JPH09155617A - Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool - Google Patents

Cutting process of fiber type organic material, rigid and brittle inorganic material, and glass type inorganic material, by end mill shpaed tool

Info

Publication number
JPH09155617A
JPH09155617A JP32705995A JP32705995A JPH09155617A JP H09155617 A JPH09155617 A JP H09155617A JP 32705995 A JP32705995 A JP 32705995A JP 32705995 A JP32705995 A JP 32705995A JP H09155617 A JPH09155617 A JP H09155617A
Authority
JP
Japan
Prior art keywords
tool
end mill
inorganic material
spindle
cutting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32705995A
Other languages
Japanese (ja)
Other versions
JP3377665B2 (en
Inventor
Etsuo Takeoka
嶽岡悦雄
Koji Miyaguchi
宮口孝司
Hiroaki Miyaguchi
宮口弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA PREF GOV
Niigata Prefecture
Original Assignee
NIIGATA PREF GOV
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA PREF GOV, Niigata Prefecture filed Critical NIIGATA PREF GOV
Priority to JP32705995A priority Critical patent/JP3377665B2/en
Publication of JPH09155617A publication Critical patent/JPH09155617A/en
Application granted granted Critical
Publication of JP3377665B2 publication Critical patent/JP3377665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To cutting process a fiber type organic material, a rigid and brittle inorganic material, and a glass type inorganic material at a good processing surface accuracy and efficiently, by installing an end mill form tool to an axle held by a pneumatic static pressure bearing in the condition floating to a housing, and rotating the axle at a high speed. SOLUTION: In a pneumatic static pressure spindle 13, a very high speed rotating axle 21 combining an AC motor 22 integral is held by a pneumatic static pressure thrust bearing 23 and a radial bearing 24 in a housing 20, and a tool 14 is held to the front end of the axle 21 by a tool holder 25 such as a collet chuck. The pneumatic static pressure spindle 13 is rotated at a high speed, and a fiber type organic material, a rigid and brittle inorganic material such as a ceramics, and a glass type inorganic material are cutting processed accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、木質材、建築用複
合材料等の繊維質有機材料、セラミックス等の硬脆性無
機材料、ガラス質無機材料の切削加工に適用可能なエン
ドミル状工具による切削加工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting process using an end mill-like tool applicable to cutting fibrous organic materials such as wood materials and building composite materials, hard brittle inorganic materials such as ceramics, and glassy inorganic materials. Concerning the law.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
木材等の繊維質有機材料の切削加工には、転がり軸受の
主軸を装備した加工機械(ルータ)が用いられてきた
が、これは回転精度が悪いために大きな振動を生じ、工
具寿命が短い上に加工面粗さが大きく、むしれが大きい
ため手仕上げによる後工程に多大な時間を要している。
また、セラミックス等の硬脆性無機材料、ガラス質無機
材料は砥石を用いた研削が行われているが、有効な高能
率切削加工の方法が確立されていないのが実情である。
2. Description of the Related Art
A cutting machine (router) equipped with a main shaft of a rolling bearing has been used for cutting fibrous organic materials such as wood, but this causes large vibrations due to poor rotation accuracy and shortens tool life. In addition, since the machined surface roughness is large and the peeling is large, a lot of time is required for the post-process by hand finishing.
In addition, although hard brittle inorganic materials such as ceramics and glassy inorganic materials are ground using a grindstone, the actual situation is that an effective high-efficiency cutting method has not been established.

【0003】本発明は上記課題を解決するためのもの
で、空気静圧軸受けを利用したエンドミル状工具によ
り、繊維質有機材料、硬脆性無機材料、ガラス質無機材
料を加工面精度よく能率的に切削加工することを目的と
するものである。
The present invention is intended to solve the above-mentioned problems. An end mill-like tool utilizing an aerostatic bearing is used to efficiently and efficiently process fibrous organic materials, hard brittle inorganic materials, and glassy inorganic materials. It is intended for cutting.

【0004】[0004]

【課題を解決するための手段】本発明は、空気静圧軸受
及びエンドミル状工具を30000〜50000rpm
で高速回転し、繊維質有機材料を手仕上げの後工程なし
に切削加工し、また、セラミックス等の硬脆性無機材
料、ガラス質無機材料を同様に加工面精度よく能率的に
切削加工することを特徴とする。
SUMMARY OF THE INVENTION The present invention provides an aerostatic bearing and an end mill-like tool at 30,000 to 50,000 rpm.
At high speed, to process fibrous organic materials without post-finishing of hand-finished materials, and to hard and brittle inorganic materials such as ceramics and vitreous inorganic materials with the same machined surface precision and efficiency. Characterize.

【0005】[0005]

【発明の実施の形態】以下に本発明の実施の形態につい
て、図面を参照して説明する。図1は本発明において使
用する切削加工装置の概念図、図2は空気静圧スピンド
ルの構造を示す図である。超高速切削加工装置1はCN
C装置11で制御される3軸スライド機構(Z軸スライ
ド12、X軸スライド15、Y軸スライド16)からな
っている。Z軸スライド12は工作物14に対して上下
動するスライドで、これにはエンドミル状工具14が保
持された空気静圧スピンドル13が取付けられており、
テーブル18上にセットされた工作物17を切削加工す
る。もちろん、3軸以上の移動方向を持つテーブル構成
としてもよい。空気静圧スピンドル13は、図2に示す
ように、ハウジング20内にACモータ22が一体に結
合された超高速回転主軸21が空気静圧のスラスト軸受
23及びラジアル軸受24で支持され、ACモータ22
で最高10数万rpmで駆動可能であり、主軸の先端部
にはコレットチャック等の工具保持具25で工具14が
保持されている。スラスト軸受23、ラジアル軸受24
は、1/100mm程度の空隙に6kg/cm2 程度の空
気圧が常時供給・排気され、そのためモータ22と主軸
21はハウジング20内で完全に浮いた状態で支持され
ている。このような空気静圧スピンドルは、摩擦抵抗が
小さいため、低電力で優れた高速回転性を持つととも
に、空気圧で周囲を拘束されているため動的剛性が高
く、高硬度材の切削に十分耐えられる特徴を有してお
り、切削の衝撃力を吸収し、高い回転精度(振れ精度
0.5μm)が得られる。このように回転精度が高いた
め、刃先に振動的力が働かないため、工具寿命を極めて
長くできるとともに、加工面の精度が格段に向上する。
なお、主軸材料としては、発熱による変形を抑えるため
低熱膨張材料であるインバー等が使用され、また、ハウ
ジング内面には焼付きを防止するため固体潤滑性の高い
材料が使用される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a cutting apparatus used in the present invention, and FIG. 2 is a diagram showing the structure of an aerostatic spindle. Ultra high speed cutting machine 1 is CN
It is composed of a triaxial slide mechanism (Z-axis slide 12, X-axis slide 15, Y-axis slide 16) controlled by the C device 11. The Z-axis slide 12 is a slide that moves up and down with respect to a workpiece 14, to which an aerostatic spindle 13 holding an end mill-shaped tool 14 is attached.
The workpiece 17 set on the table 18 is cut. Of course, a table structure having three or more axes of movement may be used. In the aerostatic spindle 13, as shown in FIG. 2, an ultra-high speed rotary spindle 21 in which an AC motor 22 is integrally coupled in a housing 20 is supported by an aerostatic thrust bearing 23 and a radial bearing 24. 22
Can drive at a maximum of 100,000 rpm, and the tool 14 is held at the tip of the main shaft by a tool holder 25 such as a collet chuck. Thrust bearing 23, radial bearing 24
The air pressure of about 6 kg / cm 2 is constantly supplied to and exhausted from the space of about 1/100 mm, so that the motor 22 and the main shaft 21 are supported in the housing 20 in a completely floating state. Such an aerostatic spindle has low frictional resistance, has low power consumption and excellent high-speed rotation, and has a high dynamic rigidity because it is constrained by air pressure, and has sufficient resistance to cutting hard materials. It absorbs the impact force of cutting and obtains high rotation accuracy (runout accuracy 0.5 μm). Since the rotational accuracy is high as described above, no vibrating force acts on the cutting edge, so that the tool life can be extremely extended and the accuracy of the machined surface is significantly improved.
As the main shaft material, invar or the like, which is a low thermal expansion material, is used to suppress deformation due to heat generation, and a material having high solid lubricity is used to prevent seizure on the inner surface of the housing.

【0006】本発明で使用するエンドミル状工具は、工
具寿命の低下を防止し、加工面の精度を高めるため、工
具の振れ(主軸回転中心からの偏心)を5μm以内に抑
えるようにし、工具材料としては、繊維質有機材料のよ
うな軟性材料の場合には超硬合金、立方晶窒化ホウ素、
ダイヤモンド等が使用され、セラミックスのような硬脆
性無機材料やガラス質無機材料の場合にはダイヤモンド
が使用される。
The end mill-like tool used in the present invention prevents the tool life from decreasing and improves the accuracy of the machined surface, so that the tool runout (eccentricity from the spindle rotation center) is suppressed within 5 μm, and the tool material In the case of soft materials such as fibrous organic materials, cemented carbide, cubic boron nitride,
Diamond or the like is used, and in the case of a hard brittle inorganic material such as ceramics or a glassy inorganic material, diamond is used.

【0007】ところで、エンドミル状工具による切削抵
抗は、軸方向(深さ方向)の切り込みの増大とともに急
激に増大し、一刃送り量(Sz)に対しては比較的鈍感
である。一刃送り量Szは次式のように表される。 Sz=F/SN(mm/刃) F:エンドミル状工具の切削送り速度(mm/分) S:エンドミル状工具の回転数(rpm) N:エンドミル状工具の刃数 したがって、切削加工能率を上げるには、軸方向の切り
込みを抑えて一刃送り量を増やすようにすればよい。
By the way, the cutting resistance of the end mill-like tool increases sharply with the increase of the cutting depth in the axial direction (depth direction), and is relatively insensitive to the single blade feed amount (Sz). The single blade feed amount Sz is expressed by the following equation. Sz = F / SN (mm / blade) F: Cutting feed speed (mm / min) of end mill-shaped tool S: Rotational speed (rpm) of end mill-shaped tool N: Number of flutes of end mill-shaped tool Therefore, increase cutting efficiency For this purpose, it is possible to suppress the axial cutting and increase the feed amount by one blade.

【0008】木質材料、建築用複合材料、複合材料、プ
ラスチックス、繊維強化プラスチックス等の繊維質有機
材料のような軟性材料の場合には、なるべく高速回転さ
せるとともに、切削送り速度を大きくし、一刃送り量S
zを0.1mm/分以上として切削することが望まし
い。
In the case of soft materials such as fibrous organic materials such as wood materials, building composite materials, composite materials, plastics and fiber reinforced plastics, the cutting feed rate should be increased while rotating as fast as possible. Single blade feed amount S
It is desirable to cut at z of 0.1 mm / min or more.

【0009】また、セラミックス等の硬脆性無機材料や
ガラス質無機材料の場合には、高速回転させ、切削送り
速度は小さくして一刃送り量Szを3μm以下になるよ
うにする必要がある。
Further, in the case of a hard brittle inorganic material such as ceramics or a glassy inorganic material, it is necessary to rotate at a high speed to reduce the cutting feed rate so that the single blade feed amount Sz is 3 μm or less.

【0010】このように切削送り速度(F)を上げても
回転数Sを高くすることにより、一刃送り量Szを所定
値に保つことが可能であり、図1のCNC装置の制御に
より、例えば、軟性材料の場合には高速切削送りで、形
状の崩れや工具等の過熱、過負荷を発生しないような高
能率の切削加工が可能である。
Even if the cutting feed speed (F) is increased in this way, the single blade feed amount Sz can be maintained at a predetermined value by increasing the rotation speed S, and by the control of the CNC device of FIG. For example, in the case of a soft material, high-efficiency cutting feed enables high-efficiency cutting so as not to cause deformation of a shape, overheating of a tool, or overload.

【0011】なお、いずれの被削材においても工具の周
速(切削速度)があまり大きいと、工具の温度が上昇
し、あまり遅いと刃先に被削材が付着して切削能力が低
下するという問題がある。工具の周速Vは次式のように
表される。
In any of the work materials, if the peripheral speed (cutting speed) of the tool is too high, the temperature of the tool rises, and if it is too slow, the work material adheres to the cutting edge and the cutting ability decreases. There's a problem. The peripheral speed V of the tool is expressed by the following equation.

【0012】V=2πrS/1000(m/分) r:工具中心軸から被削材までの最大半径(mm)(図
3参照、ただし、スクウェアエンドミルの場合はr=
R) したがって、工具直径、被削材の硬度に応じて回転速度
Sを適宜設定する必要がある。
V = 2πrS / 1000 (m / min) r: maximum radius (mm) from the center axis of the tool to the work material (see FIG. 3, but in the case of a square end mill, r =
R) Therefore, it is necessary to appropriately set the rotation speed S according to the tool diameter and the hardness of the work material.

【0013】[0013]

【実施例】被削材を木材とし、加工工具として超硬ボー
ルエンドミルφ2を使用し、工具回転数50000rp
m、軸方向切り込み0.5mm、径方向切り込み0.5
mm、送り速度10000mm/分で切削加工すること
により、良好な加工面を得ることができた。
[Example] Wood is used as a work material, a carbide ball end mill φ2 is used as a processing tool, and a tool rotation speed is 50000 rp.
m, axial cut 0.5 mm, radial cut 0.5
It was possible to obtain a good machined surface by carrying out the cutting process at a feed rate of 1 mm and a feed rate of 10000 mm / min.

【0014】[0014]

【発明の効果】以上のように本発明によれば、従来、繊
維質有機材料の切削加工において必要とされていた加工
面精度をだすための手仕上げの後工程を不要とし、ま
た、セラミックス等の硬脆性無機材料、ガラス質無機材
料を砥石によらず、加工面精度よく能率的に切削加工で
き、しかもベアリング軸受を使用した場合に比して1桁
以上少ない電力での切削加工が可能となる。
As described above, according to the present invention, there is no need for a post-finishing step for hand-finishing, which has been conventionally required for cutting a fibrous organic material, to obtain a machined surface accuracy, and ceramics or the like. The hard and brittle inorganic material and the glassy inorganic material can be efficiently and efficiently machined without using a grindstone, and moreover, it can be machined with an electric power that is less than an order of magnitude less than that when a bearing is used. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で使用する超高速切削加工装置の概念
図である。
FIG. 1 is a conceptual diagram of an ultra-high speed cutting machine used in the present invention.

【図2】 空気静圧スピンドルの構造を示す図である。FIG. 2 is a diagram showing the structure of an aerostatic spindle.

【図3】 エンドミル状工具を説明する図である。FIG. 3 is a diagram illustrating an end mill-shaped tool.

【符号の説明】[Explanation of symbols]

1…超高速切削加工装置、11…CNC装置、12…Z
軸スライド、13…空気静圧スピンドル、14…工具、
15…X軸スライド、16…Y軸スライド、17…工作
物、18…テーブル、20…ハウジング、21…主軸、
22…モータ、23…スラスト軸受、24…ラジアル軸
受、25…工具保持具。
1 ... Ultra-high speed cutting machine, 11 ... CNC machine, 12 ... Z
Axle slide, 13 ... Aerostatic spindle, 14 ... Tool,
15 ... X-axis slide, 16 ... Y-axis slide, 17 ... Workpiece, 18 ... Table, 20 ... Housing, 21 ... Spindle,
22 ... Motor, 23 ... Thrust bearing, 24 ... Radial bearing, 25 ... Tool holder.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 空気静圧軸受によりハウジングに対して
浮いた状態で保持された主軸にエンドミル状工具を取り
付け、主軸を高速回転させて繊維質有機材料を切削加工
することを特徴とするエンドミル状工具による繊維質有
機材料の切削加工法。
1. An end mill shape characterized by attaching an end mill-like tool to a main spindle held in a floating state by an aerostatic bearing and rotating the main spindle at a high speed to cut a fibrous organic material. Cutting method for fibrous organic materials with tools.
【請求項2】 繊維質有機材料は木質材料、建築用複合
材料、複合材料、プラスチックス、繊維強化プラスチッ
クスであることを特徴とする請求項1記載の切削加工
法。
2. The cutting method according to claim 1, wherein the fibrous organic material is a wood material, a composite material for construction, a composite material, plastics, or a fiber reinforced plastics.
【請求項3】 空気静圧軸受によりハウジングに対して
浮いた状態で保持された主軸にエンドミル状工具を取り
付け、主軸を高速回転させて硬脆性無機材料を切削加工
することを特徴とするエンドミル状工具による硬脆無機
材料の切削加工法。
3. An end mill-like tool, characterized in that an end mill-like tool is attached to a spindle held in a floating state with respect to a housing by an aerostatic bearing, and the spindle is rotated at a high speed to cut a hard brittle inorganic material. Cutting method for hard and brittle inorganic materials with tools.
【請求項4】 空気静圧軸受によりハウジングに対して
浮いた状態で保持された主軸にエンドミル状工具を取り
付け、主軸を高速回転させてガラス質無機材料を切削加
工することを特徴とするエンドミル状工具によるガラス
質無機材料の切削加工法。
4. An end mill shape characterized in that an end mill-like tool is attached to a main spindle held in a floating state with respect to a housing by an aerostatic bearing, and the main spindle is rotated at a high speed to cut a glassy inorganic material. Cutting method for glassy inorganic materials with tools.
【請求項5】 主軸の回転速度を30000〜5000
0rpmとしたことを特徴とする請求項1〜4のうちい
ずれか1項記載の切削加工法。
5. The rotation speed of the spindle is 30,000 to 5,000.
The cutting method according to any one of claims 1 to 4, wherein the cutting method is 0 rpm.
【請求項6】 主軸の振れ精度を0.5μm以内とした
ことを特徴とする請求項1〜4のうちいずれか1項記載
の切削加工法。
6. The cutting method according to claim 1, wherein the runout accuracy of the spindle is within 0.5 μm.
【請求項7】 エンドミル状工具の主軸回転中心に対す
る振れ量を5μm以下としたことを特徴とする請求項1
〜4のうちいずれか1項記載の切削加工法。
7. The amount of deflection of the end mill-shaped tool with respect to the center of rotation of the spindle is 5 μm or less.
4. The cutting method according to any one of 4 to 4.
JP32705995A 1995-12-15 1995-12-15 Cutting method of fibrous organic material, hard brittle inorganic material, vitreous inorganic material by end mill tool Expired - Fee Related JP3377665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32705995A JP3377665B2 (en) 1995-12-15 1995-12-15 Cutting method of fibrous organic material, hard brittle inorganic material, vitreous inorganic material by end mill tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32705995A JP3377665B2 (en) 1995-12-15 1995-12-15 Cutting method of fibrous organic material, hard brittle inorganic material, vitreous inorganic material by end mill tool

Publications (2)

Publication Number Publication Date
JPH09155617A true JPH09155617A (en) 1997-06-17
JP3377665B2 JP3377665B2 (en) 2003-02-17

Family

ID=18194847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32705995A Expired - Fee Related JP3377665B2 (en) 1995-12-15 1995-12-15 Cutting method of fibrous organic material, hard brittle inorganic material, vitreous inorganic material by end mill tool

Country Status (1)

Country Link
JP (1) JP3377665B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522030A (en) * 1998-11-17 2003-07-22 サーブ アー・ベー Processing method of metal matrix composite (MMC) by high speed machining (HSM)
JP2005096399A (en) * 2003-09-02 2005-04-14 Tokyo Denki Univ Ball end mill working method and square end mill working method
JP2005144657A (en) * 2003-10-23 2005-06-09 Allied Material Corp Monocrystal diamond end mill and cutting method of hard fragile material
JP2009039810A (en) * 2007-08-08 2009-02-26 Kumamoto Univ Method for drilling hole in fiber-reinforced composite material
JP2017007030A (en) * 2015-06-22 2017-01-12 安田工業株式会社 Machine tool and swing correction method of tool
US20200039109A1 (en) * 2016-10-06 2020-02-06 University Of Newcastle Upon Tyne A Method of Machining Brittle Materials
JP2023516642A (en) * 2020-05-19 2023-04-20 南方科技大学 High-efficiency low-damage processing method and processing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522030A (en) * 1998-11-17 2003-07-22 サーブ アー・ベー Processing method of metal matrix composite (MMC) by high speed machining (HSM)
JP2005096399A (en) * 2003-09-02 2005-04-14 Tokyo Denki Univ Ball end mill working method and square end mill working method
JP2005144657A (en) * 2003-10-23 2005-06-09 Allied Material Corp Monocrystal diamond end mill and cutting method of hard fragile material
JP2009039810A (en) * 2007-08-08 2009-02-26 Kumamoto Univ Method for drilling hole in fiber-reinforced composite material
JP2017007030A (en) * 2015-06-22 2017-01-12 安田工業株式会社 Machine tool and swing correction method of tool
US20200039109A1 (en) * 2016-10-06 2020-02-06 University Of Newcastle Upon Tyne A Method of Machining Brittle Materials
JP2023516642A (en) * 2020-05-19 2023-04-20 南方科技大学 High-efficiency low-damage processing method and processing equipment

Also Published As

Publication number Publication date
JP3377665B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
US5140739A (en) Spindle unit and tool clamping device therein for machine tools
AU748132B2 (en) Ophthalmic lens generating apparatus having vibration dampening structure
CN109048390B (en) Titanium alloy ultra-precision machining method based on ultrasonic elliptical vibration cutting technology
JP2005088125A (en) Machining apparatus
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
KR100558798B1 (en) Point superabrasive machining of nickel alloys
JP3377665B2 (en) Cutting method of fibrous organic material, hard brittle inorganic material, vitreous inorganic material by end mill tool
US4625707A (en) Core drill apparatus
JP2008073838A (en) Traverse grinding device and grinding method
JP3819530B2 (en) Ultra-precision truing equipment for grinding wheels
JP2726776B2 (en) Grinding method
JP6529611B2 (en) Processing method of workpiece, brush for polishing machine and tool holder
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
JP2006068831A (en) Cutting method and cutting tool
JP2000198012A (en) Working method of material hard in cutting
JPH09155616A (en) High efficiency of cutting process by small diameter end mill shaped tool
JPH08257923A (en) Shaft-equipped grinding wheel and tool holder
CN201244764Y (en) Surface sanding polishing device
JP2958556B2 (en) Manufacturing method of fine spherical metal powder using ultra high speed cutting
JP2009279665A (en) Cutting method using circular chip
JP2019188488A (en) Polygon cutter unit and machine tool
JPS618270A (en) Curved-face polishing apparatus
Kim Mirror surface grinding of ceramics using a three-axis precision CNC grinding machine
JP2008126358A (en) Cutting device and cutting method
SE513705C2 (en) Abrasive machine for machining the casing surface of a cylindrical workpiece

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees