JP3354382B2 - Method for producing conductive fine particles - Google Patents
Method for producing conductive fine particlesInfo
- Publication number
- JP3354382B2 JP3354382B2 JP07500996A JP7500996A JP3354382B2 JP 3354382 B2 JP3354382 B2 JP 3354382B2 JP 07500996 A JP07500996 A JP 07500996A JP 7500996 A JP7500996 A JP 7500996A JP 3354382 B2 JP3354382 B2 JP 3354382B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- plating
- conductive fine
- particle size
- plated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性微粒子の製造方
法に関し、詳しくは、めっき液中で微粒子が凝集するこ
とがなく、極めて均一な厚さのめっき層を有する導電性
微粒子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing conductive fine particles, and more particularly, to a method for producing conductive fine particles having a plating layer having a very uniform thickness without causing aggregation of the fine particles in a plating solution. About.
【0002】[0002]
【従来の技術】導電性ペースト、導電性接着剤あるいは
異方導電性フィルムなどの導電性材料には、導電性微粒
子と樹脂とからなる導電性組成物が用いられている。こ
の導電性微粒子としては、一般に、金属粉末、カーボン
粉末、あるいは表面に金属めっき層が設けられた微粒子
などが使用されている。2. Description of the Related Art As a conductive material such as a conductive paste, a conductive adhesive or an anisotropic conductive film, a conductive composition comprising conductive fine particles and a resin is used. As the conductive fine particles, generally, metal powder, carbon powder, or fine particles having a surface provided with a metal plating layer are used.
【0003】このような表面に金属めっき層を有する導
電性微粒子の製造方法は、例えば、特開昭52−147
797号公報、特開昭61−277104号公報、特開
昭61−277105号公報、特開昭62−18574
9号公報、特開昭63−190204号公報、特開平1
−225776号公報、特開平1−247501号公
報、特開平4−147513号公報において開示されて
いる。A method for producing conductive fine particles having a metal plating layer on the surface is disclosed in, for example, JP-A-52-147.
797, JP-A-61-277104, JP-A-61-277105, and JP-A-62-18574.
9, JP-A-63-190204, JP-A-Hei 1
Japanese Patent Application Laid-Open Nos. 225776/1995, 247501/1991 and 147513/1993.
【0004】上記従来技術のうち、粒径5000μm以
下の微粒子のめっきを行う際には、バレルめっき装置が
一般に使用される。このバレルめっき装置は、めっき液
に浸漬した回転可能な多角形筒状のバレル内に被めっき
品を入れ、バレルを回転させながらバレル内に配置した
陰極と被めっき品とを接触させることで電気めっきを行
うものである。[0004] Among the above-mentioned conventional techniques, a barrel plating apparatus is generally used when plating fine particles having a particle size of 5000 µm or less. In this barrel plating apparatus, an object to be plated is placed in a rotatable polygonal cylindrical barrel immersed in a plating solution, and a cathode disposed in the barrel is brought into contact with the object to be plated while rotating the barrel. The plating is performed.
【0005】しかし、このバレルめっき装置を用いた方
法で粒径5000μm以下の微粒子のめっきを行うと、
めっき液中で微粒子が凝集したままめっきされ単粒子と
して得られない場合や、たとえ微粒子が凝集しない場合
でも全ての微粒子が均一にめっきされずめっき層の厚み
が不均一となる場合がしばしば起こっていた。However, when plating of fine particles having a particle size of 5000 μm or less is performed by a method using this barrel plating apparatus,
In the plating solution, when the fine particles are aggregated and plated and cannot be obtained as a single particle, or even when the fine particles do not aggregate, all the fine particles are not uniformly plated and the thickness of the plating layer often becomes uneven. Was.
【0006】このような問題を解決するため、めっきさ
れるべき目的微粒子と共に疑似粒子を上記バレル内に入
れた状態で目的微粒子をめっきする方法も行われていた
が、めっき工程の終了後に疑似粒子と目的微粒子とを分
離する必要があって工程数が増えるという問題があっ
た。In order to solve such a problem, a method of plating the target fine particles in a state where the pseudo particles are put in the barrel together with the target fine particles to be plated has been performed. There is a problem that the number of steps increases because it is necessary to separate the target particles from the target particles.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記従来の
課題を解決するためになされたものであり、その目的と
するところは、めっき液中で微粒子が凝集するというこ
とがなく、工程が簡単で、かつ極めて均一な厚さのめっ
き層を有する導電性微粒子が得られる方法を提供するこ
とにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to prevent fine particles from agglomerating in a plating solution and to reduce the number of steps. An object of the present invention is to provide a method for obtaining conductive fine particles having a plating layer having a simple and extremely uniform thickness.
【0008】[0008]
【課題を解決するための手段】本発明者らは上記の従来
技術による微粒子のめっき方法の難点を解決するため
に、全く新規なめっき装置を用いて導電性微粒子を製造
する方法を発明した。The present inventors have invented a method of producing conductive fine particles using a completely new plating apparatus in order to solve the above-mentioned problems of the conventional fine particle plating method.
【0009】すなわち、請求項1記載の発明の導電性微
粒子の製造方法は、外周部の少なくとも一部にフィルタ
ー部が形成され、外周部に陰極を有する回転可能なめっ
き装置本体と、該本体の中に該陰極に接触しないよう設
置された陽極とを有するめっき装置を用いて、該本体を
その回転軸を中心に回転させながら、該本体内にめっき
液を補給しつつ該本体内に入れられた微粒子の表面にめ
っき層を形成する導電性微粒子の製造方法であって、該
微粒子の粒径の変動係数が20%以下であり、該導電性
微粒子の粒径が0.5〜5000μmであり、かつ、該
導電性微粒子の粒径の変動係数が20%以下であること
を特徴とする。That is, in the method for producing conductive fine particles according to the first aspect of the present invention, a rotatable plating apparatus main body having a filter portion formed on at least a part of an outer peripheral portion and having a cathode on the outer peripheral portion; Using a plating apparatus having an anode provided so as not to come into contact with the cathode, while rotating the main body about its rotation axis, the main body is put into the main body while replenishing a plating solution into the main body. and a method for producing conductive fine particles for forming a plating layer on the surface of the fine particles, the
The coefficient of variation of the particle size of the fine particles is 20% or less, the particle size of the conductive fine particles is 0.5 to 5000 μm, and
The coefficient of variation of the particle size of the conductive fine particles is 20% or less .
【0010】また、請求項2記載の発明の導電性微粒子
の製造方法は、垂直な駆動軸の上端部に固定された円盤
状の底板と、この底板の外周上面に、処理液のみを通す
多孔体を配し、この多孔体上面に通電用の接触リングを
配し、上部中央に開口を有する円錐台形状の中空カバー
の外周部で、多孔体と接触リングとを底板との間で挟持
してなる処理室を形成し、上記開口より処理液を上記処
理室に供給する供給管と、上記多孔体窓から飛散した処
理液を受ける容器と、上記容器に溜まった処理液を排出
する排出管と、上記開口から挿入されてめっき液に接触
する電極とを有するめっき装置を用いて、前処理を施し
た微粒子を上記処理室に入れ、上記微粒子の表面にめっ
き層を形成する導電性微粒子の製造方法であって、該微
粒子の粒径の変動係数が20%以下であり、該導電性微
粒子の粒径が0.5〜5000μmであり、かつ、該導
電性微粒子の粒径の変動係数が20%以下であることを
特徴とする。In a second aspect of the present invention, there is provided a method for producing conductive fine particles, comprising: a disc-shaped bottom plate fixed to an upper end portion of a vertical drive shaft; A contact ring for conducting electricity is arranged on the upper surface of the porous body, and the porous body and the contact ring are sandwiched between the bottom plate and the outer peripheral portion of the truncated cone-shaped hollow cover having an opening at the upper center. A supply pipe for supplying a processing liquid to the processing chamber from the opening, a container for receiving the processing liquid scattered from the porous window, and a discharge pipe for discharging the processing liquid accumulated in the container And, using a plating apparatus having an electrode that is inserted from the opening and comes into contact with the plating solution, the pretreated fine particles are put into the processing chamber, and the conductive fine particles that form a plating layer on the surface of the fine particles are used. a manufacturing method, fine
Variation coefficient of the particle size of the particles is 20% or less, the particle diameter of the conductive fine particles is 0.5~5000Myuemu, and the guide
It is characterized in that the variation coefficient of the particle size of the conductive fine particles is 20% or less .
【0011】好適な実施態様においては、上記めっき層
は、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウ
ム、コバルト、インジウム、ニッケル、クロム、チタ
ン、アンチモン、ビスマス、ゲルマニウム、カドミウ
ム、およびケイ素からなる群より選ばれる少なくとも1
種の金属からなる。上記めっき層はこれらに限定される
ものではない。In a preferred embodiment, the plating layer is made of gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium. And at least one selected from the group consisting of silicon
It consists of a kind of metal. The plating layer is not limited to these.
【0012】本発明に用いられる微粒子は、有機樹脂微
粒子であっても無機微粒子であってもよい。The fine particles used in the present invention may be organic resin fine particles or inorganic fine particles.
【0013】本発明に関わる導電性微粒子のうち、最近
とりわけ注目を浴びつつあるのは有機樹脂微粒子または
無機微粒子の表面のめっき層が複数種類の異種金属から
形成され、加熱条件下でこれらの複数種類の異種金属か
ら形成される微粒子表面のめっき層が融合して低融点合
金を生成するものである。Among the conductive fine particles according to the present invention, the plating layer on the surface of the organic resin fine particles or the inorganic fine particles formed of a plurality of kinds of dissimilar metals, which has attracted particular attention in recent years, has been developed under heating conditions. The plating layer on the surface of the fine particles formed from different kinds of metals fuses to form a low melting point alloy.
【0014】その代表的なものは、有機樹脂微粒子また
は無機微粒子の表面のめっき層が結果的に半田を生成す
るものである。これはエレクトロニクス分野におけるフ
ァインピッチ電極接合用途に使用され、具体的にはCO
G(チップ・オン・グラス)やLCD(液晶表示素子)
の上下電極間のいわゆる上下導通に極めて好適に用いら
れる。A typical example is that the plating layer on the surface of the organic resin fine particles or the inorganic fine particles results in the formation of solder. This is used for fine pitch electrode bonding applications in the electronics field, and specifically CO 2
G (chip on glass) and LCD (liquid crystal display element)
It is very suitably used for so-called vertical conduction between upper and lower electrodes.
【0015】このように表面に半田めっきした或いは結
果的に半田を生成する表面を有する微粒子は上記用途に
有用であるが、最近に至って半田の使用が規制される兆
しが表面化してきた。欧米での鉛による水質汚染問題に
端を発し、比較的使用量の少ないエレクトロニクス分野
にも波及して近い将来、法規制が行われる可能性が出て
きた。そのため、我が国においても従来の錫/鉛半田に
替わる鉛フリー半田の開発を急がなければならない訳で
ある。[0015] The fine particles having a surface plated with solder or having a surface that generates solder as a result are useful for the above-mentioned applications, but there have recently been signs that the use of solder is regulated. Originated from the problem of water pollution caused by lead in Europe and the United States, it has spread to the electronics field, which has a relatively low usage, and there is a possibility that regulations will be enforced in the near future. Therefore, in Japan, the development of lead-free solder, which replaces the conventional tin / lead solder, must be rushed.
【0016】鉛フリー半田用の材科が備えるべき要件
は、下記の諸点を満足することである。The requirements for the materials for lead-free soldering are to satisfy the following points.
【0017】環境的な問題が少ないこと 供給が安定していること 電気と熱の良導体であること コストアップがないこと 融点が高くならないこと 充分な機械的強度が得られること 以上の諸点を加味して鉛フリー半田用合金組成を設計す
ると、現在生産量が比較的安定しているSn(錫)が主
成分となり、その融点や強度を調整するために、第2、
第3の元素を添加するという方向が現実的であろう。大
別すると、Sn−Ag系、Sn−Zn系、Sn−
In系、Sn一Bi系、Sn−Au系、Sn−S
b系、Sn−Ge系、Sn−Cd系、Sn−Si
系などである。There are few environmental problems. Supply is stable. It is a good conductor of electricity and heat. There is no increase in cost. Melting point does not increase. Sufficient mechanical strength is obtained. When designing a lead-free solder alloy composition, Sn (tin), whose production volume is relatively stable at present, is the main component, and in order to adjust its melting point and strength, the second,
It would be realistic to add a third element. When roughly classified, Sn-Ag system, Sn-Zn system, Sn-
In system, Sn-Bi system, Sn-Au system, Sn-S
b-based, Sn-Ge-based, Sn-Cd-based, Sn-Si
System.
【0018】上記のSn−Bi系に関しては、特公平6
−63110号公報、特公平7−65206号公報、特
公平7−65207号公報に開示されている。Regarding the above Sn-Bi system,
-63110, Japanese Patent Publication No. 7-65206, and Japanese Patent Publication No. 7-65207.
【0019】有機樹脂微粒子は、直鎖状重合体からなる
微粒子であっても網目状重合体からなる微粒子であって
もよく、さらに熱硬化性樹脂製微粒子であってもよく、
また弾性体からなる微粒子であってもよい。The organic resin fine particles may be fine particles composed of a linear polymer or fine particles composed of a network polymer, and may be fine particles made of a thermosetting resin.
Fine particles made of an elastic material may be used.
【0020】直鎖状重合体としては、例えば、ナイロ
ン、ポリエチレン、ポリプロピレン、メチルペンテンポ
リマー、ポリスチレン、ポリメチルメタクリレート、ポ
リ塩化ビニル、ポリ弗化ビニル、ポリテトラフルオロエ
チレン、ポリエチレンテレフタレート、ポリブチレンテ
レフタレート、ポリスルフォン、ポリカーボネート、ポ
リアクリロニトリル、ポリアセタール、ポリアミドなど
が挙げられる。Examples of the linear polymer include nylon, polyethylene, polypropylene, methylpentene polymer, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, Examples include polysulfone, polycarbonate, polyacrylonitrile, polyacetal, and polyamide.
【0021】網目状重合体としては、例えば、ジビニル
ベンゼン、ヘキサトリエン、ジビニルエーテル、ジビニ
ルスルフォン、ジアリルカルビノール、アルキレンジア
クリレート、オリゴまたはポリ(アルキレングリコー
ル)ジアクリレート、オリゴまたはポリ(アルキレング
リコール)ジメタクリレート、アルキレントリアクリレ
ート、アルキレントリメタクリレート、アルキレンテト
ラアクリレート、アルキレンテトラアクリレート、アル
キレンテトラメタクリレート、アルキレンビスアクリル
アミド、アルキレンビスメタクリルアミドなどの架橋反
応性モノマーの単独重合体、あるいはこれらの架橋反応
性モノマーと他の重合性モノマーとを共重合して得られ
る共重合体などが挙げられる。Examples of the network polymer include divinylbenzene, hexatriene, divinyl ether, divinyl sulfone, diallyl carbinol, alkylene diacrylate, oligo or poly (alkylene glycol) diacrylate, oligo or poly (alkylene glycol) diacrylate. Homopolymers of crosslinking reactive monomers such as methacrylate, alkylene triacrylate, alkylene trimethacrylate, alkylene tetraacrylate, alkylene tetraacrylate, alkylene tetramethacrylate, alkylene bisacrylamide, alkylene bismethacrylamide, or these crosslinking reactive monomers and other And a copolymer obtained by copolymerizing the polymerizable monomer with a polymerizable monomer.
【0022】特に好適な重合性モノマーとしては、ジビ
ニルベンゼン、ヘキサトリエン、ジビニルエーテル、ジ
ビニルスルフォン、アルキレントリアクリレート、アル
キレンテトラアクリレートなどが挙げられる。Particularly preferred polymerizable monomers include divinylbenzene, hexatriene, divinyl ether, divinylsulfone, alkylene triacrylate, alkylene tetraacrylate and the like.
【0023】熱硬化性樹脂としては、例えば、フェノー
ル−ホルムアルデヒド系樹脂、メラミン−ホルムアルデ
ヒド系樹脂、ベンゾグアナミン−ホルムアルデヒド系樹
脂、尿素−ホルムアルデヒド系樹脂、エポキシ系樹脂な
どが挙げられる。Examples of the thermosetting resin include a phenol-formaldehyde resin, a melamine-formaldehyde resin, a benzoguanamine-formaldehyde resin, a urea-formaldehyde resin, and an epoxy resin.
【0024】弾性体としては、天然ゴム、合成ゴムなど
が挙げられる。Examples of the elastic body include natural rubber and synthetic rubber.
【0025】上記無機微粒子の材質としては、シリカ、
酸化チタン、酸化鉄、酸化コバルト、酸化亜鉛、酸化ニ
ッケル、酸化マンガン、酸化アルミニウムなど公知のも
のが挙げられる。As the material of the inorganic fine particles, silica,
Known materials such as titanium oxide, iron oxide, cobalt oxide, zinc oxide, nickel oxide, manganese oxide, and aluminum oxide can be used.
【0026】上記微粒子の粒径は、0.5〜5000μ
mであり、特に0.5〜2500μmが好ましく、さら
に好ましくは1〜1000μmである。かつ、該粒径の
変動係数は50%以下であり、好ましくは35%以下、
さらに好ましくは20%以下、最も好ましくは10%以
下である。The fine particles have a particle size of 0.5 to 5000 μm.
m, particularly preferably 0.5 to 2500 μm, more preferably 1 to 1000 μm. And the coefficient of variation of the particle size is 50% or less, preferably 35% or less;
It is more preferably at most 20%, most preferably at most 10%.
【0027】このような微粒子の表面には、通常はあら
かじめ導電下地層が形成される。導電下地層の形成とし
ては、以下に述べる無電解めっき法が好適に用いられる
が、これに限定されるものでなくその他公知の導電性付
与方法によって形成することも可能である。無電解めっ
き法による導電下地層の形成工程は、通常エッチング工
程、アクチベーション工程および無電解めっき工程の各
工程に分けられる。On the surface of such fine particles, a conductive underlayer is usually formed in advance. As the formation of the conductive underlayer, an electroless plating method described below is preferably used, but the present invention is not limited to this, and it is also possible to form the conductive underlayer by other known methods for imparting conductivity. The step of forming the conductive underlayer by the electroless plating method is generally divided into an etching step, an activation step, and an electroless plating step.
【0028】(1)上記エッチング工程は微粒子の表面
に凹凸を形成させ、導電下地層の微粒子表面に対する密
着性を付与するための工程であり、エッチング液には、
例えば水酸化ナトリウム水溶液、濃塩酸、濃硫酸または
無水クロム酸が用いられる。しかし、エッチング工程は
必ずしも必要ではなく、場合によっては省略することも
可能である。(1) The above-mentioned etching step is a step for forming irregularities on the surface of the fine particles to impart adhesion to the fine particle surface of the conductive underlayer.
For example, an aqueous sodium hydroxide solution, concentrated hydrochloric acid, concentrated sulfuric acid or chromic anhydride is used. However, the etching step is not always necessary, and may be omitted in some cases.
【0029】(2)上記アクチベーション工程は、エッ
チングした微粒子の表面に触媒層を形成するとともにこ
の触媒層を活性化させる工程である。触媒層の活性化に
より、後述の無電解めっき工程における金属の析出が促
進される。用いられる触媒としては、例えば、Pd2+、
Sn2+などが挙げられる。このPd2+、Sn2+などの触
媒は、微粒子の表面に吸着されて触媒層が形成される。
形成された触媒層に濃塩酸または濃硫酸を作用させ、(2) The activation step is a step of forming a catalyst layer on the surface of the etched fine particles and activating the catalyst layer. The activation of the catalyst layer promotes the deposition of metal in an electroless plating step described below. Examples of the catalyst used include Pd 2+ ,
Sn 2+ and the like. The catalyst such as Pd 2+ and Sn 2+ is adsorbed on the surface of the fine particles to form a catalyst layer.
The concentrated catalyst or concentrated sulfuric acid is allowed to act on the formed catalyst layer,
【0030】[0030]
【数1】 (Equation 1)
【0031】の反応によりPd2+の金属化を行う。金属
化されたパラジウムは水酸化ナトリウム濃厚溶液などの
パラジウム活性剤により活性化され増感される。Pd 2+ is metallized by the above reaction. The metallized palladium is activated and sensitized by a palladium activator such as a concentrated solution of sodium hydroxide.
【0032】(3)上記無電解めっき工程は、アクチベ
ーションした微粒子の表面にめっき層を形成することに
より、微粒子に導電性を付与するための工程であり、例
えば、ニッケルめっきの場合には、ニッケルイオン供給
物質として硫酸ニッケルを用い、これに還元剤として次
亜リン酸ナトリウムが加えられる。上記アクチベーショ
ン工程により上記微粒子の表面に吸着されたパラジウム
が触媒となり、硫酸ニッケルの還元反応が進行して、ニ
ッケル金属が微粒子表面に析出する。(3) The electroless plating step is a step for imparting conductivity to the fine particles by forming a plating layer on the surface of the activated fine particles. For example, in the case of nickel plating, nickel is used. Nickel sulfate is used as an ion supplying substance, and sodium hypophosphite is added as a reducing agent. The palladium adsorbed on the surface of the fine particles in the activation step serves as a catalyst, and the reduction reaction of nickel sulfate proceeds to deposit nickel metal on the surface of the fine particles.
【0033】(4)上記無電解めっき工程は、触媒層が
形成された微粒子の表面に導電下地層(導電めっき層)
を形成させる工程である。(4) In the electroless plating step, a conductive base layer (conductive plating layer) is formed on the surface of the fine particles on which the catalyst layer is formed.
Is a step of forming
【0034】無電解めっき工程により形成される導電め
っき層は、1層であっても2層以上の層であってもよ
く、さらに、ニッケルめっき層の上に金めっき層を設け
たい場合は、金イオン供給物質として金シアン化カリウ
ムを用いて上記ニッケルめっきの場合と同様に無電解め
っきを行えばよい。なお、3層以上のめっき層をこの金
めっき層の上に重ねたい場合は、電気めっきを行うのが
便利である。The conductive plating layer formed by the electroless plating step may be a single layer or two or more layers. When it is desired to provide a gold plating layer on a nickel plating layer, Electroless plating may be performed in the same manner as in the case of nickel plating using potassium gold cyanide as a gold ion supply material. When three or more plating layers are to be stacked on the gold plating layer, it is convenient to perform electroplating.
【0035】次に、本発明に用いることができるめっき
装置について説明する。Next, a plating apparatus that can be used in the present invention will be described.
【0036】図1に示すように、該めっき装置Aは、垂
直な駆動軸3の上端部に固定された円盤状のプラスチッ
クの底板11と、この底板11の外周上面に、処理液の
みを通すフィルター部として多孔質リング13を配し、
この多孔質リング13上面に陰極として通電用の接触リ
ング12を配し、上部中央に開口8を有する円錐台形状
のプラスチックの中空カバー1の外周部で多孔質リング
13と接触リング12とを底板11との間で挟持してな
る処理室4を形成し、上記開口8より処理液等を上記処
理室4に供給する供給管6と、多孔体窓から飛散した処
理液を受けるプラスチックの容器5と、上記容器5に溜
まった処理液を排出する排出管7と、上記開口8から挿
入されてめっき液に接触する陽極2aと、を有する。As shown in FIG. 1, the plating apparatus A allows a disc-shaped plastic bottom plate 11 fixed to the upper end of a vertical drive shaft 3 to pass only a processing solution through an outer peripheral upper surface of the bottom plate 11. A porous ring 13 is arranged as a filter part,
An energizing contact ring 12 is arranged on the upper surface of the porous ring 13 as a cathode. And a supply pipe 6 for supplying a processing liquid or the like to the processing chamber 4 through the opening 8 and a plastic container 5 for receiving the processing liquid scattered from the porous window. And a discharge pipe 7 for discharging the processing solution stored in the container 5, and an anode 2a inserted through the opening 8 and in contact with the plating solution.
【0037】上記多孔質リング13はプラスチックやセ
ラミックで形成される連通気泡を有するフィルター状の
多孔体であって、めっき液等の処理液は通すが微粒子
(および導電性微粒子)は通過しない孔径のものが採用
される。The porous ring 13 is a filter-like porous body having open cells formed of plastic or ceramic, and has a pore diameter that allows a processing solution such as a plating solution to pass through but does not allow fine particles (and conductive fine particles) to pass. Things are adopted.
【0038】処理液は、駆動軸3の回転により、遠心力
を受けて多孔質リング13を通過し、周囲に飛散するこ
とにより処理室内の処理液の液面が低下するため、それ
を補うべく上記開口8より処理液を供給する供給管6よ
り処理室4に処理液を供給し、処理室4内の液面が、常
時電極2aに接触状態になるように液量を管理する。図
中、2はプラスの電極であって上記陽極2aに接続され
ている。9はめっき液のレベルセンサー、10はコンタ
クトブラシである。電極用電源は図示されていない。The processing solution receives the centrifugal force due to the rotation of the drive shaft 3, passes through the porous ring 13, and scatters around, thereby lowering the level of the processing solution in the processing chamber. The processing liquid is supplied to the processing chamber 4 from the supply pipe 6 for supplying the processing liquid from the opening 8, and the liquid amount is controlled so that the liquid level in the processing chamber 4 is always in contact with the electrode 2a. In the figure, reference numeral 2 denotes a positive electrode, which is connected to the anode 2a. 9 is a plating solution level sensor, and 10 is a contact brush. The power supply for the electrodes is not shown.
【0039】以下にこのめっき装置Aを用いて導電性微
粒子を製造する方法を説明する。Hereinafter, a method for producing conductive fine particles using the plating apparatus A will be described.
【0040】処理液供給管6から処理室4内にめっき液
を供給し、次いで、カバー1の開口部8より処理室4
に、導電下地層が形成された微粒子を投入して分散させ
る。微粒子を処理室4内へ入れる際には、駆動軸3を回
転させておく。めっき液は駆動軸3の回転に伴って多孔
質リング13を通して処理室4外部へ出ていくので、そ
の減少量を処理液供給管6から補給する。その他のめっ
き条件は通常のめっきの場合と特に異なることはない。The plating solution is supplied from the processing solution supply pipe 6 into the processing chamber 4, and then the processing chamber 4 is opened through the opening 8 of the cover 1.
Then, the fine particles having the conductive underlayer formed thereon are introduced and dispersed. When the particles are to be introduced into the processing chamber 4, the drive shaft 3 is rotated. Since the plating solution flows out of the processing chamber 4 through the porous ring 13 with the rotation of the drive shaft 3, the reduced amount is supplied from the processing solution supply pipe 6. Other plating conditions are not particularly different from those of normal plating.
【0041】より均一なめっき層を形成するためには、
駆動軸3の回転方向を一定時間ごとに逆転させ、あるい
は停止させることが好ましい。In order to form a more uniform plating layer,
It is preferable that the rotation direction of the drive shaft 3 is reversed or stopped at regular intervals.
【0042】このようにして表面にめっき層が形成され
た導電性微粒子が得られる。得られた導電性微粒子の粒
径は、0.5〜5000μmであり、好ましくは1〜2
500μmであり、さらに好ましくは1〜1000μ
m、最も好ましくは2〜500μmである。Thus, conductive fine particles having a plating layer formed on the surface are obtained. The particle size of the obtained conductive fine particles is 0.5 to 5000 μm, preferably 1 to 2 μm.
500 μm, more preferably 1 to 1000 μm
m, most preferably from 2 to 500 μm.
【0043】また、その粒径の変動係数は50%以下で
あり、好ましくは35%以下、さらに好ましくは20%
以下、最も好ましくは10%以下である。ここで、変動
係数とは、標準偏差を平均値を基準として百分率で表し
たものであり、次式で表される。The coefficient of variation of the particle size is 50% or less, preferably 35% or less, more preferably 20% or less.
Or less, most preferably 10% or less. Here, the coefficient of variation is the standard deviation expressed as a percentage based on the average value, and is expressed by the following equation.
【0044】[0044]
【数2】 (Equation 2)
【0045】該導電性微粒子の粒径が0.5μm未満の
場合および5000μmを超える場合には、めっき粒子
の凝集塊が多数見られるものであり、また、その粒径の
変動係数が50%を超える場合にも、めっき粒子の凝集
塊が多数見られる。When the particle size of the conductive fine particles is less than 0.5 μm or more than 5000 μm, a large number of agglomerates of plated particles are observed, and the coefficient of variation of the particle size is 50%. Even when it exceeds, a large number of agglomerates of plating particles are observed.
【0046】該導電性微粒子の表面に形成されためっき
層の厚みは、0.001〜5.0μmが好ましく、0.
01〜1μmがさらに好ましい。また、めっき層の厚さ
の変動係数は20%以下が好ましく、さらに好ましくは
10%以下である。The thickness of the plating layer formed on the surface of the conductive fine particles is preferably 0.001 to 5.0 μm,
01 to 1 μm is more preferable. Further, the coefficient of variation of the thickness of the plating layer is preferably 20% or less, more preferably 10% or less.
【0047】なお、容器5内にめっき液の代わりに水を
入れることにより、得られた導電性微粒子の洗浄として
も使用することができる。By putting water in the container 5 in place of the plating solution, the obtained conductive fine particles can be used for washing.
【0048】[0048]
【作用】駆動軸を回転させながら処理室4内に、めっき
液と導電性下地層が形成された微粒子をめっき液に浸し
た状態で存在させ、接触リング12(陰極)と陽極2a
の両電極間に通電する。該微粒子は遠心力の作用で接触
リング12に押し付けられ、陽極2aに面した該微粒子
にめっき層ができる。駆動軸3が停止すると、該微粒子
は重力の作用とめっき液の慣性による流れに引きづられ
て、底板中央部の平坦面に流れ落ち、混ざり合い、次に
駆動軸3が逆転を開始すると、混ざり合いながら、別の
姿勢で遠心力の作用により接触リング12に押し付けら
れるので、陽極2aに面した別の該微粒子にめっき層が
できる。このように駆動軸3の回転と停止を繰り返すこ
とにより、処理室4に存在する全ての該微粒子に対して
均一にめっきが行われる。While the drive shaft is rotating, the plating solution and the fine particles on which the conductive underlayer is formed are immersed in the plating solution in the processing chamber 4, and the contact ring 12 (cathode) and the anode 2a are formed.
Is applied between both electrodes. The fine particles are pressed against the contact ring 12 by the action of centrifugal force, and a plating layer is formed on the fine particles facing the anode 2a. When the drive shaft 3 stops, the fine particles are attracted by the flow of gravity and the inertia of the plating solution, flow down to the flat surface at the center of the bottom plate, and mix, and then when the drive shaft 3 starts to reverse, the fine particles mix. While being fitted, it is pressed against the contact ring 12 by the action of the centrifugal force in another posture, so that a plating layer is formed on the other fine particles facing the anode 2a. By repeating the rotation and stop of the drive shaft 3 in this manner, plating is uniformly performed on all the fine particles present in the processing chamber 4.
【0049】[0049]
(実施例1)スチレンとジビニルベンゼンとを共重合さ
せて得られた有機樹脂微粒子に導電下地層としてニッケ
ルめっき層を形成し、平均粒径6.53μm,標準偏差
0.26μmのニッケルめっき微粒子を得た。得られた
ニッケルめっき微粒子50gをとり、図1に示すめっき
装置を用いてその表面に金めっきを行った。Example 1 A nickel plating layer was formed as a conductive underlayer on organic resin fine particles obtained by copolymerizing styrene and divinylbenzene, and nickel-plated fine particles having an average particle size of 6.53 μm and a standard deviation of 0.26 μm were formed. Obtained. 50 g of the obtained nickel-plated fine particles were taken, and the surface thereof was subjected to gold plating using a plating apparatus shown in FIG.
【0050】処理室4は、直径20cm、高さ10cm
の円錐台形で、多孔質リング13は、プラスチックで形
成される連通気泡を有するフィルター状の多孔体であっ
て、陽極2aはステンレスを用いた。The processing chamber 4 has a diameter of 20 cm and a height of 10 cm.
The porous ring 13 is a filter-like porous body having open cells formed of plastic, and the anode 2a is made of stainless steel.
【0051】めっき液の組成は、水1リットル中にシア
ン化金カリウム8g、シアン化カリウム90g、および
光沢剤0.1gを含有している。The composition of the plating solution contains 8 g of potassium potassium cyanide, 90 g of potassium cyanide, and 0.1 g of brightener per liter of water.
【0052】めっき液の温度は25℃、電流は10A、
電流密度は0.004A/dm2、電圧は4〜5Vとし
て両電極間に8時間通電した。駆動軸3の回転数は30
Hzとし、10秒毎に回転方向を逆転させた。The temperature of the plating solution was 25 ° C., the current was 10 A,
A current density of 0.004 A / dm 2 and a voltage of 4 to 5 V were applied between both electrodes for 8 hours. The rotation speed of the drive shaft 3 is 30
Hz, and the rotation direction was reversed every 10 seconds.
【0053】このようにして得られた最外殻が金めっき
層である金めっき樹脂微粒子を光学顕微鏡で観察したと
ころ、全く凝集がなく全ての粒子が単粒子として存在し
ていた。また、この金めっきされた樹脂微粒子100個
を電子顕微鏡で観察した結果、平均粒径は6.93μ
m、金めっき層の厚みは0.2μmと計算された。粒径
の変動係数は2.5%で、金めっき層の厚みが極めて均
一であることが証明された。Observation of the gold-plated resin fine particles whose outermost shell was a gold-plated layer by an optical microscope revealed that there was no aggregation and all the particles were present as single particles. As a result of observing 100 gold-plated resin fine particles with an electron microscope, the average particle diameter was 6.93 μm.
m, the thickness of the gold plating layer was calculated to be 0.2 μm. The coefficient of variation of the particle size was 2.5%, which proved that the thickness of the gold plating layer was extremely uniform.
【0054】(比較例1)めっき装置として従来のバレ
ルめっき装置を用いたこと以外は実施例1と全く同様に
して金めっき樹脂微粒子を得た。(Comparative Example 1) Gold-plated resin fine particles were obtained in exactly the same manner as in Example 1 except that a conventional barrel plating apparatus was used as the plating apparatus.
【0055】この金めっき樹脂微粒子を光学顕微鏡で観
察したところ、数個から数十個の凝集塊が多数認められ
た。また、この金めっき樹脂微粒子100個を電子顕微
鏡で観察した結果、平均粒径は6.83μm、金めっき
層の厚みは0.15μmと計算された。粒径の変動係数
は12.5%であり、金めっき層の厚みが極めて不均一
であることが証明された。When the gold-plated resin fine particles were observed with an optical microscope, many to several tens of agglomerates were observed. Further, as a result of observing 100 of the gold-plated resin particles with an electron microscope, the average particle diameter was calculated to be 6.83 μm, and the thickness of the gold plating layer was calculated to be 0.15 μm. The variation coefficient of the particle size was 12.5%, which proved that the thickness of the gold plating layer was extremely uneven.
【0056】(実施例2)有機樹脂微粒子の代わりに、
シリカ微粒子の表面にニッケルめっきして得られたニッ
ケルめっきシリカ微粒子(平均粒径5.43μm、標準
偏差0.16μm)50gを用いたこと以外は、実施例
1と全く同様にして金めっき樹脂微粒子を得た。Example 2 Instead of the organic resin fine particles,
Except that 50 g of nickel-plated silica fine particles (average particle size: 5.43 μm, standard deviation: 0.16 μm) obtained by nickel plating on the surface of silica fine particles were used, gold-plated resin fine particles were completely the same as in Example 1. I got
【0057】このようにして得られた最外殻が金めっき
層である金めっきシリカ粒子を光学顕微鏡で観察したと
ころ、全く凝集がなく全ての粒子が単粒子として存在し
ていた。また、この金めっきされたシリカ粒子100個
を電子顕微鏡で観察した結果、平均粒径は5.77μ
m、金めっき層の厚みは0.17μmと計算された。粒
径の変動係数は2.8%で、金めっき層の厚みが極めて
均一であることが証明された。Observation of the gold-plated silica particles whose outermost shell was a gold-plated layer by an optical microscope showed that there was no aggregation and all the particles were present as single particles. As a result of observing 100 of the gold-plated silica particles with an electron microscope, the average particle size was 5.77 μm.
m, the thickness of the gold plating layer was calculated to be 0.17 μm. The coefficient of variation of the particle size was 2.8%, which proved that the thickness of the gold plating layer was extremely uniform.
【0058】(比較例2)めっき装置として従来のバレ
ルめっき装置を用いたこと以外は実施例2と全く同様に
して金めっきシリカ微粒子を得た。Comparative Example 2 Gold-plated silica fine particles were obtained in exactly the same manner as in Example 2 except that a conventional barrel plating apparatus was used as the plating apparatus.
【0059】この金めっきシリカ微粒子を光学顕微鏡で
観察したところ、数個ないし数十個の凝集塊が多数認め
られた。また、この金めっきシリカ微粒子100個を電
子顕微鏡で観察した結果、平均粒径は5.73μm、金
めっき層の厚みは0.15μmと計算された。粒径の変
動係数は13.6%で、金めっき層の厚みが極めて不均
一であることが証明された。When the gold-plated silica fine particles were observed with an optical microscope, several to several tens of aggregates were found in large numbers. In addition, as a result of observing 100 gold-plated silica fine particles with an electron microscope, the average particle diameter was calculated to be 5.73 μm, and the thickness of the gold plating layer was calculated to be 0.15 μm. The coefficient of variation of the particle size was 13.6%, which proved that the thickness of the gold plating layer was extremely uneven.
【0060】(実施例3)実施例1と同じめっき装置を
用いて、実施例1で得られた導電性微粒子(最外殻が金
めっき層である平均粒径は6.93μm、金めっき層の
厚み0.2μm)50gを、図1に示すめっき装置を用
いて半田めっきを行った。Example 3 Using the same plating apparatus as in Example 1, the conductive fine particles obtained in Example 1 (the average particle size of the outermost shell being a gold plating layer is 6.93 μm, (0.2 μm in thickness) was subjected to solder plating using the plating apparatus shown in FIG.
【0061】このめっき液の組成は、水1リットル中に
アルカンスルホン酸第一スズ75g/リットル、アルカ
ンスルホン酸鉛3g/リットル、遊離アルカンスルホン
酸270g/リットル、光沢剤30ml/リットルを含
有した。The composition of the plating solution contained stannous alkanesulfonate 75 g / l, lead alkanesulfonate 3 g / l, free alkanesulfonic acid 270 g / l, and brightener 30 ml / l in 1 liter of water.
【0062】めっき液の温度は25℃、電流は10A、
電流密度は3A/dm2、電圧は4〜5Vとして両電極
間に5時間通電した。The temperature of the plating solution was 25 ° C., the current was 10 A,
A current density of 3 A / dm 2 and a voltage of 4 to 5 V were applied between both electrodes for 5 hours.
【0063】駆動軸の回転数は25Hzとし、20秒毎
に回転方向を逆転させた。The rotation speed of the drive shaft was 25 Hz, and the rotation direction was reversed every 20 seconds.
【0064】このようにして得られた最外殻が半田めっ
き層である半田めっき微粒子を光学顕微鏡で観察したと
ころ、全く凝集がなく全ての粒子が単粒子として存在し
ていた。また、この半田めっき微粒子100個を電子顕
微鏡で観察した結果、平均粒径は8.13μm、半田め
っき層の厚みは0.6μmであった。粒径の変動係数は
2.9%で、半田めっき層の厚みが極めて均一であるこ
とが証明された。Observation of the solder-plated fine particles, the outermost shell of which was a solder-plated layer, by an optical microscope showed that there was no aggregation and all the particles were present as single particles. Further, as a result of observing 100 of the solder plated fine particles with an electron microscope, the average particle diameter was 8.13 μm, and the thickness of the solder plated layer was 0.6 μm. The coefficient of variation of the particle size was 2.9%, which proved that the thickness of the solder plating layer was extremely uniform.
【0065】(比較例3)めっき装置として従来のバレ
ルめっき装置を用いたこと以外は実施例3と全く同様に
して半田めっき微粒子を得た。Comparative Example 3 Solder fine particles were obtained in exactly the same manner as in Example 3 except that a conventional barrel plating apparatus was used as the plating apparatus.
【0066】この半田めっき微粒子を光学顕微鏡で観察
したところ、数個から数十個の凝集塊が多数認められ
た。また、この半田めっき微粒子100個を電子顕微鏡
で観察した結果、平均粒径は8.03μm、半田めっき
層の厚みは0.55μmであった。粒径の変動係数は1
4.3%で、半田めっき層の厚みが極めて不均一である
ことが証明された。When these solder plated fine particles were observed with an optical microscope, many to several tens of agglomerates were observed. Further, as a result of observing 100 of the solder plated fine particles with an electron microscope, the average particle diameter was 8.03 μm, and the thickness of the solder plated layer was 0.55 μm. The coefficient of variation of the particle size is 1
At 4.3%, it was proved that the thickness of the solder plating layer was extremely uneven.
【0067】(実施例4)スチレンとジビニルベンゼン
とを共重合させて、平均粒径6.53μm,変動係数1
7%の有機樹脂微粒子を得た。この有機樹脂微粒子を用
いたこと以外は、実施例1と同様にニッケルめっきおよ
び金めっきを行い、金めっき樹脂微粒子を得た。Example 4 Styrene and divinylbenzene were copolymerized to give an average particle size of 6.53 μm and a coefficient of variation of 1.
7% of organic resin fine particles were obtained. Nickel plating and gold plating were performed in the same manner as in Example 1 except that the organic resin fine particles were used, to obtain gold-plated resin fine particles.
【0068】得られた金めっきされた樹脂微粒子100
個を電子顕微鏡で観察した結果、平均粒径は6.93μ
m、金めっき層の厚みは0.20μmと計算された。ま
た、粒径の変動係数は19%であった。The obtained gold-plated resin fine particles 100
The individual particles were observed with an electron microscope, and as a result, the average particle size was 6.93 μm.
m, the thickness of the gold plating layer was calculated to be 0.20 μm. The coefficient of variation of the particle size was 19%.
【0069】さらに、該粒子の金めっき樹脂微粒子の凝
集の程度を表1に示した。粒子凝集の程度は、表2に示
すように、金めっき樹脂微粒子1000個の中に存在す
る粒子5個以上からなる凝集塊の数によって分類したグ
レードで示した。Further, Table 1 shows the degree of aggregation of the gold-plated resin particles of the particles. As shown in Table 2, the degree of particle agglomeration was shown in grades classified according to the number of agglomerates composed of five or more particles present in 1,000 gold-plated resin fine particles.
【0070】(実施例7、10、比較例4〜6、比較例
9および10、比較例19−24) スチレンとジビニルベンゼンとを共重合させて得られた
表1に示す平均粒径および変動係数の有機樹脂微粒子を
用いたこと以外は、実施例1と同様にニッケルめっきお
よび金めっきを行い、表1に示す粒径および変動係数を
有する金めっき樹脂微粒子を得た。この金めっき樹脂微
粒子の凝集の程度を表1に示した。(Examples 7 , 10 ; Comparative Examples 4 to 6, Comparative Examples 9 and 10 , and Comparative Examples 19 to 24 ) The average particle diameters and fluctuations shown in Table 1 obtained by copolymerizing styrene and divinylbenzene. Nickel plating and gold plating were performed in the same manner as in Example 1 except that organic resin fine particles having a coefficient were used to obtain gold-plated resin fine particles having a particle diameter and a variation coefficient shown in Table 1. Table 1 shows the degree of aggregation of the gold-plated resin particles.
【0071】(実施例13、16、比較例7、8および
11、比較例25−27) 有機樹脂微粒子の代わりに、粒径および変動係数の異な
る表1に示すシリカ微粒子を用いたこと以外は、実施例
1と同様にニッケルめっきおよび金めっきを行い、表1
に示す粒径および変動係数を有する金めっき樹脂微粒子
を得た。この金めっき樹脂微粒子の凝集の程度を表1に
示した。(Examples 13 and 16 , Comparative Examples 7, 8 and 11 , and Comparative Examples 25-27 ) Except that instead of the organic resin fine particles, silica fine particles having different particle diameters and coefficients of variation shown in Table 1 were used. Then, nickel plating and gold plating were performed in the same manner as in Example 1.
The gold-plated resin fine particles having the particle diameter and the coefficient of variation shown in Table 1 were obtained. Table 1 shows the degree of aggregation of the gold-plated resin particles.
【0072】(実施例19)実施例1で用いたニッケル
めっき有機樹脂微粒子を基材とした。Example 19 The nickel-plated organic resin fine particles used in Example 1 were used as substrates.
【0073】下記組成のめっき液を調製し、下記方法で
酸化第1錫を補給しながら下記条件で錫−ビスマス(S
n−Bi)めっきを行った。A plating solution having the following composition was prepared, and tin-bismuth (S) was added under the following conditions while replenishing stannous oxide by the following method.
n-Bi) Plating was performed.
【0074】液組成 メタンスルホン酸ビスマス 50g/l(Bi=21g
/l) メタンスルホン酸第1錫 23g/l(Sn=9g/
l) メタンスルホン酸 200g/l アルキルノニルフェニルエーテル 5g/lめっき条件 陰極電流密度 0.3A/dm2 浴温 20℃ 陽極 Bi(99.99%以上) めっき時間 240分錫の補給 酸化第1錫を別槽で溶解して補給した。補給頻度は40
分に1回で、Snとして0.3g/リットル/回の補給
とした。 Liquid composition Bismuth methanesulfonate 50 g / l (Bi = 21 g)
/ L) stannous methanesulfonate 23g / l (Sn = 9g /
l) Methanesulfonic acid 200 g / l Alkyl nonylphenyl ether 5 g / l Plating conditions Cathode current density 0.3 A / dm 2 Bath temperature 20 ° C. Anode Bi (99.99% or more) Plating time 240 minutes Tin replenishment stannous oxide Was dissolved in a separate tank and replenished. Replenishment frequency is 40
Once per minute, Sn was replenished at 0.3 g / liter / time.
【0075】上記めっき法の採用により、めっき初期と
めっき240分後とでめっき液中のBi量とSn量にほ
とんど変動がなく、また得られる析出物(Bi−Sn合
金)の外観及び析出物中のBi量も30〜35%でめっ
き初期と240分後とでほとんど同じであり、安定して
いた。By employing the above plating method, the Bi amount and the Sn amount in the plating solution hardly fluctuate between the initial stage of plating and 240 minutes after plating, and the appearance and precipitate of the obtained precipitate (Bi-Sn alloy) The Bi content therein was 30-35%, almost the same between the initial stage of plating and after 240 minutes, and was stable.
【0076】なお、上記めっき法においてはBi陽極を
使用したので、Biの置換析出は生じなかったが、陽極
としてBi−Sn(7/3)合金を使用し、錫の補給を
行わなかった場合、めっき休止中にめっき液中のBiが
Bi−Sn合金陽極に置換析出し、その分、液中のBi
量が減少し、またSn量が増加したため、その後のめっ
きではBi量が低く、Sn量の多いBi−Sn合金めっ
き皮膜となった。In the above plating method, the Bi anode was used, so that Bi substitutional precipitation did not occur. However, when the Bi—Sn (7/3) alloy was used as the anode and tin was not supplied. During the suspension of plating, Bi in the plating solution was replaced and precipitated on the Bi—Sn alloy anode, and Bi in the solution was accordingly reduced.
Since the amount decreased and the Sn amount increased, the subsequent plating resulted in a Bi—Sn alloy plating film having a low Bi amount and a large Sn amount.
【0077】(比較例12)めっき装置として従来のバ
レルめっき装置を用いたこと以外は実施例19と全く同
様にして錫−ビスマスめっき有機樹脂微粒子を得た。Comparative Example 12 Tin-bismuth-plated organic resin fine particles were obtained in exactly the same manner as in Example 19 except that a conventional barrel plating apparatus was used as the plating apparatus.
【0078】(参考例1) 実施例2で用いたニッケルめっきシリカ微粒子を基材と
した。 Reference Example 1 The nickel-plated silica fine particles used in Example 2 were used as a substrate.
【0079】下記組成のめっき液を調製し、下記方法で
硫酸第1錫を補給しながら下記条件で錫−ビスマス(S
n−Bi)めっきを行った。A plating solution having the following composition was prepared, and tin-bismuth (S) was added under the following conditions while replenishing stannous sulfate by the following method.
n-Bi) Plating was performed.
【0080】液組成 フェノールスルホン酸ビスマス 73g/l(Bi=2
1g/l) フェノールスルホン酸第1錫 35g/l(Sn=9
g/l) フェノールスルホン酸 350g/l アルキルノニルフェニルエーテル 5g/lめっき条件 陰極電流密度 2A/dm2 浴温 20℃ 陽極 Bi(99.99%以上) めっき時間 20分錫の補給 硫酸第1錫を置換めっき槽内のめっき液に添加、溶解し
て補給した。補給頻度は10分に1回で、Snとして
0.5g/リットル/回の補給とした。 Liquid composition 73 g / l of bismuth phenol sulfonate (Bi = 2
1 g / l) Stannous phenol sulfonate 35 g / l (Sn = 9)
g / l) Phenolsulfonic acid 350 g / l Alkyl nonyl phenyl ether 5 g / l Plating conditions Cathode current density 2 A / dm 2 Bath temperature 20 ° C. Anode Bi (99.99% or more) Plating time 20 minutes Tin replenishment stannous sulfate Was added to, dissolved in, and supplied to the plating solution in the displacement plating tank. The replenishment frequency was once every 10 minutes, and the replenishment was 0.5 g / liter / time as Sn.
【0081】上記めっき法の採用により、めっき初期と
めっき20分後とでめっき液中のBi量とSn量にほと
んど変動がなく、また得られる析出物(Bi−Sn合
金)の外観及び析出物中のBi量も30〜35%でめっ
き初期と20分後とでほとんど同じであり、安定してい
た。By employing the above plating method, there is almost no change in the amount of Bi and Sn in the plating solution between the initial plating and 20 minutes after the plating, and the appearance and precipitate of the obtained precipitate (Bi-Sn alloy) The Bi content therein was 30-35%, almost the same at the initial stage of plating and after 20 minutes, and was stable.
【0082】なお、上記めっき法において、陽極として
Bi−Sn(7/3)合金を使用し、錫の補給を行わな
かった場合、めっき休止中にめっき液中のBiがBi−
Sn合金陽極に置換析出し、その分、液中のBi量が減
少し、またSn量が増加したため、その後のめっきでは
Bi量が低く、Sn量の多いBi−Sn合金めっき皮膜
となった。In the above plating method, when Bi—Sn (7/3) alloy was used as the anode and tin was not supplied, Bi in the plating solution was changed to Bi—
Substitution precipitation occurred on the Sn alloy anode, and the Bi amount in the solution decreased and the Sn amount increased by that amount. Therefore, in the subsequent plating, a Bi-Sn alloy plating film having a low Bi amount and a large Sn amount was obtained.
【0083】(比較例13) めっき装置として従来のバレルめっき装置を用いたこと
以外は参考例1と全く同様にして錫−ビスマスめっきシ
リカ微粒子を得た。Comparative Example 13 Tin-bismuth-plated silica fine particles were obtained in exactly the same manner as in Reference Example 1 , except that a conventional barrel plating apparatus was used as the plating apparatus.
【0084】(実施例21)実施例1で用いたニッケル
めっき有機樹脂微粒子50gを基材とした。(Example 21) 50 g of the nickel-plated organic resin fine particles used in Example 1 were used as a base material.
【0085】下記組成のめっき液を調製し、実施例1と
同様にしてSn−Agめっきを行った。A plating solution having the following composition was prepared, and Sn-Ag plating was performed in the same manner as in Example 1.
【0086】液組成 すず酸カリウム 50g/l (金属すずとして 20g/l) 銀シアン化カリウム 10g/l 水酸化カリウム 50g/l 酢酸ナトリウム 5g/l シアン化カリウム 50g/l 炭酸カリウム 5g/l 陰極電流密度 1A/dm2 浴温 35℃ (比較例14)めっき装置として従来のバレルめっき装
置を用いたこと以外は実施例21と全く同様にして錫−
銀めっき有機樹脂微粒子を得た。 Liquid composition Potassium stannate 50 g / l (20 g / l as metal tin) Silver potassium cyanide 10 g / l Potassium hydroxide 50 g / l Sodium acetate 5 g / l Potassium cyanide 50 g / l Potassium carbonate 5 g / l Cathode current density 1 A / dm ( 2) Bath temperature 35 ° C. (Comparative Example 14) Tin-plating was performed in exactly the same manner as in Example 21 except that a conventional barrel plating apparatus was used as the plating apparatus.
Silver-plated organic resin fine particles were obtained.
【0087】(参考例2) 実施例2で用いたニッケルめっきシリカ微粒子50gを
基材とした。 Reference Example 2 The base material was 50 g of the nickel-plated silica fine particles used in Example 2.
【0088】下記組成のめっき液を調製し、実施例1と
同様にしてSn−Auめっきを行った。A plating solution having the following composition was prepared, and Sn-Au plating was performed in the same manner as in Example 1.
【0089】液組成 すず酸カリウム 50g/l (金属すずとして 20g/l) シアン化金カリウム 50g/l 水酸化カリウム 15g/l 酢酸ナトリウム 5g/l シアン化カリウム 50g/l 炭酸カリウム 15g/l りん酸カリウム 15g/l 陰極電流密度 1.5A/dm2 浴温 65℃ (比較例15) めっき装置として従来のバレルめっき装置を用いたこと
以外は参考例2と全く同様にして錫−金めっきシリカ微
粒子を得た。Liquid composition Potassium stannate 50 g / l (20 g / l as metal tin) Potassium cyanide 50 g / l Potassium hydroxide 15 g / l Sodium acetate 5 g / l Potassium cyanide 50 g / l Potassium carbonate 15 g / l Potassium phosphate 15 g / L Cathode current density 1.5 A / dm 2 Bath temperature 65 ° C (Comparative Example 15) Tin-gold-plated silica fine particles were obtained in exactly the same manner as in Reference Example 2 except that a conventional barrel plating apparatus was used as the plating apparatus. Was.
【0090】(実施例23)実施例1で用いたニッケル
めっき有機樹脂微粒子50gを基材とした。Example 23 The base material was 50 g of the nickel-plated organic resin fine particles used in Example 1.
【0091】下記組成のめっき液を調製し、実施例1と
同様にしてSn−Znめっきを行った。A plating solution having the following composition was prepared, and Sn-Zn plating was performed in the same manner as in Example 1.
【0092】液組成 すず酸カリウム 50g/l (金属すずとして 20g/l) シアン化亜鉛 30g/l (金属亜鉛として 20g/l) シアン化カリウム 20g/l シアン化ナトリウム 20g/l 水酸化カリウム 15g/l 水酸化ナトリウム 45g/l 酢酸ナトリウム 5g/l 陰極電流密度 5A/dm2 浴温 40℃ (比較例16)めっき装置として従来のバレルめっき装
置を用いたこと以外は実施例23と全く同様にして錫−
亜鉛めっき有機樹脂微粒子を得た。 Liquid composition Potassium stannate 50 g / l (20 g / l as metal tin) Zinc cyanide 30 g / l (20 g / l as zinc metal) Potassium cyanide 20 g / l Sodium cyanide 20 g / l Potassium hydroxide 15 g / l Water Sodium oxide 45 g / l Sodium acetate 5 g / l Cathode current density 5 A / dm 2 Bath temperature 40 ° C. (Comparative Example 16) Tin-plating was performed in exactly the same manner as in Example 23 except that a conventional barrel plating apparatus was used as the plating apparatus.
The zinc-plated organic resin fine particles were obtained.
【0093】(参考例3) 実施例2で用いたニッケルめっきシリカ微粒子50gを
基材とした。 (Reference Example 3) 50 g of the nickel-plated silica fine particles used in Example 2 were used as a base material.
【0094】下記組成のめっき液を調製し、実施例1と
同様にしてSn−Sbめっきを行った。A plating solution having the following composition was prepared, and Sn—Sb plating was performed in the same manner as in Example 1.
【0095】液組成 メタンスルホン酸第一錫 20g/l メタンスルホン酸アンチモン 60g/l メタンスルホン酸 250g/l アルキルノニルフェニルエーテル 5g/l 陰極電流密度 1A/dm2 浴温 30℃ (比較例17) めっき装置として従来のバレルめっき装置を用いたこと
以外は参考例3と全く同様にして錫−アンチモンめっき
シリカ微粒子を得た。Liquid composition Stannous methanesulfonate 20 g / l Antimony methanesulfonate 60 g / l Methanesulfonic acid 250 g / l Alkyl nonylphenyl ether 5 g / l Cathode current density 1 A / dm 2 Bath temperature 30 ° C. (Comparative Example 17) Except that a conventional barrel plating apparatus was used as the plating apparatus, tin-antimony-plated silica fine particles were obtained in exactly the same manner as in Reference Example 3 .
【0096】(実施例25)実施例1で用いたニッケル
めっき有機樹脂微粒子50gを基材とした。(Example 25) 50 g of the nickel-plated organic resin fine particles used in Example 1 were used as a base material.
【0097】下記組成のめっき液を調製し、実施例1と
同様にしてSn−Cdめっきを行った。A plating solution having the following composition was prepared, and Sn—Cd plating was performed in the same manner as in Example 1.
【0098】液組成 すず酸カリウム 50g/l (金属すずとして 20g/l) シアン化カドミウムナトリウム 40g/l シアン化カリウム 20g/l シアン化ナトリウム 20g/l 水酸化カリウム 15g/l 水酸化ナトリウム 45g/l 酢酸ナトリウム 5g/l 陰極電流密度 2A/dm2 浴温 30℃ (比較例18)めっき装置として従来のバレルめっき装
置を用いたこと以外は実施例94と全ど同様にして錫−
アンチモンめっきシリカ微粒子を得た。 Liquid composition Potassium stannate 50 g / l (20 g / l as metal tin) Sodium cadmium cyanide 40 g / l Potassium cyanide 20 g / l Sodium cyanide 20 g / l Potassium hydroxide 15 g / l Sodium hydroxide 45 g / l Sodium acetate 5 g / l Cathode current density 2 A / dm 2 Bath temperature 30 ° C. (Comparative Example 18) The same procedure as in Example 94 was carried out except that a conventional barrel plating apparatus was used as the plating apparatus.
Antimony-plated silica fine particles were obtained.
【0099】上記実施例および比較例の結果を表2に示
す。Table 2 shows the results of the above Examples and Comparative Examples .
【0100】[0100]
【表1】 [Table 1]
【0101】[0101]
【表2】 [Table 2]
【0102】[0102]
【表3】 [Table 3]
【0103】表1および表2の結果から、めっき粒子の
平均粒径が0.5μm未満、または5000μmを超え
る場合および該粒子の粒径の変動係数が50%を超える
場合は、いずれもめっき粒子の凝集の程度のグレードが
5であって、粒子の凝集塊が多数認められた。From the results shown in Tables 1 and 2, when the average particle size of the plated particles is less than 0.5 μm or more than 5000 μm and when the coefficient of variation of the particle size exceeds 50%, the plated particles Was 5 and the number of aggregates of the particles was large.
【0104】[0104]
【発明の効果】本発明の方法によれば、例えば、粒径5
000μm以下のような粒径の小さい微粒子を用いて
も、めっき液中で微粒子が凝集してそのままめっきされ
単粒子として得られないことや、めっき層の厚みが不均
一となることがなく、簡単な装置を用いて、極めて均一
な厚さのめっき層を有する導電性微粒子の製造方法が提
供される。According to the method of the present invention, for example, a particle size of 5
Even if fine particles having a small particle size of 000 μm or less are used, the fine particles are easily aggregated in the plating solution and cannot be obtained as a single particle by being plated as they are, and the thickness of the plating layer is not uniform, and the method is simple. The present invention provides a method for producing conductive fine particles having a plating layer with a very uniform thickness using a simple apparatus.
【0105】本発明の製造方法により得られた導電性微
粒子は、導電性ペースト、導電性接着剤あるいは異方導
電フィルムなどの導電性材料のスペーサーとして用いる
ことができ、非常に優れた特性を有する。The conductive fine particles obtained by the production method of the present invention can be used as a spacer for a conductive material such as a conductive paste, a conductive adhesive or an anisotropic conductive film, and have extremely excellent properties. .
【図1】本発明に用いられるめっき装置の概略図であ
る。FIG. 1 is a schematic view of a plating apparatus used in the present invention.
1 カバー 2 電極 2a 陽極 3 回転軸 5 容器 6 めっき液供給管 7 めっき液排出管 8 開口部 11 底板 12 接触リング 13 多孔質リング DESCRIPTION OF SYMBOLS 1 Cover 2 Electrode 2a Anode 3 Rotation axis 5 Container 6 Plating solution supply pipe 7 Plating solution discharge pipe 8 Opening 11 Bottom plate 12 Contact ring 13 Porous ring
フロントページの続き (72)発明者 山田 都一 大阪府大阪市北区西天満2−4−4 積 水フアインケミカル株式会社内 (72)発明者 杉浦 裕 大阪府枚方市出口1−5−1 上村工業 株式会社 中央研究所内 (56)参考文献 特開 平8−239799(JP,A) 特開 平7−118896(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 7/00 C25D 17/16 - 17/26 Continuation of the front page (72) Inventor Toichi Yamada 2-4-4 Nishitenma, Kita-ku, Osaka-shi, Osaka Within Sekisui Fine Chemical Co., Ltd. (72) Inventor Yutaka Sugiura 1-5-1 Exit, Hirakata-shi, Osaka, Uemura (56) References JP-A-8-239799 (JP, A) JP-A-7-118896 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 7/00 C25D 17/16-17/26
Claims (3)
が形成され、外周部に陰極を有する回転可能なめっき装
置本体と、該本体の中に該陰極に接触しないよう設置さ
れた陽極とを有するめっき装置を用いて、該本体をその
回転軸を中心に回転させながら、該本体内にめっき液を
補給しつつ該本体内に入れられた微粒子の表面にめっき
層を形成する導電性微粒子の製造方法であって、該微粒子の粒径の変動係数が20%以下であり、 該導電
性微粒子の粒径が0.5〜5000μmであり、かつ、
該導電性微粒子の粒径の変動係数が20%以下であるこ
とを特徴とする導電性微粒子の製造方法。1. A rotatable plating apparatus main body having a filter portion formed on at least a part of an outer peripheral portion and having a cathode on the outer peripheral portion, and an anode provided in the main body so as not to contact the cathode. using a plating apparatus, while rotating the body about its axis of rotation, the conductive fine particles for forming a plating layer on the surface of the fine particles placed within the body while replenishing the plating solution within the body A production method, wherein the coefficient of variation of the particle size of the fine particles is 20% or less, the particle size of the conductive fine particles is 0.5 to 5000 μm, and
Method for producing a conductive fine particle, wherein the variation coefficient of the particle diameter of the conductive fine particles is 20% or less.
状の底板と、この底板の外周上面に、処理液のみを通す
多孔体を配し、この多孔体上面に通電用の接触リングを
配し、上部中央に開口を有する円錐台形状の中空カバー
の外周部で、多孔体と接触リングとを底板との間で挟持
してなる処理室を形成し、上記開口より処理液を上記処
理室に供給する供給管と、上記多孔体窓から飛散した処
理液を受ける容器と、上記容器に溜まった処理液を排出
する排出管と、上記開口から挿入されてめっき液に接触
する電極とを有するめっき装置を用いて、前処理を施し
た微粒子を上記処理室に入れ、上記微粒子の表面にめっ
き層を形成する導電性微粒子の製造方法であって、該微粒子の粒径の変動係数が20%以下であり、 該導電
性微粒子の粒径が0.5〜5000μmであり、かつ、
該導電性微粒子の粒径の変動係数が20%以下であるこ
とを特徴とする導電性微粒子の製造方法。2. A disc-shaped bottom plate fixed to the upper end of a vertical drive shaft, and a porous body through which only the processing liquid passes are disposed on the outer peripheral upper surface of the bottom plate. The processing chamber formed by sandwiching the porous body and the contact ring between the bottom plate and the outer periphery of the truncated cone-shaped hollow cover having an opening at the upper center is formed, and the processing liquid is supplied through the opening. A supply pipe for supplying to the processing chamber, a container for receiving the processing liquid scattered from the porous window, a discharge pipe for discharging the processing liquid accumulated in the container, and an electrode inserted from the opening to contact the plating solution. using a plating apparatus having put the pretreatment of applying the fine particles to the processing chamber, a method for producing conductive fine particles for forming a plating layer on the surface of the fine particles, the variation coefficient of the particle size of the fine particles 20% or less, and the particle size of the conductive fine particles is 0.5 % or less. 55000 μm, and
Method for producing a conductive fine particle, wherein the variation coefficient of the particle diameter of the conductive fine particles is 20% or less.
鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウ
ム、ニッケル、クロム、チタン、アンチモン、ビスマ
ス、ゲルマニウム、カドミウムおよびケイ素からなる群
より選ばれる少なくとも1種の金属からなることを特徴
とする請求項1または2に記載の導電性微粒子の製造方
法。3. The group wherein the plating layer comprises gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium and silicon. The method for producing conductive fine particles according to claim 1, comprising at least one metal selected from the group consisting of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07500996A JP3354382B2 (en) | 1995-04-03 | 1996-03-28 | Method for producing conductive fine particles |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7802695 | 1995-04-03 | ||
JP7-234111 | 1995-09-12 | ||
JP23411195 | 1995-09-12 | ||
JP7-78026 | 1995-09-12 | ||
JP07500996A JP3354382B2 (en) | 1995-04-03 | 1996-03-28 | Method for producing conductive fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09137289A JPH09137289A (en) | 1997-05-27 |
JP3354382B2 true JP3354382B2 (en) | 2002-12-09 |
Family
ID=27301681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07500996A Expired - Lifetime JP3354382B2 (en) | 1995-04-03 | 1996-03-28 | Method for producing conductive fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3354382B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1010781A4 (en) * | 1997-04-17 | 2007-04-25 | Sekisui Chemical Co Ltd | Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same |
JP3328216B2 (en) * | 1999-04-22 | 2002-09-24 | 積水化学工業株式会社 | Equipment for manufacturing conductive fine particles |
KR20040030393A (en) | 2000-08-04 | 2004-04-09 | 세키스이가가쿠 고교가부시키가이샤 | Conductive fine particles, method for plating fine particles, and substrate structural body |
JP3694249B2 (en) * | 2001-04-25 | 2005-09-14 | 積水化学工業株式会社 | Fine particle plating method, conductive fine particles, and connection structure |
US7045050B2 (en) | 2001-07-31 | 2006-05-16 | Sekisui Chemical Co., Ltd. | Method for producing electroconductive particles |
JP4758611B2 (en) * | 2004-01-14 | 2011-08-31 | 積水化学工業株式会社 | Method for producing metal resin composite fine particles and metal resin composite fine particles |
KR101451778B1 (en) | 2006-12-28 | 2014-10-16 | 우에무라 고교 가부시키가이샤 | Method of determining operating condition for rotary surface treating apparatus |
CN102851726B (en) * | 2011-06-30 | 2016-08-10 | 扬州市金杨电镀设备有限公司 | Small part electroplating device |
JP6423583B2 (en) * | 2012-05-14 | 2018-11-14 | 積水化学工業株式会社 | Conductive particle material, conductive material, connection structure, and manufacturing method of connection structure |
JP7234983B2 (en) * | 2020-03-19 | 2023-03-08 | 株式会社村田製作所 | Plating equipment and plating method |
-
1996
- 1996-03-28 JP JP07500996A patent/JP3354382B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09137289A (en) | 1997-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4243279B2 (en) | Conductive fine particles and anisotropic conductive materials | |
TW554350B (en) | Method for producing electroconductive particles | |
JP4235227B2 (en) | Conductive fine particles and anisotropic conductive materials | |
TWI444235B (en) | Conductive microparticles and anisotropic conductive materials | |
JP3874911B2 (en) | Plating method for micro plastic balls | |
JP4638341B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP3354382B2 (en) | Method for producing conductive fine particles | |
JP4674096B2 (en) | Conductive fine particles and anisotropic conductive materials | |
JP4860163B2 (en) | Method for producing conductive fine particles | |
JP4718926B2 (en) | Conductive fine particles and anisotropic conductive material | |
JP4936678B2 (en) | Conductive particles and anisotropic conductive materials | |
JP2007242307A (en) | Conductive particulate and anisotropic conductive material | |
JP3083535B2 (en) | Conductive fine particles and conductive adhesive | |
KR101713015B1 (en) | Graphene Coated Conductive particles, and conductive materials including the same | |
JPS63190204A (en) | Conducting fine pellet | |
JP2007324138A (en) | Conductive particulate and anisotropic conductive material | |
WO2010113641A1 (en) | Conductive fine particles, anisotropic conductive element, and connection structure | |
JP2000315425A (en) | Conductive particulate and conductive connection structure | |
JP3328216B2 (en) | Equipment for manufacturing conductive fine particles | |
JPH11172495A (en) | Apparatus for production of conductive particulate | |
JP3454796B2 (en) | Method for producing conductive fine particles | |
JP2006086104A (en) | Conductive fine particle and anisotropic conductive material | |
JP2003293191A (en) | Method for producing electroconductive fine particle | |
JP2012004133A (en) | Conductive fine particle and anisotropic conductive material | |
KR20200021440A (en) | Electroconductive particle, the manufacturing method, electroconductive material, and bonded structure of electroconductive particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020827 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090927 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110927 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120927 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120927 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130927 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |