JP2769906B2 - Three-dimensional measuring method and device - Google Patents

Three-dimensional measuring method and device

Info

Publication number
JP2769906B2
JP2769906B2 JP9683890A JP9683890A JP2769906B2 JP 2769906 B2 JP2769906 B2 JP 2769906B2 JP 9683890 A JP9683890 A JP 9683890A JP 9683890 A JP9683890 A JP 9683890A JP 2769906 B2 JP2769906 B2 JP 2769906B2
Authority
JP
Japan
Prior art keywords
measurement
points
axis
dimensional structure
control points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9683890A
Other languages
Japanese (ja)
Other versions
JPH03293505A (en
Inventor
清夫 稲田
Original Assignee
株式会社ソキア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソキア filed Critical 株式会社ソキア
Priority to JP9683890A priority Critical patent/JP2769906B2/en
Publication of JPH03293505A publication Critical patent/JPH03293505A/en
Application granted granted Critical
Publication of JP2769906B2 publication Critical patent/JP2769906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大型構造物の寸法測定に好適な三次元計測
方法及びその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a three-dimensional measuring method and apparatus suitable for measuring dimensions of large structures.

(従来の技術) 従来、第4図示のような立体構造物Mの任意の3点a,
b,cを共通測定点とする複数個の測定点(例えばa,b,c,
g,h)の座標を、1つの地点Aから測距測角儀Nを使っ
て求め、次いで別の地点Bから前記3点a,b,cを含む複
数個の地点(例えばa,b,c,d,e,f)を求め、各地点の測
定値を、地点AとBで各々測定された前記3つの測定点
a,b,cの座標が一致するように座標変換して共通の座標
系の値とし、その座標に基づいて前記立体構造物Aの寸
法を求めるようにした立体構造物の寸法測定方法が知ら
れている。
(Prior Art) Conventionally, arbitrary three points a and 3 of a three-dimensional structure M as shown in FIG.
A plurality of measurement points (eg, a, b, c,
g, h) are obtained from one point A by using a distance measuring angle finder N, and then from another point B, a plurality of points including the three points a, b, c (for example, a, b, c) c, d, e, f), and the measured value at each point is calculated from the three measurement points measured at points A and B, respectively.
A dimension measurement method for a three-dimensional structure is known in which coordinates are converted so that the coordinates of a, b, and c coincide with each other to obtain a value in a common coordinate system, and the dimensions of the three-dimensional structure A are obtained based on the coordinates. Have been.

(発明が解決しようとする課題) 上述の寸法測定方法によれば、任意の3点a,b,cの測
定によって座標系が決められる。すわなち、3点a,b,c
の作る平面を例えばY−Z面とするX−Y−Z座標系が
決められるので、この3点a,b,cが前記地点A,Bから視準
できることが条件で、視準できないと立体構造物の寸法
を測定することができないという制約があった。
(Problem to be Solved by the Invention) According to the above-described dimension measuring method, a coordinate system is determined by measuring three arbitrary points a, b, and c. That is, 3 points a, b, c
The XYZ coordinate system is determined, for example, with the plane created by the YZ plane, so that the three points a, b, and c can be collimated from the points A and B. There was a restriction that the dimensions of the structure could not be measured.

本発明は、このような制約の少ない簡便な三次元計測
方法及びその装置を提供することをその目的としたもの
である。
An object of the present invention is to provide a simple three-dimensional measuring method and an apparatus therefor with less such restrictions.

(課題を解決するための手段) 上記の目的を達成するために、本願の第1発明は、立
体構造物の略全体を視準できる第1の位置に測距測角儀
を設置し、標定点である前記立体構造物上又は立体構造
物外の任意の2点と該立体構造物上の測点の測距、測角
データを該測距測角儀で測定し、前記標定点の1つを原
点、鉛直軸をz軸、2つの標定点を結ぶ直線方向の水平
軸をx軸又はy軸とする第1の直交座標系で前記標定点
及び測点の座標値を求め、その後、前記2つの標定点を
視準できる第2位置に測距測角儀を移動し、前記2つの
標定点と立体構造物上の未測定の他の測点の測距、測角
データを測距測角儀で測定し、前記標定点の他の1つを
原点、鉛直軸をz軸、2つの標定点を結ぶ直線方向の水
平軸をx′軸又はy′軸とする第2の直交座標系で前記
標定点及び測点の座標値を求め、前記第1及び第2の直
交座標系の座標値を単一の座標系の座標値に座標変換し
て立体構造物の全測点間の寸法を求めることを特徴とす
る。第2発明は立体構造物の略全体を視準できる第1の
標定点位置に測距測角儀を設置し、前記立体構造物上又
は立体構造物外の第2の標定点と該立体構造物上の測点
の測距、測角データを該測距測角儀で測定し、前記第1
の標定点を原点、鉛直軸をz軸、2つの標定点を結ぶ直
線方向の水平軸をx軸又はy軸とする第1の直交座標系
で前記第2標定点並びに測点の座標値を求め、その後、
第2の標定点位置に測距測角儀を移動し、第1の標定点
と立体構造物上の未測定の他の測点の測距、測角データ
を測距測角儀で測定し、第2の標定点を原点、鉛直軸を
z軸、2つの標定点を結ぶ直線方向の水平軸をx′軸又
はy′軸とする第2の直交座標系で前記第1の標定点及
び測点の座標値を求め、前記第1及び第2の直交座標系
の座標値を単一の座標系の座標値に座標交換して立体構
造物の全測点間の寸法を求めることを特徴とする。また
第3発明は、以上の計測方法を実施するために計測装置
であって、測距測角儀と、立体構造物の略全体を視準で
きる第1の位置又は第1の標定点位置に設置した該測距
測角儀で測定した前記立体構造物上又は立体構造物外の
2つの標定点又は第2の標定点と該立体構造物上の測点
の測距測角データから、前記標定点の1つ又は第1の標
定点を原点、鉛直軸をZ軸、2つの標定点を結ぶ直線方
向の水平軸をx軸又はy軸とする第1の直交座標系の前
記2つの標定点又は第2の標定点及び測点の座標値を求
める手段と、前記2つの標定点を視準できる第2の位置
又は第2の標定点位置に設置した測距測角儀で測定した
前記2つの標定点又は第1の標定点と前記立体構造物上
の未測定の他の測点の測距測角データから、前記標定点
の他の1つ又は第2の標定点を原点、鉛直軸をz軸、2
つの標定点を結ぶ直線方向の水平軸をx′軸又はy′軸
とする第2の直交座標系の前記標定点及び測点の座標値
を求める手段と、前記第1及び第2の直交座標系の座標
値を単一の座標系の座標値に変換して立体構造物の全測
点間の寸法を求める手段を備えることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the first invention of the present application is to install a distance measuring angle finder at a first position where substantially the entire three-dimensional structure can be collimated, The distance measurement and the angle measurement data of any two points on the three-dimensional structure or outside the three-dimensional structure, which are fixed points, and the measurement points and the angle measurement data of the measurement points on the three-dimensional structure are measured. The origin, the vertical axis is the z-axis, and the horizontal axis in the linear direction connecting the two orientation points is the x-axis or the y-axis. Move the distance measuring and angle measuring instrument to a second position where the two control points can be collimated, and measure the distance and angle measurement data of the two control points and the other unmeasured measuring points on the three-dimensional structure. The second orthogonal seat is measured by a goniometer and the other one of the orientation points is the origin, the vertical axis is the z axis, and the horizontal axis in the linear direction connecting the two orientation points is the x 'axis or the y' axis. The coordinate values of the control points and the measurement points are obtained in a reference system, and the coordinate values of the first and second rectangular coordinate systems are converted into coordinate values of a single coordinate system, and the coordinate values are calculated between all the measurement points of the three-dimensional structure. Is determined. According to a second aspect of the present invention, a distance measuring goniometer is installed at a first control point position at which substantially the entire three-dimensional structure can be collimated, and a second control point on or outside the three-dimensional structure and the three-dimensional structure are provided. The distance measurement and angle measurement data of the measurement point on the object is measured by the distance measurement angle measuring instrument, and the first
Is the origin, the vertical axis is the z axis, and the horizontal axis in the linear direction connecting the two orientation points is the x-axis or the y-axis. Asked, then
The distance measuring and angle measuring instrument is moved to the second control point, and the distance measuring and angle measuring data of the first measuring point and other measuring points not measured on the three-dimensional structure are measured by the distance measuring angle measuring instrument. , The second control point is the origin, the vertical axis is the z axis, and the first control point and the second control point are in the second orthogonal coordinate system in which the horizontal horizontal axis connecting the two control points is the x ′ axis or the y ′ axis. Determining the coordinate values of the measurement points, and exchanging the coordinate values of the first and second orthogonal coordinate systems into the coordinate values of a single coordinate system to obtain the dimensions between all the measurement points of the three-dimensional structure. And Further, the third invention is a measuring device for carrying out the above-described measuring method, comprising: a distance measuring goniometer and a first position or a first control point position capable of collimating substantially the entire three-dimensional structure. From the two measurement points or the second measurement points on the three-dimensional structure or outside the three-dimensional structure measured by the installed distance measurement angle finder and the distance measurement angle measurement data of the measurement points on the three-dimensional structure, One of the control points or the first control point is the origin, the vertical axis is the Z axis, and the two horizontal points in the first orthogonal coordinate system are the x-axis or the y-axis, and the horizontal axis in the linear direction connecting the two control points is the x-axis or the y-axis. Means for determining the coordinate values of the fixed point or the second control point and the measuring point, and the distance measured by a distance measuring angle gauge installed at a second position or a second control point position where the two control points can be collimated. From one of the two control points or the first control point and the ranging data of the other measurement points on the three-dimensional structure that have not been measured, another one of the control points is used. z-axis origin, the vertical axis a second orientation points, 2
Means for obtaining coordinate values of the control points and measurement points in a second rectangular coordinate system having a horizontal axis in a linear direction connecting two control points as an x 'axis or a y'axis; and the first and second rectangular coordinates The apparatus further comprises means for converting a coordinate value of the system into a coordinate value of a single coordinate system to obtain a dimension between all measurement points of the three-dimensional structure.

(作 用) 本願の第1発明では、一地点に設置した測距測角儀で
2つの標定点を含む構造物上の測点を前記2つの標定点
を結ぶ直線方向の水平軸をx軸又はy軸とし、鉛直軸を
z軸とする第1の直交座標系として求める。次いで測距
測角儀を他の地点に移動し、前記2つの標定点を含む構
造物上の他の測点を、前記標定点を結ぶ直線方向の水平
軸をx′軸又はy′軸とし、鉛直軸をz軸とする第2の
直交座標系として求める。そして第1、第2の直交座標
系を座標変換により単一の座標系に変換して各測点の座
標値を求める。第2発明では前記2つの地点の代りに第
1及び第2の標定点に測距測角儀を設置し前記と同じよ
うに各測点の座標値を求める。前記各測点の座標値及び
全測点間の寸法は第3発明の計測装置を用いて求める。
(Operation) In the first invention of the present application, a measuring point on a structure including two control points is measured by a distance measuring angle finder installed at one point, and a horizontal axis in a linear direction connecting the two control points is defined as an x-axis. Alternatively, it is determined as a first orthogonal coordinate system in which the y-axis is set and the vertical axis is the z-axis. Then, the distance measuring angle finder is moved to another point, and the other measuring points on the structure including the two control points are defined as x'-axis or y'-axis in the horizontal direction connecting the control points. , A second orthogonal coordinate system with the vertical axis as the z-axis. Then, the first and second orthogonal coordinate systems are converted into a single coordinate system by coordinate conversion to obtain the coordinate values of each measurement point. According to the second aspect of the invention, instead of the above-mentioned two points, distance measuring and measuring angles are installed at the first and second control points, and the coordinate values of each measuring point are obtained in the same manner as described above. The coordinate value of each of the measuring points and the dimension between all the measuring points are obtained by using the measuring device of the third invention.

(実施例) 以下本発明の実施例を第1図の説明図と第2図(A)
及び(B)のフロー図につき説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 1 and FIG.
And (B) will be described.

第1図において、1は計測の対象である立体構造物、
2は測距測角儀で、この測距測角儀2は視準望遠鏡と光
波距離計の光学系が同軸で、測角系にはエンコーダが設
けられ、水平角及び高度角(又は天頂角)がディスプレ
イに表示され、かつデータ転送できる。この測距測角儀
2には、これで測定した測点までの距離と2つの測点間
の夾角及び測点の天頂角から測点の座標値を算出するマ
イクロコンピュータ3及びこれら座標値を記憶するデー
タコレクタ4を接続する。
In FIG. 1, 1 is a three-dimensional structure to be measured,
Numeral 2 is a distance measuring and angle measuring instrument. This distance measuring and measuring angle measuring instrument 2 has an optical system of a collimating telescope and an optical distance meter, and an encoder is provided in the angle measuring system, and a horizontal angle and an altitude angle (or a zenith angle) are provided. ) Is displayed on the display and data can be transferred. A microcomputer 3 for calculating the coordinate values of the measuring point from the distance to the measuring point, the included angle between the two measuring points and the zenith angle of the measuring point, and these coordinate values The data collector 4 to be stored is connected.

以上の測距測角儀2、マイクロコンピュータ3及びデ
ータコレクタ4は本発明三次元計測装置を構成する。
The distance measuring angle finder 2, microcomputer 3 and data collector 4 constitute a three-dimensional measuring apparatus of the present invention.

構造物1の表側前方の立体構造物1全体が略視準でき
る第1の位置Aに測距測角儀2を設置する。測点にはシ
ートプリズムが使用され、シートの中心には十字線が設
けられている。そして機械中心を原点とし、例えば南北
方向をX軸、鉛直方向をZ軸とする直交座標系(X−Y
−Z)を設定する(ステップ10)。また立体構造物1の
表側及び裏側の両側から視準できる立体構造物1以外の
任意の2点C,Dを標定点とし、これらを測距測角儀2で
距離と水平角と天頂角を測定し、マイクロコンピュータ
3により座標計算してC(X1,Y1,Z1)、D(X2,Y2,Z2
なる座標値を得る。
The distance measuring angle finder 2 is installed at a first position A where the entire three-dimensional structure 1 in front of the structure 1 can be substantially collimated. A sheet prism is used as a measurement point, and a cross line is provided at the center of the sheet. Then, an orthogonal coordinate system (XY) with the machine center as the origin, the X-axis in the north-south direction and the Z-axis in the vertical direction, for example,
-Z) is set (step 10). In addition, any two points C and D other than the three-dimensional structure 1 that can be collimated from both the front side and the back side of the three-dimensional structure 1 are set as control points, and the distance, the horizontal angle, and the zenith angle are measured with the distance measuring angle finder 2. measured, C and coordinate calculation by the microcomputer 3 (X 1, Y 1, Z 1), D (X 2, Y 2, Z 2)
Is obtained.

こゝで、前記2点C,Dを通る直線を含む鉛直面をxz面
(C,D)を通る直線の水平方向をx軸)、C点を原点、
鉛直方向をz軸とする直交座標系(x−y−z)を設定
し、この座標系(x−y−z)を座標系(X−Y−Z)
とともにマイクロコンピュータ3に出力し、(ステップ
,)、座標系(X−Y−Z)の座標値が座標変換さ
れて座標系(x−y−z)の座標値が算出されるように
しておく。
Here, the vertical plane including the straight line passing through the two points C and D is defined as an x-axis (the horizontal direction of the straight line passing through the xz plane (C, D)), the point C is defined as the origin,
An orthogonal coordinate system (xyz) with the vertical direction as the z-axis is set, and this coordinate system (xyz) is defined as a coordinate system (XYZ).
(Step), and the coordinate values of the coordinate system (XYZ) are converted so that the coordinate values of the coordinate system (xyz) are calculated. .

尚、C(X1,Y1,Z1)の座標値X1及びY1は、例えば周知
のように、設置点Aと標定点C間距離、設置点Aと標定
点D間距離及び点C,A,Dのなす角度並びに標定点C及び
Dの天頂角を測定し、これ等の値から地点Aにおける標
定点Cの方向角を算出し、この方向角と、標定点Cと地
点A間距離とから算出する。座標値Z1は設定点Aと標定
点C間距離と標定点Cの天頂角とから算出する。D
(X2,Y2,Z2)は設置点Aと標定点D間距離と該点Dの天
頂角と前記方向角と点C、A、Dのなす角度とから算出
する。
Incidentally, the coordinate values X 1 and Y 1 of C (X 1 , Y 1 , Z 1 ) are, for example, the distance between the setting point A and the control point C, the distance between the setting point A and the control point D, and the point. The angles formed by C, A, and D and the zenith angles of control points C and D are measured, and from these values, the direction angle of control point C at point A is calculated. The distance is calculated from the distance. Coordinate value Z 1 is calculated from the set point A and orientation points C distance and zenith angle of orientation point C. D
(X 2 , Y 2 , Z 2 ) is calculated from the distance between the setting point A and the control point D, the zenith angle of the point D, the directional angle, and the angle formed by the points C, A, and D.

次に、A点から測定可能な立体構造物1の測点、例え
ばa,b,c,d,e,fについて測定する(ステップ)。測距
測角儀2で得られた各測点a〜fまでの距離及び角度情
報によりマイクロコンピュータ3は、前述のようにし
て、座標系(x−y−z)における点a〜fの座標値を
算出し(ステップ)、これを表示部に表示する。更に
測定を続行したい場合には、ステップに戻る。測定し
た前記座標値はデータコレクタ4に記憶する。
Next, measurement is performed on measurement points of the three-dimensional structure 1 that can be measured from the point A, for example, a, b, c, d, e, and f (step). The microcomputer 3 obtains the coordinates of the points a to f in the coordinate system (xyz) as described above based on the distance and angle information to each of the measurement points a to f obtained by the distance measurement angle finder 2. Calculate the value (step) and display it on the display unit. If it is desired to continue the measurement, the process returns to the step. The measured coordinate values are stored in the data collector 4.

次に立体構造物1の裏側であって前記標定点C,Dをそ
れぞれ視準できる第2の位置Bに測距測角儀2を移動
し、機械中心を原点O,例えば水平な任意方向をX′軸、
鉛直方向をZ軸とする直交座標系(X′−Y′−Z)を
設定する(ステップ)。そして前記標定点C,Dを測定
し、マイクロコンピュータ3により、前述のようにして
C(X3,Y3,Z3)、D(X4,Y4,Z4)なる座標値を算出す
る。
Next, the range finder 2 is moved to the second position B on the back side of the three-dimensional structure 1 where the control points C and D can be collimated, and the center of the machine is set at the origin O, for example, the horizontal arbitrary direction is set. X 'axis,
An orthogonal coordinate system (X'-Y'-Z) having the vertical direction as the Z axis is set (step). Then, the control points C and D are measured, and the microcomputer 3 calculates coordinate values of C (X 3 , Y 3 , Z 3 ) and D (X 4 , Y 4 , Z 4 ) as described above. .

こゝでD(X4,Y4,Z4)を原点とし、C、Dを通る直線
を含む鉛直面をx′z面(C、D)を通る直線の水平方
向をx′軸)、鉛直軸をz軸とする直交座標系(x′−
y′−z)を設定し、これをマイクロコンピュータ3に
出力し(ステップ)、座標系(X′−Y′−Z)に
おける標定点C、Dの座標値が座標変換されて(x′−
y′−z)の座標値が算出され、さらに座標系(x′−
y′−z)の測点の座標値が座標変換されて座標系(x
−y−z)の座標値として算出されるようにしておく。
Here, with D (X 4 , Y 4 , Z 4 ) as the origin, the vertical plane including the straight line passing through C and D is defined as the x′-axis (the horizontal direction of the straight line passing through the x′z plane (C, D)), A rectangular coordinate system (x'-
y'-z) is set and output to the microcomputer 3 (step), and the coordinate values of the control points C and D in the coordinate system (X'-Y'-Z) are coordinate-converted (x'-z).
y'-z) is calculated, and the coordinate system (x'-z) is calculated.
y′-z), the coordinate values of the measurement points are converted to coordinate system (x
−y−z).

次にB点から測定可能な立体構造物1の測点g,hを測
定する(ステップ)。この測定により測距測角儀2で
得られた測点g,hについての測距、測角情報から、マイ
クロコンピュータ3は座標系(x′−y′−z′)にお
ける測点g、hの座標値を算出し(ステップ)、既に
求められている座標系(x−y−z)の測点a〜fの座
標値と一括する。ステップにて測定を続行したい場合
にはステップに戻る。こゝで測点g,hの座標値はデー
タコレクタ4に記憶され、必要ならば、測距測角儀2の
表示部や図示しない外部ディスプレイに表示する。
Next, measurement points g and h of the three-dimensional structure 1 that can be measured from the point B are measured (step). From the distance measurement and angle measurement information on the measurement points g and h obtained by the distance measurement angle finder 2 by this measurement, the microcomputer 3 calculates the measurement points g and h in the coordinate system (x'-y'-z '). Are calculated (step), and are combined with the coordinate values of the measurement points a to f in the coordinate system (xyz) which have already been obtained. If it is desired to continue the measurement at the step, return to the step. Here, the coordinate values of the measurement points g and h are stored in the data collector 4 and, if necessary, displayed on the display unit of the distance measurement angle finder 2 or an external display (not shown).

測距測角儀2は前記2つの標定点C,Dにそれぞれ設置
してもよい。この場合には前記座標系(X−Y−Z)、
(X′−Y′−Z′)が不要となり、座標系(x−y−
z)と(x′−y′−z)との座標変換、例えば座標系
(x′−y′−z)の(x−y−z)への座標変換だけ
であり、それだけ制御フローも少なく、かつ測定作業の
労力も少なくてすむ。第3図(A)は第1の標定点C
に、第3図(B)は第2の標定点Dに測距測角儀2を設
置したときのフローを示す図である。
The distance measuring angle finder 2 may be installed at each of the two control points C and D. In this case, the coordinate system (XYZ),
(X'-Y'-Z ') becomes unnecessary, and the coordinate system (xy-
z) and (x'-y'-z), for example, only the coordinate conversion of the coordinate system (x'-y'-z) to (x-y-z). In addition, the labor of the measurement work can be reduced. FIG. 3 (A) shows the first control point C
FIG. 3 (B) is a diagram showing a flow when the distance measuring goniometer 2 is installed at the second control point D.

(発明の効果) 本願の発明は、いずれも2つの標定点を設定すればよ
いので、従来の方法に比べて標定点が視準できないとい
う制約が少ないという効果を有する。
(Effects of the Invention) Since the invention of the present application only needs to set two control points, there is an effect that there is less restriction that the control points cannot be collimated as compared with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例の説明図、第2図(A)及び
(B)はその計測フローを示す図、第3図(A)及び
(B)は本発明の他の実施例の計測フローを示す図、第
4図は従来の方法の説明図である。 1……立体構造物 2……測距測角儀 3……マイクロコンピュータ 4……データコレクタ
FIG. 1 is an explanatory view of one embodiment of the present invention, FIGS. 2 (A) and (B) are diagrams showing the measurement flow, and FIGS. 3 (A) and (B) are other embodiments of the present invention. FIG. 4 is an explanatory diagram of a conventional method. 1 ... three-dimensional structure 2 ... distance measuring angle measuring instrument 3 ... microcomputer 4 ... data collector

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立体構造物の略全体を視準できる第1の位
置に測距測角儀を設置し、標定点である前記立体構造物
上又は立体構造物外の任意の2点と該立体構造物上の測
点の測距、測角データを該測距測角儀で測定し、前記標
定点の1つを原点、鉛直軸をz軸、2つの標定点を結ぶ
直線方向の水平軸をx軸又はy軸とする第1の直交座標
系で前記標定点及び測点の座標値を求め、その後、前記
2つの標定点を視準できる第2位置に測距測角儀を移動
し、前記2つの標定点と立体構造物上の未測定の他の測
点の測距、測角データを測距測角儀で測定し、前記標定
点の他の1つを原点、鉛直軸をz軸、2つの標定点を結
ぶ直線方向の水平軸をx′軸又はy′軸とする第2の直
交座標系で前記標定点及び測点の座標値を求め、前記第
1及び第2の直交座標系の座標値を単一の座標系の座標
値に座標変換して立体構造物の全測点間の寸法を求める
ことを特徴とする三次元計測方法。
1. A distance measuring angle measuring instrument is installed at a first position where substantially the entire three-dimensional structure can be collimated, and any two points on or outside the three-dimensional structure, which are control points, are set. The distance measurement and angle measurement data of a measurement point on a three-dimensional structure are measured by the distance measurement angle measuring instrument, and one of the control points is the origin, the vertical axis is the z axis, and the horizontal direction is a straight line connecting the two control points. The coordinate values of the photo control point and the measurement point are obtained in a first rectangular coordinate system having an x-axis or a y-axis, and thereafter, the distance measurement angle finder is moved to a second position where the two photo control points can be collimated. Then, distance measurement and angle measurement data of the two control points and other unmeasured measurement points on the three-dimensional structure are measured with a distance measurement angle measuring instrument, and the other one of the control points is defined as an origin and a vertical axis. The coordinate values of the control points and the measurement points are obtained in a second orthogonal coordinate system in which the horizontal axis in the linear direction connecting the two control points is the x 'axis or the y' axis. Orthogonal to Three-dimensional measurement method characterized by the coordinates of the target system to coordinate conversion into coordinate values of a single coordinate system determining the dimension between all stations of the three-dimensional structure.
【請求項2】立体構造物の略全体を視準できる第1の標
定点位置に測距測角儀を設置し、前記立体構造物上又は
立体構造物外の第2の標定点と該立体構造物上の測点の
測距、測角データを該測距測角儀で測定し、前記第1の
標定点を原点、鉛直軸をz軸、2つの標定点を結ぶ直線
方向の水平軸をx軸又はy軸とする第1の直交座標系で
前記第2標定点並びに測点の座標値を求め、その後、第
2の標定点位置に測距測角儀を移動し、第1の標定点と
立体構造物上の未測定の他の測点の測距、測角データを
測距測角儀で測定し、第2の標定点を原点、鉛直軸をz
軸、2つの標定点を結ぶ直線方向の水平軸をx′軸又は
y′軸とする第2の直交座標系で前記第1の標定点及び
測点の座標値を求め、前記第1及び第2の直交座標系の
座標値を単一の座標系の座標値に座標変換して立体構造
物の全測点間の寸法を求めることを特徴とする三次元計
測方法。
2. A distance measuring angle measuring instrument is installed at a first control point position capable of collimating substantially the entire three-dimensional structure, and a second control point on or outside the three-dimensional structure and the three-dimensional structure. The distance measurement and angle measurement data of the measurement points on the structure are measured by the distance measurement angle measuring instrument, and the first control point is the origin, the vertical axis is the z axis, and the horizontal axis is a linear direction connecting the two control points. The coordinate values of the second control point and the measuring point are obtained in a first orthogonal coordinate system having x as an x-axis or a y-axis. The distance measurement and angle measurement data of the control point and other unmeasured measurement points on the three-dimensional structure are measured with a distance measurement angle measuring instrument, and the second control point is the origin and the vertical axis is z
Axis, a coordinate value of the first control point and the measurement point is obtained in a second orthogonal coordinate system in which a horizontal axis in a linear direction connecting the two control points is an x′-axis or a y′-axis. 2. A three-dimensional measurement method, comprising: converting coordinate values of an orthogonal coordinate system into coordinate values of a single coordinate system to obtain dimensions between all measurement points of a three-dimensional structure.
【請求項3】測点及び標定点にターゲット付シートプリ
ズムを設けて計測することを特徴とする請求項1又は2
記載の三次元計測方法。
3. The measurement according to claim 1, wherein a sheet prism with a target is provided at the measurement point and the photo control point.
The described three-dimensional measurement method.
【請求項4】測距測角儀と、立体構造物の略全体を視準
できる第1の位置又は第1の標定点位置に設置した該測
距測角儀で測定した前記立体構造物上又は立体構造物外
の2つの標定点又は第2の標定点と該立体構造物上の測
点の測距測角データから、前記標定点の1つ又は第1の
標定点を原点、鉛直軸をz軸、2つの標定点を結ぶ直線
方向の水平軸をx軸又はy軸とする第1の直交座標系の
前記2つの標定点又は第2の標定点及び測点の座標値を
求める手段と、前記2つの標定点を視準できる第2の位
置又は第2の標定点位置に設置した測距測角儀で測定し
た前記2つの標定点又は第1の標定点と前記立体構造物
上の未測定の他の測点の測距測角データから、前記標定
点の他の1つ又は第2の標定点を原点、鉛直軸をz軸、
2つの標定点を結ぶ直線方向の水平軸をx′軸又はy′
軸とする第2の直交座標系の前記標定点及び測点の座標
値を求める手段と、前記第1及び第2の直交座標系の座
標値を単一の座標系の座標値に変換して立体構造物の全
測点間の寸法を求める手段を備えることを特徴とする三
次元計測装置。
4. A three-dimensional structure measured by a distance measuring angle finder and a distance measuring angle finder installed at a first position or a first control point position capable of collimating substantially the entire three-dimensional structure. Or, based on the distance measurement data of two control points or second control points outside the three-dimensional structure and measurement points on the three-dimensional structure, one of the control points or the first control point is defined as an origin and a vertical axis. Means for calculating the coordinate values of the two control points or the second control points and the measurement points of the first orthogonal coordinate system in which the horizontal axis in the linear direction connecting the two control points is the x-axis or the y-axis. And the two control points or the first control points measured by a distance measuring angle locator installed at a second position or a second control point position at which the two control points can be collimated and on the three-dimensional structure. From the distance measurement angle measurement data of the other measurement points that have not been measured, the other one or the second control points of the control points are the origin, the vertical axis is the z-axis,
The horizontal axis in the linear direction connecting the two control points is x 'axis or y'
Means for determining the coordinate values of the control points and measurement points of a second rectangular coordinate system as axes, and converting the coordinate values of the first and second rectangular coordinate systems into coordinate values of a single coordinate system A three-dimensional measuring apparatus comprising: means for determining a dimension between all measurement points of a three-dimensional structure.
【請求項5】前記測距測角儀の視準望遠鏡と光波距離計
の光学系が同軸構成であることを特徴とする請求項4記
載の三次元計測装置。
5. The three-dimensional measuring apparatus according to claim 4, wherein the collimating telescope of the distance measuring angle measuring instrument and the optical system of the optical distance meter have a coaxial configuration.
JP9683890A 1990-04-12 1990-04-12 Three-dimensional measuring method and device Expired - Fee Related JP2769906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9683890A JP2769906B2 (en) 1990-04-12 1990-04-12 Three-dimensional measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9683890A JP2769906B2 (en) 1990-04-12 1990-04-12 Three-dimensional measuring method and device

Publications (2)

Publication Number Publication Date
JPH03293505A JPH03293505A (en) 1991-12-25
JP2769906B2 true JP2769906B2 (en) 1998-06-25

Family

ID=14175667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9683890A Expired - Fee Related JP2769906B2 (en) 1990-04-12 1990-04-12 Three-dimensional measuring method and device

Country Status (1)

Country Link
JP (1) JP2769906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988357B1 (en) * 2007-05-04 2018-10-17 Hexagon Technology Center GmbH Coordinate measuring method and device
CN103954220B (en) * 2014-05-06 2016-08-24 福建江夏学院 Hit ship motion status number image measuring method in bridge test
CN104196542B (en) * 2014-09-05 2017-02-15 中国铁建重工集团有限公司 Tunnel pre-slot-cutting machine and guidance system thereof

Also Published As

Publication number Publication date
JPH03293505A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
CN112654886B (en) External parameter calibration method, device, equipment and storage medium
US5440492A (en) Kinematically positioned data acquisition apparatus and method
JP3728900B2 (en) Calibration method and apparatus, and calibration data generation method
CN106153074B (en) Optical calibration system and method for inertial measurement combined dynamic navigation performance
EP0679244A1 (en) Computerized three dimensional data acquisition apparatus and method
CN110530296A (en) A kind of line laser fix error angle determines method
JPH0743260B2 (en) Surveyor with azimuth setting function
CN107727118B (en) Method for calibrating GNC subsystem equipment attitude measurement system in large aircraft
CN114459345B (en) Aircraft fuselage position and posture detection system and method based on visual space positioning
JP2769906B2 (en) Three-dimensional measuring method and device
JP3421503B2 (en) Contact type three-dimensional measuring method and system
RU2645432C1 (en) Method of videogrammetry systems calibration and control device for its implementation
CN102095386A (en) Two-dimensional small-angle laser-vision precise measurement device and implementation method thereof
CN114353802A (en) Robot three-dimensional space positioning method based on laser tracking
JP3641818B2 (en) Measurement method using total station
Shortis et al. Current trends in close-range optical 3d measurement for industrial and engineering applications
CN111551115A (en) Method for measuring positioning coordinates of sight-line-blocked component
CN109029427B (en) Object positioning method, object positioning device and electronic equipment
CN112484751A (en) Method for measuring position and attitude of spacecraft verifier in relatively large space test field coordinate system
JP2627702B2 (en) Three-dimensional positioning and shape measurement method for structures etc.
JP3451911B2 (en) Steel frame guidance system using tracking type ranging and goniometer
JPH03167404A (en) Method for measuring size of large object
CN111385565A (en) Optical axis included angle measuring and adjusting device
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
CN111504282B (en) Novel method and system for mobile super station instrument mode terrain surveying and mapping

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090417

LAPS Cancellation because of no payment of annual fees