JP2010260115A - Tool for drilling hole in fiber-reinforced composite material - Google Patents

Tool for drilling hole in fiber-reinforced composite material Download PDF

Info

Publication number
JP2010260115A
JP2010260115A JP2009110829A JP2009110829A JP2010260115A JP 2010260115 A JP2010260115 A JP 2010260115A JP 2009110829 A JP2009110829 A JP 2009110829A JP 2009110829 A JP2009110829 A JP 2009110829A JP 2010260115 A JP2010260115 A JP 2010260115A
Authority
JP
Japan
Prior art keywords
blade
cutting edge
tool
fiber
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110829A
Other languages
Japanese (ja)
Inventor
Junya Okita
淳也 沖田
Hideki Moriguchi
秀樹 森口
Naohiro Nakamura
直宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2009110829A priority Critical patent/JP2010260115A/en
Publication of JP2010260115A publication Critical patent/JP2010260115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for drilling a hole in a fiber-reinforced composite material, which can prevent burrs and exfoliation of a fiber layer even if a diameter of a hole to be worked is large and also suppress chattering vibration so as to efficiently obtain a worked hole with high quality. <P>SOLUTION: The tool for drilling a hole in a fiber-reinforced composite material is such structured that a blade 3a extending axially forward while inclining radially outward from a rotation center C is formed at the tip of a body 4, a cutting edge 7 is formed on the blade 3a but no cutting edge is present at the rotation center at the tip of the body, and the cutting edge 7 provided between the tip and the outermost periphery of the blade 3a is inclined toward a base end of the blade as coming from the tip of the blade 3a toward the outermost periphery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、炭素繊維等の補強繊維とマトリックス樹脂を含んだ繊維強化プラスチックス(FRP)材などの繊維強化複合材料に穴をあけるための工具に関する。   The present invention relates to a tool for making a hole in a fiber reinforced composite material such as a fiber reinforced plastics (FRP) material containing a reinforcing fiber such as carbon fiber and a matrix resin.

FRP、特に、CFRP(炭素繊維強化プラスチック)は、比強度、比弾性率が大きいことから、近年、航空機や車両の構造体などに多用される傾向にある。このようなFRP材を用いて構造体を構成する場合、通常はFRP部材に穴を開け、ボルトやリベットで接続して使用しており、このため、例えば、航空機部品のような構造体にFRP材を利用するには、多くの穴あけ加工を必要とする。   FRP, particularly CFRP (carbon fiber reinforced plastic), has a large specific strength and specific elastic modulus, and has recently been frequently used for aircraft and vehicle structures. When constructing a structure using such an FRP material, the FRP member is usually drilled and connected with bolts or rivets. For this reason, for example, an FRP is applied to a structure such as an aircraft part. To use the material, a lot of drilling is required.

FRP材の穴あけにおいては、図12に示したように、穴の出口部分において繊維の毛羽立ちが生じやすく、また、積層構造のFRP材は層間で剥離が生じやすいなど、加工品位上の問題が起こりやすい。   In the drilling of the FRP material, as shown in FIG. 12, problems of processing quality occur, such as fiber fluffing easily occurring at the exit part of the hole, and the FRP material having a laminated structure is likely to be peeled off between layers. Cheap.

その一方で、用途が航空機等の構造体である場合には特に、高い加工品位が求められる。従って、上で述べた品質上の問題の回避が極めて重要である。また、高強度のCFRP材などでは工具刃先の摩耗進行が速く、結果として、加工品位を維持するために工具交換を早めることとなり、製品コストに占める工具費の上昇を招いているのが実情である。   On the other hand, when the application is a structure such as an aircraft, high processing quality is required. Therefore, avoiding the quality problems described above is extremely important. In addition, high-strength CFRP materials, etc., cause the tool blade to wear faster, resulting in faster tool replacement in order to maintain the machining quality, leading to an increase in tool costs in the product cost. is there.

このような問題を回避するために、これまでにもいくつかの改善策が提案されている。例えば、下記特許文献1では、ドリルのねじれ溝を、正捩れ方向と反対方向に形成する(逆捩れにする)とともに、ドリル先端の切れ刃を、内周側と外周側とがそれらの中間部で交叉するV字状に形成することを提案している。このドリルは、まず、ねじれ溝を逆捩れとすることですくい角を負にしてFRP中の繊維を押し切るような切削形態を作り出し、V字型の切れ刃形状によって加工中の振動を抑制しながら切削することで、穴周りの縁におけるバリ、むしれなどを抑制できるとしている。しかしながら、特許文献1の手法の場合、加工時の負荷がドリル切れ刃の外周へ集中するため、同部において摩耗やチッピングが生じやすい。さらに、同部において一挙に穴縁が形成されるため、刃先に損傷がある場合には特に、発生したバリ、毛羽立ちをそれ以上除去することができず、そのため、良好な加工品位を維持することが難しい。   In order to avoid such a problem, several improvement measures have been proposed so far. For example, in Patent Document 1 below, the twist groove of the drill is formed in the direction opposite to the normal twist direction (reverse twist), and the cutting edge at the tip of the drill is an intermediate portion between the inner peripheral side and the outer peripheral side. It has been proposed to form a V-shape that intersects with each other. This drill first creates a cutting form that pushes the fiber in the FRP with a negative rake angle by making the torsion groove counter-twist, while suppressing the vibration during processing by the V-shaped cutting edge shape By cutting, it is possible to suppress burrs and peeling at the edge around the hole. However, in the case of the method of Patent Document 1, since the load during processing is concentrated on the outer periphery of the drill cutting edge, wear and chipping are likely to occur in the same portion. Furthermore, since the edge of the hole is formed at the same time, especially when the cutting edge is damaged, the generated burrs and fluff cannot be removed any more, so that a good machining quality can be maintained. Is difficult.

そこで発明者らは、特許文献2のように、ボールエンドミルまたはラジアスエンドミルを用い、通常のドリルなどと同じように、主軸周りの回転と軸方向の送り運動により穴あけを行う加工方法を提案した。これにより、FRP材の穴周りのバリや剥離の抑制が可能であり、良好な加工品位が得られる。しかしながら、この方法は、比較的径の小さい穴に対しては非常に有効であるが、穴の直径が10mmを越えるような加工になると、工具が被削材(ワーク)に与える軸方向の力(スラスト力)が大きくなりやすく、そのために、ボールエンドミルを用いてもバリ等の抑制が十分にできないことが分かってきた。加えて、ボールエンドミルによる穴あけでは、びびり振動も発生しやすく、このために、加工穴径が大きい場合には、さらなる対応が必要である。   Therefore, the inventors have proposed a machining method that uses a ball end mill or a radius end mill as in Patent Document 2 to perform drilling by rotation around the main axis and feed movement in the axial direction, as in a normal drill. Thereby, the burr | flash around the hole of FRP material and suppression of peeling are possible, and a favorable processing quality is obtained. However, this method is very effective for a hole having a relatively small diameter. However, when the hole diameter exceeds 10 mm, the axial force that the tool exerts on the workpiece (workpiece). It has been found that (thrust force) tends to increase, and for this reason, even if a ball end mill is used, burrs and the like cannot be sufficiently suppressed. In addition, when drilling with a ball end mill, chatter vibration is also likely to occur. For this reason, if the hole diameter is large, further measures are required.

なお、大径穴加工でのスラスト力増大は、例えば、特許文献3のように、切れ刃の半径方向での存在割合が少ない工具を用いることで回避可能と考えられる。同文献はこのようなことについては言及していないが、スラスト力の低減効果を内包していると推測される。   In addition, it is thought that the thrust force increase in large-diameter hole processing can be avoided by using a tool with a small existence ratio in the radial direction of the cutting edge as in Patent Document 3, for example. Although this document does not mention such a thing, it is presumed that the effect of reducing the thrust force is included.

特許第2699527号公報Japanese Patent No. 2699527 特開2009−39810号公報JP 2009-39810 A 特開平02−237707号公報Japanese Patent Laid-Open No. 02-237707

特許文献3に記載された工具形状は、切れ刃の最先端が外周寄りに位置する。この形態の場合、最終的な穴仕上がり箇所の穴縁近傍から加工がなされるので、最初に同部に大きなスラスト力が作用する。このため、図13の模式図のように、穴仕上がり箇所の内外(穴の外周部と被削材に押し付け圧が加わらない穴縁よりも外側)で、被削材に加わる圧力に大きな差が生じ、穴の周囲において繊維層の剥離が発生する。この剥離は、当初から最終的な加工径の周囲で発生することになり、これ以上穴径が拡大することがないため、その後の加工でも取り除くことができない。   In the tool shape described in Patent Document 3, the cutting edge of the cutting edge is located closer to the outer periphery. In the case of this form, since the machining is performed from the vicinity of the hole edge of the final hole finish location, a large thrust force is initially applied to the same portion. For this reason, as shown in the schematic diagram of FIG. 13, there is a large difference in the pressure applied to the work material between the inside and outside of the hole finish (outside the hole edge where the pressing pressure is not applied to the outer periphery of the hole and the work material). Occurs, and peeling of the fiber layer occurs around the hole. This peeling will occur around the final machining diameter from the beginning, and the hole diameter will not increase any further, so it cannot be removed even in subsequent machining.

この発明は、繊維強化複合材料用の穴あけ工具、特に加工穴径が大きい場合にもスラスト力を抑制してバリや繊維層の剥離を抑制し、なおかつ、びびり振動なども抑えて、高品位の加工穴を能率よく得ることができる穴あけ工具を実現して提供することを課題としている。   This invention is a high-quality drilling tool for fiber reinforced composite materials, especially when the machining hole diameter is large, suppressing thrust force to suppress burrs and fiber layer peeling, and suppressing chatter vibration. An object is to realize and provide a drilling tool capable of efficiently obtaining a machined hole.

上記の課題を解決するため、この発明の穴あけ工具は、本体部先端の回転中心よりも径方向外側に偏って軸方向前方に延び出す刃部が形成され、その刃部に切れ刃が形成されて本体部先端の回転中心部に切れ刃が存在せず、前記刃部の最先端と最外周との間に設けられる切れ刃が前記刃部の最先端から最外周に向かうにつれて刃部の基端側(シャンクに近い側)に向かって傾斜していることを特徴としている。   In order to solve the above-described problems, the drilling tool of the present invention is formed with a blade portion extending radially outward from the rotation center of the main body portion tip and extending forward in the axial direction, and a cutting blade is formed on the blade portion. And there is no cutting edge at the center of rotation at the tip of the main body, and the cutting edge provided between the cutting edge and the outermost periphery of the blade part moves toward the outermost periphery from the cutting edge of the blade part. It is characterized by being inclined toward the end side (side closer to the shank).

この穴あけ工具は、前記刃部の最先端よりも内周側には切れ刃が存在せず、さらに、同工具の先端の端面視(軸方向視図)において、1つの切れ刃が占める工具端面視での長さの割合が、工具半径の50%以下であることが有効である。また、刃部の先端から外周側に向かって先端角を段階的に又は徐々に減少させること、さらには、外周での先端角を60°以下、切れ刃の逃げ角を15°以上とすることが望ましい。   In this drilling tool, there is no cutting edge on the inner peripheral side of the cutting edge of the blade part, and the tool end face occupied by one cutting edge in the end face view (axial view) of the tip of the tool It is effective that the ratio of the length in view is 50% or less of the tool radius. Further, the tip angle is gradually or gradually decreased from the tip of the blade portion toward the outer periphery, and further, the tip angle on the outer periphery is 60 ° or less and the clearance angle of the cutting blade is 15 ° or more. Is desirable.

このほか、工具の軸心部に切屑の吸引回収や圧送排出のための貫通穴を設けること、切れ刃部を焼結ダイヤモンドなどの硬質焼結体で構成すること、或は、超硬合金で構成される基材の表面に気相成長法によるダイヤモンドコーティング層を施し、成膜後に刃先の研磨処理を行って切れ刃部を構成することも有益である。   In addition, a through-hole for suction collection and pressure discharge of chips is provided in the axial center of the tool, the cutting edge is made of a hard sintered body such as sintered diamond, or a cemented carbide. It is also advantageous to form a cutting edge portion by applying a diamond coating layer by a vapor phase growth method on the surface of the substrate to be formed, and polishing the blade edge after film formation.

繊維強化複合材料の穴あけ用工具を、本体部先端の回転中心部に切れ刃が存在しない構造にすることで、被削材の削り代が通常のドリル等による加工に比べて少なくなり、加工品位に大きな影響を与えるスラスト力を低減することが可能になる。このことは駆動力の小さいエア駆動式の加工装置を用いる場合にも有利である。また、繊維強化複合材料の切削では切屑が粉状になるため作業環境が悪化するが、この工具であれば削り代の減少により切屑の量自体を削減することができる。   By making the tool for drilling fiber reinforced composite materials into a structure that does not have a cutting edge at the center of rotation at the tip of the main body, the machining allowance of the work material is reduced compared to machining with a normal drill, etc. It is possible to reduce the thrust force that greatly affects This is also advantageous when using an air-driven processing device with a small driving force. In addition, when cutting fiber-reinforced composite materials, chips become powdery and the working environment deteriorates. However, with this tool, the amount of chips can be reduced by reducing the machining allowance.

この効果は特に、1つの切れ刃が占める工具端面視での半径方向の長さの割合が、工具半径の50%以下である場合に得られやすい。また、回転中心部に刃がないので本体の軸心部に大きな穴をあけることができ、その穴を排出通路にして粉状の切屑を吸引回収、或は圧送排出することも可能である。   This effect is particularly easily obtained when the ratio of the length in the radial direction in the tool end view occupied by one cutting edge is 50% or less of the tool radius. In addition, since there is no blade at the center of rotation, a large hole can be made in the axial center of the main body, and powdered chips can be sucked and collected or pumped and discharged using the hole as a discharge passage.

また、刃部の最先端と最外周との間に最先端から最外周に向かうにつれて刃部の基端側に向かう切れ刃を有していることで、穴の貫通開始時はまず最終的な加工径よりも小さな穴となる。そしてそこから徐々に加工径が大きくなるため、仕上げ加工的な効果が得られる。しかもこのときには仕上げ代となる領域にもスラスト力が加わり、刃部の最先端が被削材を貫通した後は加工領域が次第に狭くなって繊維層にかかる圧力が漸減するため、仕上げ代部分の繊維層が剥離しにくい。   In addition, by having a cutting edge that goes to the base end side of the blade part from the cutting edge to the outermost periphery between the cutting edge and the outermost periphery of the cutting edge, the final at the beginning of the hole penetration The hole is smaller than the machining diameter. And since a process diameter becomes large gradually from there, the effect like a finishing process is acquired. Moreover, at this time, the thrust force is also applied to the finishing allowance area, and after the cutting edge penetrates the work material, the machining area gradually narrows and the pressure applied to the fiber layer gradually decreases. The fiber layer is difficult to peel off.

よって工具が被削材を貫通し始める際の大きなバリや剥離が発生しにくい。穴貫通時に大きなバリや剥離が一旦発生すると、その後、いくら仕上げ加工を行っても除去しきれないケースが多く、この発明の工具はこれを防ぐことで良好な加工品位を得ることができる。   Therefore, large burrs and peeling are unlikely to occur when the tool starts to penetrate the work material. Once large burrs or delamination occurs during the hole penetration, there are many cases that cannot be removed even after finishing, and the tool of the present invention can obtain good machining quality by preventing this.

なお、刃部の最先端よりも内周側に切れ刃がない工具は、スラスト力の低減により穴貫通時のバリ、剥離の問題を回避する効果が高く、被削材を貫通し始める際の品位をさらに良好に保つことができる。   Note that a tool that does not have a cutting edge on the inner peripheral side of the cutting edge of the cutting edge is highly effective in avoiding the problems of burrs and separation during hole penetration by reducing the thrust force, and when starting to penetrate the work material. The quality can be kept even better.

また、刃部の先端から外周側に向って先端角を減少させた工具は、外周の先端角が同一になっている先端角一定の工具に比べて軸方向の切れ刃長が短くなるので、加工時間の短縮やビビリ振動の抑制が図れる。   In addition, since the tool whose tip angle is reduced from the tip of the blade portion toward the outer peripheral side has a shorter cutting edge length in the axial direction than a tool with a constant tip angle having the same tip angle on the outer periphery, Reduction of machining time and chatter vibration can be achieved.

さらに、前述の仕上げ効果は、特に外周での先端角が60°以下に設定された工具で顕著になる。また、CFRP材は特に、弾性復元量が大きいため、穴の仕上げ面が工具の逃げ面に接触しやすい。そうなると逃げ面の摩擦による加工品位の低下が考えられるようになるが、逃げ角を15°以上にしたものは、被削材がCFRPのときにも想定される被削材の弾性復元量に対応できる逃げ面の逃げ量が確保され、逃げ面の摩擦による加工品位の低下が起こりにくい。   Furthermore, the above-mentioned finishing effect is particularly noticeable with a tool whose tip angle on the outer periphery is set to 60 ° or less. In addition, since the CFRP material has a particularly large elastic recovery amount, the finished surface of the hole is likely to come into contact with the flank of the tool. If this happens, the work quality may be degraded due to the friction of the flank, but those with a clearance angle of 15 ° or more correspond to the expected elastic recovery of the work material even when the work material is CFRP. The amount of flank clearance that can be obtained is secured, and the processing quality is less likely to deteriorate due to friction on the flank surface.

このほか、この発明の工具は、切れ刃の径方向長さが通常のドリルやエンドミルに比べて短い。よって、特に薄い被削材を加工するときに発生しやすいびびり振動も効果的に抑制することができる。   In addition, in the tool of the present invention, the radial length of the cutting edge is shorter than that of a normal drill or end mill. Therefore, chatter vibration that is likely to occur when processing a particularly thin work material can be effectively suppressed.

さらに、切れ刃が短いため、焼結ダイヤモンド材(PCD材)のような高価な刃具材料を鑞付けして使用しても工具のコストを抑えることができる。また、CFRP材の加工ではダイヤモンドコーティング工具がよく用いられるが、耐摩耗性向上のためにコーティング層の膜厚を厚くしたものは刃先丸味が大きくなって切れ味が低下することが問題となる。一般的なドリルのような形状の場合、研磨加工で刃先を尖らせるのは難しいが、この発明の工具は刃長が短く、しかも単純形状であるので、成膜後に刃先を磨いて鋭利にすることも可能である。これにより長寿命かつ高品位加工が可能な工具を提供することができる。   Furthermore, since the cutting edge is short, the cost of the tool can be suppressed even if an expensive blade material such as a sintered diamond material (PCD material) is brazed and used. A diamond coating tool is often used in the processing of CFRP material. However, when the film thickness of the coating layer is increased in order to improve the wear resistance, the roundness of the cutting edge becomes large and the sharpness is lowered. In the case of a general drill-like shape, it is difficult to sharpen the cutting edge by polishing, but since the tool of the present invention has a short blade length and a simple shape, the cutting edge is polished and sharpened after film formation. It is also possible. As a result, it is possible to provide a tool that has a long life and can perform high-quality processing.

この発明の穴あけ工具の第1の形態の概要を示す平面図The top view which shows the outline | summary of the 1st form of the drilling tool of this invention 図1の穴あけ工具の側面図Side view of the drilling tool of FIG. (a)〜(c)は刃形の具体例を示す正面図(A)-(c) is a front view which shows the specific example of a blade shape 図3(a)〜図3(c)のX−X及びY-Y線に沿った切れ刃部の拡大断面図Enlarged cross-sectional view of the cutting edge along the lines XX and YY in FIGS. 3 (a) to 3 (c) この発明の穴あけ工具の第2の形態の概要を示す平面図The top view which shows the outline | summary of the 2nd form of the drilling tool of this invention 図5の穴あけ工具の先端側の端面図End view of the tip side of the drilling tool in FIG. この発明の穴あけ工具の第3の形態の要部の拡大断面図The expanded sectional view of the principal part of the 3rd form of the drilling tool of this invention (a)この発明の穴あけ工具による穴加工の初期の状態を示す図、(b)穴加工が途中まで進行した状態を示す図(A) The figure which shows the initial state of the drilling by the drilling tool of this invention, (b) The figure which shows the state which progressed to the middle of the drilling この発明の穴あけ工具による穴加工でくり抜かれた被削材の側面形状と平面形状を示す図The figure which shows the side surface shape and planar shape of the work material which were hollowed by the hole processing by the drilling tool of this invention 実施例の発明品6で加工した穴の性状を示す図The figure which shows the property of the hole processed with invention product 6 of an Example 実施例2で測定したスラスト力の変化を示す図The figure which shows the change of the thrust force measured in Example 2 通常の工具でFRP材に穴を加工したときに穴の縁に発生したバリを示す図Diagram showing burrs generated at the edge of a hole when a hole is machined in the FRP material with a normal tool 特許文献3の工具でFRP材に穴を加工したときに繊維層に対してスラスト力が作用する状態を示す模式図Schematic diagram showing a state in which a thrust force acts on the fiber layer when a hole is machined in the FRP material with the tool of Patent Document 3.

以下、添付図面の図1〜図11に基づいて、この発明の穴あけ工具の実施の形態について説明する。図1及び図2は、第1の形態の穴あけ工具のほぼ全体の概要を示している。この穴あけ工具は、刃先交換型のボーリングバイトにこの発明を特徴づける刃部を追加工して構成したものであって、鋼製の断面円形のシャンク1の先端に設けられたヘッド部2に、超硬合金製の刃具3が着脱自在に装着されている。   Embodiments of a drilling tool according to the present invention will be described below with reference to FIGS. 1 and 2 show an outline of almost the entire drilling tool of the first embodiment. This drilling tool is constructed by additionally machining a blade portion characterizing the present invention to a blade-type replaceable boring bit, and is provided at the head portion 2 provided at the tip of a steel-shaped circular shank 1, A cemented carbide blade 3 is detachably mounted.

この工具は、ヘッド部2に対する刃具3の締結が、押え具5とクランプねじ6を用いて行なわれているが、取り付け穴を有する刃具をヘッド部2にクランプねじを用いて直接固定しても構わないし、シャンク1とヘッド部2と刃具3の3者から成る本体部4を一体に形成することも許容される。   In this tool, the cutting tool 3 is fastened to the head portion 2 using the presser 5 and the clamp screw 6. However, even if the cutting tool having a mounting hole is directly fixed to the head portion 2 using the clamp screw. Of course, it is allowed to integrally form the main body portion 4 including the shank 1, the head portion 2, and the cutting tool 3.

例示の工具の刃具3は、本体部4の中心軸(回転中心)Cから偏心して取り付けられており、同中心軸Cから刃具3に形成された刃部3aの最外周までの半径方向の距離Lが加工穴の半径となる。図3(a)のWは刃幅である。この刃幅Wは、刃部3aの強度なども考慮する必要があるが、その値は、工具半径の50%以下が好ましい。   The cutting tool 3 of the illustrated tool is attached eccentrically from the central axis (rotation center) C of the main body 4, and the radial distance from the central axis C to the outermost periphery of the cutting part 3 a formed on the cutting tool 3. L is the radius of the machining hole. W in FIG. 3A is the blade width. The blade width W needs to consider the strength of the blade portion 3a and the like, but the value is preferably 50% or less of the tool radius.

刃部3aの先端形状(刃形)は、図3に示すように数種類のパターンがある。同図は、刃部3aをすくい面側から見たものであり、一般的なドリルでの定義と同じく、図中θ{図3(c)はθ1、θ2}で表した角度の2倍の角度がこの発明での先端角である。   The tip shape (blade shape) of the blade portion 3a has several patterns as shown in FIG. This figure is a view of the blade portion 3a from the rake face side, and in the same way as defined by a general drill, θ {Fig. 3 (c) is twice the angle represented by θ1, θ2}. The angle is the tip angle in the present invention.

図3(a)の刃形は、刃部3aの最先端が刃部3aの径方向の内端と外端との間にあり、最先端を境にした外周側と内周側の双方に切れ刃7が存在する。刃部3aの最先端と最外周との間に設けられる切れ刃7は、刃部3aの最先端から最外周に向かうにつれて刃部の基端側(シャンクに近い側)に向かって角度θ傾斜しており、その傾斜の角度によって先端角2×θが決まる。その先端角2×θは、仕上げ効果を高めるために60°以下にするのがよい。   In the blade shape of FIG. 3A, the leading edge of the blade portion 3a is between the radially inner end and the outer end of the blade portion 3a, and both the outer peripheral side and the inner peripheral side with the leading edge as a boundary. There is a cutting edge 7. The cutting edge 7 provided between the leading edge of the blade portion 3a and the outermost periphery is inclined at an angle θ toward the base end side (side closer to the shank) of the blade portion as it goes from the leading edge of the blade portion 3a to the outermost periphery. The tip angle 2 × θ is determined by the inclination angle. The tip angle 2 × θ is preferably 60 ° or less in order to enhance the finishing effect.

図3(b)は、刃部3aの内周側が最先端に突き出る形に加工されており、最先端よりも外周側のみに、刃部3aの最先端から最外周に向かうにつれて刃部の基端側に向かって傾斜した切れ刃7が存在する。さらに、図3(c)は、先端角を内周側では2×θ1、外周側では2×θ1よりも小さい2×θ2の2段階に設定している。この図3(c)の刃形は、先端角一定の図3(b)の形状に比べて、外周側の先端角を同一に保ちながら切れ刃7の軸方向長さを短縮することができ、それによる加工時間の短縮や、びびり振動の抑制が期待できる。   FIG. 3 (b) shows that the inner peripheral side of the blade portion 3a is processed so as to protrude to the foremost end, and the base of the blade portion becomes closer to the outermost side than the foremost end as the blade portion 3a moves from the foremost end to the outermost periphery. There is a cutting edge 7 inclined toward the end side. Further, in FIG. 3C, the tip angle is set in two stages of 2 × θ1 on the inner peripheral side and 2 × θ2 smaller than 2 × θ1 on the outer peripheral side. The blade shape of FIG. 3C can shorten the axial length of the cutting edge 7 while keeping the tip angle on the outer peripheral side the same as the shape of FIG. 3B where the tip angle is constant. Therefore, shortening of processing time and suppression of chatter vibration can be expected.

図3(c)の刃形の先端角は、切れ刃7を曲線の切れ刃にして内周側から外周側に向って先端角が徐々に小さくなるように変化させることも可能である。その先端角は外周部の2×θ2を60°以下にするとよい。   The tip angle of the blade shape in FIG. 3C can be changed so that the tip angle gradually decreases from the inner peripheral side toward the outer peripheral side with the cutting edge 7 as a curved cutting edge. The tip angle of the outer peripheral portion is preferably 2 × θ2 of 60 ° or less.

なお、いずれの形状も、刃部3aの最先端の小領域wのすくい面側から見た切れ刃稜線は、欠損対策のために面取りやホーニングによって強化処理することが許容される。その強化処理した最先端から外周にかけて切れ刃7を刃部3aの基端側に向かう形で延在させる。ここで、刃部3aの最先端に例えばすくい面側から見て、内周側に傾斜した面取りを設ける、あるいはRホーニング処理で丸みをつけると、厳密には刃部の最先端よりも内周側に微小長さの刃が存在することになるが、この発明では、刃部3aの内周側を刃部の最先端に配置する図3(b),(c)の形態については、その部分も刃先の最先端とみなす。切れ刃7は、加工後の仕上げ面との接触を避けるために、図4の断面図に示す逃げ角γを付与している。   In any of the shapes, the cutting edge ridgeline viewed from the rake face side of the most advanced small region w of the blade portion 3a is allowed to be reinforced by chamfering or honing for countermeasures against defects. The cutting edge 7 is extended in the form which goes to the base end side of the blade part 3a from the strengthened cutting edge to the outer periphery. Here, when the chamfered surface is inclined on the inner peripheral side when viewed from the rake face side, for example, or rounded by the R honing process, strictly speaking, the inner periphery is more than the front edge of the blade part 3a. In this invention, about the form of FIG.3 (b), (c) which arrange | positions the inner peripheral side of the blade part 3a in the forefront of a blade part, there exists a micro length blade. The part is also regarded as the cutting edge of the cutting edge. The cutting edge 7 is given a clearance angle γ shown in the cross-sectional view of FIG. 4 in order to avoid contact with the finished surface after processing.

本実施例は、刃部3aを中心軸Cの片側のみに設けて工具を1枚刃の形態にしているが、同様の刃部3aを周方向に定ピッチで複数設けて中心軸C基準で対称形状の2枚刃工具やそれ以上の刃を有する多刃工具として構成することもできる。ただし、CFRPなどの繊維強化複合材料を加工する場合、各刃に加わるスラスト力は1刃当たりの送り量を小さくしてもある程度のところで頭打ちになってそれ以下には小さくならないため、多刃構造にすると総スラスト力が大きくなり、かえって加工品位に悪影響を及ぼすことがある。よって、3枚刃以下の刃数とすることが望ましい。後述する他の実施形態の工具についても同様である。また、交換式刃具3に焼結ダイヤモンドなどの硬質焼結体を鑞付けしてその硬質焼結体で切れ刃を構成してもよい。   In the present embodiment, the blade portion 3a is provided only on one side of the central axis C and the tool is in the form of a single blade, but a plurality of similar blade portions 3a are provided at a constant pitch in the circumferential direction with reference to the central axis C. It can also be configured as a two-blade tool having a symmetrical shape or a multi-blade tool having more than one blade. However, when processing fiber reinforced composite materials such as CFRP, the thrust force applied to each blade reaches a certain level even if the feed amount per blade is reduced and does not decrease below that. If this is done, the total thrust force increases, which may adversely affect the processing quality. Therefore, it is desirable to set the number of blades to 3 or less. The same applies to tools of other embodiments described later. Alternatively, a hard sintered body such as sintered diamond may be brazed to the replaceable cutting tool 3, and the cutting edge may be constituted by the hard sintered body.

この発明の工具の第2の形態を図5、図6に示す。この第2の形態の穴あけ工具は、シャンク1を鋼材のパイプで形成している。そのシャンク1は、切屑ポケット8を形成するために先端側の一部分を除去している。そして、このシャンク1の先端の切屑ポケット8に面した突出部に、既述の切れ刃7を有する超硬合金や焼結ダイヤモンドで構成された刃具3を鑞付けなどで接合している。   A second embodiment of the tool of the present invention is shown in FIGS. In the drilling tool of the second form, the shank 1 is formed of a steel pipe. The shank 1 has a part on the tip side removed to form a chip pocket 8. And the cutting tool 3 comprised by the cemented carbide or sintered diamond which has the above-mentioned cutting edge 7 is joined to the protrusion part which faced the chip pocket 8 of the front-end | tip of this shank 1 by brazing.

この第2の形態の工具は、穴加工時にシャンク1が被削材と干渉しないように、シャンク1の外周面(パイプの外周面)を切れ刃7の径方向外端よりも内周側に配置し、シャンク1の内周面(パイプの内周面)は逆に切れ刃7の径方向内端よりも外周側に配置している。なお、シャンクの基端側で加工時に加工穴の内部に入り込まない部分については、上記のような関係を満たさなくてもよい。また、シャンク1の先端も、切れ刃7の先端よりも軸方向後方に後退させている。   In the tool of the second form, the outer peripheral surface of the shank 1 (the outer peripheral surface of the pipe) is placed on the inner peripheral side with respect to the radial outer end of the cutting edge 7 so that the shank 1 does not interfere with the work material during drilling. It arrange | positions and the inner peripheral surface (inner peripheral surface of a pipe) of the shank 1 is arrange | positioned on the outer peripheral side rather than the radial direction inner end of the cutting blade 7 conversely. In addition, it is not necessary to satisfy | fill the above relationships about the part which does not enter the inside of a processing hole at the time of a process on the base end side of a shank. Further, the tip of the shank 1 is also moved backward in the axial direction from the tip of the cutting edge 7.

この工具は、シャンク1を中空のパイプで構成しているので、吸引や圧送による気流を
シャンク1の中心部に設けた貫通穴9に通して切屑を強制吸引回収、強制圧送排出することが可能である。なお、この工具の刃部の先端は図3(b)と同様の形状にしたが、図3(a)や図3(c)のような先端形状であってもよい。また、刃具3の材質は、超硬合金のほか、焼結ダイヤモンドなどの硬質焼結体を鑞付けしたものであってもよい。
In this tool, since the shank 1 is constituted by a hollow pipe, it is possible to forcibly collect and discharge chips by forcibly sucking and collecting chips by passing an air flow by suction or pressure feeding through a through hole 9 provided in the center of the shank 1. It is. In addition, although the front-end | tip of the blade part of this tool was made into the shape similar to FIG.3 (b), a front-end | tip shape like FIG.3 (a) and FIG.3 (c) may be sufficient. The material of the blade 3 may be a brazed hard sintered body such as sintered diamond in addition to the cemented carbide.

次に、第3の形態を図7に示す。この第3の形態の工具形状等は第1の形態と同じであるので図を省く。この第3の形態は、刃具3として、超硬合金製の基材3bに気相成長によるダイヤモンドコーティング層3cを施したものを使用している。   Next, a third embodiment is shown in FIG. Since the tool shape and the like of the third embodiment are the same as those of the first embodiment, the illustration is omitted. In the third embodiment, the cutting tool 3 is formed by applying a diamond coating layer 3c by vapor phase growth to a cemented carbide base material 3b.

ダイヤモンドコーティング層3cは、膜厚が増加するにつれて刃先が丸みを帯びて鈍化し、それが加工品位低下の原因となることから、図7の断面形状のように、成膜後に切れ刃7の刃先を鋭利にする研磨処理(鎖線の鈍化部を除去する処理)を行って使用するとよい。基材についてはコーティング層の密着力を確保するために、Coバインダ量が8%以下のものを使用することが望ましい。   The diamond coating layer 3c is rounded and blunted as the film thickness increases, and this causes deterioration of the processing quality. Therefore, the cutting edge of the cutting edge 7 after film formation as shown in the cross-sectional shape of FIG. It is good to use after carrying out the grinding | polishing process (process which removes the dull part of a chain line) which sharpens. As for the base material, it is desirable to use a Co binder amount of 8% or less in order to ensure the adhesion of the coating layer.

また、ダイヤモンドコーティング層3cの厚みは、薄すぎると耐摩耗性が低下し、研磨処理の効果も出にくいことから、おおむね10μm以上とすることが推奨される。研磨方法は、ダイヤモンド砥石による方法や、高速回転させたステンレス棒やCFRP材を押し付ける方法がある。   Further, if the thickness of the diamond coating layer 3c is too thin, the wear resistance is lowered and the effect of the polishing treatment is difficult to be obtained. Therefore, it is recommended that the thickness is generally 10 μm or more. As a polishing method, there are a method using a diamond grindstone, and a method of pressing a stainless steel rod or a CFRP material rotated at high speed.

この発明の工具の性能評価試験を行った。その評価試験を以下に説明する。
評価に使用した穴あけ工具は、前述の第1の形態で説明したものである。その工具のシャンクは、住友電工ハードメタル製S12F−CKBR−16であり、交換可能な刃具は、KBMXR0311−05を使用し、刃先を追加工して表1に示す各種の諸元のものを準備した。刃具の材料はJIS K20種超硬合金である。
The performance evaluation test of the tool of this invention was conducted. The evaluation test will be described below.
The drilling tool used for the evaluation is the one described in the first embodiment. The tool shank is S12F-CKBR-16 made by Sumitomo Electric Hardmetal, and the tool that can be replaced is KBMXR0311-05. did. The material of the blade is JIS K20 class cemented carbide.

本体部の中心軸Cから切れ刃最外周までの半径方向距離L{図1(a)参照}は6mmであり、φ12mmの穴を加工する。刃幅W{図1(a)参照}は2mmであり、切れ刃の工具半径に占める工具端面視での長さの割合は50%以下(1/3)である。また、刃部の最先端における切れ刃稜線は、欠損対策としてすくい面側から見て穴半径方向(刃幅方向)20μm程度の領域wに面取りを施している。   The radial distance L {see FIG. 1 (a)} from the central axis C of the main body to the outermost periphery of the cutting edge is 6 mm, and a hole of φ12 mm is processed. The blade width W {refer to FIG. 1 (a)} is 2 mm, and the ratio of the length in the tool end view to the tool radius of the cutting edge is 50% or less (1/3). Further, the cutting edge ridge line at the forefront of the blade portion is chamfered in a region w of about 20 μm in the hole radial direction (blade width direction) as viewed from the rake face side as a measure against a defect.

準備した発明品の工具の諸元を表1に示す。発明品1は、図3(a)の刃形であり、2mmの刃幅のうち、径方向中央部が最も軸方向前方に突出している。発明品2〜5は、図3(b)の刃形であり、刃部の内周が最も軸方向前方に突出している。発明品6は先端角が2段の図3(c)の刃形であり、内周側の先端角2×θ1=90°、外周側の先端角2×θ2=40°となっている。   Table 1 shows the specifications of the prepared inventive tool. Inventive product 1 has the blade shape of FIG. 3 (a), and the radial center portion of the blade width of 2 mm protrudes most forward in the axial direction. Inventive products 2 to 5 have the blade shape of FIG. 3 (b), and the inner periphery of the blade portion protrudes most forward in the axial direction. The invention product 6 has a two-stage tip shape as shown in FIG. 3C, and has an inner peripheral tip angle 2 × θ1 = 90 ° and an outer peripheral tip angle 2 × θ2 = 40 °.

比較品は、一般的なツイストドリルを用意した。φ12mmのJIS Z20種超硬合金製のノンコートの2枚刃ドリルであり、先端角は140°、ねじれ角30°である。   As a comparative product, a general twist drill was prepared. An uncoated two-blade drill made of JIS Z20 class cemented carbide of φ12 mm, with a tip angle of 140 ° and a helix angle of 30 °.

被削材は、炭素繊維強化プラスチックス(CFRP)の板材であり、面内方向に炭素繊維を有する単位層を8層接合し、全体厚みを2.78mmとしている。このCFRP材に対して厚み方向の穴あけを行った。そのときの加工条件は、切削速度100m/min、1刃当たり送り量fz=0.025mm/tooth、ドライ条件での貫通穴加工である。   The work material is a plate material of carbon fiber reinforced plastics (CFRP), and eight unit layers having carbon fibers are joined in the in-plane direction, and the total thickness is 2.78 mm. The CFRP material was drilled in the thickness direction. The processing conditions at that time are through-hole processing under a dry condition with a cutting speed of 100 m / min, a feed amount per tooth fz = 0.025 mm / tooth.

図8に加工初期の様子と加工途中の様子を示す。穴外周部を円をなす状態に溝加工し、その加工部よりも内周部分が図9のようにくり抜かれる。このような加工は、切屑が粉状となる繊維強化複合材料を加工対象としているがゆえに実現できるものであり、金属のように連続した切屑が生成する被削材では、特に穴深さが大きくなると切屑詰まりを起こす可能性が高い。加工結果の評価として、加工1穴目の穴出口に発生するバリ(毛羽立ち)の最大長さ、および1刃当たりのスラスト力を表1に併せて示す。   FIG. 8 shows an initial state of processing and a state during processing. The hole outer peripheral portion is grooved to form a circle, and the inner peripheral portion is cut out as shown in FIG. 9 from the processed portion. Such processing can be realized because the processing target is a fiber reinforced composite material in which chips become powdery, and the hole depth is particularly large in work materials that generate continuous chips such as metal. If so, there is a high possibility of clogging. Table 1 shows the maximum length of burr (fluff) generated at the hole exit of the first hole and the thrust force per blade as evaluation of the processing result.

表1からわかるように、発明品は比較品(従来ドリル)に対し、加工品位、スラスト力のいずれにおいても優位である。外周での先端角については、60°以下の発明品5,6が、バリが小さくて良好である。加工品位、スラスト力が最も良かった発明品6で被削材10に加工した穴11は、図10のようになっている。また、逃げ角については、15°以上で特にスラスト力が小さくなっており、15°以上とすることがスラスト力低減の効果が顕著に引き出されて望ましいことが分かる。   As can be seen from Table 1, the inventive product is superior to the comparative product (conventional drill) in both processing quality and thrust force. With respect to the tip angle on the outer periphery, the inventive products 5 and 6 of 60 ° or less are good with small burrs. A hole 11 machined into the work material 10 with the invention 6 having the best machining quality and thrust force is as shown in FIG. Further, it can be seen that the thrust angle is particularly small when the clearance angle is 15 ° or more, and it is desirable that the clearance angle is 15 ° or more because the effect of reducing the thrust force is remarkably brought out.

次に、切れ刃の工具半径方向に占める工具端面視での長さの割合の影響の検証結果を記す。使用した穴あけ工具は、図5、図6の第2の形態であり、シャンクは外径φ13.8mmの鋼パイプで形成し、その先端にK種超硬合金製の刃具を鑞付けしている。本体部の中心軸から切れ刃の径方向外端までの距離Lは7mmで、φ14mmの穴をあける。刃形は、図3(b)のタイプで、先端角θ=60°、逃げ角γ=15°とした。   Next, the verification result of the influence of the ratio of the length of the cutting edge in the tool radial direction in the tool end view will be described. The drilling tool used is the second form of FIGS. 5 and 6, the shank is formed of a steel pipe having an outer diameter of φ13.8 mm, and a K-type cemented carbide cutting tool is brazed to the tip thereof. . A distance L from the central axis of the main body to the radially outer end of the cutting edge is 7 mm, and a hole of φ14 mm is made. The blade shape was the type shown in FIG. 3B, and the tip angle θ was 60 ° and the clearance angle γ was 15 °.

この工具の切れ刃の、工具半径方向に占める工具端面視での長さの割合を変化させて実施例1と同一条件で、同一被削材に穴をあけた。なお、シャンクを構成するパイプの肉厚は刃幅よりも0.4mm小さくし、パイプの内周を切れ刃の径方向内端よりも外側に配置して加工時の被削材との干渉を回避する構造にした。   A hole was made in the same work material under the same conditions as in Example 1 by changing the ratio of the length of the cutting edge of the tool in the tool end view in the tool radial direction. In addition, the wall thickness of the pipe constituting the shank is 0.4 mm smaller than the blade width, and the inner circumference of the pipe is arranged outside the radial inner end of the cutting blade to prevent interference with the work material during machining. The structure is to avoid.

この工具を用いた加工でのスラスト力の測定結果を図11に示す。このように、切れ刃の、工具半径方向に占める工具端面視での長さの割合が50%を越えるとスラスト力が急増する傾向が見られた。   FIG. 11 shows the measurement results of the thrust force in processing using this tool. As described above, when the ratio of the length of the cutting edge in the tool radial direction in the tool end view exceeds 50%, the thrust force tends to increase rapidly.

切屑の強制排出の効果について検証するため、実施例2と同様の工具で、工具端面視での切れ刃の長さの割合が工具半径の1/3に設定されたものを使用し、板厚12mmのCFRP材の穴あけを行った。   In order to verify the effect of forced discharge of chips, the same tool as in Example 2 with a cutting edge length ratio in the tool end view set to 1/3 of the tool radius was used. A 12 mm CFRP material was drilled.

ここでは、通常の穴あけと、マシニングセンターの主軸を通して切屑吸引を行う形態の2通りを比較した。その結果、前者の通常の加工形態では、加工穴出口でのバリが最大で0.6mm程度あったが、切屑を吸引回収する後者の形態ではそのバリが0.2mm程度に抑制された。   Here, a comparison was made between normal drilling and chip suction through the spindle of the machining center. As a result, in the former normal processing mode, the maximum burr at the processing hole exit was about 0.6 mm, but in the latter mode in which chips are sucked and collected, the burr was suppressed to about 0.2 mm.

板厚が厚くなる加工では特に、穴貫通前の円形溝に切屑が溜まりやすく、残留切屑が加工に悪影響を及ぼして穴貫通時にバリが発生しやすくなるが、切屑吸引を行うことで切屑が加工に与える悪影響が排除されて高加工品位の安定した維持が可能になる。   Especially in processing that increases the plate thickness, chips are likely to accumulate in the circular groove before the hole penetrates, and residual chips adversely affect the processing, and burrs are likely to occur during hole penetration, but chips are processed by suctioning the chips. This eliminates the adverse effects on the machine and makes it possible to stably maintain high machining quality.

次に、刃具材質の影響を評価した結果を示す。この評価は、実施例1と同様のφ12mmの穴あけ試験によって行った。超硬合金製の刃具の先端に焼結ダイヤモンドを鑞付けしてそれに切れ刃を形成した穴あけ工具と、第3の形態のように、超硬合金の基材上にダイヤモンドコーティング層を施し、その後、研磨加工を行って切れ刃を鋭利にした穴あけ工具を比較した。   Next, the result of evaluating the influence of the blade material is shown. This evaluation was performed by the same φ12 mm drilling test as in Example 1. A drilling tool in which sintered diamond is brazed to the tip of a cemented carbide cutting tool to form a cutting edge, and a diamond coating layer is applied on a cemented carbide substrate as in the third embodiment, and thereafter The drilling tools with sharpened cutting edges after polishing were compared.

両工具とも、先端角θ=60°、逃げ角γ=15°とした。焼結ダイヤモンドの材質は、住友電工ハードメタル製のDA2200である。また、ダイヤモンドコーティング層は、ダイヤモンド粒子の平均粒径が約1μmであり、コーティング層の膜厚は約15μmとした。成膜後の切れ刃近傍に、CFRP材を削りだして作成した円柱を、すくい面側および逃げ面側から回転させながらおしつけて、切れ刃の研磨を行った。ダイヤモンドコーティング層を施した刃具の基材はJIS K01種超硬合金製である。
表2に、加工穴1穴目および30穴目のスラスト力と最大バリ長さを示す。
Both tools had a tip angle θ = 60 ° and a clearance angle γ = 15 °. The material of the sintered diamond is DA2200 made by Sumitomo Electric Hardmetal. The diamond coating layer had an average particle size of diamond particles of about 1 μm, and the coating layer thickness was about 15 μm. A cylinder created by scraping the CFRP material was applied to the vicinity of the cutting edge after film formation while rotating from the rake face side and the flank face side to polish the cutting edge. The base material of the cutting tool provided with the diamond coating layer is made of JIS K01 class cemented carbide.
Table 2 shows the thrust force and the maximum burr length in the first hole and the 30th hole.

この表2から分かるように、発明品7〜9は、いずれも加工の初期は良好であるが、超硬合金の発明品7は30穴目の加工では摩耗によってバリ、スラスト力とも悪化している。これに対し、焼結ダイヤモンドおよびダイヤモンドコーティング層を刃具に採用した発明品8,9は、ともに30穴目の加工でも良好な状態を保っている。ダイヤモンドコートの刃先に研磨を施していない発明品10は1穴目の加工時点でバリが比較的大きく、穴の加工品位を良好にするには、刃先の鋭利性を高めることが重要であることがわかる。なお、発明品10は、経時摩耗によって刃先が初期よりも鋭利化されるため、1穴目よりも30穴目でのバリがむしろ減少している。   As can be seen from Table 2, the inventive products 7 to 9 are all good at the initial stage of processing, but the inventive cemented carbide product 7 is deteriorated in burr and thrust force due to wear in the processing of the 30th hole. Yes. On the other hand, invention products 8 and 9 employing a sintered diamond and a diamond coating layer as a cutting tool both maintain a good state even when the 30th hole is processed. The inventive product 10 in which the cutting edge of the diamond coat is not polished has a relatively large burr at the time of processing the first hole, and it is important to improve the sharpness of the cutting edge in order to improve the processing quality of the hole. I understand. In addition, since the cutting edge of the invention product 10 is sharpened from the initial stage due to wear over time, burrs at the 30th hole rather than at the 1st hole are reduced.

1 シャンク
2 ヘッド部
3 刃具
3a 刃部
3b 基材
3c ダイヤモンドコーティング層
4 本体部
5 押え具
6 クランプねじ
7 切れ刃
8 切屑ポケット
9 貫通穴
10 被削材
11 穴
w 刃先の強化処理領域
C 本体部の中心軸
θ,θ1,θ2 先端角の1/2
γ 逃げ角
W 刃幅
L 中心軸から切れ刃の径方向外端までの距離(工具半径)
DESCRIPTION OF SYMBOLS 1 Shank 2 Head part 3 Cutting tool 3a Blade part 3b Base material 3c Diamond coating layer 4 Main body part 5 Presser 6 Clamp screw 7 Cutting blade 8 Chip pocket 9 Through hole 10 Work material 11 Hole w Cutting edge reinforcement processing area C Main part Center axis θ, θ1, θ2 1/2 of the tip angle
γ Clearance angle W Blade width L Distance from the central axis to the outer radial edge of the cutting edge (tool radius)

Claims (8)

補強繊維とマトリクス樹脂を含む繊維強化複合材料の穴あけに用いる回転切削式の穴あけ工具であって、本体部(4)先端の回転中心よりも径方向外側に軸方向前方に延び出す刃部(3a)が形成され、その刃部(3a)に切れ刃(7)が形成されて本体部先端の回転中心部に切れ刃が存在せず、前記刃部(3a)の最先端と最外周との間に設けられる切れ刃(7)が前記刃部(3a)の最先端から最外周に向かうにつれて刃部(3a)の基端側に向かって傾斜していることを特徴とする繊維強化複合材料用穴あけ工具。   A rotary cutting type drilling tool used for drilling a fiber reinforced composite material including a reinforcing fiber and a matrix resin, and a blade portion (3a) extending axially forward outward in the radial direction from the rotation center of the tip of the main body (4) ) Is formed, a cutting edge (7) is formed on the blade portion (3a), and there is no cutting edge at the center of rotation of the main body portion, and the cutting edge and the outermost periphery of the blade portion (3a) A fiber-reinforced composite material, characterized in that a cutting blade (7) provided therebetween is inclined toward the base end side of the blade portion (3a) from the foremost end of the blade portion (3a) toward the outermost periphery. Drilling tool. 前記刃部(3a)の内周側が刃部の最先端に位置し、その最先端よりも径方向外側にのみ切れ刃(7)が存在する請求項1に記載の繊維強化複合材料の穴あけ工具。   The fiber-reinforced composite material drilling tool according to claim 1, wherein the inner peripheral side of the blade portion (3a) is located at the forefront of the blade portion, and the cutting edge (7) exists only radially outward from the foremost portion. . 工具の先端側の端面視において、1つの切れ刃(7)が占める半径方向の長さの割合が、工具半径の50%以下であることを特徴とする請求項1又は2に記載の繊維強化複合材料の穴あけ工具。   The fiber reinforcement according to claim 1 or 2, wherein a ratio of a length in a radial direction occupied by one cutting edge (7) is 50% or less of a tool radius in an end face view of the tip side of the tool. Drilling tool for composite materials. 外周での先端角(2×θ、2×θ2)を60°以下としたことを特徴とする請求項1〜3のいずれかに記載の繊維強化複合材料の穴あけ工具。   4. The fiber-reinforced composite material drilling tool according to claim 1, wherein a tip angle (2 × θ, 2 × θ2) on the outer periphery is set to 60 ° or less. 切れ刃(7)の逃げ角(γ)を15°以上にしたことを特徴とする請求項1〜4のいずれかに記載の繊維強化複合材料の穴あけ工具。   The fiber reinforced composite material drilling tool according to any one of claims 1 to 4, wherein a clearance angle (γ) of the cutting edge (7) is 15 ° or more. 本体部(4)回転中心部に切屑の吸引回収又は圧送排出のための貫通穴(9)を設けたことを特徴とする請求項1〜5のいずれかに記載の繊維強化複合材料の穴あけ工具。   The fiber reinforced composite material drilling tool according to any one of claims 1 to 5, characterized in that a through hole (9) is provided in the main body (4) for rotating and collecting chips for suction or pumping and discharging. . 刃部(3a)の少なくも一部を焼結ダイヤモンドで構成してその焼結ダイヤモンドに切れ刃(7)を設けたことを特徴とする請求項1〜6のいずれかに記載の繊維強化複合材料の穴あけ工具。   The fiber reinforced composite according to any one of claims 1 to 6, wherein at least a part of the blade portion (3a) is made of sintered diamond, and the sintered diamond is provided with a cutting blade (7). Material drilling tool. 超硬合金の基材(3b)上に気相成長法で合成したダイヤモンドコーティング層(3c)を施し、さらに、成膜後に刃先の研磨処理を行った刃部(3a)を備えさせたことを特徴とする請求項1〜6のいずれかに記載の繊維強化複合材料の穴あけ工具。   The diamond coating layer (3c) synthesized by the vapor phase growth method was applied on the base material (3b) of the cemented carbide, and the blade portion (3a) subjected to the polishing treatment of the blade edge after film formation was provided. A drilling tool for a fiber-reinforced composite material according to any one of claims 1 to 6.
JP2009110829A 2009-04-30 2009-04-30 Tool for drilling hole in fiber-reinforced composite material Pending JP2010260115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110829A JP2010260115A (en) 2009-04-30 2009-04-30 Tool for drilling hole in fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110829A JP2010260115A (en) 2009-04-30 2009-04-30 Tool for drilling hole in fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2010260115A true JP2010260115A (en) 2010-11-18

Family

ID=43358641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110829A Pending JP2010260115A (en) 2009-04-30 2009-04-30 Tool for drilling hole in fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2010260115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148399A (en) * 2010-12-26 2012-08-09 Mitsubishi Materials Corp Carbon film-coated drill, and method for manufacturing the same
WO2018153883A1 (en) * 2017-02-22 2018-08-30 Gühring KG Drilling tool for fiber panels
CN112706227A (en) * 2020-12-09 2021-04-27 江苏大学 Hole making device and hole making method for glass fiber reinforced resin matrix composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076905A (en) * 1983-07-21 1985-05-01 ユ−・エス・シンセテイツク コ−ポレイシヨン Composite sintering grinding chip and printed circuit board
JP2003300110A (en) * 2002-04-03 2003-10-21 Osg Corp Drill and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076905A (en) * 1983-07-21 1985-05-01 ユ−・エス・シンセテイツク コ−ポレイシヨン Composite sintering grinding chip and printed circuit board
JP2003300110A (en) * 2002-04-03 2003-10-21 Osg Corp Drill and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148399A (en) * 2010-12-26 2012-08-09 Mitsubishi Materials Corp Carbon film-coated drill, and method for manufacturing the same
WO2018153883A1 (en) * 2017-02-22 2018-08-30 Gühring KG Drilling tool for fiber panels
CN112706227A (en) * 2020-12-09 2021-04-27 江苏大学 Hole making device and hole making method for glass fiber reinforced resin matrix composite material

Similar Documents

Publication Publication Date Title
JP6589506B2 (en) Drill and drill head
JP5184902B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP5600765B2 (en) Twist drill and laminating method
JP5945283B2 (en) drill
JP5135614B2 (en) Drill for composite material and machining method and machining apparatus using the same
JP5451831B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP6501374B1 (en) drill
JP2009039811A (en) Tool and method for drilling hole in fiber-reinforced composite material
EP3134224B1 (en) Diamond plated grinding endmill for advanced hardened ceramics machining
WO2010086988A1 (en) Double angle drill
JP5358806B2 (en) drill
US9694432B2 (en) Drill reamer
JP2008142834A (en) Drill
JP2010260115A (en) Tool for drilling hole in fiber-reinforced composite material
JP5975340B2 (en) drill
WO2016047803A1 (en) Drill and drill head
JP5540167B1 (en) End mill manufacturing method
JP2009039810A (en) Method for drilling hole in fiber-reinforced composite material
JP5448241B2 (en) Ball end mill and cutting method using the same
JP2005319544A (en) Hole machining tool, and method of grinding outer periphery of the tool
JP4608062B2 (en) Burnishing drill
WO2021260774A1 (en) Rotary cutting tool
JP2013013962A (en) Cbn end mill
JP5906838B2 (en) Square end mill
JPH0957515A (en) Drill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710