and the processing is performed using an end mill, but when drilling is performed using a ball end mill or a radius end mill, The end mill can also be used for cutting and trimming. In cases where drilling, cutting, and trimming are required, there is an advantage in terms of tool integration and tool change.

なお、穴あけ時のエンドミルの1刃当たりの送り量fを、0.03mm以下にする、できれば、1刃当たりの送り量fを0.03mm以下にするのに加えてさらに、前記ボールエンドミルもしくはラジアスエンドミルの円弧形状をなす切れ刃の内接円半径をRとして、そのRと前記1刃当たりの送り量fの比f/Rを0.03以下にすると、高い加工品位を得ることができる。   In addition, in addition to setting the feed amount f per blade of the end mill at the time of drilling to 0.03 mm or less, preferably the feed amount f per blade is 0.03 mm or less, the ball end mill or the radius is further reduced. When the inscribed circle radius of the cutting edge forming the arc shape of the end mill is R, and the ratio f / R between the R and the feed amount f per blade is 0.03 or less, high machining quality can be obtained.

また、エンドミルは一般にドリルなどと異なってバックテーパを有しておらず工具外周径は一様である。このため、加工する穴が深い場合には工具の微小な撓みなどの影響で外周刃が穴内壁と干渉するようになり、加工中の振動発生や穴入口部での穴径の拡大を招く。バックテーパを有するエンドミルを用いて行なう加工方法は、このような問題を回避することが可能となる。この効果は、原理的にはボールエンドミルもしくはラジアスエンドミルの円弧状切れ刃の内接円半径(R半径)以上の穴深さになった場合に現れ始めることになるが、深穴であるほど顕著となる。
このほか、切屑吸引手段を用いて穴あけ時に発生する切屑を吸引しながら穴あけを行うと、エンドミルのランド部と穴壁面との間への粉状の切屑の詰まりがより確実に防止され、切屑詰まりに起因した加工品位の低下がなくなる。
Further, the end mill generally does not have a back taper unlike a drill or the like, and the tool outer peripheral diameter is uniform. For this reason, when the hole to be processed is deep, the outer peripheral blade interferes with the inner wall of the hole due to the influence of the minute deflection of the tool, etc., causing vibration during processing and increasing the diameter of the hole at the hole entrance. A processing method performed using an end mill having a back taper can avoid such a problem. In principle, this effect starts to appear when the hole depth exceeds the inscribed circle radius (R radius) of the arc-shaped cutting edge of the ball end mill or the radius end mill. It becomes.
In addition, if drilling is performed while suctioning chips generated during drilling using the chip suction means, clogging of powdered chips between the land part of the end mill and the hole wall surface is more reliably prevented, and chip clogging occurs. This eliminates the degradation of the processing quality caused by

−実施例1−
以下、この発明の実施例について説明する。図1は、発明例1の穴あけに使用した工具を示している。その工具は、ボールエンドミル(住友電工ハードメタル(株)製SSB2060)である。このボールエンドミル1は、本体部2と工作機械のホルダに把持されるシャンク3とからなり、本体部2の先端に半径R=3mmの半円形状のボール刃(切れ刃)4を有し、また、本体部2の外周に外周刃(切れ刃)5とねじれ溝6をそれぞれ有する。2条のねじれ溝6,6間にはランド部7があり、そのランド部7と外周刃5との間には逃げ面8が形成されている。工具の材質はJIS Z20種の超硬合金である(比較例も同じ)。
比較例の加工には、先端角140°の一般的なツイストドリル(住友電工ハードメタル(株)製MDS060MG)、及び先端が平坦なスクエアエンドミル(住友電工ハードメタル(株)製JSM2060)を用いた。いずれも外径はφ6mm、2枚刃である。
一方、加工対象とした材料(被削材)はCFRPの板材であり、その板材の面内方向に炭素繊維で補強したプリプレグを8層重ねて接合し、全体の厚みを2.78mmにしている。このCFRP材は、板厚方向の断面を観察したところ、各プリプレグの層に50〜700μmの厚みの繊維束層が含まれていた。
このCFRP材に、上記の各工具を用いて穴あけを行った。このときの加工条件は、切削速度100m/min、1刃当たり送り量(f)0.025mm/tooth、ドライ方式での貫通穴加工とした。
Example 1
Examples of the present invention will be described below. FIG. 1 shows a tool used for drilling in Invention Example 1. The tool is a ball end mill (SSB2060 manufactured by Sumitomo Electric Hardmetal Co., Ltd.). The ball end mill 1 includes a main body 2 and a shank 3 held by a holder of a machine tool, and has a semicircular ball blade (cutting edge) 4 having a radius R = 3 mm at the tip of the main body 2. Further, an outer peripheral edge (cutting edge) 5 and a twisted groove 6 are provided on the outer periphery of the main body 2. A land portion 7 is provided between the two twisted grooves 6 and 6, and a flank 8 is formed between the land portion 7 and the outer peripheral blade 5. The material of the tool is JIS Z20 type cemented carbide (the same is true for the comparative example).
For the processing of the comparative example, a general twist drill having a tip angle of 140 ° (MDS060MG manufactured by Sumitomo Electric Hardmetal Co., Ltd.) and a square end mill having a flat tip (JSM2060 manufactured by Sumitomo Electric Hardmetal Co., Ltd.) were used. . In either case, the outer diameter is 6 mm and has two blades.
On the other hand, the material to be processed (work material) is a CFRP plate material, and eight layers of prepregs reinforced with carbon fibers are stacked in the in-plane direction of the plate material and joined to a total thickness of 2.78 mm. . When this CFRP material was observed in a cross section in the plate thickness direction, each prepreg layer contained a fiber bundle layer having a thickness of 50 to 700 μm.
The CFRP material was drilled using the above tools. The machining conditions at this time were a cutting speed of 100 m / min, a feed rate per tooth (f) of 0.025 mm / tooth, and through-hole machining by a dry method.

使用した工具の外径、1穴目加工時および100穴目加工時のスラスト力、穴出口におけるバリ(毛羽立ち)の最大長さ、工具逃げ面の摩耗量を表1にまとめて示す。スラスト力は切削抵抗を評価するためのデータである。   Table 1 summarizes the outer diameter of the tool used, the thrust force at the time of processing the first hole and the 100th hole, the maximum length of burr (fluff) at the hole exit, and the wear amount of the tool flank. The thrust force is data for evaluating the cutting resistance.

ボールエンドミルで穴あけを行った発明例1は、ツイストドリルを使用した比較例1に比べてスラスト力(切削抵抗)、摩耗量が共に小さい。また、スクエアエンドミルを使用した比較例2も比較例1に比べるとスラスト力、摩耗量が小さいが、バリの大きさ、特に100穴目での大きさを比較すると極端な差があり、穴の加工品位に関してこの発明の優位性が顕著である。発明例1の方法での加工穴Hの性状を図2に、比較例1の方法での加工穴Hの性状を図3に、比較例2の方法での加工穴Hの性状を図4にそれぞれ示す。いずれも1穴目と100穴目の穴の性状である。   Inventive Example 1 in which drilling was performed with a ball end mill, both the thrust force (cutting resistance) and the wear amount were smaller than those in Comparative Example 1 using a twist drill. Further, Comparative Example 2 using a square end mill also has a smaller thrust force and wear amount than Comparative Example 1, but there is an extreme difference when comparing the size of burrs, particularly the size at the 100th hole. The superiority of the present invention is remarkable in terms of processing quality. The properties of the machined hole H by the method of Invention Example 1 are shown in FIG. 2, the properties of the machined hole H by the method of Comparative Example 1 are shown in FIG. 3, and the properties of the machined hole H by the method of Comparative Example 2 are shown in FIG. Each is shown. Both are the properties of the first and 100th holes.

また、スクエアエンドミルは、底刃の全体が同時に切削に関与するため、積層構造のCFRP材の加工では上下の層を互いに引き剥がそうとする作用が強く働き、そのために、1穴目の加工でも穴の出口部周辺の欠け(剥がれ)が起こりやすい(図4参照)。これに対し、ボールエンドミルで穴あけを行った発明例1では、その欠けがほとんど発生しておらず(図2)、この点でも本発明が優れている。   In addition, since the entire bottom blade is involved in cutting at the same time, the square end mill has a strong effect of peeling the upper and lower layers from each other in the processing of a CFRP material having a laminated structure. Chipping (peeling) around the hole outlet is likely to occur (see FIG. 4). On the other hand, in the invention example 1 which drilled with the ball end mill, the chip | tip has hardly generate | occur | produced (FIG. 2), and this invention is excellent also in this point.

また、工具の摩耗については、比較例1、2では、穴壁面との間に切屑が詰まりやすいマージン部や加工速度の速い切れ刃外端部の摩耗が大きくなりやすいが、発明例1の加工ではボール刃や逃げ面の摩耗状況が一様になっており、穴の加工数がさらに増えたときの異常損傷、局部損傷の抑制に効果があると考えられる。   As for the wear of the tool, in Comparative Examples 1 and 2, the wear of the margin portion where the chips are easily clogged with the hole wall surface and the outer edge of the cutting edge having a high working speed tends to be large. In this case, the wear situation of the ball blade and the flank is uniform, which is considered to be effective in suppressing abnormal damage and local damage when the number of holes processed further increases.

なお、1穴目に加工された穴の穴壁面の状態も確認したところ、発明例1での穴はほとんどむしれたような面は確認されなかった。これに対し、比較例1による加工穴Hには2〜3mm程度の長さのむしれが観察された。比較例2による加工穴Hも穴壁面は正常であった。エンドミルには外周刃に逃げ角がついている(マージンがない)ため、外周面と穴壁面との間に切屑が詰まりにくく、これが穴壁面の性状向上に寄与したと考えられる。   In addition, when the state of the hole wall surface of the hole processed into the 1st hole was also confirmed, the surface in which the hole in invention example 1 was almost peeled was not confirmed. On the other hand, peeling of a length of about 2 to 3 mm was observed in the processed hole H according to Comparative Example 1. The hole surface of the processed hole H according to Comparative Example 2 was also normal. Since the end mill has a clearance angle on the outer peripheral blade (no margin), it is difficult for chips to be clogged between the outer peripheral surface and the hole wall surface, which is considered to have contributed to improving the properties of the hole wall surface.

−実施例2−
次に、1刃当たりの工具送り量が加工品位などに与える影響を調べた。ここで使用した工具は、外径φ6mm(ボール刃半径R=3mm)のボールエンドミル(住友電工ハードメタル(株)製SSB2060)であり、1刃当たりの工具送り量fを0.025mm〜0.35mm/toothまで変化させ、その際の切削抵抗(スラスト力)を評価した。送り以外の加工条件は実施例1と同じである。その結果を図5に示す。これからわかるように、スラスト力は1刃当たりの工具送り量fが大きいほど増大する。特に1刃当たりの工具送り量fが0.025mm/toothを越えるとスラスト力が200Nを上回るようになる。穴出口のバリについても、その大きさがf=0.025mm/toothのときに0.05mm、f=0.05mm/toothのときに0.43mmであり、より高い加工品位が求められるときの1刃当たりの工具送りは、0.03mm/tooth以下に抑えることが望ましい。
-Example 2-
Next, the effect of the tool feed amount per blade on the machining quality was investigated. The tool used here is a ball end mill (SSB2060 manufactured by Sumitomo Electric Hardmetal Co., Ltd.) having an outer diameter of φ6 mm (ball blade radius R = 3 mm), and the tool feed amount f per blade is 0.025 mm to 0.00. The cutting force (thrust force) at that time was evaluated up to 35 mm / tooth. Processing conditions other than feeding are the same as those in the first embodiment. The result is shown in FIG. As can be seen, the thrust force increases as the tool feed amount f per tooth increases. In particular, when the tool feed amount f per blade exceeds 0.025 mm / tooth, the thrust force exceeds 200 N. As for the burr at the hole exit, the size is 0.05 mm when f = 0.025 mm / tooth, and 0.43 mm when f = 0.05 mm / tooth, when a higher processing quality is required. The tool feed per blade is desirably suppressed to 0.03 mm / tooth or less.

−実施例3−
次に、ボールエンドミル及び切れ刃の外周部がボールエンドミルと同様に円弧形状(
R形状)をなすラジアスエンドミルについて、加工品位に及ぼす円弧形状切れ刃の曲率半径の影響を調査した。
ここでは、工具として外径φ8mm(ボール刃半径R=4mm)のボールエンドミル
(住友電工ハードメタル(株)製SSB2080ZX)と、外径がともにφ8mmで切れ刃コーナ部の曲率半径(切れ刃外周部のコーナR)が0.5mm、1.0mmの2種類のラジアスエンドミル(住友電工ハードメタル(株)製SSM2080ZX−R0.5,R1.0)を使用した。また、比較のために外径φ8mmのツイストドリル(住友電工ハードメタル(株)製MDS080MK)も用いた。いずれも、表面に(Ti、Al)N系皮膜を施した被覆工具である。
加工条件は、切削速度133m/min、1刃当たり送り量(f)0.025mm/tooth、ドライ方式での貫通穴加工とした。被削材は実施例1と同じものを用いた。
この加工で使用したエンドミルの切れ刃コーナ部の曲率半径Rと、1刃当たり送り量fと切れ刃コーナ部の曲率半径Rの比および1穴目の穴加工後の最大バリ長さを表2に示す。
Example 3
Next, the outer periphery of the ball end mill and the cutting edge is arcuate like the ball end mill (
For the radius end mill having the R shape, the influence of the radius of curvature of the arc-shaped cutting edge on the machining quality was investigated.
Here, as a tool, a ball end mill (SSB2080ZX manufactured by Sumitomo Electric Hardmetal Co., Ltd.) with an outer diameter of φ8 mm (ball blade radius R = 4 mm) and a radius of curvature of the cutting edge corner portion with an outer diameter of φ8 mm (cutting blade outer peripheral portion) Two types of radius end mills (SSM2080ZX-R0.5, R1.0 manufactured by Sumitomo Electric Hardmetal Co., Ltd.) having a corner R) of 0.5 mm and 1.0 mm were used. For comparison, a twist drill having an outer diameter of φ8 mm (MDS080MK manufactured by Sumitomo Electric Hardmetal Co., Ltd.) was also used. Both are coated tools having a (Ti, Al) N-based coating on the surface.
The machining conditions were a cutting speed of 133 m / min, a feed amount per tooth (f) of 0.025 mm / tooth, and through-hole machining by a dry method. The same work material as in Example 1 was used.
Table 2 shows the radius of curvature R of the edge corner of the end mill used in this machining, the ratio of the feed rate f per tooth to the radius of curvature R of the edge of the cutting edge, and the maximum burr length after drilling the first hole. Shown in

この実施例2においてボールエンドミルを用いた発明例2は、比較例3との対比から、繊維強化複合材の穴加工において良好な加工品位が得られることがわかる。また、ラジアスエンドミルを用いた発明例3、発明例4も、比較例3に比べると発生したバリが小さくなることを確認できる。バリだけでなく欠けが抑制されることもこの試験で確認しており、加工品位は明らかに比較例3に勝る。なお、切れ刃コーナ部の曲率半径Rが小さい発明例4は発明例2,3に比べて加工品位がやや劣っており、切れ刃コーナ部の曲率半径Rは大きい方が有利な結果が得られている。   In comparison with Comparative Example 3, Invention Example 2 using a ball end mill in Example 2 shows that good processing quality can be obtained in drilling a fiber-reinforced composite material. In addition, it can be confirmed that the invention example 3 and the invention example 4 using the radius end mill also reduce the generated burr compared to the comparative example 3. It was confirmed by this test that not only burrs but also chips were suppressed, and the processing quality is clearly superior to that of Comparative Example 3. Inventive Example 4 in which the radius of curvature R of the cutting edge corner portion is small is slightly inferior in machining quality compared to Inventive Examples 2 and 3, and it is advantageous that the curvature radius R of the cutting edge corner portion is larger. ing.

−実施例4−
切れ刃の先端中心部(回転中心部)形状が繊維強化複合材を重ねた状態で加工するときに及ぼす影響を評価した。この試験で使用した工具は実施例1の発明例1で採用したボールエンドミルと、比較例1で採用したツイストドリルの2品である。
被削材は、実施例1〜3と同様のCFRPの板材である。このCFRP材を接着せずに5枚重ね合わせて加工テーブル上にクランプし、試料の工具で貫通穴の加工を行った。そして、加工中の切削抵抗(スラスト力)を測定し、工具外周部が加工に関与し始めてから工具先端が貫通し始めるまでの間のスラスト力の変動幅(その最大値)を調べた。また、加工中の様子をビデオカメラで撮影し、加工中に板材が浮き上がる現象の有無を検証した。その結果を表3に示す。
Example 4
The influence of the shape of the tip center part (rotation center part) of the cutting edge when the fiber reinforced composite material was processed in a stacked state was evaluated. The tools used in this test are two products, the ball end mill adopted in Invention Example 1 of Example 1 and the twist drill adopted in Comparative Example 1.
The work material is a CFRP plate similar to that of Examples 1-3. Five CFRP materials were stacked without being bonded and clamped on a processing table, and a through hole was processed with a sample tool. Then, the cutting resistance (thrust force) during machining was measured, and the fluctuation range (its maximum value) of the thrust force from when the tool outer peripheral portion started to participate in machining until the tool tip began to penetrate was examined. In addition, the state of processing was photographed with a video camera, and the presence or absence of the phenomenon that the plate material floats during processing was verified. The results are shown in Table 3.

この試験結果から、ボールエンドミルを用いた加工では切削抵抗の変動幅が小さく、板材の浮き上がりが抑制されていることがわかる。   From this test result, it can be seen that in the machining using the ball end mill, the fluctuation range of the cutting resistance is small and the lifting of the plate material is suppressed.

−実施例5−
切屑吸引手段を使用して切屑を吸引しながら加工を行う方法の有効性を評価する試験を行った。ここでは、図6に示すように、マシニングセンタ10の主軸11に、通常実施されるのと同様に工具ホルダ12を介してボールエンドミル1を装着し、その後、加工部を覆うカバー15を取り付けた。カバー15は、切屑吸引手段13の構成要素となるものである。切屑吸引手段13は、吸引装置14とカバー15とその両者間を接続するホース16とからなる。吸引装置14には市販の掃除機を利用した。カバー15は、マシニングセンタ10に取り付ける固定カバー15aの下部に軸方向相対スライドが可能な筒状の可動カバー15bを有しており、その可動カバー15bが工具に先行して被削材Wの上面に押し当てられ、この状態で主軸11がさらに下降してボールエンドミル1による穴あけがなされる。従って、加工中は常時加工部がカバー15に囲われ、発生した切屑が強制的に吸引除去されることになる。
-Example 5
The test which evaluates the effectiveness of the method of processing while sucking chips using a chip suction means was conducted. Here, as shown in FIG. 6, the ball end mill 1 is mounted on the spindle 11 of the machining center 10 through the tool holder 12 in the same manner as is normally performed, and then a cover 15 that covers the processing portion is attached. The cover 15 is a component of the chip suction means 13. The chip suction means 13 includes a suction device 14, a cover 15, and a hose 16 that connects both of them. A commercial vacuum cleaner was used for the suction device 14. The cover 15 has a cylindrical movable cover 15b capable of axial relative sliding at a lower portion of a fixed cover 15a attached to the machining center 10, and the movable cover 15b is placed on the upper surface of the work material W prior to the tool. In this state, the main shaft 11 is further lowered and drilling is performed by the ball end mill 1. Therefore, the machining portion is always surrounded by the cover 15 during machining, and the generated chips are forcibly removed by suction.

この試験は、外径φ6mmのボールエンドミルを使用して実施例1と同じ条件で加工を行い、得られた穴の切屑の吸引を行ったときの穴壁面と行わなかったときの穴壁面の性状を比較した。その結果、切屑を吸引せずに加工した穴は、1mm以下と微細ではあるが壁面にむしれが観察された。これに対し、切屑を吸引しながら加工した穴は、むしれが目視では確認できないレベルに減少していた。工具外周と穴壁面との間の切屑詰まりが穴壁面のむしれの一要因であると考えられ、外周刃にマージンがなくて逃げ角がついているエンドミルを用いることでその切屑詰まりはある程度抑制されるが、発生した切屑を吸引することで切屑が与える悪影響がより確実に排除されて穴壁面の性状がより良くなったと考えられる。   This test was carried out using a ball end mill with an outer diameter of φ6 mm under the same conditions as in Example 1, and the properties of the hole wall surface when the obtained hole chips were sucked and when not obtained Compared. As a result, the hole processed without sucking chips was observed to be 1 mm or less, but peeling was observed on the wall surface. On the other hand, the holes processed while sucking the chips were reduced to a level at which peeling was not visually confirmed. Chip clogging between the tool periphery and the hole wall surface is considered to be a factor in the hole wall peeling, and the chip clogging is suppressed to some extent by using an end mill with no margin on the outer peripheral edge and a clearance angle. However, it is considered that the adverse effect of the chips is more reliably eliminated by sucking the generated chips and the properties of the hole wall surface are improved.

−実施例6−
次に、深穴加工におけるバックテーパの影響について検討した。本実施例で使用した被削材は、厚み14mmのCFRP材である。この材料に直径φ5mmのボールエンドミルを用いて穴あけを行い、穴の入口部及び出口部の穴径を測定した。使用したボールエンドミルは、通常のバックテーパのない外周径が一様なもの(住友電工ハードメタル(株)製
SSB2050)と、同相当品で外周部に軸方向長さ100mm当たり、0.3mmのバックテーパを付与したものの2種類である。この実験の結果を表4に示す。この表4からわかるように、通常のボールエンドミルを用いると深穴加工においては穴径が穴の入口部で拡大しやすく、本実施例では、出口径に対して入口径が0.04mmほど大きくなっている。これに対し、バックテーパ付きボールエンドミルを用いたときの出入り口での穴径差は0.006mmと極めて小さく、深穴加工に対してはバックテーパが効果を発揮することがわかる。
-Example 6
Next, the effect of back taper in deep hole machining was examined. The work material used in this example is a CFRP material having a thickness of 14 mm. This material was drilled using a ball end mill having a diameter of 5 mm, and the hole diameters at the inlet and outlet of the hole were measured. The used ball end mill has a normal outer diameter with no back taper (SSB2050 manufactured by Sumitomo Electric Hardmetal Co., Ltd.) and the same equivalent, with an outer peripheral portion of 0.3 mm per axial length of 100 mm. There are two types with back taper. The results of this experiment are shown in Table 4. As can be seen from Table 4, when a normal ball end mill is used, in deep hole machining, the hole diameter tends to expand at the inlet portion of the hole. In this embodiment, the inlet diameter is about 0.04 mm larger than the outlet diameter. It has become. In contrast, the hole diameter difference at the entrance and exit when using a ball end mill with a back taper is as small as 0.006 mm, indicating that the back taper is effective for deep hole machining.

なお、この発明は、上記の実施例に限定されるものではない。例えば、ラジアスエンドミルについての実施例は、実施例3のみであるが、この発明の課題は円弧状の切れ刃を有する工具で穴あけを行うことによって解決されるので、ラジアスエンドミルで穴あけを行ったときにも発明の目的が達成される。   In addition, this invention is not limited to said Example. For example, although the example about a radius end mill is only Example 3, since the subject of this invention is solved by drilling with the tool which has an arc-shaped cutting edge, when drilling with a radius end mill, The object of the invention is also achieved.

この発明の方法の実施に用いる工具の一例(ボールエンドミル)を示す図The figure which shows an example (ball end mill) of the tool used for implementation of the method of this invention 発明例1での加工穴{(a):1穴目、(b):100穴目}を示す図The figure which shows the processing hole {(a): 1st hole, (b): 100th hole} in invention example 1. 比較例1での加工穴{(a):1穴目、(b):100穴目}を示す図The figure which shows the processing hole {(a): 1st hole, (b): 100th hole} in the comparative example 1. 比較例2での加工穴{(a):1穴目、(b):100穴目}を示す図The figure which shows the processing hole {(a): 1st hole, (b): 100th hole} in the comparative example 2. 1刃当たりの送り量とスラスト力の関係を示す図Diagram showing the relationship between feed per blade and thrust force 切屑吸引手段を採用した穴あけ方法の概要説明図Outline explanatory diagram of drilling method using chip suction means FRP材に加工された穴あけの出口部の繊維の毛羽立ちを示す図The figure which shows the fluff of the fiber of the exit part of the drilling processed into FRP material

符号の説明Explanation of symbols

1 ボールエンドミル
2 本体部
3 シャンク
4 ボール刃
5 外周刃
6 ねじれ溝
7 ランド部
8 逃げ面
10 マシニングセンタ
11 主軸
12 工具ホルダ
13 切屑吸引手段
14 吸引装置
15 カバー
15a 固定カバー
15b 可動カバー
16 ホース
R 円弧形状の切れ刃の曲率半径
W 被削材
H 加工穴
DESCRIPTION OF SYMBOLS 1 Ball end mill 2 Main body part 3 Shank 4 Ball blade 5 Outer peripheral blade 6 Torsion groove 7 Land part 8 Flank 10 Machining center 11 Spindle 12 Tool holder 13 Chip suction means 14 Suction device 15 Cover 15a Fixed cover 15b Movable cover 16 Hose R Arc shape Cutting edge radius of curvature W Workpiece material H Drilling hole

Claims (6)

補強繊維とマトリックス樹脂を含む繊維強化複合材に、ボールエンドミルもしくはラジアスエンドミルを用いて穴あけ加工を行う繊維強化複合材の穴あけ方法。   A method for drilling a fiber reinforced composite material, wherein a fiber reinforced composite material including a reinforcing fiber and a matrix resin is subjected to drilling using a ball end mill or a radius end mill. 穴あけ時の工具の1刃当たりの送り量fを、0.03mm以下にして加工を行う請求項1に記載の繊維強化複合材の穴あけ方法。   The method for drilling a fiber-reinforced composite material according to claim 1, wherein the processing is performed with a feed amount f per blade of the tool at the time of drilling being 0.03 mm or less. 工具の1刃当たりの送り量fを0.03mm以下にするのに加えてさらに、前記ボールエンドミルもしくはラジアスエンドミルの円弧形状をなす切れ刃の内接円半径をRとして、そのRと前記工具の1刃当たりの送り量fの比f/Rを0.03以下にして加工を行う請求項2に記載の繊維強化複合材の穴あけ方法。   In addition to setting the feed amount f per blade of the tool to 0.03 mm or less, the inscribed circle radius of the cutting edge forming the arc shape of the ball end mill or the radius end mill is defined as R, and R and the tool The method for drilling a fiber-reinforced composite material according to claim 2, wherein the processing is performed with the ratio f / R of the feed amount f per blade being 0.03 or less. 前記ボールエンドミルもしくはラジアスエンドミルとして、外径がシャンク側に向って減少するバックテーパを有したエンドミルを使用して穴あけ加工を行う請求項1〜3のいずれかに記載の繊維強化複合材の穴あけ方法。   The method for drilling a fiber-reinforced composite material according to any one of claims 1 to 3, wherein an end mill having a back taper whose outer diameter decreases toward the shank side is used as the ball end mill or the radius end mill. . 切屑吸引手段を用いて穴あけ時に発生する切屑を吸引しながら穴あけ加工を行う請求項1〜4のいずれかに記載の繊維強化複合材の穴あけ方法。   The drilling method of the fiber reinforced composite material according to any one of claims 1 to 4, wherein drilling is performed while suctioning chips generated during drilling using a chip suction means. 前記繊維強化複合材が炭素繊維強化プラスチックスであり、この炭素繊維強化プラスチックスに貫通穴をあける請求項1〜5のいずれかに記載の繊維強化複合材の穴あけ方法。   The said fiber reinforced composite material is carbon fiber reinforced plastics, The drilling method of the fiber reinforced composite material in any one of Claims 1-5 which opens a through-hole in this carbon fiber reinforced plastics.
JP2007206517A 2007-08-08 2007-08-08 Method for drilling hole in fiber-reinforced composite material Pending JP2009039810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206517A JP2009039810A (en) 2007-08-08 2007-08-08 Method for drilling hole in fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206517A JP2009039810A (en) 2007-08-08 2007-08-08 Method for drilling hole in fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2009039810A true JP2009039810A (en) 2009-02-26

Family

ID=40441127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206517A Pending JP2009039810A (en) 2007-08-08 2007-08-08 Method for drilling hole in fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2009039810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157570A1 (en) 2013-03-27 2014-10-02 三菱瓦斯化学株式会社 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
US10159153B2 (en) 2012-03-27 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
CN113199068A (en) * 2021-03-31 2021-08-03 成都飞机工业(集团)有限责任公司 Machining method for sharp corner structure of glass fiber reinforced plastic part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506766A (en) * 1992-11-19 1996-07-23 ノバトール アーベー Method and tool for making holes in a fiber-reinforced composite by eccentric movement
JPH09155617A (en) * 1995-12-15 1997-06-17 Niigata Pref Gov Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool
JPH10507972A (en) * 1994-10-28 1998-08-04 サンドビック アクティエボラーグ How to make a composite
JPH11123609A (en) * 1997-10-23 1999-05-11 Dijet Ind Co Ltd Throwaway-type end mill and throwaway tip
JP2005118960A (en) * 2003-10-17 2005-05-12 Nisshin Kogu Kk End mill
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506766A (en) * 1992-11-19 1996-07-23 ノバトール アーベー Method and tool for making holes in a fiber-reinforced composite by eccentric movement
JPH10507972A (en) * 1994-10-28 1998-08-04 サンドビック アクティエボラーグ How to make a composite
JPH09155617A (en) * 1995-12-15 1997-06-17 Niigata Pref Gov Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool
JPH11123609A (en) * 1997-10-23 1999-05-11 Dijet Ind Co Ltd Throwaway-type end mill and throwaway tip
JP2005118960A (en) * 2003-10-17 2005-05-12 Nisshin Kogu Kk End mill
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159153B2 (en) 2012-03-27 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
WO2014157570A1 (en) 2013-03-27 2014-10-02 三菱瓦斯化学株式会社 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
KR20150133210A (en) 2013-03-27 2015-11-27 미츠비시 가스 가가쿠 가부시키가이샤 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
CN113199068A (en) * 2021-03-31 2021-08-03 成都飞机工业(集团)有限责任公司 Machining method for sharp corner structure of glass fiber reinforced plastic part

Similar Documents

Publication Publication Date Title
JP5184902B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP5135614B2 (en) Drill for composite material and machining method and machining apparatus using the same
JP2009039811A (en) Tool and method for drilling hole in fiber-reinforced composite material
JP5451831B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP5366003B2 (en) Router end mill
JP5945283B2 (en) drill
KR101983936B1 (en) Cutting auxiliary lubricant and cutting method
JP6393620B2 (en) Drill and drilling method
JP6501374B1 (en) drill
JP2010179379A (en) Drilling method
JP5476590B1 (en) Drill for composite material and machining method and machining apparatus using the same
JP6011849B2 (en) Step drill
WO2010086988A1 (en) Double angle drill
JP2009039810A (en) Method for drilling hole in fiber-reinforced composite material
JP2014012302A (en) Drill for composite material, and method and apparatus for machine work using the drill
JP6797873B2 (en) Drill for carbon fiber composite material
JP2008142834A (en) Drill
JP5914446B2 (en) Cutting tool and workpiece machining method using the same
KR102399372B1 (en) drill
JP5975340B2 (en) drill
JP6424970B2 (en) Drill bit and hole forming method
JP2010260115A (en) Tool for drilling hole in fiber-reinforced composite material
Suzuki et al. Application of a novel woven metal wire tool with electrodeposited diamond grains for carbon fiber reinforced plastics core drilling
JP6727567B1 (en) Carbon fiber composite drill
JP2013027972A (en) Square end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204