JP3443633B2 - Plasma decomposition method and apparatus for volatile harmful substances - Google Patents

Plasma decomposition method and apparatus for volatile harmful substances

Info

Publication number
JP3443633B2
JP3443633B2 JP27834797A JP27834797A JP3443633B2 JP 3443633 B2 JP3443633 B2 JP 3443633B2 JP 27834797 A JP27834797 A JP 27834797A JP 27834797 A JP27834797 A JP 27834797A JP 3443633 B2 JP3443633 B2 JP 3443633B2
Authority
JP
Japan
Prior art keywords
plasma
porous adsorbent
decomposition method
plasma decomposition
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27834797A
Other languages
Japanese (ja)
Other versions
JPH11114359A (en
Inventor
敦 尾形
光一 水野
暁 櫛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP27834797A priority Critical patent/JP3443633B2/en
Publication of JPH11114359A publication Critical patent/JPH11114359A/en
Application granted granted Critical
Publication of JP3443633B2 publication Critical patent/JP3443633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製品塗装工場、溶
剤取扱い施設、印刷工場、自動車塗装工場、ガソリンス
タンド、その他中小事業所等から排出される低濃度揮発
性有害物質含有ガスのプラズマ除去法とそれに用いる装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing plasma from a low-concentration volatile toxic substance-containing gas discharged from a product coating factory, a solvent handling facility, a printing factory, an automobile coating factory, a gas station, and other small and medium-sized businesses. And the device used for it.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】これま
でに知られている、揮発性有害物質を除去する技術は大
別すると、(1)熱分解法、(2)触媒分解法、(3)
吸着法に分けられる。しかし、これらの方法について開
発された個々の技術は、いずれも設置面積の大規模化、
定期的な吸着剤交換、さらには500ppm以下の低濃度条件
における効率低下等の問題を有し、比較的小規模な事業
所などでは実際の設置、運転が困難なものが多く、この
点で必ずしも満足すべきものとはいえない。一方、これ
らの問題点を解決すべく、低温プラズマを利用した希薄
濃度のフロンあるいは有機物質の分解が報告されてい
る。特に、2つの電極間に強誘電体物質を充填した低温
プラズマリアクターを用いた除去法は、室温および大気
圧下で操作でき、種々の低濃度揮発性有害物質を高い効
率で分解できることが知られている(例えば、著者C.
M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbot
t,L.E. Hamel and P. H. Karlher,「AIR & WASTE 」, 4
3巻、242-247 頁、1993年) 。しかし、分解後の望まし
い最終生成物であるCO2 への選択率が低く、また副生物
としてN2O などが発生することが問題となっている。本
発明はこのような従来の揮発性有害物質を含有するガス
を効率良く、無害ガスに分解するプラズマ分解法とそれ
に用いるプラズマ分解装置を提供することを目的とする
ものである。
The conventional techniques for removing volatile harmful substances are roughly classified into (1) thermal decomposition method, (2) catalytic decomposition method, and (3) )
It can be divided into adsorption methods. However, each of the individual technologies developed for these methods has a large footprint,
There are problems such as periodical replacement of the adsorbent and lower efficiency under low concentration conditions of 500 ppm or less, and in many cases it is difficult to actually install and operate in a relatively small business site. Not very satisfying. On the other hand, in order to solve these problems, decomposition of a dilute concentration of CFCs or organic substances using low temperature plasma has been reported. In particular, it is known that the removal method using a low temperature plasma reactor in which a ferroelectric substance is filled between two electrodes can be operated at room temperature and atmospheric pressure and can decompose various low-concentration volatile harmful substances with high efficiency. (For example, author C.
M. Nunez, GH Ramsey, WH Ponder, JH Abbot
t, LE Hamel and PH Karlher, "AIR &WASTE", 4
(3, 242-247, 1993). However, there are problems that the selectivity to CO 2 which is a desirable final product after decomposition is low and that N 2 O and the like are generated as by-products. It is an object of the present invention to provide a plasma decomposition method for efficiently decomposing such a conventional gas containing a volatile toxic substance into a harmless gas, and a plasma decomposition apparatus used therefor.

【0003】[0003]

【課題を解決するための手段】本発明の上記の課題は下
記の方法及び装置によって達成された。 (1) 排ガス中の揮発性有害物質をプラズマにより無
害な物質へ分解する方法において、リアクター内の1〜
5kV/cmの電圧をかけた電極間に強誘電体物質と、
Al 2 O 3 多孔質吸着剤を共存させることを特徴とするプ
ラズマ分解法。 (2) 多孔質吸着剤の比表面積が10〜750m2/g であ
り、5重量パーセント以下のAg, Au, Co, Cr, Cu, Fe,
Ni, Mn, Mo, Pt, Pd, Rh及びW から選ばれた少なくとも
1種の金属を担持させるか、又はイオン交換させたもの
を用いることを特徴とする上記(1)記載のプラズマ分
解法。 (3) 多孔質吸着剤と強誘電体物質を体積比1:9 〜5:
5 で物理的に混合し、電極間に充填して用いることを特
徴とする上記(1)記載のプラズマ分解法。 (4) 多孔質吸着剤と強誘電体物質が、直径1〜3mm
の円柱状ペレットもしくは楕円あるいは球状のビーズで
あることを特徴とする上記(1)記載のプラズマ分解
法。 (5) 分解処理する排ガスを通すプラズマ処理室のリ
アクター内の1〜5kV/cmの電圧をかけた電極間
Al 2 O 3 多孔質吸着物質と強誘電体物質とを排ガス
の通路を設けて混合充填してなることを特徴とするプラ
ズマ分解装置。
The above objects of the present invention have been achieved by the following method and apparatus. (1) A method of decomposing volatile harmful substances in the exhaust gas into harmless substances by a plasma, 1 in the reactor
A ferroelectric substance between the electrodes applied with a voltage of 5 kV / cm ,
A plasma decomposition method characterized by allowing a porous adsorbent of Al 2 O 3 to coexist. (2) The specific surface area of the porous adsorbent is 10 to 750 m 2 / g, and the content of Ag, Au, Co, Cr, Cu, Fe, is 5 wt% or less.
The plasma decomposition method according to (1) above, characterized in that at least one metal selected from Ni, Mn, Mo, Pt, Pd, Rh and W is supported or ion-exchanged. (3) Volume ratio of porous adsorbent to ferroelectric substance 1: 9-5:
5. The plasma decomposition method according to the above (1), wherein the plasma decomposition method is used by physically mixing in 5 and filling between the electrodes. (4) The porous adsorbent and the ferroelectric substance have a diameter of 1 to 3 mm.
2. The plasma decomposition method according to (1) above, which is a cylindrical pellet, or an elliptical or spherical bead. (5) Re- installation of plasma processing chamber that allows exhaust gas to be decomposed
Between electrodes with a voltage of 1 to 5 kV / cm in the actor
, The plasma decomposition unit and a porous adsorbent material and a ferroelectric material Al 2 O 3, characterized in that by mixing filled by providing a passage for exhaust gas.

【0004】[0004]

【発明の実施の形態】本発明のプラズマ分解法におい
て、電極間に多孔質吸着剤と強誘電体物質を物理混合し
たものを充填し、高電圧を印加し、排ガス中の揮発性有
害物質をプラズマ処理により無害な物質に分解する。こ
の時の排ガス中の揮発性有害物質の濃度は特に制限はな
いが、通常10〜1000ppm程度、好ましくは10
〜500ppmである。本発明においてプラズマリアク
ター内の電極間に強誘電体物質と多孔質吸着剤を混合状
態で存在させる。ここで強誘電体物質の比誘電率は、室
温で100〜15,000が好ましく、1,100〜1
0,000がより好ましい。多孔質吸着剤は、比表面積
10〜750m2 /gが好ましく、20〜500m2
gがより好ましい。吸着効果の小さい10m2 /g未満
の低表面積の物質を用いても分解率の向上及び多孔質吸
着剤上の濃縮効果は認められない。強誘電体物質と多孔
質吸着剤の混合比率は体積比で1:9〜5:5が好まし
く、1:9〜3:7がより好ましい。この場合、多孔質
吸着剤が少なすぎると多孔質吸着剤の濃縮効果が発揮で
きない。また、多すぎると低い電圧(エネルギー)では
プラズマが発生しなくなり、高い電圧では装置がショー
トする等、持続的なプラズマを発生させることができな
い。本発明に用いる多孔質吸着剤としては、Al 2 3
が用いられる。Al 2 3 多孔質吸着剤には、Ag、A
u、Co、Cr、Cu、Fe、Ni、Mn、Mo、P
t、Pd、Rh、Wなどの金属を担持もしくはイオン交
換により5重量%以下含有させて用いるのが好ましい。
このように金属を含有させることにより、揮発性有害物
質の分子内の結合を弱めたり、Al 2 3 多孔質吸着剤
の濃縮効果を高めるという作用効果がある。この金属の
量は、多すぎると装置内でショートしたり、印加した電
圧の一部が金属を伝って逃げるため、効率が低下するな
どの問題が発生する。
BEST MODE FOR CARRYING OUT THE INVENTION In the plasma decomposition method of the present invention, a material in which a porous adsorbent and a ferroelectric substance are physically mixed is filled between electrodes and a high voltage is applied to remove volatile harmful substances in exhaust gas. Decomposes into harmless substances by plasma treatment. The concentration of volatile harmful substances in the exhaust gas at this time is not particularly limited, but is usually about 10 to 1000 ppm, preferably 10
~ 500 ppm. In the present invention, the ferroelectric substance and the porous adsorbent are present in a mixed state between the electrodes in the plasma reactor. Here, the relative permittivity of the ferroelectric substance is preferably 100 to 15,000 at room temperature, and 1,100 to 1
10,000 is more preferable. The porous adsorbent has a specific surface area 10~750m 2 / g is preferable, 20 to 500 m 2 /
g is more preferred. Even if a substance having a low surface area of less than 10 m 2 / g having a small adsorption effect is used, neither the improvement of the decomposition rate nor the concentration effect on the porous adsorbent is observed. The volume ratio of the ferroelectric substance to the porous adsorbent is preferably 1: 9 to 5: 5, and more preferably 1: 9 to 3: 7. In this case, if the amount of the porous adsorbent is too small, the effect of concentrating the porous adsorbent cannot be exhibited. On the other hand, if the amount is too large, plasma will not be generated at a low voltage (energy), and if the voltage is high, the device will be short-circuited and continuous plasma cannot be generated. The porous adsorbent used in the present invention includes Al 2 O 3
Is used. For the Al 2 O 3 porous adsorbent, Ag, A
u, Co, Cr, Cu, Fe, Ni, Mn, Mo, P
It is preferable to use a metal such as t, Pd, Rh, or W contained by 5 wt% or less by carrying or ion exchange.
By thus containing a metal, there are the effects that the intramolecular bond of the volatile harmful substance is weakened and the concentration effect of the Al 2 O 3 porous adsorbent is enhanced. If the amount of this metal is too large, short-circuiting occurs in the device, or a part of the applied voltage escapes through the metal, causing problems such as reduced efficiency.

【0005】本発明のプラズマ分解法に用いる強誘電体
物質及び多孔質吸着剤は、充填層中に排ガスの通路を形
成しうるようにするため粒剤であることが好ましい。粒
剤のサイズは、円柱体の底面、楕円ないしは球状体の直
径が1〜3mm、より好ましくは1〜2mmとする。粒
径が小さすぎても大きすぎてもプラズマが発生しなくな
ったり、装置がショートしたりするため、プラズマを持
続的に発生できなくなる。本発明方法を適用しうるガス
は、製品塗装工場、溶剤取扱い施設、印刷工場、自動車
の塗装工場、ガソリンスタンド、その他中小事業所等か
らの排出ガスである。
The ferroelectric substance and the porous adsorbent used in the plasma decomposition method of the present invention are preferably granules in order to form a passage for exhaust gas in the packed bed. Regarding the size of the granule, the diameter of the bottom surface of the cylindrical body and the ellipse or the spherical body is 1 to 3 mm, more preferably 1 to 2 mm. If the particle size is too small or too large, plasma will not be generated or the device will be short-circuited, so that plasma cannot be continuously generated. The gas to which the method of the present invention can be applied is an exhaust gas from a product coating factory, a solvent handling facility, a printing factory, an automobile coating factory, a gas station, and other small and medium-sized business establishments.

【0006】このような本発明方法で除去しうる揮発性
有害物質の例を次にあげるが、これに限定されるもので
はない。 (炭化水素類)ベンゼン、トルエン、キシレン、メタ
ン、ブタン、ヘキサン、シクロヘキサン、ヘキセン (アルコール類)イソプロピルアルコール(2−プロパ
ノール)、メタノール (ケトン類)アセトン、メチルエチルケトン(MEK) (有機酸類)ギ酸、酢酸 (アルデヒド類)ホルムアルデヒド、アセトアルデヒド (フロン類、ハロカーボン類)CFC−113、CFC
−12、四塩化炭素、ジクロロメタン、ジクロロエタ
ン、トリクロロエチレン、トリクロロエタン (その他)エチルアセテート、ブチルアセテート、アン
モニア
Examples of such volatile harmful substances that can be removed by the method of the present invention are given below, but the present invention is not limited thereto. (Hydrocarbons) benzene, toluene, xylene, methane, butane, hexane, cyclohexane, hexene (alcohols) isopropyl alcohol (2-propanol), methanol (ketones) acetone, methyl ethyl ketone (MEK) (organic acids) formic acid, acetic acid (Aldehydes) formaldehyde, acetaldehyde (CFCs, halocarbons) CFC-113, CFC
-12, carbon tetrachloride, dichloromethane, dichloroethane, trichloroethylene, trichloroethane (others) ethyl acetate, butyl acetate, ammonia

【0007】次に、本発明を実施するのに好適なプラズ
マ分解装置の一実施態様を説明する。図1は円筒状プラ
ズマ分解装置の一例の縦断面図であり、図中、1は内部
電極、2は外部電極であり、両電極1、2の間に粒状多
孔質吸着剤と粒状強誘電体物質が物理混合されて、充填
されている。5は両電極1、2の間に高電圧を印加する
電源である。6は円筒型分解装置の両端に設けたテフロ
ン製キャップ、7は充填した多孔質吸着剤と強誘電体物
質を保持する押え板であり、円筒型分解装置の両端に設
けてある。8はO−リングである。矢印aは排ガスの流
入方向を示し、矢印bは浄化ガスの流出方向を示す。こ
の分解装置に導入された排ガスは矢印aの流路で、テフ
ロン製押え板の透孔(図示しない)を通って多孔質吸着
剤3を強誘電体物質に混合して充填したプラズマ処理室
9に導入され、揮発性有害物質が分解処理された後、浄
化ガスが、出口側の押え板7の透孔から矢印bで示す流
れとして排出される。上記以外の、本発明方法に用いる
プラズマリアクターの基本的構造は、従来と同様のもの
とすることができる。本発明方法において、内部電極1
と外部電極2との間に印加する電圧(電極間距離1cm
当りの電圧)は、処理する排ガス中の揮発性有害物質の
濃度などにより変わるが、1〜5kV/cmである。
Next, one embodiment of a plasma decomposition apparatus suitable for implementing the present invention will be described. FIG. 1 is a vertical cross-sectional view of an example of a cylindrical plasma decomposition apparatus, in which 1 is an internal electrode, 2 is an external electrode, and a granular porous adsorbent and a granular ferroelectric substance are provided between the electrodes 1 and 2. The substances are physically mixed and packed. A power source 5 applies a high voltage between the electrodes 1 and 2. Reference numeral 6 is a Teflon cap provided at both ends of the cylindrical decomposition apparatus, and 7 is a holding plate for holding the filled porous adsorbent and the ferroelectric substance, which are provided at both ends of the cylindrical decomposition apparatus. 8 is an O-ring. The arrow a indicates the inflow direction of the exhaust gas, and the arrow b indicates the outflow direction of the purified gas. The exhaust gas introduced into this decomposition apparatus is in the flow path indicated by the arrow a and passes through the through hole (not shown) of the Teflon holding plate to mix the porous adsorbent 3 with the ferroelectric substance and fill it with the plasma processing chamber 9 After the volatile harmful substance is decomposed and treated, the purified gas is discharged as a flow indicated by an arrow b from the through hole of the holding plate 7 on the outlet side. Other than the above, the basic structure of the plasma reactor used in the method of the present invention may be the same as the conventional one. In the method of the present invention, the internal electrode 1
Applied between the external electrode 2 and the external electrode 2 (distance between electrodes 1 cm
The voltage per unit) is 1 to 5 kV / cm, although it varies depending on the concentration of volatile harmful substances in the exhaust gas to be treated.

【0008】[0008]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。 実施例1 図1に示すようなプラズマ反応器を用い、強誘電体物質
には比誘電率4000、直径2mm のBaTiO3を主成分とする球
状ビーズと、多孔質吸着剤には比表面積250m2/g 、直径
1mm のAl2O3の球状ビーズを電極間に8:2 の体積比で混
合し、充填した。電極間距離は1cm、プラズマ処理室
の容積は314cm3 である。模擬排ガスには、200ppm
のベンゼンと0.5%の水蒸気を含む空気を用い、200cm3/m
inで図1に示すプラズマリアクターへ流通し、電極間に
0-5kV の電圧を印加した。こうしてベンゼン分解量、生
成ガス中のCO/CO2 比及び副生N2 O量を測定し
た。その結果を図2、図3及び図4に示した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 A plasma reactor as shown in FIG. 1 was used, and spherical beads mainly composed of BaTiO 3 having a relative permittivity of 4000 and a diameter of 2 mm were used as the ferroelectric substance, and a specific surface area of 250 m 2 was used as the porous adsorbent. / g, diameter
1 mm Al 2 O 3 spherical beads were mixed and filled between the electrodes at a volume ratio of 8: 2. The distance between the electrodes is 1 cm, and the volume of the plasma processing chamber is 314 cm 3 . 200ppm for simulated exhaust gas
200 cm 3 / m using air containing benzene and 0.5% steam
In between, it circulates to the plasma reactor shown in Fig. 1 and between the electrodes
A voltage of 0-5kV was applied. In this way, the amount of benzene decomposed, the CO / CO 2 ratio in the produced gas, and the amount of by-produced N 2 O were measured. The results are shown in FIGS. 2, 3 and 4.

【0009】図2に示すように従来型のBaTiO3のみを用
いたプラズマ分解法(a)に比べAl2O3 を混合した本発
明のプラズマ分解法(b)が、投入電力の増加とともに
分解量が著しく高くなり、気相中のベンゼンの他、多孔
質吸着剤に濃縮したベンゼンも分解できるため、同じ投
入電力での分解量を増加させることが可能となった。
As shown in FIG. 2, the plasma decomposition method (b) of the present invention in which Al 2 O 3 is mixed is decomposed with an increase in input power, as compared with the conventional plasma decomposition method (a) using only BaTiO 3. Since the amount of benzene in the gas phase was significantly increased and benzene concentrated in the porous adsorbent could be decomposed, it was possible to increase the amount of decomposition with the same input power.

【0010】さらに、図3に示すように生成したCO/CO2
比は、従来型のBaTiO3のみの分解法(a)に比べ、本発
明のAl2O3 を混合した分解法(b)の方が高いCO2 選択
率(低いCO/CO2比)を達成できた。
Further, CO / CO 2 produced as shown in FIG.
As for the ratio, the decomposition method (b) in which Al 2 O 3 of the present invention is mixed has a higher CO 2 selectivity (lower CO / CO 2 ratio) than the conventional decomposition method (a) of only BaTiO 3. I was able to achieve it.

【0011】副生成物であるN2O の発生量は図4に示す
ように、この場合も従来型の分解法(a)に比べ本発明
のAl2O3 を混合させる方法(b)では、約30% のN2O 発
生を抑制できた。
As shown in FIG. 4, the amount of N 2 O, which is a by-product, is generated by the method (b) of mixing Al 2 O 3 of the present invention as compared with the conventional decomposition method (a). The generation of N 2 O of about 30% could be suppressed.

【0012】多孔質吸着材料としてはAl2O3 が用いられ
る。また、比表面積の小さいものではこれらの効果は認
められなかった。
Al 2 O 3 is used as the porous adsorption material.
It In addition, these effects were not observed with a material having a small specific surface area.

【0013】実施例2 金属を多孔質吸着剤に担持させて用いた結果を図2の
(c)に示す。この場合、1重量パーセントのAgをAl2O
3 に含浸法により担持させたビーズを多孔質吸着剤とし
て用いた。リアクターへの充填法、及び反応条件は実施
例1と同じである。
Example 2 The results of using a metal supported on a porous adsorbent are shown in FIG. 2 (c). In this case, 1% by weight of Ag is Al 2 O
The beads supported by the impregnation method on 3 were used as the porous adsorbent. The method of filling the reactor and the reaction conditions are the same as in Example 1.

【0014】その結果、Agを担持させると従来型はもち
ろん、本発明のAl2O3 を混合させた場合よりも分解率が
向上することが明らかになった。また、他のAu, Co, C
r, Cu, Fe, Ni, Mn, Mo, Pt, Pd, Rh,Wを用いた場合に
も同じ促進効果が観測された。また、CO2 選択率の向上
やN2O 発生の抑制効果についてもAl2O3 を複合させた場
合と同じ結果が得られた。
As a result, it became clear that supporting Ag improves the decomposition rate as compared with the conventional type and the case of mixing Al 2 O 3 of the present invention. In addition, other Au, Co, C
The same promoting effect was observed when r, Cu, Fe, Ni, Mn, Mo, Pt, Pd, Rh and W were used. In addition, the same results as in the case of combining Al 2 O 3 were obtained with respect to the improvement of CO 2 selectivity and the effect of suppressing N 2 O generation.

【0015】[0015]

【発明の効果】本発明により、500ppm以下の低濃度の揮
発性有害物質を効率よく濃縮し、投入エネルギー当たり
の分解効率を向上させることができる他、望ましい最終
分解生成物であるCO2 への選択率を向上できる。また、
多孔質吸着剤を用いない場合に比べN2O の発生を30% 程
度抑制できる。本発明のプラズマ分解装置は、排ガス量
に応じて装置の小型化が可能であり、また、多孔質吸着
剤に吸着した物質をプラズマ中で処理できるため、吸着
剤の交換が不要である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to efficiently concentrate low concentration volatile toxic substances of 500 ppm or less to improve the decomposition efficiency per input energy, and to reduce CO 2 which is a desired final decomposition product. The selectivity can be improved. Also,
The generation of N 2 O can be suppressed by about 30% compared to the case where no porous adsorbent is used. The plasma decomposition apparatus of the present invention can be downsized according to the amount of exhaust gas, and since the substance adsorbed on the porous adsorbent can be treated in plasma, the adsorbent need not be replaced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様としての強誘電体物質と多
孔質吸着剤を充填したプラズマリアクターの断面図であ
る。
FIG. 1 is a cross-sectional view of a plasma reactor filled with a ferroelectric substance and a porous adsorbent according to an embodiment of the present invention.

【図2】実施例1及び2における各種プラズマリアクタ
ーで得られたベンゼン分解率を示す。
FIG. 2 shows benzene decomposition rates obtained by various plasma reactors in Examples 1 and 2.

【図3】実施例1のベンゼン分解により生成したCO/CO2
を示す。
FIG. 3 CO / CO 2 produced by benzene decomposition in Example 1
Indicates.

【図4】実施例1のベンゼン分解時に生成したN2O 濃度
を示す。
FIG. 4 shows the N 2 O concentration generated during benzene decomposition in Example 1.

【符号の説明】[Explanation of symbols]

1 内部電極 2 外部電極 3 多孔質吸着剤 4 強誘電体物質 5 電源 6 テフロン製キャップ 7 テフロン製押え板 8 O−リング 9 プラズマ処理室 1 internal electrode 2 external electrodes 3 Porous adsorbent 4 Ferroelectric substance 5 power supplies 6 Teflon cap 7 Teflon presser plate 8 O-ring 9 Plasma processing chamber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 20/18 (56)参考文献 特開 平8−266854(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI B01J 20/18 (56) Reference JP-A-8-266854 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中の揮発性有害物質をプラズマに
より無害な物質へ分解する方法において、リアクター内
1〜5kV/cmの電圧をかけた電極間に強誘電体物
質と、Al 2 O 3 多孔質吸着剤を共存させることを特徴と
するプラズマ分解法。
1. In a method of decomposing volatile toxic substances in exhaust gas into harmless substances by plasma, a ferroelectric substance and Al 2 O 3 are placed between electrodes in a reactor to which a voltage of 1 to 5 kV / cm is applied. The plasma decomposition method characterized in that the above porous adsorbent is allowed to coexist.
【請求項2】 多孔質吸着剤の比表面積が10〜750m2/g
であり、5重量パーセント以下のAg, Au, Co, Cr, Cu,
Fe, Ni, Mn, Mo, Pt, Pd, Rh及びW から選ばれた少なく
とも1種の金属を担持させるか、又はイオン交換させた
ものを用いることを特徴とする請求項1記載のプラズマ
分解法。
2. The specific surface area of the porous adsorbent is 10 to 750 m 2 / g.
And 5% by weight or less of Ag, Au, Co, Cr, Cu,
2. The plasma decomposition method according to claim 1, wherein at least one metal selected from Fe, Ni, Mn, Mo, Pt, Pd, Rh and W is supported or ion-exchanged. .
【請求項3】 多孔質吸着剤と強誘電体物質を体積比1:
9 〜5:5 で物理的に混合し、電極間に充填して用いるこ
とを特徴とする請求項1のプラズマ分解法。
3. A porous adsorbent and a ferroelectric substance in a volume ratio of 1:
The plasma decomposition method according to claim 1, characterized in that the particles are physically mixed at 9 to 5: 5 and are filled between the electrodes.
【請求項4】 多孔質吸着剤と強誘電体物質が、直径1
〜3mmの円柱状ペレットもしくは楕円あるいは球状のビ
ーズであることを特徴とする請求項1のプラズマ分解
法。
4. The porous adsorbent and the ferroelectric substance have a diameter of 1
The plasma decomposition method according to claim 1, which is a cylindrical pellet of 3 mm or elliptical or spherical beads.
【請求項5】 分解処理する排ガスを通すプラズマ処理
のリアクター内の1〜5kV/cmの電圧をかけた電
極間にAl 2 O 3 多孔質吸着物質と強誘電体物質とを排
ガスの通路を設けて混合充填してなることを特徴とする
プラズマ分解装置。
5. An electric power applied with a voltage of 1 to 5 kV / cm in the reactor of the plasma processing chamber through which the exhaust gas to be decomposed is passed.
The machining gap, plasma decomposition apparatus and a porous adsorbent material and a ferroelectric material Al 2 O 3, characterized in that by mixing filled by providing a passage for exhaust gas.
JP27834797A 1997-10-13 1997-10-13 Plasma decomposition method and apparatus for volatile harmful substances Expired - Lifetime JP3443633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27834797A JP3443633B2 (en) 1997-10-13 1997-10-13 Plasma decomposition method and apparatus for volatile harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27834797A JP3443633B2 (en) 1997-10-13 1997-10-13 Plasma decomposition method and apparatus for volatile harmful substances

Publications (2)

Publication Number Publication Date
JPH11114359A JPH11114359A (en) 1999-04-27
JP3443633B2 true JP3443633B2 (en) 2003-09-08

Family

ID=17596076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27834797A Expired - Lifetime JP3443633B2 (en) 1997-10-13 1997-10-13 Plasma decomposition method and apparatus for volatile harmful substances

Country Status (1)

Country Link
JP (1) JP3443633B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9924999D0 (en) * 1999-10-22 1999-12-22 Aea Technology Plc Reactor for the plasma treatment of gases
KR100445220B1 (en) * 2001-04-30 2004-08-25 건국대학교 산학협력단 Apparatus and method for removing voc by electromagnetic beam and adsorbent of the same
KR100492398B1 (en) * 2002-07-25 2005-05-31 고등기술연구원연구조합 Purifier using Plasma and adsorbent
JP2005144445A (en) * 2003-10-24 2005-06-09 Yamaha Corp Method for treating gas with non-equilibrium plasma, discharge electrode and gas treatment apparatus equipped therewith
US7482533B2 (en) 2005-02-22 2009-01-27 Medusa Special Projects, Llc Nuclear-cored battery
US7491881B2 (en) 2005-02-22 2009-02-17 Medusa Special Projects, Llc Method of manufacturing a nuclear-cored battery
US7438789B2 (en) 2005-02-22 2008-10-21 Medusa Special Projects, Llc Decomposition cell
US7491882B2 (en) 2005-02-22 2009-02-17 Medusa Special Projects, Llc Super electromagnet
US7488889B2 (en) 2005-02-22 2009-02-10 Medusa Special Projects, Llc Layered nuclear-cored battery
KR101070359B1 (en) * 2008-12-24 2011-10-05 주식회사 포스코 Apparatus and method for destructing ozone using nonthermal plasma reactor filled with adsorptive and nonadsorptive dielectric packing materials
KR101157122B1 (en) 2011-03-22 2012-06-22 이재혁 Advanced water treatment apparatus using plasma
CN103418217B (en) * 2013-08-06 2015-12-23 大连理工大学 A kind of along face and packed bed compound discharge process industrial waste gas device
CN113275014B (en) * 2021-05-24 2022-10-04 南京工业大学 High-molecular surface modified gamma-Fe 2 O 3 Diatomite catalyst, preparation method and application thereof
CN115350560B (en) * 2022-08-29 2023-10-31 星烁(苏州)电子科技有限公司 Dry tail gas treatment device capable of automatically replacing adsorbent

Also Published As

Publication number Publication date
JPH11114359A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP3443633B2 (en) Plasma decomposition method and apparatus for volatile harmful substances
Jeong et al. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources
US4954320A (en) Reactive bed plasma air purification
Parmar et al. Emerging control technologies for volatile organic compounds
JP3711052B2 (en) Catalytic reactor for treating hazardous gases using low temperature plasma and dielectric heat
EP0473680B1 (en) Process for the purification of contaminated water by activated ozone
Najafpoor et al. Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
Vandenbroucke et al. Decomposition of Trichloroethylene with Plasma-catalysis: A review
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
US6395144B1 (en) Method for treating toxic compounds-containing gas by non-thermal plasma
JP3293181B2 (en) Gas phase decomposition treatment method for volatile organic halogen compound-containing gas
CN110292854B (en) Device and method for catalytic degradation of VOCs (volatile organic compounds) by pulse plasma coupling double fluidized beds
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP2004283742A (en) Plasma treating device and plasma treating method
JP2001187319A (en) Method and device for cleaning gas
JPH09155364A (en) Treatment of waste water
JPH10202257A (en) Photocatalytic water treating device and photocatalytic water treating method
JPH06134315A (en) Catalyst for reduction treatment of volatile organic halogen compound
Magureanu VOC removal from air by plasma‐assisted catalysis‐experimental work
JP3360353B2 (en) Method for treating volatile organic halogen compounds
JPH06106172A (en) Treatment of volatile organohalogen compound
KR100428564B1 (en) W-cr-tio2 catalysts and method for the removal of chlorinated organic compounds
WO2003092868A1 (en) Hybrid apparatus and method for removing volatile organic compounds and odorous substances by electron beam and catalyst
JP3293207B2 (en) Method for treating volatile organic halogen compound-containing gas

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term