JP3454796B2 - Method for producing conductive fine particles - Google Patents

Method for producing conductive fine particles

Info

Publication number
JP3454796B2
JP3454796B2 JP2001108841A JP2001108841A JP3454796B2 JP 3454796 B2 JP3454796 B2 JP 3454796B2 JP 2001108841 A JP2001108841 A JP 2001108841A JP 2001108841 A JP2001108841 A JP 2001108841A JP 3454796 B2 JP3454796 B2 JP 3454796B2
Authority
JP
Japan
Prior art keywords
fine particles
plated
plating
specific gravity
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108841A
Other languages
Japanese (ja)
Other versions
JP2002088497A (en
Inventor
善昭 田中
信幸 沖永
広志 黒田
学 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001108841A priority Critical patent/JP3454796B2/en
Publication of JP2002088497A publication Critical patent/JP2002088497A/en
Application granted granted Critical
Publication of JP3454796B2 publication Critical patent/JP3454796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、めっき液中で、被
めっき微粒子が凝集することなく、また、傷やバイポー
ラの少ない、極めて均一な厚さのめっき層を有する導電
性微粒子を得ることができる導電性微粒子の製造方法に
関する。
TECHNICAL FIELD The present invention provides a conductive fine particle having a plating layer having a very uniform thickness, which is free from agglomeration of fine particles to be plated in a plating solution and has few scratches and bipolar. The present invention relates to a method for producing conductive fine particles.

【0002】[0002]

【従来の技術】導電性ペースト、導電性接着剤又は異方
導電性フィルム等の導電性材料には、導電性微粒子と樹
脂とからなる導電性組成物が用いられている。この導電
性微粒子としては、一般に、金属微粉末、カーボン粉
末、又は、表面に金属めっき層が設けられた微粒子等が
使用されている。
2. Description of the Related Art As a conductive material such as a conductive paste, a conductive adhesive or an anisotropic conductive film, a conductive composition composed of conductive fine particles and a resin is used. As the conductive fine particles, metal fine powder, carbon powder, or fine particles having a metal plating layer on the surface are generally used.

【0003】このような表面に金属めっき層を有する導
電性微粒子の製造方法としては、例えば、特開昭52−
147797号公報、特開昭61−277104号公
報、特開昭61−277105号公報、特開昭62−1
85749号公報、特開昭63−190204号公報、
特開平1−225776号公報、特開平1−24750
1号公報、特開平4−147513号公報等に開示され
た方法が挙げられる。
A method for producing conductive fine particles having a metal plating layer on such a surface is described, for example, in Japanese Patent Laid-Open No. 52-
147797, JP 61-277104, JP 61-277105, JP 62-1
85749, JP-A-63-190204,
Japanese Patent Application Laid-Open Nos. 1-225776 and 1-24750
The methods disclosed in Japanese Patent Laid-Open No. 1-147475 and Japanese Patent Laid-Open No. 4-147513 can be used.

【0004】上記の公知技術において、粒径5000μ
m以下の微粒子のめっきを行う際には、バレルめっき装
置が一般に使用される。このバレルめっき装置は、めっ
き液に浸漬した回転可能な多角形筒状のバレル内に被め
っき物体を入れ、バレルを回転させながらバレル内に配
置した陰極と被めっき物体とを接触させることで電気め
っきを行うものである。
In the above known technique, the particle size is 5000 μ
When plating fine particles of m or less, a barrel plating apparatus is generally used. This barrel plating device puts an object to be plated in a rotatable polygonal barrel-shaped barrel immersed in a plating solution, and while rotating the barrel, the cathode and the object to be plated are brought into contact with each other to generate electricity. Plating is performed.

【0005】しかし、通常のバレルめっき装置で粒径5
000μm以下の微粒子のめっきを行うと、めっき液中
で微粒子が凝集したままめっきされ、単粒子として得る
ことができない場合や、微粒子が凝集しなくてもすべて
の微粒子が均一にめっきされずにめっきの厚みが不均一
となったり、あるいはめっきが全くされない、いわゆる
バイポーラといわれる状態になることが起こりやすい。
However, with a conventional barrel plating apparatus, the grain size is 5
When fine particles of less than 000 μm are plated, they are plated in the plating solution while they are still agglomerated, and when they cannot be obtained as single particles, or when all the particles are not agglomerated, all the particles are not evenly plated. The thickness is uneven, or plating is not performed at all, so-called bipolar state is likely to occur.

【0006】また、このバレルめっき装置を用いた方法
では、例えば合成樹脂表面に薄い導電層が形成されたよ
うな、比重が軽い被めっき物にめっきを行うと、バレル
内の被めっき物が浮遊しめっきが全くされないバイポー
ラとなる問題を有していた。
Further, in the method using the barrel plating apparatus, when a plated object having a small specific gravity, such as a thin conductive layer formed on the surface of synthetic resin, is plated, the plated object in the barrel floats. There was a problem that it became a bipolar that plating was not performed at all.

【0007】バイポーラ現象とは、被めっき物と陰極と
の接触力が弱い場合や、バレルめっきにおいてバレル内
で多数の被めっき物が沈降した一つの塊として存在して
いる状態から外れ浮遊した場合に通電されると、浮遊し
ている被めっき物が分極し、プラスに帯電した部分から
被膜の溶解が起こる現象である。
The bipolar phenomenon is a case where the contact force between the object to be plated and the cathode is weak, or when a large number of objects to be plated in the barrel are present as a single lump and float in the barrel. Is a phenomenon in which the floating object to be plated is polarized and the film is dissolved from the positively charged portion.

【0008】特に、有機樹脂微粒子や無機微粒子のよう
な導電性のない微粒子の表面に無電解めっき法などによ
りオングストロームオーダーの導電下地層を形成するこ
とにより導電性を付与した微粒子においてバイポーラ現
象が発生すると、導電下地層の溶解により、粒子表面の
導電性がなくなってしまうため、電気めっきができなく
なる。
In particular, a bipolar phenomenon occurs in fine particles imparted with conductivity by forming an angstrom-order conductive underlayer on the surface of non-conductive fine particles such as organic resin fine particles and inorganic fine particles by an electroless plating method or the like. Then, since the conductive underlayer is dissolved, the conductivity of the particle surface is lost, and electroplating cannot be performed.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記に鑑
み、めっき液中で微粒子が凝集するということがなく、
工程が簡単で、かつ極めて均一な厚さのめっき層を有す
る導電性微粒子を得ることができる導電性微粒子の製造
方法を提供すること、また、バイポーラ現象が生じるこ
となく、全ての微粒子に対して均一なめっき層を形成す
ることができる導電性微粒子の製造方法を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION In view of the above, the present invention has the advantage that fine particles do not aggregate in a plating solution.
To provide a method for producing conductive fine particles that can obtain conductive fine particles having a plating layer with an extremely uniform thickness in a simple process, and for all fine particles without a bipolar phenomenon. It is an object of the present invention to provide a method for producing conductive fine particles capable of forming a uniform plating layer.

【0010】[0010]

【課題を解決するための手段】本発明は、めっき槽内に
回転可能なバレルを有するバレルめっき装置を用いて被
めっき微粒子の表面にめっき層を形成してなる導電性微
粒子の製造方法であって、前記被めっき微粒子とめっき
液との比重差が0.04〜22.00であり、前記被め
っき微粒子は、粒径が0.5〜5000μmであり、且
つ前記導電性微粒子は、少なくとも一部が合成樹脂から
なることを特徴とする導電性微粒子の製造方法である。
以下に本発明を詳述する。
The present invention is a method for producing conductive fine particles in which a plating layer is formed on the surface of fine particles to be plated using a barrel plating apparatus having a rotatable barrel in a plating tank. Te, the difference in specific gravity between the plating solution and the plating fine particles is from 0.04 to 22.00, the object to be plated fine particles Ri particle size 0.5~5000μm der,且
At least a part of the conductive fine particles is made of synthetic resin.
It is a manufacturing method for conductive fine particles, characterized by comprising.
The present invention is described in detail below.

【0011】本発明で用いるめっき装置の一態様を図
、2に示す。図1はめっき装置の正面図であり、図2
は微粒子回転攪拌手段を示す図である。本発明で用いる
めっき装置は装置受台3の上にめっき槽1が固定され
粒子回転攪拌手段用のモーター7が設置されている。
[0011] One embodiment of a plating apparatus used in the present invention shown in FIG. 1, 2. 1 is a front view of the plating apparatus, and FIG.
Is a diagram showing fine particle rotary stirring means. In the plating apparatus used in the present invention, the plating tank 1 is fixed on the apparatus pedestal 3 ,
Motor 7 for fine particles rotary stirring means is provided.

【0012】図に示す微粒子回転攪拌手段は、微粒子
収納容器(バレル)9が回転軸8に固定されており、モ
ーター7が回転軸8を介して微粒子収納容器(バレル)
9を回転する。微粒子収納容器(バレル)9は少なくと
も一部にフィルタが形成されており、更に、陰極が形成
されている。微粒子収納容器(バレル)9内に被めっき
微粒子を収納し、微粒子収納容器(バレル)9を回転す
ることにより、被めっき微粒子が攪拌されながら、容器
内に配置した陰極と接触し、被めっき微粒子の表面にめ
っき層が形成される。図に示す微粒子収納容器(バレ
ル)9の形状は多角柱であるが、特に限定されず、例え
ば、円柱、球等であってもよい。
In the fine particle rotary stirring means shown in FIG. 2 , a fine particle storage container (barrel) 9 is fixed to a rotary shaft 8, and a motor 7 is provided via the rotary shaft 8 for the fine particle storage container (barrel).
Rotate 9. Particle storage container (barrel) 9 is filter at least a portion is formed, further, negative electrode is formed. By storing the fine particles to be plated in the fine particle storage container (barrel) 9 and rotating the fine particle storage container (barrel) 9, the fine particles to be plated come into contact with the cathode placed in the container while being stirred, and the fine particles to be plated are plated. A plating layer is formed on the surface of the. The shape of the fine particle storage container (barrel) 9 shown in FIG. 2 is a polygonal column, but is not particularly limited, and may be, for example, a column or a sphere.

【0013】本発明の製造方法により、被めっき微粒子
の表面にめっき層が形成されてなる導電性微粒子を得る
ことができる。上記被めっき微粒子としては特に限定さ
れず、例えば、合成樹脂等の有機化合物;シリカ、アル
ミナ、金属、カーボン等の無機化合物からなるものが挙
げられるが、適度な弾性や柔軟性、回復性を有し球状の
ものが得やすいという点から合成樹脂からなるものが好
ましい。
By the manufacturing method of the present invention, it is possible to obtain conductive fine particles having a plating layer formed on the surface of fine particles to be plated. The fine particles to be plated are not particularly limited, and examples thereof include organic compounds such as synthetic resins; and inorganic compounds such as silica, alumina, metals, and carbon, which have appropriate elasticity, flexibility, and recoverability. A synthetic resin is preferable because it is easy to obtain a spherical shape.

【0014】本発明の導電性微粒子の製造方法は、被め
っき微粒子とめっき液との比重の差が、0.04〜2
2.00であり、被めっき微粒子の粒径が、0.5〜5
000μmであり、且つ前記導電性微粒子は、少なくと
も一部が合成樹脂からなるものである。この場合は、め
っき槽内に回転可能なバレルを有するバレルめっき装置
を用いて被めっき微粒子の表面にめっき層を形成するこ
とにより導電性微粒子が製造される。
In the method for producing conductive fine particles of the present invention, the difference in specific gravity between the fine particles to be plated and the plating solution is 0.04 to 2
2.00, and the particle size of the fine particles to be plated is 0.5 to 5
000μm der is, and the conductive fine particles is less when the
Is partly made of synthetic resin . In this case, the conductive fine particles are produced by forming a plating layer on the surface of the fine particles to be plated using a barrel plating device having a rotatable barrel in the plating tank.

【0015】本発明においては、上記被めっき微粒子と
上記めっき液との比重差は、0.04〜22.00であ
る。比重差が0.04未満であると、バレル内で微粒子
が沈降するまでに時間がかかるだけでなく、バレルの回
転又は振動によって微粒子が舞い上がり、陰極に接触で
きずバイポーラ現象が発生する。微粒子の舞い上がりを
抑制するためには、回転数を下げたり、振動レベルを下
げる必要がある。しかし、回転数を下げるとバレル内の
攪拌効果も低下してしまうため、めっき膜厚の均一性も
低下する。比重差0.04未満では、ほとんど静止状態
にしなければ、粒子の舞い上がりを抑えることができな
くなり、回転数を下げる必要があり、凝集が発生しめっ
き不能となる。
In the present invention, the difference in specific gravity between the fine particles to be plated and the plating solution is 0.04 to 22.00. When the difference in specific gravity is less than 0.04, it takes time for the fine particles to settle in the barrel, and the fine particles fly up due to the rotation or vibration of the barrel, which makes it impossible to contact the cathode, resulting in a bipolar phenomenon. In order to suppress the soaring of fine particles, it is necessary to reduce the rotation speed and the vibration level. However, if the rotation speed is lowered, the stirring effect in the barrel is also lowered, and thus the uniformity of the plating film thickness is also lowered. If the specific gravity difference is less than 0.04, it is not possible to suppress the rising of the particles unless it is made almost stationary, it is necessary to reduce the number of rotations, and agglomeration occurs and plating becomes impossible.

【0016】一方、一般的に知られている固体物質の比
重は、およそ0.5〜23程度であるが、本発明による
製造方法では、微粒子との比重差は大きいほど、バレル
内での粒子の沈降が速く、バレルの回転数を上げても粒
子の舞い上がりがなくなるので、攪拌効果も高く有効で
ある。すなわち、めっき可能な比重差の範囲は、0.0
4〜22.00であるといえる。好ましくは、0.08
〜1.00、さらに好ましくは0.08〜0.2であ
る。
On the other hand, the specific gravity of a generally known solid substance is about 0.5 to 23. In the production method according to the present invention, the larger the specific gravity difference from the fine particles, the more the particles in the barrel. Sedimentation is fast and particles do not rise even if the number of rotations of the barrel is increased, so the stirring effect is high and effective. That is, the range of specific gravity that can be plated is 0.0
It can be said that it is 4 to 22.00. Preferably 0.08
˜1.00, more preferably 0.08 to 0.2.

【0017】また、バレル回転数は、高回転数であるほ
ど、攪拌効果が高くめっき膜厚の均一性、凝集防止とも
に効果があるが、被めっき物とめっき液との比重差が小
さくなるに従って粒子が舞い上がり易くなり回転数を上
げることができなくなる。従って、被めっき物とめっき
液との比重差が小さい場合、めっき開始時の回転数は粒
子の舞い上がらないように低回転数に設定し、めっき皮
膜の析出とともに被めっき物の比重は大きくなることか
ら、めっき液との比重差に応じて回転数をあげれば、よ
り効果的である。
Further, the higher the rotation speed of the barrel, the higher the stirring effect and the more effective the uniformity of the plating film thickness and the prevention of aggregation, but as the difference in specific gravity between the object to be plated and the plating solution becomes smaller. The particles are more likely to fly up and the rotation speed cannot be increased. Therefore, if the difference in specific gravity between the object to be plated and the plating solution is small, set the number of rotations at the start of plating to a low number of rotations so that particles do not rise, and the specific gravity of the object to be plated increases with the deposition of the plating film. Therefore, it is more effective if the number of rotations is increased according to the difference in specific gravity from the plating solution.

【0018】一般にめっき液の比重は1.02〜1.3
程度であり、被めっき微粒子との比重差が小さくなるに
従ってめっきが困難となるが、本発明の製造方法により
被めっき物の比重が小さくてもバイポーラ現象を発生す
ることなく良好なめっき微粒子を得ることができる。従
って本発明の製造方法は、上記被めっき物の比重が0.
5〜3.0である場合に特に好適に用いることができ
る。より好ましくは0.5〜1.5である。
Generally, the specific gravity of the plating solution is 1.02 to 1.3.
However, as the difference in specific gravity from the fine particles to be plated becomes smaller, plating becomes more difficult, but even if the specific gravity of the object to be plated is small, good plating fine particles can be obtained without the bipolar phenomenon even if the specific gravity of the object to be plated is small. be able to. Therefore, in the production method of the present invention, the specific gravity of the plated object is 0.
It can be used particularly preferably when it is from 5 to 3.0. It is more preferably 0.5 to 1.5.

【0019】被めっき微粒子の比重が1.0以下となる
ような場合には、めっき液の比重を大きくすることで比
重差0.04以上を確保し、バレル内で被めっき微粒子
を浮遊させた状態でめっきを行う。めっきの被膜の形成
に伴って被めっき微粒子の比重は徐々に大きくなる為、
比重差0.04以上を確保できなくなるおそれがある。
この場合には、めっき液を変更したり希釈したりして、
めっき液の比重を小さくし、被めっき微粒子との比重差
0.04以上を確保することによって良好なめっきを得
ることができる。
When the specific gravity of the fine particles to be plated becomes 1.0 or less, the specific gravity difference of 0.04 or more is secured by increasing the specific gravity of the plating solution, and the fine particles to be plated are suspended in the barrel. Plating is performed in this condition. Since the specific gravity of the fine particles to be plated gradually increases with the formation of the plating film,
There is a possibility that a specific gravity difference of 0.04 or more cannot be secured.
In this case, change or dilute the plating solution,
Good plating can be obtained by reducing the specific gravity of the plating solution and ensuring a specific gravity difference of 0.04 or more with the fine particles to be plated.

【0020】めっきを行う際の電流密度を高くとること
ができれば、めっき時間の短縮につながり、生産性向上
には有効であるが、被めっき微粒子とめっき液との比重
差が小さくなると、バレル内で沈降している被めっき微
粒子と陰極との接触力が弱くなるため、電流密度を上げ
ると電流効率が急激に低下し水素ガスの発生によりめっ
き不良となることがある。
If the current density at the time of plating can be set high, the plating time can be shortened and the productivity can be improved. However, when the difference in specific gravity between the fine particles to be plated and the plating solution becomes small, Since the contact force between the fine particles to be plated and the cathode that have settled at 1 becomes weak, increasing the current density may cause a sharp decrease in current efficiency and hydrogen gas generation, resulting in defective plating.

【0021】従って、特に被めっき微粒子とめっき液と
の比重差が0.04〜0.2の範囲においては極力電流
密度を低く抑えることが重要であり、さらに比重差0.
04〜0.12の範囲ではさらに重要となる。めっき膜
厚の増大とともに比重差は大きくなるので、比重差の増
大とともに電流密度を上げていけば、めっき時間の短縮
をはかることも可能となる。
Therefore, it is important to keep the current density as low as possible, especially when the difference in specific gravity between the fine particles to be plated and the plating solution is in the range of 0.04 to 0.2.
It becomes more important in the range of 04 to 0.12. Since the specific gravity difference increases as the plating film thickness increases, the plating time can be shortened by increasing the current density as the specific gravity difference increases.

【0022】例えば、硫酸銅浴によるめっきの場合で
は、被めっき微粒子とめっき液との比重差が0.04〜
0.12の範囲では、電流密度が0.5A/dm2 が好
ましく、より好ましくは0.25A/dm2 以下であ
り、さらに好ましくは0.1A/dm2 以下である。ま
た比重差0.12以上になれば、電流密度は1A/dm
2 以下が好ましく、より好ましくは0.5A/dm2
下であり、さらに好ましくは、0.25A/dm2 以下
である。
For example, in the case of plating with a copper sulfate bath, the difference in specific gravity between the fine particles to be plated and the plating solution is 0.04 to
In the range of 0.12, the current density is preferably 0.5 A / dm 2 , more preferably 0.25 A / dm 2 or less, still more preferably 0.1 A / dm 2 or less. If the specific gravity difference is 0.12 or more, the current density is 1 A / dm.
It is preferably 2 or less, more preferably 0.5 A / dm 2 or less, and further preferably 0.25 A / dm 2 or less.

【0023】本発明の導電性微粒子の製造方法において
用いられるめっき装置は、攪拌手段として少なくとも一
部がフィルタからなる被めっき微粒子の収納納可能な容
器(バレル)を有するものである。上記フィルタとして
は被めっき微粒子収納容器の内外でめっき液の循環を妨
げないもので、かつ、目開きが被めっき微粒子よりも小
さいものであれば特に限定されず、例えば、スリット、
メッシュ、不織布、フィルタ、ナイロン網等各種網が挙
げられる。
The plating apparatus used in the method for producing conductive fine particles of the present invention has, as a stirring means, a container (barrel) capable of accommodating and storing fine particles to be plated, at least a part of which comprises a filter. The above-mentioned filter is not particularly limited as long as it does not hinder the circulation of the plating solution inside and outside the container for containing fine particles to be plated, and the opening is smaller than the fine particles to be plated, for example, a slit,
Examples include various meshes such as mesh, non-woven fabric, filter, and nylon mesh.

【0024】本発明に用いられる被めっき微粒子として
は特に限定されず、例えば、チップコンデンサー、チッ
プ抵抗器、その他のチップ部品や、BGA用微粒子、パ
ウダー、繊維等が挙げられる。また、本発明に用いられ
る微粒子としては、例えば、金属微粒子、有機樹脂微粒
子、無機微粒子等が挙げられる。上記有機樹脂微粒子又
は無機微粒子を用いる場合は、表面に導電下地層が形成
されたものが好適に用いられる。上記導電下地層は、例
えば、無電解めっき法により好適に形成することができ
るが、その他の公知の導電性付与方法によって形成する
こともできる。
The fine particles to be plated used in the present invention are not particularly limited, and examples thereof include chip capacitors, chip resistors and other chip parts, BGA fine particles, powders, fibers and the like. Moreover, examples of the fine particles used in the present invention include metal fine particles, organic resin fine particles, and inorganic fine particles. When the above-mentioned organic resin fine particles or inorganic fine particles are used, those having a conductive underlayer formed on the surface are preferably used. The conductive underlayer can be preferably formed, for example, by an electroless plating method, but can also be formed by another known method for imparting conductivity.

【0025】上記金属微粒子としては特に限定されず、
例えば、鉄、銅、銀、金、錫、鉛、白金、ニッケル、チ
タン、コバルト、クロム、アルミニウム、亜鉛、タング
ステン、これらの合金等が挙げられる。
The metal fine particles are not particularly limited,
Examples thereof include iron, copper, silver, gold, tin, lead, platinum, nickel, titanium, cobalt, chromium, aluminum, zinc, tungsten, and alloys thereof.

【0026】上記有機樹脂微粒子としては特に限定され
ず、例えば、直鎖状重合体からなる微粒子、網目状重合
体からなる微粒子、熱硬化性樹脂製微粒子、弾性体から
なる微粒子等が挙げられる。
The above-mentioned organic resin fine particles are not particularly limited, and examples thereof include fine particles made of a linear polymer, fine particles made of a network polymer, fine particles made of a thermosetting resin, and fine particles made of an elastic body.

【0027】上記直鎖状重合体からなる微粒子を構成す
る直鎖状重合体としては、例えば、ナイロン、ポリエチ
レン、ポリプロピレン、メチルペンテンポリマー、ポリ
スチレン、ポリメチルメタクリレート、ポリ塩化ビニ
ル、ポリフツ化ビニル、ポリテトラフルオロエチレン、
ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート、ポリスルフォン、ポリカーボネート、ポリアクリ
ロニトリル、ポリアセタール、ポリアミド等が挙げられ
る。
Examples of the linear polymer which constitutes the fine particles of the linear polymer include nylon, polyethylene, polypropylene, methylpentene polymer, polystyrene, polymethylmethacrylate, polyvinyl chloride, polyvinyl fluoride, poly Tetrafluoroethylene,
Examples thereof include polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, polyacrylonitrile, polyacetal and polyamide.

【0028】上記網目状重合体からなる微粒子を構成す
る網目状重合体としては、例えば、ジビニルベンゼン、
ヘキサトリエン、ジビニルエーテル、ジビニルスルフォ
ン、ジアリルカルビノール、アルキレンジアクリレー
ト、オリゴまたはポリ(アルキレングリコール)ジアク
リレート、オリゴまたはポリ(アルキレングリコール)
ジメタクリレート、アルキレントリアクリレート、アル
キレントリメタクリレート、アルキレンテトラアクリレ
ート、アルキレンテトラメタクリレート、アルキレンビ
スアクリルアミド、アルキレンビスメタクリルアミドな
どの架橋反応性モノマーの単独重合体、あるいはこれら
の架橋反応性モノマーと他の重合性モノマーとを共重合
して得られる共重合体などが挙げられる。
Examples of the network polymer constituting the fine particles of the network polymer include divinylbenzene,
Hexatriene, divinyl ether, divinyl sulfone, diallyl carbinol, alkylene diacrylate, oligo or poly (alkylene glycol) diacrylate, oligo or poly (alkylene glycol)
Homopolymers of cross-linking reactive monomers such as dimethacrylate, alkylene triacrylate, alkylene trimethacrylate, alkylene tetraacrylate, alkylene tetramethacrylate, alkylene bis acrylamide and alkylene bis methacrylamide, or these cross-linking reactive monomers and other polymerizable Examples thereof include copolymers obtained by copolymerizing with a monomer.

【0029】特に好適な重合性モノマーとしては、ジビ
ニルベンゼン、ヘキサトリエン、ジビニルエステル、ジ
ビニルスルフォン、アルキレントリアクリレート、アル
キレンテトラアクリレートなどが挙げられる。上記熱硬
化性樹脂製微粒子を構成する熱硬化性樹脂としては、例
えばフエノールーホルムアルデヒド系樹脂、メラミンー
ホルムアルデヒド系樹脂、ペンゾグアナミン−ホルムア
ルデヒド系樹脂、尿素−ホルムアルデヒド系樹脂、エポ
キシ系樹脂などが挙げられる。上記弾性体からなる微粒
子を構成する弾性体としては、天然ゴム、合成ゴムなど
が挙げられる。
Particularly suitable polymerizable monomers include divinylbenzene, hexatriene, divinyl ester, divinyl sulfone, alkylene triacrylate, alkylene tetraacrylate and the like. Examples of the thermosetting resin forming the thermosetting resin fine particles include phenol-formaldehyde resin, melamine-formaldehyde resin, penzoguanamine-formaldehyde resin, urea-formaldehyde resin, and epoxy resin. Can be mentioned. Examples of the elastic body forming the fine particles of the elastic body include natural rubber and synthetic rubber.

【0030】上記無機微粒子の材質としては特に限定さ
れず、例えば、シリカ、酸化チタン、酸化鉄、酸化コバ
ルト、酸化亜鉛、酸化ニッケル、酸化マンガン、酸化ア
ルミニウムなどが挙げられる。前記架橋樹脂の合成方法
としては特に限定されず、例えば、懸濁重合法、乳化重
合法、シード重合法、分散重合法等の公知の合成方法を
適宜選択して用いればよい。
The material of the inorganic fine particles is not particularly limited, and examples thereof include silica, titanium oxide, iron oxide, cobalt oxide, zinc oxide, nickel oxide, manganese oxide, aluminum oxide and the like. The method for synthesizing the crosslinked resin is not particularly limited, and for example, a known synthesis method such as a suspension polymerization method, an emulsion polymerization method, a seed polymerization method, and a dispersion polymerization method may be appropriately selected and used.

【0031】本発明の製造方法においては、被めっき微
粒子の粒径は、0.5〜5000μmが好ましい。より
好ましくは、1〜2000μmであり、さらに好ましく
は3〜1000μmである。
In the manufacturing method of the present invention, the particle size of the fine particles to be plated is preferably 0.5 to 5000 μm. The thickness is more preferably 1 to 2000 μm, still more preferably 3 to 1000 μm.

【0032】上記微粒子の変動係数は50%以下が好ま
しい。より好ましくは35%以下であり、さらに好まし
くは20%以下、最も好ましくは10%以下である。上
記変動係数とは、標準偏差を粒径の平均値の百分率で表
したものであり、次式で表される。変動係数=(粒径の
標準偏差/粒径の平均値)×100(%)
The coefficient of variation of the fine particles is preferably 50% or less. It is more preferably 35% or less, further preferably 20% or less, and most preferably 10% or less. The coefficient of variation is a standard deviation expressed as a percentage of the average value of particle diameters, and is expressed by the following equation. Coefficient of variation = (standard deviation of particle size / average value of particle size) × 100 (%)

【0033】本発明の導電性微粒子の製造方法において
は、被めっき微粒子にめっき層を形成する。上記めっき
層の材料としては、例えば、金、銀、銅、白金、亜鉛、
鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニ
ッケル、クロム、チタン、アンチモン、ビスマス、ゲル
マニウム、カドミウム、珪素等の金属が挙げられる。こ
れらは単独で用いられても、2種以上が併用されてもよ
い。これらの金属のうち、導電性、入手の容易さ、コス
ト等の面から、ニッケル、銅、金、銀、及び、いわゆる
ハンダ合金(鉛を含有しないものを含む)等が好まし
い。
In the method for producing conductive fine particles of the present invention, a plating layer is formed on the fine particles to be plated. Examples of the material of the plating layer include gold, silver, copper, platinum, zinc,
Examples include metals such as iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and silicon. These may be used alone or in combination of two or more. Among these metals, nickel, copper, gold, silver, so-called solder alloys (including those not containing lead), and the like are preferable in terms of conductivity, availability, cost, and the like.

【0034】上記めっき層は、異なる金属からなる多層
構造を有することが好ましい。上記めっき層が2層構造
である場合、好ましい金属の組み合わせとしては、例え
ば、ニッケル(第1層)と銅(第2層)、ニッケル(第
1層)と銅(第2層)とハンダ合金(第3層)、ニッケ
ル(第1層)と金(第2層)、ニッケル(第1層)と銀
(第2層)、ニッケル(第1層)と銅(第2層)とニッ
ケル(第3層)とハンダ合金(第4層)等が挙げられ
る。ここで、第1層、第2層等とは内層側から数えるも
のとするが、積層の順番が逆になったものでもよい。
The plating layer preferably has a multi-layer structure made of different metals. When the plating layer has a two-layer structure, preferable metal combinations include, for example, nickel (first layer) and copper (second layer), nickel (first layer), copper (second layer) and solder alloy. (Third layer), nickel (first layer) and gold (second layer), nickel (first layer) and silver (second layer), nickel (first layer), copper (second layer) and nickel ( Third layer) and solder alloy (fourth layer). Here, the first layer, the second layer, and the like are counted from the inner layer side, but the layers may be laminated in the reverse order.

【0035】本発明の製造方法は、粒径が0.5〜50
00μmであり、かつ、粒径の変動係数が50%以下で
ある導電性微粒子に適用することができる。粒径が0.
5〜5000μmであり、かつ、粒径の変動係数が50
%以下である導電性微粒子は、従来のバレルめっき装置
によりめっきを行うと、めっき液中で微粒子が凝集した
ままめっきされ単粒子として得られないことや、すべて
の被めっき微粒子が均一にめっきされずにめっき層の厚
みが不均一又はバイポーラになりやすいが、本発明の製
造方法によりめっきを行うことにより、全ての微粒子が
均一にめっきされた単粒子として導電性微粒子を得るこ
とができる。
The production method of the present invention has a particle size of 0.5 to 50.
It can be applied to the conductive fine particles having a particle size variation coefficient of 100 μm and a particle size variation coefficient of 50% or less. Particle size is 0.
5 to 5000 μm, and the variation coefficient of particle size is 50
If the conductive fine particles of less than 100% are plated by a conventional barrel plating device, the fine particles cannot be obtained as a single particle because they are agglomerated in the plating solution, and all the fine particles to be plated are uniformly plated. However, the thickness of the plating layer tends to be non-uniform or bipolar, but by conducting the plating according to the production method of the present invention, conductive fine particles can be obtained as single particles in which all fine particles are uniformly plated.

【0036】ここで、粒径としては、より好ましくは粒
径が1〜2000μm、更に粒径が3〜1000μmで
ある導電性微粒子に好適に用いることができる。また、
粒径の変動係数としては、より好ましくは0.1〜15
%、更に0.1〜5%である導電性微粒子に好適に用い
ることができる。なお、変動係数の求め方は、上述した
通りである。
Here, the particle diameter is more preferably 1 to 2000 μm, and more preferably 3 to 1000 μm. Also,
The variation coefficient of particle size is more preferably 0.1 to 15
%, More preferably 0.1 to 5% for the conductive fine particles. The method of obtaining the coefficient of variation is as described above.

【0037】本発明の製造方法は、少なくとも一部が合
成樹脂からなる導電性微粒子に適用することができる。
上記導電性微粒子の少なくとも一部が合成樹脂である場
合、合成樹脂は比重が軽いものが多いので容器内で微粒
子が液面に浮遊したり、容器壁面に付着したりすること
があり、均一にめっきされた単粒子として得ることが困
難な場合があった。しかしながら、本発明の製造方法に
よれば、均一なめっき状態を確保することができるの
で、少なくとも一部が合成樹脂からなる導電性微粒子で
あっても、好適にめっきすることができる。
The production method of the present invention can it to apply the conductive fine particles at least partially made of synthetic resin.
When at least a part of the conductive fine particles is a synthetic resin, since the synthetic resin often has a low specific gravity, the fine particles may float on the liquid surface in the container or adhere to the wall surface of the container, so that the particles are evenly distributed. It was sometimes difficult to obtain as plated single particles. However, according to the manufacturing method of the present invention, it is possible to ensure a uniform plating state, and therefore it is possible to perform suitable plating even if the conductive fine particles are at least partially made of synthetic resin.

【0038】上記導電性微粒子の少なくとも一部が合成
樹脂からなる態様としては特に限定されず、例えば、導
電性微粒子のコアが合成樹脂からなるもの、導電性微粒
子の表面が合成樹脂により部分的に修飾されているもの
等が挙げられる。上記合成樹脂としては、上記と同様の
ものが挙げられる。
The embodiment in which at least a part of the conductive fine particles is made of synthetic resin is not particularly limited. For example, the conductive fine particle core is made of synthetic resin, and the conductive fine particle surface is partially made of synthetic resin. Examples include modified products. Examples of the synthetic resin include the same ones as described above.

【0039】本発明の製造方法は、上記合成樹脂の比重
が1.5以下である場合に特に好適に用いることができ
る。合成樹脂の比重が1.5を超えるとめっき液中で浮
遊しにくくなり、充分な効果が得られにくい。しかしな
がら、比重が1.5〜10であっても本発明の製造方法
により良好にめっきを行うことができる。
The production method of the present invention can be particularly preferably used when the specific gravity of the synthetic resin is 1.5 or less. When the specific gravity of the synthetic resin exceeds 1.5, it is difficult for the synthetic resin to float in the plating solution, and it is difficult to obtain a sufficient effect. However, even if the specific gravity is 1.5 to 10, good plating can be performed by the manufacturing method of the present invention.

【0040】[0040]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0041】(実施例) スチレンとジビニルベンゼンとを共重合させて得られた
合成樹脂微粒子に導電下地層としてニッケルめっき層を
形成し、平均粒径230.6μm、標準偏差12.2μ
m、変動係数5.3%、比重1.245のニッケルめっ
き微粒子を得た。得られたニッケルめっき微粒子200
gをとり、図に示すめっき装置を用いてその表面にニ
ッケルめっきを行った。めっき浴は液比重が1.200
であるワット浴を使用した。このとき被めっき微粒子と
めっき液との比重差は0.045となる。被めっき微粒
子の収納容器は、径100mmの略正六角形、長さ16
5mmであり、長手方向の側面には孔径0.125mm
のメッシュであるフィルタを施したものを用いた。上記
収納容器を略正六角形の中心同士を通る軸を中心に収納
容器の内側面の周速が0.01m/sとなる回転数で回
転させ、3時間通電した。
Example 1 A nickel plating layer was formed as a conductive underlayer on the synthetic resin fine particles obtained by copolymerizing styrene and divinylbenzene, and the average particle diameter was 230.6 μm and the standard deviation was 12.2 μ.
m, a coefficient of variation of 5.3%, and a specific gravity of 1.245 were obtained. The obtained nickel-plated fine particles 200
take g, was nickel plated on its surface using a plating apparatus shown in FIG. The plating bath has a liquid specific gravity of 1.200.
I used a Watt bath. At this time, the difference in specific gravity between the fine particles to be plated and the plating solution is 0.045. The container for the fine particles to be plated is a regular hexagon with a diameter of 100 mm and a length of 16
5 mm, with a hole diameter of 0.125 mm on the longitudinal side surface
The mesh that was filtered was used. The storage container was rotated about the axis passing through the centers of the substantially regular hexagons at a rotation speed such that the peripheral speed of the inner surface of the storage container was 0.01 m / s, and electricity was supplied for 3 hours.

【0042】このようにして得られた最外穀がニッケル
めっき層であるニッケルめっき樹脂微粒子を光学顕微鏡
で観察したところ、全く凝集がなく全ての粒子が単粒子
としており、バイポーラ現象により下地層が溶解した粒
子も全く発見されなかった。また、このニッケルめっき
された樹脂微粒子300個の平均粒径は244.2μ
m、銅めっき層の厚さは6.8μmと計測された。粒径
の変動係数は6.1%で、ニッケルめっき層の厚さがき
わめて均一であることが証明された。
When the nickel-plated resin fine particles whose outermost grains were nickel-plated layers were observed by an optical microscope, all the particles were single particles without any aggregation, and the underlying layer was formed by the bipolar phenomenon. No dissolved particles were found at all. The average particle size of the 300 nickel-plated resin particles is 244.2 μm.
m, and the thickness of the copper plating layer was measured to be 6.8 μm. The variation coefficient of grain size was 6.1%, and it was proved that the thickness of the nickel plating layer was extremely uniform.

【0043】(比較例) 実施例と全く同じ粒子に ニッケルめっき浴の比重を
1.225とした以外は、全て実施例と同一条件でめ
っきを行った。被めっき微粒子とめっき液の比重差が
0.02と小さく、粒子の沈降速度が遅くなり、またバ
レルの回転によって粒子の舞い上がりが激しく、バイポ
ーラ現象が起こりほぼ全ての粒子の導電下地層が溶解し
た。
[0043] except that the specific gravity of the nickel plating bath and 1.225 in (Comparative Example 1) Example 1 and exactly the same particles were plated with in Example 1 under the same conditions. The difference in specific gravity between the fine particles to be plated and the plating solution was as small as 0.02, the sedimentation speed of the particles was slow, and the particles rose sharply due to the rotation of the barrel, and a bipolar phenomenon occurred, and the conductive underlayer of almost all particles was dissolved. .

【0044】(実施例) スチレンとジピニルベンゼンとを共重合させて得られた
合成樹脂微粒子に導電下地層としてニッケルめっきを形
成し、平均粒径749.8μm、標準備差36.0μ
m、変動係数4.8%、比重1.207のニッケルめっ
き微粒子を得た。得られたニッケルめっき微粒子250
gをとり、図に示すめっき装置を用いてその表面に銅
めっきを行った。めっき浴は液比重が1.091である
硫酸銅浴を使用した。このとき被めっき微粒子とめっき
液との比重差は0.116となった。
(Example 2 ) Nickel plating was formed as a conductive underlayer on the synthetic resin fine particles obtained by copolymerizing styrene and dipinylbenzene, and the average particle size was 749.8 μm and the standard deviation was 36.0 μm.
m, the coefficient of variation was 4.8%, and the specific gravity of 1.207 was obtained. Obtained nickel plating fine particles 250
take g, was subjected to copper plating on its surface using a plating apparatus shown in FIG. As the plating bath, a copper sulfate bath having a liquid specific gravity of 1.091 was used. At this time, the difference in specific gravity between the fine particles to be plated and the plating solution was 0.116.

【0045】被めっき微粒子の収納容器は、径150m
mの略正六角形、長さ165mmであり、長手方向の側
面には孔径0.3mmのメッシュであるフィルタを施し
たものを用いた。上記収納容器を略正六角形の中心同士
を通る軸を中心に上記収納容器の内側面の周速が0.0
3m/sとなる回転数で回転させ、電流密度を0.5A
/dm2 として0.5時間通電した。
The container for the fine particles to be plated has a diameter of 150 m.
m is a regular hexagon, the length is 165 mm, and the side surface in the longitudinal direction provided with a filter which is a mesh having a hole diameter of 0.3 mm was used. The peripheral speed of the inner surface of the storage container is 0.0 with respect to the axis passing through the centers of the substantially regular hexagons.
It is rotated at a rotation speed of 3 m / s and the current density is 0.5 A.
/ Dm 2 and was energized for 0.5 hours.

【0046】このようにして得られた最外穀が銅めっき
層であるニッケルめっき樹脂微粒子を光学顕微鏡で観察
したところ、全く凝集がなく全ての粒子が単粒子として
おり、バイポーラ現象により下地層が溶解した粒子や傷
のある粒子が100個中13個確認されたものの、この
銅めっきされた樹脂微粒子300個の平均粒径は75
6.6μm、銅めっき層の厚さは3.4μmと計測され
た。粒径の変動係数は5.15%で、Cuめっき層の厚
さがきわめて均一であることが証明された。
The nickel-plated resin fine particles whose outermost grain thus obtained was a copper-plated layer were observed by an optical microscope. As a result, all particles are single particles without any aggregation, and the underlying layer is formed by the bipolar phenomenon. Although 13 particles out of 100 were found to be melted or scratched, the average particle diameter of 300 copper-plated resin particles was 75.
The thickness of the copper plating layer was 6.6 μm and the thickness of the copper plating layer was 3.4 μm. The coefficient of variation of grain size was 5.15%, which proved that the thickness of the Cu plating layer was extremely uniform.

【0047】(比較例) 実施例と全く同じ粒子に銅めっき浴の比重を1.17
7とした以外は、全て実施例と同一条件でめっきを行
った。被めっき微粒子とめっき液の比重差が0.03と
小さく、粒子の沈降速度が遅くなり、またバレルの回転
によって粒子の舞い上がりが激しく、バイポーラ現象が
起こりほぼ全ての粒子の導電下地層が溶解した。
(Comparative Example 2 ) The specific gravity of the copper plating bath was 1.17 for the same particles as in Example 2.
Plating was performed under the same conditions as in Example 2 except that the number was 7. The difference in specific gravity between the fine particles to be plated and the plating solution was as small as 0.03, the sedimentation speed of the particles was slow, and the particles rose sharply due to the rotation of the barrel, causing a bipolar phenomenon and melting the conductive underlayer of almost all particles. .

【0048】(実施例) 実施例と同じニッケルめっき微粒子に電流密度を0.
25A/dm2 とし通電時間を1時間とした以外は、実施例
と全く同様にめっきを行った。このようにして得られ
た最外殻がCuめっき層であるニッケルめっき樹脂微粒
子を光学顕微鏡で観察したところ、全く凝集がなく全て
の粒子が単粒子としていたが、バイポーラ現象により下
地層が溶解した粒子や傷のある粒子が100個中4個に
減少した。
Example 3 The same nickel plating fine particles as in Example 2 were applied with a current density of 0.
Example except that 25 A / dm 2 and energization time were 1 hour
Plating was performed exactly as in 2 . The nickel-plated resin fine particles having the Cu plating layer as the outermost shell thus obtained were observed by an optical microscope. As a result, all the particles were single particles without any aggregation, but the underlying layer was dissolved due to the bipolar phenomenon. The number of particles and scratched particles was reduced to 4 out of 100.

【0049】また、このCuめっきされた樹脂微粒子3
00個の平均粒径は757.0μm、銅めっき層の厚さ
は3.6μm と計測された。粒径の変動係数は4.62
%で、Cuめっき層の厚さの均一性が向上していること
が証明された。
The Cu-plated resin fine particles 3
The average particle size of 00 pieces was measured to be 757.0 μm, and the thickness of the copper plating layer was measured to be 3.6 μm. Coefficient of variation of particle size is 4.62
%, It was proved that the uniformity of the thickness of the Cu plating layer was improved.

【0050】(実施例) 実施例と同じニッケルめっき微粒子に電流密度を0.
1A/dm2 とし通電時間を2.5時間とした以外は、実施
と全く同様にめっきを行った。このようにして得ら
れた最外殻がCuめっき層であるニッケルめっき樹脂微
粒子を光学顕微鏡で観察したところ、全く凝集がなく全
ての粒子が単粒子として存在しており、バイポーラ現象
により下地層が溶解した粒子や傷のある粒子も全く発見
されなかった。
Example 4 The same nickel plating fine particles as in Example 2 were applied with a current density of 0.
The plating was performed in exactly the same manner as in Example 2 except that the current was applied for 1 A / dm 2 and the energization time was 2.5 hours. When the nickel-plated resin fine particles whose outermost shell is the Cu-plated layer thus obtained are observed by an optical microscope, all the particles are present as single particles without any aggregation, and the underlying layer is formed by the bipolar phenomenon. No dissolved or scratched particles were found.

【0051】また、このCuめっきされた樹脂微粒子3
00個の平均粒径は756.8μm、銅めっき層の厚さ
は3.5μm と計測された。粒径の変動係数は4.0%
で、Cuめっき層の厚さの均一性が向上していることが
証明された。
The Cu-plated resin fine particles 3
The average particle diameter of 00 pieces was measured to be 756.8 μm and the thickness of the copper plating layer was measured to be 3.5 μm. Coefficient of variation of particle size is 4.0%
Thus, it was proved that the thickness uniformity of the Cu plating layer was improved.

【0052】(実施例) 実施例と同じニッケルめっき微粒子に、めっき開始時
は実施例と全く同様にめっきを行い、めっき膜厚の増
加しめっき液との比重差が大きくなった時点で回転速度
を0.07m/sとなる回転数にアップした。通電時間
は2.5時間とした。具体的には、めっき膜厚が増加し
粒子比重が1.24となった時点で回転数を上げた。
(Example 5 ) The same nickel plating particles as in Example 2 were plated at exactly the same time as in Example 4 at the start of plating, and when the plating film thickness increased and the difference in specific gravity from the plating solution increased. The rotation speed was increased to 0.07 m / s. The energization time was 2.5 hours. Specifically, the rotation speed was increased when the plating film thickness increased and the particle specific gravity reached 1.24.

【0053】このようにして得られた最外殻がCuめっ
き層であるニッケルめっき樹脂微粒子を光学顕微鏡で観
察したところ、全く凝集がなく全ての粒子が単粒子とし
て存在しており、バイポーラ現象により下地層が溶解し
た粒子や傷のある粒子も全く発見されなかった。また、
このCuめっきされた樹脂微粒子300個の平均粒径は
757.4μm、銅めっき層の厚さは3.8μm と計測
された。粒径の変動係数は2.0%で、回転数増加によ
り粒子の撹拌回数も増加するため、さらにCuめっき層
の厚さの均一性が向上していることが証明された。
When the nickel-plated resin fine particles whose outermost shell is the Cu-plated layer were observed with an optical microscope, there was no aggregation at all, and all the particles were present as single particles. Neither particles in which the underlayer was dissolved nor particles with scratches were found. Also,
The average particle diameter of 300 Cu-plated resin fine particles was measured to be 757.4 μm, and the thickness of the copper plating layer was measured to be 3.8 μm. The coefficient of variation of the particle diameter was 2.0%, and the number of times the particles were agitated increased with an increase in the number of rotations, which proved that the uniformity of the thickness of the Cu plating layer was further improved.

【0054】(実施例) 実施例と同じニッケルめっき微粒子に、回転数アップ
時に電流密度も0.25A/dm2 にアップした以外は実施
と全く同様にめっきを行った。このようにして得ら
れた最外殻がCuめっき層であるニッケルめっき樹脂微
粒子を光学顕微鏡で観察したところ、全く凝集がなく全
ての粒子が単粒子として存在しており、バイポーラ現象
により下地層が溶解した粒子や傷のある粒子も全く発見
されなかった。
Example 6 The same nickel-plated fine particles as in Example 2 were plated in exactly the same manner as in Example 5 , except that the current density was also increased to 0.25 A / dm 2 when the rotation speed was increased. When the nickel-plated resin fine particles whose outermost shell is the Cu-plated layer thus obtained are observed by an optical microscope, all the particles are present as single particles without any aggregation, and the underlying layer is formed by the bipolar phenomenon. No dissolved or scratched particles were found.

【0055】また、このCuめっきされた樹脂微粒子3
00個の平均粒径は757.0μm、銅めっき層の厚さ
は3.6μm と計測された。粒径の変動係数は2.1%
で、実施例と同様にCuめっき層の厚さの均一性が向
上していることが証明された。さらに、通電時間が1.
2時間と実施例の半分以下になっており生産性の向上
も図れた。
The Cu-plated resin fine particles 3
The average particle size of 00 pieces was measured to be 757.0 μm, and the thickness of the copper plating layer was measured to be 3.6 μm. Coefficient of variation of particle size is 2.1%
Then, it was proved that the uniformity of the thickness of the Cu plating layer was improved as in Example 5 . Furthermore, the energization time is 1.
2 hours, which is less than half that of Example 5 , and productivity was improved.

【0056】[0056]

【発明の効果】本発明によれば、例えば、粒径5000
μm以下のような粒径の小さい微粒子を用いても、特に
比重の軽い合成樹脂を中心にした微粒子であっても、め
っき液中で微粒子が凝集したり、容器内で微粒子が液面
に浮遊したり、容器壁面に付着して、めっきされなかっ
たり、めっき層の厚みが不均一となることがなく、簡単
な装置を用いて、極めて均一な厚さのめっき層を有する
導電性微粒子を得ることができる。また、本発明によれ
ば、特に比重の軽い合成樹脂を中心にした微粒子であっ
ても、バイポーラ現象による下地層の溶解を発生するこ
となく、全ての微粒子に効率よく、均一なめっき層を形
成することができる。
According to the present invention, for example, a particle size of 5000
Even when using fine particles with a small particle size of less than μm, especially fine particles mainly made of synthetic resin with a low specific gravity, the fine particles agglomerate in the plating solution or the fine particles float on the liquid surface in the container. Or to adhere to the wall surface of the container and not be plated, and the thickness of the plating layer will not be uneven, and using a simple device, obtain conductive fine particles having a plating layer of extremely uniform thickness. be able to. Further, according to the present invention, even in the case of fine particles centering on a synthetic resin having a particularly low specific gravity, a uniform plating layer can be efficiently formed on all the fine particles without causing the underlying layer to be dissolved by the bipolar phenomenon. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いるめっき装置の一態様を示す正面
図である。
FIG. 1 is a front view showing an aspect of a plating apparatus used in the present invention.

【図2】本発明で用いるめっき装置の一態様の微粒子回
転攪拌手段を示す図である。
FIG. 2 is a fine particle cycle of one embodiment of the plating apparatus used in the present invention .
It is a figure which shows a roll stirring means.

【符号の説明】[Explanation of symbols]

1 めっき 装置受 モーター 8 回転軸 9 微粒子収納容器(バレル)1 plating tank 3 device supports stand 7 motor 8 rotating shaft 9 microparticles container (barrel)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2001−271189(JP,A) 特開 昭59−74300(JP,A) 特開 昭59−67397(JP,A) 特開 平11−253782(JP,A) 特開 平10−43569(JP,A) 特開 平9−137289(JP,A) 特開 平8−239799(JP,A) 特開 平7−118896(JP,A) 特開 平6−312124(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 7/00 C25D 5/56 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP 2001-271189 (JP, A) JP 59-74300 (JP, A) JP 59-67397 (JP, A) JP 11-253782 (JP, A) JP 10-43569 (JP, A) JP 9-137289 (JP, A) JP 8-239799 (JP, A) JP 7-118896 (JP, A) Kaihei 6-312124 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C25D 7/00 C25D 5/56

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 めっき槽内に回転可能なバレルを有する
バレルめっき装置を用いて被めっき微粒子の表面にめっ
き層を形成してなる導電性微粒子の製造方法であって、 前記被めっき微粒子とめっき液との比重差が0.04〜
22.00であり、前記被めっき微粒子は、粒径が0.
5〜5000μmであり、且つ前記導電性微粒子は、少
なくとも一部が合成樹脂からなることを特徴とする導電
性微粒子の製造方法。
1. A method for producing conductive fine particles, which comprises forming a plating layer on the surface of fine particles to be plated by using a barrel plating apparatus having a rotatable barrel in a plating tank, wherein the fine particles to be plated and plating are provided. Specific gravity difference with liquid is 0.04 ~
22.00, and the fine particles to be plated have a particle size of 0.
5 to 5000 μm, and at least a part of the conductive fine particles is made of synthetic resin.
【請求項2】 被めっき微粒子は、粒径の変動係数が5
0%以下であることを特徴とする請求項1記載の導電性
微粒子の製造方法。
2. The plated fine particles have a particle size variation coefficient of 5
It is 0% or less, The manufacturing method of the electroconductive fine particle of Claim 1 characterized by the above-mentioned.
【請求項3】 めっき層は、金、銀、銅、白金、亜鉛、
鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニ
ッケル、クロム、チタン、アンチモン、ビスマス、ゲル
マニウム、カドミウム、及び、珪素からなる群より選ば
れる少なくとも1種の金属からなることを特徴とする請
求項1又は2記載の導電性微粒子の製造方法。
3. The plating layer comprises gold, silver, copper, platinum, zinc,
2. At least one metal selected from the group consisting of iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and silicon. Or the method for producing the conductive fine particles according to 2.
【請求項4】 めっき層は、異なる金属からなる多層構
造を有することを特徴とする請求項1、2又は3記載の
導電性微粒子の製造方法。
4. The method for producing conductive fine particles according to claim 1, 2 or 3, wherein the plating layer has a multilayer structure made of different metals.
【請求項5】 合成樹脂は、比重が1.5以下であるこ
とを特徴とする請求項1、2、3又は4記載の導電性微
粒子の製造方法。
5. The method for producing electrically conductive fine particles according to claim 1, 2, 3 or 4, wherein the synthetic resin has a specific gravity of 1.5 or less.
JP2001108841A 2000-07-10 2001-04-06 Method for producing conductive fine particles Expired - Fee Related JP3454796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108841A JP3454796B2 (en) 2000-07-10 2001-04-06 Method for producing conductive fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-208451 2000-07-10
JP2000208451 2000-07-10
JP2001108841A JP3454796B2 (en) 2000-07-10 2001-04-06 Method for producing conductive fine particles

Publications (2)

Publication Number Publication Date
JP2002088497A JP2002088497A (en) 2002-03-27
JP3454796B2 true JP3454796B2 (en) 2003-10-06

Family

ID=26595712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108841A Expired - Fee Related JP3454796B2 (en) 2000-07-10 2001-04-06 Method for producing conductive fine particles

Country Status (1)

Country Link
JP (1) JP3454796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6423583B2 (en) * 2012-05-14 2018-11-14 積水化学工業株式会社 Conductive particle material, conductive material, connection structure, and manufacturing method of connection structure

Also Published As

Publication number Publication date
JP2002088497A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP3874911B2 (en) Plating method for micro plastic balls
JP4762368B2 (en) Porous metal foil and method for producing the same
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
US20040234683A1 (en) Method for producing electroconductive particles
WO2018190202A1 (en) Plated material and manufacturing method therefor
JP2007035573A (en) Conductive particulate and anisotropic conductive material
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP3454796B2 (en) Method for producing conductive fine particles
JP3354382B2 (en) Method for producing conductive fine particles
TWI509638B (en) Conductive particles, anisotropic conductive materials and connecting structures
JP2011070944A (en) Manufacturing method for conductive particulates, and the conductive particulates
JP2000309895A (en) Device for producing electrically conductive fine particle
JP2010027609A (en) Conductive particle, conductive material, and anisotropic conductive film
JP5408462B2 (en) Electroless plating method and activation pretreatment method
JPH11172495A (en) Apparatus for production of conductive particulate
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5480576B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5268520B2 (en) Zinc oxide fine particle-attached resin particles and method for producing the same, and conductive particles and method for producing the same
KR100948957B1 (en) Barrel plating apparatus and method of preparing a conductive microsphere having a plating layer using the same
JP4193094B2 (en) Metal structure and manufacturing method thereof
WO2018221640A1 (en) Resin composition, and member for conduction test
KR101410992B1 (en) Conductive particles, manufacturing method of the same, and conductive materials including the same
JP2004152687A (en) Manufacturing device and manufacturing method of conductive particulate
JP2004238730A (en) Electroconductive electroless plated powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3454796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees