JP3451911B2 - Steel frame guidance system using tracking type ranging and goniometer - Google Patents

Steel frame guidance system using tracking type ranging and goniometer

Info

Publication number
JP3451911B2
JP3451911B2 JP34682597A JP34682597A JP3451911B2 JP 3451911 B2 JP3451911 B2 JP 3451911B2 JP 34682597 A JP34682597 A JP 34682597A JP 34682597 A JP34682597 A JP 34682597A JP 3451911 B2 JP3451911 B2 JP 3451911B2
Authority
JP
Japan
Prior art keywords
steel frame
steel
difference
coordinates
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34682597A
Other languages
Japanese (ja)
Other versions
JPH11183173A (en
Inventor
佳久 松石
知則 佐藤
直也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP34682597A priority Critical patent/JP3451911B2/en
Publication of JPH11183173A publication Critical patent/JPH11183173A/en
Application granted granted Critical
Publication of JP3451911B2 publication Critical patent/JP3451911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は追尾型測距・測角儀利用
の鉄骨誘導システムに関し、特に建設工事において鉄骨
建方中の鉄骨を正確な設計位置に誘導するシステムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel frame guiding system using a tracking type range finder and angle measuring device, and more particularly to a system for guiding a steel frame in a steel frame to an accurate design position in a construction work.

【0002】[0002]

【従来の技術】従来の建設工事の建方における鉄骨の誘
導の一例は次の手順によっていた。 (1)あらかじめ、歪直しワイヤー等の歪直し手段を取
付けた鉄骨をおおよその位置に建方する。 (2)鉄骨の本締めは行わず、仮ボルトで鉄骨を固定す
る。 (3)トランシットと巻尺などを用いて、平面的に鉄骨
位置の地墨を地上に出しておき、その墨を交点とした直
交方向から2台のトランシットで計測を行い、歪直しワ
イヤーを緊張又は弛緩することにより、鉄骨を正規
(X、Y)位置に決める。 (4)レベルについては、別方向から計測を実施し、鉄
骨を正規のZ位置に決める。
2. Description of the Related Art An example of steel guiding in a conventional construction method is as follows. (1) The steel frame to which the straightening means such as the straightening wire is attached is erected in an approximate position in advance. (2) Fix the steel frame with temporary bolts without tightening the steel frame. (3) Using a transit and a tape measure, put out the ground ink at the steel position in a plane on the ground, measure it with two transits from the orthogonal direction with the ink as the intersection, and strain or straighten the wire. By relaxing, the steel frame is set to the normal (X, Y) position. (4) With respect to the level, measurement is performed from another direction, and the steel frame is set to the regular Z position.

【0003】また、トータルステーション(以下、測距
・測角儀という場合がある。)を使う方法の手順は次の
ようであった。 (イ)あらかじめ、歪直しワイヤー等の歪直し手段を取
付けた鉄骨をおおよその位置に建方する。 (ロ)視準式(自動でない)測距・測角儀で鉄骨位置を
計測し、歪直しワイヤーに対して加えるべき緊張又は弛
緩量及び方向を、鉄骨の歪直しを行う作業者に指示し
て、正規(X、Y、Z)位置に決める。
The procedure of the method using a total station (hereinafter, also referred to as a distance measuring / angle measuring device) was as follows. (A) The steel frame to which the straightening means such as the straightening wire is attached is erected in an approximate position in advance. (B) Measure the position of the steel frame with a collimation type (not automatic) rangefinder / angle finder, and instruct the operator who performs the warping of the steel frame about the amount and direction of tension or relaxation that should be applied to the wire. To determine the normal (X, Y, Z) position.

【0004】[0004]

【発明が解決しようとする課題】しかし従来の鉄骨の誘
導方法には、鉄骨建方時に於いて、一度鉄骨を固定(も
しくは停止)させないと計測ができず、また、計測結果
をもとにして、鉄骨を正規の位置に移動させた後、再度
鉄骨を停止させ、計測を行う必要があり、この作業を数
回繰返さねばならず、その計測には時間及び手間が非常
にかかる作業が必要となる問題点があった。
However, in the conventional method for guiding a steel frame, when the steel frame is erected, the measurement cannot be performed unless the steel frame is fixed (or stopped) once, and the measurement result is used. After moving the steel frame to the proper position, it is necessary to stop the steel frame again and perform measurement, and this work must be repeated several times, which requires time-consuming and labor-intensive work. There was a problem.

【0005】従って、本発明の目的は移動中の鉄骨を設
計座標へ短時間に小人数で確実に位置決めできる追尾型
測距・測角儀利用の鉄骨誘導システムを提供するにあ
る。
Therefore, it is an object of the present invention to install a moving steel frame .
It is to provide a steel guiding system using a tracking type range finder / angle finder that can be reliably positioned by a small number of people in a short time in the coordinate system.

【0006】[0006]

【課題を解決するための手段】図1及び図6の実施例を
参照するに、本発明の追尾型測距・測角儀利用の鉄骨誘
導システムは、移動装置8に吊下げた鉄骨建方中の鉄骨
1上の相互に隔たった2つ以上の所要部1A、1Bが占める
べき三次元設計座標(D)を記憶するコンピュータ3、
鉄骨所要部1A、1Bへ取付けた反射板2A、2Bを鉄骨1の移
動中に光で追尾して距離と方位角とを連続的に計測する
一定位置の追尾型測距・測角儀4、測距・測角儀4の出
力から鉄骨の各所要部1A、1Bの三次元測定座標(C)を
求める座標算出手段21、各所要部1A、1Bの設計座標と測
定座標の差分(R=D−C)を求める差分検知手段22、
各所要部1A、1Bの測定座標(C)から鉄骨1の姿勢を求
める手段(図示せず)、並びにコンピュータ3に結合さ
れて移動中の鉄骨1の前記差分(R)の水平及び垂直成
分と該鉄骨1の姿勢(図示せず)とをリアルタイムで表
示する表示手段を備え、前記水平及び垂直成分が零と
なる如く移動装置8により鉄骨1をその姿勢と共に誘導
するものである。測距・測角儀4による追尾を容易にす
るため、入射光をその入射方向に反射する特性の反射プ
リズムを反射板2として使うことができる。
With reference to the embodiments of FIGS. 1 and 6, a steel frame guiding system utilizing a tracking type range finder and a rangefinder according to the present invention is a steel frame erection system suspended from a moving device 8. A computer 3, which stores the three-dimensional design coordinates (D) that should be occupied by two or more required parts 1A, 1B that are separated from each other on the steel frame 1 inside .
Tracking type rangefinder / angle finder 4 at a fixed position for continuously measuring the distance and the azimuth by tracking the reflectors 2A, 2B attached to the steel required parts 1A, 1B with light while the steel frame 1 is moving, Coordinate calculating means 21 for obtaining the three-dimensional measurement coordinates (C) of each required portion 1A, 1B of the steel frame from the output of the distance measuring and angle measuring device 4, the difference between the design coordinates and the measured coordinates of each required portion 1A, 1B (R = Difference detection means 22 for obtaining D-C),
A means (not shown) for obtaining the attitude of the steel frame 1 from the measurement coordinates (C) of the required parts 1A and 1B, and horizontal and vertical components of the difference (R) of the moving steel frame 1 coupled to the computer 3 A display means 6 for displaying the posture (not shown) of the steel frame 1 in real time is provided, and the moving frame 8 guides the steel frame 1 together with the posture so that the horizontal and vertical components become zero. In order to facilitate tracking by the distance measuring / angle measuring device 4, a reflecting prism having a characteristic of reflecting incident light in the incident direction can be used as the reflecting plate 2.

【0007】[0007]

【発明の実施の形態】図1〜4及び図7を参照して動作
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation will be described with reference to FIGS.

【0008】(a)あらかじめ、作業エリア中の基盤15
に第1、第2基準点10、11等の複数の基準点に反射板2
を設置し、各基準点の座標を現場座標系にて計測してお
く。
(A) In advance, the base 15 in the work area
At the plurality of reference points such as the first and second reference points 10 and 11,
Is installed and the coordinates of each reference point are measured in the on-site coordinate system.

【0009】(b)鉄骨建方時に、各鉄骨1の所要点1A
を計測点としその計測点の取付け位置に対応する現場座
標系の設計座標(D)をCADデータなどから算出し、
通り芯・節等に従って系統的に分類してコンピュータ3
上にデータベースとして保存しておく。ただし、その系
統的分類は本発明にとって必須ではない。
(B) Required point 1A of each steel frame 1 when constructing the steel frame
The design coordinate (D) of the site coordinate system corresponding to the mounting position of the measurement point is calculated from CAD data,
Computer 3 by systematically classifying according to cores, nodes, etc.
Save it as a database above. However, the systematic classification is not essential to the present invention.

【0010】(c)自動追尾式(以下、追尾型とい
う。)測距・測角儀4を作業エリア内に設置して整準確
認をする。即ち、まず測距・測角儀4の高さを測定し、
測定値を測距・測角儀4自体又はコンピュータ3その他
の制御手段に入力する。次に2つの基準点10、11をその
測距・測角儀4で計測(後方交会方式にて)しその計測
値を測距・測角儀4自体又はコンピュータ3等に入力
し、現場座標系に変換することにより、その水平計測位
置の現場座標を定め、その後の測距・測角儀4による自
動的連続計測の出力を現場座標で表すようにする。又
は、図7に示すように基準点10、11の計測に代え、測距
・測角儀4の座標を別途求めて入力してもよい。また、
図1の座標算出手段21は、測距・測角儀4の計測出力を
現場座標に変換する機能を有するもので、測距・測角儀
4に内蔵させてもよい(図3参照)。
(C) Automatic tracking type (hereinafter referred to as a tracking type) The distance measuring / angle measuring device 4 is installed in the work area to confirm the alignment. That is, first, measure the height of the distance measuring / angle measuring device 4,
The measured value is input to the distance measuring / angle measuring device 4 itself or the computer 3 or other control means. Next, the two reference points 10 and 11 are measured by the distance measuring / angle measuring device 4 (by the rear meeting method), and the measured values are input to the distance measuring / angle measuring device 4 itself or the computer 3, etc. By converting into a system, the on-site coordinates of the horizontal measurement position are determined, and the output of the automatic continuous measurement by the distance-measuring / angle-measuring device 4 thereafter is represented by the on-site coordinates. Alternatively, as shown in FIG. 7, instead of measuring the reference points 10 and 11, the coordinates of the distance measuring / angle measuring device 4 may be separately obtained and input. Also,
The coordinate calculating means 21 of FIG. 1 has a function of converting the measurement output of the distance measuring / angle measuring device 4 into the on-site coordinates, and may be incorporated in the distance measuring / angle measuring device 4 (see FIG. 3).

【0011】(d)鉄骨1の移動装置8の操作者(図示
せず)に指示を与える合図者18(図7)が、案内すべき
鉄骨1が属する通り芯・節等で表わし得る梁番号をコン
ピュータ3に入力すると、コンピュータ3は、予めロー
ドしたプログラムにより、当該鉄骨1の取付け位置の設
計座標(D)を読出して差分検知手段22に出力すると共
に追尾型測距・測角儀4をその取付け位置の方向へ自動
的に向けるべき指示信号を発生する。ただし、通り芯・
節等をコンピュータに予め入力し且つ操作時にその通り
芯・節等によって鉄骨1の取付け位置の設計座標(D)
を読出して追尾型測距・測角儀4をその取付け位置の方
向へ自動的に向けることは本発明にとって必須ではな
く、手動で追尾型測距・測角儀4を当該鉄骨1の取付け
位置の方向に向けてもよい。
(D) A beam number which can be represented by a core, a joint or the like to which the steel frame 1 to be guided belongs by a signaler 18 (FIG. 7) giving an instruction to an operator (not shown) of the moving device 8 of the steel frame 1. When is input to the computer 3, the computer 3 reads the design coordinates (D) of the mounting position of the steel frame 1 by a preloaded program and outputs the design coordinates (D) to the difference detecting means 22 and the tracking type range finder / angle finder 4. It generates an instruction signal to be directed automatically towards its mounting position. However,
Design coordinates (D) of the mounting position of the steel frame 1 by inputting the nodes and the like in advance into the computer and by operating the core and nodes during the operation.
It is not essential to the present invention to automatically read the tracking type rangefinder / angle finder 4 toward the mounting position thereof, and manually set the tracking type rangefinder / angle finder 4 to the mounting position of the steel frame 1. May be turned in the direction of.

【0012】(e)所要点1Aへ正確に取付けた反射板2
を有する鉄骨1が、クレーン等の移動装置8(図1は移
動装置の吊下げロープのみを示す。)により前記取付け
位置に近付くと、追尾型測距・測角儀4が光線5によっ
てその反射板2を捕捉し、反射板2への距離と方位角と
を連続的に自動計測し、座標算出手段21を介してその反
射板2の測定座標(C)を出力する。
(E) Reflector plate 2 accurately attached to required point 1A
When the steel frame 1 having an arrow moves closer to the mounting position by a moving device 8 such as a crane (FIG. 1 shows only the hanging rope of the moving device), the tracking type rangefinder / angle finder 4 is reflected by the light beam 5. The plate 2 is captured, the distance to the reflection plate 2 and the azimuth angle are continuously and automatically measured, and the measurement coordinate (C) of the reflection plate 2 is output via the coordinate calculation means 21.

【0013】(f)コンピュータ3及び座標算出手段21
に接続した差分検知手段22が、その計測された測定座標
(C)を設計座標(D)と瞬時に比較し、差分(R=D
−C)を出力する。図示例では、コンピュータ3に結合
した表示器6と一体に設けた二成分表示手段(6A、6B)
が、その差分(R)の水平及び垂直成分を別々に表示す
る。好ましくは、設計座標(D)を設計水平座標(P)
と設計垂直座標(A)とに分け且つ測定座標(C)を測
定水平座標(E)と測定垂直座標(H)とに分け、差分
(R)の水平成分を、設計水平座標(P)と測定水平座
標(E)との対比として表示し、差分(R)の垂直成分
を、設計垂直座標(A)と測定垂直座標(H)との対比
として表示する(図2、3及び4参照)。
(F) Computer 3 and coordinate calculating means 21
The difference detection means 22 connected to the above instantly compares the measured measurement coordinate (C) with the design coordinate (D), and obtains the difference (R = D).
-C) is output. In the illustrated example, the two-component display means (6A, 6B) integrally provided with the display 6 connected to the computer 3
Displays the horizontal and vertical components of the difference (R) separately. Preferably, the design coordinate (D) is replaced with the design horizontal coordinate (P).
And the design vertical coordinate (A), the measurement coordinate (C) is divided into the measurement horizontal coordinate (E) and the measurement vertical coordinate (H), and the horizontal component of the difference (R) is designated as the design horizontal coordinate (P). It is displayed as a comparison with the measurement horizontal coordinate (E), and the vertical component of the difference (R) is displayed as a comparison between the design vertical coordinate (A) and the measurement vertical coordinate (H) (see FIGS. 2, 3 and 4). .

【0014】(g)好ましくは、建方中の鉄骨付近にい
る合図者18にハンディターミナルと呼ばれる可搬表示器
からなる表示器6を持たせておき、これに二成分表示手
段(6A、6B)を搭載し、差分検知手段22をコンピュータ
3に含め、可搬表示器6とコンピュータ3とを無線送受
信器7(図3参照)により電波17で連結することによ
り、合図者18や操作者が差分(R)を水平成分と垂直成
分とに分けて同時にオンライン・リアルタイムで目視で
きるようにする。
(G) Preferably, the signaler 18 near the steel frame in the building is provided with the indicator 6 consisting of a portable indicator called a handy terminal, and the two-component indicator means (6A, 6B) is provided to this. ) Is mounted, the difference detecting means 22 is included in the computer 3, and the portable display 6 and the computer 3 are connected by the radio wave 17 by the wireless transmitter / receiver 7 (see FIG. 3). The difference (R) is divided into a horizontal component and a vertical component so that they can be viewed online and in real time at the same time.

【0015】(h)図示例の場合、合図者18や操作者が
差分(R)が零となるように移動装置8の操作により鉄
骨1を誘導する。差分(R)の水平成分と垂直成分とが
同時に零若しくは所定の許容値以下に減少したことを確
認した時に、鉄骨1の所要部1Aが正規位置即ち設計座標
(D)に到達したとして、鉄骨1を固定し、本締めを行
う。これにより1本の鉄骨1又は梁の誘導動作を完了
し、次の鉄骨1に対して同様な誘導を繰返す。
(H) In the case of the illustrated example, the signaler 18 and the operator guide the steel frame 1 by operating the moving device 8 so that the difference (R) becomes zero. When it is confirmed that the horizontal component and the vertical component of the difference (R) are both zero or decreased to a predetermined allowable value or less at the same time, it is determined that the required portion 1A of the steel frame 1 has reached the normal position, that is, the design coordinate (D). Fix 1 and tighten completely. As a result, the guiding operation of one steel frame 1 or beam is completed, and the same guiding is repeated for the next steel frame 1.

【0016】こうして鉄骨1を、歪直しワイヤー、仮ボ
ルトでの固定、2台のトランシットによる計測、及び歪
直しワイヤーの緊張又は弛緩等の歪直し手段を用いるこ
となく確実に設計位置に誘導し且つ取付けることができ
る。
In this way, the steel frame 1 is securely guided to the designed position without using a straightening wire, fixing with a temporary bolt, measurement by two transits, and a straightening means such as tension or relaxation of the straightening wire, and Can be installed.

【0017】以上の説明において、鉄骨1の所要部1Aを
自由端としたが、本発明における所要部1Aはそのような
一方の端部のみに限定されない。例えば、図6の実施例
においては、誘導中の鉄骨1の両端を所要部1A、1Bとし
それぞれ反射板2A、2Bを取付け、2つの所要部1A、1Bに
独立の追尾型測距・測角儀4A、4Bをそれぞれ対応させて
設けている。各反射板2A、2Bを対応追尾型測距・測角儀
4A、4Bによって追尾・計測して各所要部1A、1Bの位置を
出力し、計測した各所要部1A、1Bの位置から鉄骨1の姿
勢を求め且つ表示すれば、鉄骨1の位置だけでなく姿勢
をも正確に誘導することができる。この場合、各反射板
2A、2Bに対応する個別の追尾型測距・測角儀4A、4Bは必
ずしも必要ではなく、単一の追尾型測距・測角儀4を切
換えることにより複数の反射板2A、2B等を順次追尾・計
測するようにしてもよい。
In the above description, the required portion 1A of the steel frame 1 is
Although it is a free end, the required portion 1A in the present invention is such a
It is not limited to only one end. For example, the embodiment of FIG.
In, the both ends of the steel frame 1 being guided are the required parts 1A and 1B.
Attach the reflectors 2A and 2B respectively to the two required parts 1A and 1B
Independent tracking type rangefinder / angle finder 4A, 4B
It is provided. Corresponding to each reflector 2A, 2B Tracking type range finder
Track and measure with 4A and 4B to locate the required parts 1A and 1B.
Image of steel frame 1 from the output and measured positions of required parts 1A and 1B
If the force is calculated and displayed, not only the position of the steel frame 1 but also the posture
Can also be accurately guided. In this case, each reflector
Separate tracking type rangefinder / angle finder 4A, 4B corresponding to 2A, 2B is required.
No need for sushi, just turn off the single tracking type rangefinder / angle finder 4.
By switching, you can sequentially track and measure multiple reflectors 2A, 2B, etc.
You may make it measure.

【0018】従って、本発明の目的である「移動中の鉄
骨を設計座標へ短時間に小人数で確実に位置決めできる
追尾型測距・測角儀利用の鉄骨誘導システム」の提供が
達成される。
Therefore, it is an object of the invention, "iron on the move.
A small number of people can reliably position the bone on the design coordinates in a short time.
Providing "steel frame guidance system using tracking type distance measuring and angle measuring instruments"
To be achieved.

【0019】[0019]

【実施例】【Example】 図4を参照するに、コンピュータ3はデータReferring to FIG. 4, the computer 3 is
ベースとして鉄骨1の取付け位置の設計座標を保持してHold the design coordinates of the mounting position of the steel frame 1 as a base
おりこれを瞬時に出力できるので、建方終了後の出来形Since this can be output instantaneously, it is a finished work after the erection.
計測についても、本発明を利用した自動化が可能になAlso for measurement, automation using the present invention is possible.
る。例えば、図5に示すように組立て後も反射板2を鉄It For example, as shown in FIG. 5, the reflector 2 is made of iron even after assembly.
骨1に取付けたままとし、鉄骨構造中の各独立骨格に相Leave it attached to bone 1 and attach it to each independent skeleton in the steel structure.
当する既組立部9A、9B、……が完成する毎に、又は鉄骨Each time the corresponding pre-assembled parts 9A, 9B, ... are completed, or the steel frame
構造中の全ての鉄骨1の取付けが終った時に、各鉄骨1When the installation of all the steel frames 1 in the structure is completed, each steel frame 1
の所要部1Aの組立位置を測量することにより、出来形をBy measuring the assembly position of the required part 1A of
計測することができる。この出来形をコンピュータ3にIt can be measured. This work to computer 3
記憶させておくことも可能である。It is also possible to store it.

【0020】屋内野球場等の大空間のドーム屋根を構築
する鉄骨部材のように、多数の鉄骨を1本づつ順次に既
組立部9へ縦続的に接続して固定する場合には、各鉄骨
の最初に固定される端と反対側の自由端の位置を正確に
割出した上で固定することが重要になる。本発明の鉄骨
誘導システムはそのような目的に極めて効果的に適用す
ることができる。
In the case where a large number of steel frames are sequentially connected in series to the preassembled part 9 and fixed, as in the case of a steel frame member constructing a dome roof in a large space such as an indoor baseball field, each steel frame is fixed. It is important to accurately index and fix the position of the free end opposite to the first fixed end. The steel guiding system of the present invention can be very effectively applied to such a purpose.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明の追
尾型測距・測角儀利用の鉄骨誘導システムは、鉄骨所要
部の取付け位置に対する設計座標と取付けのため移動中
の測定位置との差分を水平成分と垂直成分とに分けオン
ラインで表示して誘導に使うので次の顕著な効果を奏す
る。
As described above in detail, the steel guiding system using the tracking type range finder and the angle measuring device of the present invention has the design coordinates with respect to the mounting position of the required portion of the steel frame and the measuring position being moved for mounting. Since the difference of is divided into a horizontal component and a vertical component and displayed online and used for guidance, the following remarkable effects are obtained.

【0022】(1)鉄骨建方時に移動中の鉄骨を設計座
標へ短時間小人数で確実に位置決めすることができ
る。 (2)従来方法における歪直しワイヤー等の治具を別途
取付けなくてもよく、従ってコスト低減が可能になる。 (3)各鉄骨の取付け位置座標をデータとして取扱える
ので、とくに片持ち梁等の、後続施工にて重量が加わ
り、撓みなどによる変形量が大きい鉄骨等の場合に、予
め構造解析等によりその撓み量を計算し、その撓み分だ
け正規の位置から撓みと反対方向にずらして鉄骨を固定
しておくこと等の予備対策が可能になる。このような予
備対策を含め、細かい施工管理と品質管理の実施を可能
にする。 (4)データベースとして鉄骨取付け位置の設計座標を
保持するので、建方終了後の出来形計測についても、自
動で行うことができる。
(1) Designing a steel frame that is moving during the construction of the steel frame
It can be reliably positioned in a small number of people in a short period of time to the target. (2) It is not necessary to separately attach a jig such as a straightening wire in the conventional method, and therefore cost can be reduced. (3) Since the mounting position coordinates of each steel frame can be handled as data, especially in the case of a steel frame, such as a cantilever, which is heavily weighted during subsequent construction and has a large amount of deformation due to bending, etc. Preliminary measures such as calculating the amount of deflection and shifting the regular position from the normal position in the direction opposite to the deflection and fixing the steel frame are possible. It enables detailed construction management and quality control, including such preliminary measures. (4) Since the design coordinates of the steel frame mounting position are held as a database, it is possible to automatically measure the finished shape after the building is completed.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例の図式的ブロック図であ
る。
FIG. 1 is a schematic block diagram of one embodiment of the present invention.

【図2】は、本発明による誘導の手順を示す図式的説明
図である。
FIG. 2 is a schematic explanatory view showing a procedure of guidance according to the present invention.

【図3】は、反射板の機能を示す図式的ブロック図であ
る。
FIG. 3 is a schematic block diagram showing the function of a reflector.

【図4】は、表示器での表示の一例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an example of a display on a display.

【図5】は、本発明による出来形計測の手順を示す図式
的説明図である。
FIG. 5 is a schematic explanatory view showing a procedure of a finished product measurement according to the present invention.

【図6】は、鉄骨の姿勢を誘導する手順を示す図式的説
明図である。
FIG. 6 is a schematic explanatory view showing a procedure for guiding the posture of a steel frame.

【図7】は、本発明による誘導手順の流れ図である。FIG. 7 is a flow chart of a guidance procedure according to the present invention.

【符号の説明】[Explanation of symbols]

1…鉄骨 2…反射板 3…コンピュータ 4…追尾型測距・測角儀 5…光線 6…表示器 7…無線送受信器 8…移動装置 9…既組立部 10、11…第1、2基準点 15…基盤 17…電波 18…合図者 20…メモリ 21…座標算出手段 22…差分検知手段DESCRIPTION OF SYMBOLS 1 ... Steel frame 2 ... Reflector 3 ... Computer 4 ... Tracking type distance-measuring / angle-measuring device 5 ... Rays 6 ... Display 7 ... Wireless transceiver 8 ... Moving device 9 ... Assembled parts 10, 11 ... First and second standards Point 15 ... Base 17 ... Radio wave 18 ... Signal 20 ... Memory 21 ... Coordinate calculation means 22 ... Difference detection means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 直也 東京都江東区東陽六丁目3番2号 鹿島 建設株式会社 関東支店内 (56)参考文献 特開 平5−288547(JP,A) 特開 平6−193148(JP,A) 特開 平6−147896(JP,A) 特開 平8−218633(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naoya Sasaki               Kashima-ku, Tokyo Toyo 6-3-2 Kashima               Construction Co., Ltd., Kanto Branch                (56) Reference JP-A-5-288547 (JP, A)                 JP-A-6-193148 (JP, A)                 JP-A-6-147896 (JP, A)                 JP-A-8-218633 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】移動装置に吊下げた鉄骨建方中の鉄骨上の
相互に隔たった2つ以上の所要部が占めるべき三次元設
計座標(D)を記憶するコンピュータ、前記鉄骨の各所
要部へ取付けた反射板を前記鉄骨の移動中に光で追尾し
て距離と方位角とを連続的に計測する所定位置の追尾型
測距・測角儀、該測距・測角儀の出力から当該鉄骨の各
所要部の三次元測定座標(C)を求める座標算出手段、
前記各所要部の設計座標と測定座標の差分(R=D−
C)を求める差分検知手段、前記各所要部の測定座標
(C)から鉄骨の姿勢を求める手段、並びに前記コンピ
ュータに結合されて前記移動中の鉄骨の前記差分(R)
の水平及び垂直成分と該鉄骨の姿勢とをリアルタイムで
表示する表示手段を備え、前記水平及び垂直成分が零と
なる如く前記移動装置により鉄骨をその姿勢と共に誘導
してなる追尾型測距・測角儀利用の鉄骨誘導システム。
1. A computer for storing three-dimensional design coordinates (D) to be occupied by two or more required parts separated from each other on a steel frame in a steel frame erected by a moving device, and each required part of the steel frame. From the output of the tracking-type distance-measuring instrument at a predetermined position, which continuously measures the distance and azimuth by tracking the reflector attached to the light with light while the steel frame is moving. Coordinate calculating means for obtaining three-dimensional measurement coordinates (C) of each required portion of the steel frame,
The difference between the design coordinates and the measurement coordinates of each required part (R = D-
C) a difference detection means, a means for obtaining the attitude of the steel frame from the measurement coordinates (C) of each required part, and the difference (R) of the moving steel frame coupled to the computer.
Tracking means for measuring and measuring the horizontal and vertical components and the posture of the steel frame in real time, and guiding the steel frame together with the posture by the moving device so that the horizontal and vertical components become zero. A steel guiding system using square brackets.
【請求項2】請求項1の鉄骨誘導システムにおいて、前
記座標算出手段及び差分検知手段を前記コンピュータに
含め、前記表示手段をコンピュータに無線結合した可搬
型表示手段としてなる追尾型測距・測角儀利用の鉄骨誘
導システム。
2. The steel frame guiding system according to claim 1, wherein the coordinate calculating means and the difference detecting means are included in the computer, and the display means is a portable display means wirelessly coupled to the computer. Steel-guided system for ceremonial use.
【請求項3】請求項1又は2の鉄骨誘導システムにおい
て、前記鉄骨をドーム型天井の鉄骨部材としてなる追尾
型測距・測角儀利用の鉄骨誘導システム。
3. The steel guide system according to claim 1 or 2, wherein the steel frame is used as a steel frame member of a dome type ceiling and which uses a tracking type range finder.
【請求項4】請求項1〜3の何れかの鉄骨誘導システム
において、前記追尾型測距・測角儀の一定位置を、該追
尾型測距・測角儀による固定の第1及び第2基準点の視
準によって定めてなる追尾型測距・測角儀利用の鉄骨誘
導システム。
4. The steel guide system according to any one of claims 1 to 3, wherein a fixed position of the tracking type rangefinder / angle finder is fixed by the tracking type rangefinder / angle finder. A steel guiding system that uses tracking type range finding and angle measuring devices determined by the collimation of a reference point.
【請求項5】複数の鉄骨を既組立部へ順次誘導・固定し
てドーム型鉄骨屋根を構築する方法において、各鉄骨の
既組立部への固定端及び自由端の三次元設計座標(D)
を記憶し、各鉄骨の両端へ反射板を取付け、移動手段に
吊下げた建方移動中の各鉄骨上の反射板を所定位置の追
尾型測距・測角儀により追尾して距離と方位角とを連続
計測し、該測距・測角儀の出力から当該鉄骨の両端の三
次元測定座標(C)を求め、前記設計座標と測定座標と
の差分(R=D−C)を求め、前記両端の測定座標
(C)から鉄骨の姿勢を求め、前記差分(R)の水平及
び垂直成分と鉄骨の姿勢とをリアルタイムで表示し、前
記水平及び垂直成分が零となる如く前記移動手段により
鉄骨をその姿勢と共に設計座標(D)へ順次誘導し固
してなるドーム型鉄骨屋根の構築方法。
5. A plurality of steel frames are sequentially guided and fixed to an already assembled part.
To build a domed steel roof
Three-dimensional design coordinates (D) of fixed end and free end to the already assembled part
Remember, and attach reflectors to both ends of each steel frame,
Make sure that the reflectors on each steel frame being
Tracks distance and azimuth continuously with a tail-type rangefinder
Measure and output from the rangefinder and angle-measuring device to determine the three ends of the steel frame.
Dimensional measurement coordinates (C) are obtained, and the design coordinates and measurement coordinates are
Difference (R = D-C) is calculated, and the measurement coordinates of the both ends are obtained.
The posture of the steel frame is obtained from (C), and the horizontal difference of the difference (R) is calculated.
And the vertical component and the posture of the steel frame are displayed in real time.
By the moving means so that the horizontal and vertical components become zero
Steel sequentially inducing the design coordinates (D) with its orientation fixed
How to build a domed steel roof.
【請求項6】請求項5の構築方法において、前記三次元
測定座標(C)と前記差分(R)と前記鉄骨の姿勢とを
コンピュータで算出し、前記差分(R)の水平及び垂直
成分と鉄骨の姿勢とをコンピュータに無線結合した可搬
型表示手段に表示してなるドーム型鉄骨屋根の構築方
法。
6. The construction method according to claim 5, wherein the three-dimensional
The measurement coordinates (C), the difference (R), and the posture of the steel frame are
Calculated by computer, horizontal and vertical of the difference (R)
Portable by wirelessly connecting the components and the posture of the steel frame to the computer
How to build a dome type steel roof displayed on the mold display means
Law.
【請求項7】請求項5又は6の構築方法において、前記
追尾型測距・測角儀の所定位置を、該追尾型測距・測角
儀による固定の第1及び第2基準点の視準によって定め
てなるドーム型鉄骨屋根の構築方法。
7. The construction method according to claim 5 or 6, wherein
The specified position of the tracking type distance measuring / angle measuring device
Determined by collimation of fixed first and second reference points
How to build a domed steel roof.
JP34682597A 1997-12-16 1997-12-16 Steel frame guidance system using tracking type ranging and goniometer Expired - Fee Related JP3451911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34682597A JP3451911B2 (en) 1997-12-16 1997-12-16 Steel frame guidance system using tracking type ranging and goniometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34682597A JP3451911B2 (en) 1997-12-16 1997-12-16 Steel frame guidance system using tracking type ranging and goniometer

Publications (2)

Publication Number Publication Date
JPH11183173A JPH11183173A (en) 1999-07-09
JP3451911B2 true JP3451911B2 (en) 2003-09-29

Family

ID=18386068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34682597A Expired - Fee Related JP3451911B2 (en) 1997-12-16 1997-12-16 Steel frame guidance system using tracking type ranging and goniometer

Country Status (1)

Country Link
JP (1) JP3451911B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685249B2 (en) * 2000-02-21 2005-08-17 オリジナル設計株式会社 Three-dimensional structure design system, three-dimensional structure design method, and computer-readable recording medium storing a program for causing a computer to execute the method
JP2013116774A (en) * 2011-12-01 2013-06-13 Shimizu Corp Crane operation system
JP2016121494A (en) * 2014-12-25 2016-07-07 戸田建設株式会社 Beam joint jig for automatic work in iron frame construction and automatic plumbing method of an iron frame beam member
CN113884010A (en) * 2021-12-07 2022-01-04 湖南联智科技股份有限公司 Tunnel steel frame detection method

Also Published As

Publication number Publication date
JPH11183173A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
US7742176B2 (en) Method and system for determining the spatial position of a hand-held measuring appliance
EP1939583B1 (en) Optical device, and method of measuring the dimension of object using optical device
CN109033592B (en) BIM lofting method for special-shaped veneer
US20110043515A1 (en) System and method capable of navigating and/or mapping any multi-dimensional space
CN110411479B (en) Digital calibration system of laser plumb aligner and application
CN111750798A (en) Real-time automatic monitoring device for tunnel deformation
CN112666703B (en) Space curve joint positioning projection system and method based on multiple laser galvanometers
CN109375195A (en) Parameter quick calibrating method outside a kind of multi-line laser radar based on orthogonal normal vector
JP3451911B2 (en) Steel frame guidance system using tracking type ranging and goniometer
JPH09311021A (en) Method for measuring three-dimensional shape using light wave range finder
US6304680B1 (en) High resolution, high accuracy process monitoring system
KR20040108382A (en) The measuring device to displacement in the turren inside using laser beams and the method thereof
JPH08218633A (en) Automatic measuring system for steel frame construction
JP2003114105A (en) Construction method for large structure
JPH06186036A (en) Three-dimensional location measuring system
JPH05141975A (en) Survey measurement standard and surveying method utilizing it
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
Julian et al. Robotic total station and BIM for quality control
JP2970867B1 (en) Position measurement system for structures under construction
JP3498250B2 (en) Automatic measuring device and method for long structures such as bridge girder
JP2919273B2 (en) Multifunctional surveying measurement system
CN111551115A (en) Method for measuring positioning coordinates of sight-line-blocked component
JP2769906B2 (en) Three-dimensional measuring method and device
JP2909808B2 (en) Automatic measuring device for long structures such as bridge box girder
de Campos Porath et al. Feasibility of measurement-assisted assembly of ship hull blocks

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees