JP3434918B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3434918B2
JP3434918B2 JP28492894A JP28492894A JP3434918B2 JP 3434918 B2 JP3434918 B2 JP 3434918B2 JP 28492894 A JP28492894 A JP 28492894A JP 28492894 A JP28492894 A JP 28492894A JP 3434918 B2 JP3434918 B2 JP 3434918B2
Authority
JP
Japan
Prior art keywords
metallized wiring
semiconductor element
wiring layer
insulating substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28492894A
Other languages
Japanese (ja)
Other versions
JPH08148527A (en
Inventor
弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28492894A priority Critical patent/JP3434918B2/en
Publication of JPH08148527A publication Critical patent/JPH08148527A/en
Application granted granted Critical
Publication of JP3434918B2 publication Critical patent/JP3434918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はコンピュータ等の情報処
理装置に搭載される半導体装置に関し、より詳細には半
導体素子を樹脂でモールドして成る半導体装置に関する
ものである。 【0002】 【従来の技術】従来、コンピュータ等の情報処理装置に
搭載される半導体装置は図2に示すように枠体11に半導
体素子が固定される金属板12と多数のリード端子13とを
接合させたリードフレームAを準備し、前記金属板12上
に半導体素子14を接着剤を介して接着固定し、次に前記
半導体素子14の各電極をリード端子13にボンディングワ
イヤ15を介して電気的に接続するとともに金属板12上に
固定された半導体素子14とリード端子13の一部を樹脂で
モールドし被覆体16となすことによって製作されてい
る。 【0003】かかる従来の半導体装置は、半導体素子14
及びリード端子13の一部を樹脂から成る被覆体16でモー
ルドした後、リード端子13を枠体11より切断分離させ、
各々のリード端子13を電気的に独立させるとともに各リ
ード端子13を外部電気回路に接続することによって内部
の半導体素子14を外部電気回路に電気的に接続する。 【0004】 【発明が解決しようとする課題】しかしながら、近時、
半導体素子は高密度化、高集積化が急激に進んで電極数
が大幅に増大してきており、これに伴って半導体素子の
各電極を外部電気回路に接続するリード端子も線幅が0.
15mm程度と細く、且つ隣接するリード端子の間隔も0.15
mmと極めて狭いものとなってきた。そのためこの従来の
半導体装置ではリード端子を外部電気回路に接続させる
際、リード端子に外力が印加されると該外力によって容
易に変形し、隣接するリード端子が接触して短絡を発生
したり、リード端子を所定の外部電気回路に正確、且つ
強固に電気的接続することができないという欠点を有し
ていた。 【0005】そこで上記欠点を解消するために本願出願
人は先に、上面中央部から外周部に向かって扇状に広が
るメタライズ配線層を有する基板とリード端子とを準備
し、基板の中央に半導体素子を接着固定させ、該半導体
素子の各電極をボンディングワイヤを介して基板中央部
に位置するメタライズ配線層の一端に接続させるととも
に基板外周部に位置するメタライズ配線層の他端にリー
ド端子を取着させた半導体装置を提案した(特願平3−
324925号参照)。 【0006】かかる半導体装置によればリード端子が扇
状に広がったメタライズ配線層に取着されることからリ
ード端子の線幅及び隣接間隔を広いものとしてリード端
子の変形を有効に防止しつつ隣接するリード端子間の電
気的絶縁を維持することが可能となる。 【0007】しかしながら、この半導体装置においては
半導体素子の電極とメタライズ配線層とをボンディング
ワイヤを介して電気的に接続しており、半導体素子の電
極数が極めて多いことからの半導体素子の電極をメタラ
イズ配線層に接続するのに長時間を要し、半導体装置の
生産性が悪く製品としての半導体装置を高価とする欠点
を有する。 【0008】またリード端子はその形状が略同一で、且
つ数が極めて多いことからこれを所定のメタライズ配線
層に正確に取着するには熟練を要し、誤取着を発生し易
く、リード端子を異なるメタライズ配線層に取着してし
まうと半導体素子の電極を所定の外部電気回路に正確に
電気的接続することができないという欠点も有してい
た。 【0009】 【発明の目的】本発明は上記欠点に鑑み案出されたもの
で、その目的は半導体素子が高密度化、高集積化し電極
数が大幅に増大したとしても該各電極を外部電気回路に
正確、且つ確実に電気的接続することができる安価な半
導体装置を提供することにある。 【0010】 【課題を解決するための手段】本発明の半導体装置は、
透光性材料であるサファイヤから成り、上面中央部より
外周部に向かって扇状に広がって形成された、密着層と
中間金属層と主導体層との3層構造を有する複数個のメ
タライズ配線層を有する絶縁基板と、前記メタライズ配
線層の一端に半田を介して取着された、鉄−ニッケル合
金または鉄−ニッケル−コバルト合金から成るとともに
表面に半田がメッキ法により被着された複数個のリード
端子と、前記メタライズ配線層の他端にフリップチップ
接続により接続された、複数個の電極を有する半導体素
子と、前記メタライズ配線層を有する絶縁基板、半導体
素子及びリード端子の一部を被覆する樹脂部材とから成
ることを特徴とするものである。 【0011】 【作用】本発明の半導体装置によれば、絶縁基板に設け
たメタライズ配線層に半導体素子の電極をフリップチッ
プ接続により接続することから半導体素子の電極数が多
いとしても全ての電極を一度にメタライズ配線層に電気
的接続することができ、その結果、半導体装置の生産性
が大幅に向上し、製品として半導体装置を安価となすこ
とができる。 【0012】また本発明の半導体装置によれば、メタラ
イズ配線層を有する絶縁基板を透光性材料で形成したこ
とから、メタライズ配線層に半導体素子の電極をフリッ
プチップ接続させる際、或いはメタライズ配線層にリー
ド端子を取着させる際、メタライズ配線層と半導体素子
の電極及びメタライズ配線層とリード端子とを基板を通
して正確に位置合わせすることができ、その結果、半導
体素子の各電極及びリード端子が所定のメタライズ配線
層に正確に接続取着され、半導体素子の各電極をリード
端子を介して所定の外部電気回路に正確、且つ確実に電
気的接続することが可能となる。 【0013】 【実施例】次に本発明を添付図面に基づき詳細に説明す
る。図1は本発明の半導体装置の一実施例を示し、1 は
電気絶縁性の透光性材料から成る基板、2 はリード端
子、3は半導体素子である。 【0014】前記絶縁基板1は透光性材料であるサファ
イヤより成り、その上面の中央部から外周部に向かって
扇状に広がる複数個のメタライズ配線層4が被着形成さ
れている。 【0015】 【0016】また前記絶縁基板1の上面に被着形成され
ているメタライズ配線層4は後述する半導体素子3の各
電極をリード端子2に接続する作用を為し、メタライズ
配線層4の一端には半導体素子3の各電極がフリップチ
ップ接続により接続され、また他端側にはリード端子2
が取着される。 【0017】前記メタライズ配線層4はチタンやニッケ
ル−クロム合金、窒化タンタル等から成る密着層と、ニ
ッケル、クロム、パラジウム、ロジウム、白金等から成
る中間金属層と、銅、金等から成る主導体層の3層構造
を有しており、絶縁基板1の上面に上記各材料を順次、
スパッタリング法や蒸着法、イオンプレーティング法に
より被着させるとともにこれをフォトリソグラフィー技
術により所定のパターンに加工することによって絶縁基
板1の上面に中央部から外周部に向かって扇状に広がる
ように被着形成される。 【0018】前記メタライズ配線層4はその絶縁基板1
の中央部に位置する部位に半導体素子3の電極がフリッ
プチップ接続、具体的には絶縁基板1の上面に半導体素
子3を、該絶縁基板1の上面に被着させたメタライズ配
線層4と半導体素子3の各電極に予め被着させた半田バ
ンプとが相対向するようにして載置させ、しかる後、前
記半田バンプを加熱溶融させ、絶縁基板1のメタライズ
配線層4と半導体素子3の各電極とを半田接合させるこ
とによって半導体素子3は絶縁基板1の上面に各電極を
メタライズ配線層4に電気的接続させた状態で取着され
る。この場合、半導体素子3の電極はその総数が多かっ
たとしても全てを絶縁基板1の表面に被着されているメ
タライズ配線層4に半田を介して一度に、且つ強固に電
気的接続することができ、その結果、半導体素子3の各
電極とメタライズ配線層4との電気的接続を極めて短時
間として半導体装置の生産性を大きく向上させることが
できる。また絶縁基板1の上面に被着させたメタライズ
配線層4に半導体素子3の電極をフリップチップ接続に
より接続させる際、絶縁基板1が透光性材料より成るこ
とから絶縁基板1の下面側からメタライズ配線層4と半
導体素子3の電極との相対向状態を確認することがで
き、その結果、半導体素子3の各電極は所定のメタライ
ズ配線層4に簡単、且つ正確に接続することが可能とな
る。 【0019】また前記メタライズ配線層4はその絶縁基
板1の外周部に位置する部位にリード端子2が取着され
ており、該リード端子2は半導体素子3の各電極を外部
電気回路に接続する作用を為す。 【0020】前記メタライズ配線層4へのリード端子2
の取着はメタライズ配線層4の上部に半田を介してリー
ド端子2を載置し、しかる後、前記半田を加熱溶融させ
ることによって行なわれる。この場合、絶縁基板1が透
光性材料より成ることから絶縁基板1の下面側からメタ
ライズ配線層4とリード端子2との位置合わせを確認す
ることができ、その結果、メタライズ配線層4に所定の
リード端子2を簡単、且つ正確に取着することができ
る。 【0021】更に前記リード端子2は該リード端子2の
取着されるメタライズ配線層4が絶縁基体1の上面中央
部より外周部に向かって扇状に広がっており、絶縁基板
1の外周部における線幅及び隣接するメタライズ配線層
4間の間隔が広いものとなっていることからその線幅を
0.25mmと広く(従来品に対し約70%広い)、且つ隣接間
隔を0.25mmと広い(従来品に対し約70%広い)ものとな
すことができ、その結果、リード端子2に外部電気回路
に接続させる際等において外力が印加されたとしても該
リード端子2は大きな変形を発生することがなく、隣接
するリード端子2間の電気的絶縁を維持しつつリード端
子2を所定の外部電気回路に正確、且つ強固に電気的接
続することが可能となる。 【0022】尚、前記メタライズ配線層4に取着される
リード端子2は鉄−ニッケル−コバルト合金や鉄−ニッ
ケル合金の金属材料から成り、例えば、鉄−ニッケル−
コバルト合金等のインゴット(塊)を圧延加工法や打ち
抜き加工法等、従来周知の金属加工法を採用することに
よって所定の形状に形成される。 【0023】また前記リード端子2はその表面にニッケ
ル、金等の耐蝕性に優れ、且つロウ材と濡れ性の良い金
属をメッキ法により0.1 乃至20.0μm の厚みに層着させ
ておくとリード端子2の酸化腐食を有効に防止すること
ができるとともにリード端子2とメタライズ配線層4と
の取着及びリード端子2と外部電気回路との接続を良好
となすことができる。従って、前記リード端子2はその
表面にニッケル、金等を0.1 乃至20.0μm の厚みに層着
させておくことが好ましい。 【0024】更に、前記リード端子2はその表面に半田
をメッキ法により1.0乃至20.0μmの厚みに被着させて
おり、リード端子2の外部電気回路への接続が容易とな
る。 【0025】前記上面に半導体素子3及びリード端子2
が取着された絶縁基板1はリード端子2の一部を残して
エポキシ樹脂から成る樹脂部材5でモールドされ、半導
体素子3を外気から完全に遮断することによって最終製
品としての半導体装置となる。 【0026】前記半導体素子3及びリード端子2の樹脂
部材5によるモールドは、上面に半導体素子3及びリー
ド端子2が取着された絶縁基板1を所定の治具内にセッ
トするとともに治具内にエポキシ樹脂等の液状樹脂を滴
下注入し、しかる後、注入した樹脂を180 ℃程度の温
度、100Kgf/mm 2 の圧力を加え熱硬化させることによっ
て行われる。 【0027】かくして本発明の半導体装置はリード端子
2を外部電気回路に接続させ、内部の半導体素子3を外
部電気回路に電気的に接続することによってコンピュー
タ等の情報処理装置に搭載されることとなる。 【0028】尚、本発明は上述の実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲であれば種
々の変更は可能である。 【0029】 【発明の効果】本発明の半導体装置によれば、絶縁基板
に扇状に広がるように設けた複数個のメタライズ配線層
に半導体素子の電極をフリップチップ接続により接続す
るとともに絶縁基板の下面側からメタライズ配線層と半
導体素子の電極との相対向状態を確認することができる
ことから、半導体素子の電極数が多いとしても全ての電
極を一度にメタライズ配線層に電気的接続することがで
き、その結果、半導体装置の生産性が大幅に向上し、製
品として半導体装置を安価となすことができる。 【0030】また本発明の半導体装置によれば、メタラ
イズ配線層を有する絶縁基板を透光性材料で形成したこ
とから、メタライズ配線層に半導体素子の電極をフリッ
プチップ接続させる際、或いはメタライズ配線層にリー
ド端子を取着させる際、メタライズ配線層と半導体素子
の電極及びメタライズ配線層とリード端子とを基板を通
して正確に位置合わせすることができ、その結果、半導
体素子の各電極及びリード端子が所定のメタライズ配線
層に正確に接続取着され、半導体素子の各電極をリード
端子を介して所定の外部電気回路に正確、且つ確実に電
気的接続することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device mounted on an information processing apparatus such as a computer, and more particularly, to a semiconductor device formed by molding a semiconductor element with a resin. Things. 2. Description of the Related Art Conventionally, as shown in FIG. 2, a semiconductor device mounted on an information processing apparatus such as a computer includes a metal plate 12 having a semiconductor element fixed to a frame 11 and a number of lead terminals 13. A joined lead frame A is prepared, and a semiconductor element 14 is bonded and fixed on the metal plate 12 with an adhesive, and then each electrode of the semiconductor element 14 is electrically connected to a lead terminal 13 via a bonding wire 15. The semiconductor device 14 is fixed to the metal plate 12 and a part of the lead terminal 13 is molded with resin to form a cover 16. [0003] Such a conventional semiconductor device includes a semiconductor element 14.
And after molding a part of the lead terminal 13 with a coating 16 made of resin, the lead terminal 13 is cut and separated from the frame 11,
Each of the lead terminals 13 is electrically independent, and each of the lead terminals 13 is connected to an external electric circuit, thereby electrically connecting the internal semiconductor element 14 to the external electric circuit. [0004] However, recently,
Semiconductor devices have rapidly increased in density and integration, and the number of electrodes has increased significantly.With this, the lead terminals connecting each electrode of the semiconductor device to an external electric circuit have a line width of 0.
It is as thin as about 15mm, and the distance between adjacent lead terminals is 0.15
mm. Therefore, in the conventional semiconductor device, when an external force is applied to the lead terminal when the lead terminal is connected to an external electric circuit, the lead terminal is easily deformed by the external force, and the adjacent lead terminals come into contact with each other to cause a short circuit or lead. There is a disadvantage that the terminals cannot be accurately and firmly electrically connected to a predetermined external electric circuit. In order to solve the above-mentioned drawbacks, the applicant of the present application first prepared a substrate having a metallized wiring layer which spread in a fan shape from the center of the upper surface to the outer periphery, and a lead terminal. And bonding each electrode of the semiconductor element to one end of a metallized wiring layer located at the center of the substrate via a bonding wire, and attaching a lead terminal to the other end of the metallized wiring layer located at the outer periphery of the substrate. Proposed a semiconductor device (Japanese Patent Application Hei 3-
324925). According to such a semiconductor device, the lead terminals are attached to the fan-shaped metallized wiring layer, so that the line widths and adjacent intervals of the lead terminals are widened to effectively prevent the deformation of the lead terminals while adjoining them. Electrical insulation between the lead terminals can be maintained. However, in this semiconductor device, the electrodes of the semiconductor element are electrically connected to the metallized wiring layers via bonding wires, and the electrodes of the semiconductor element are metallized because the number of electrodes of the semiconductor element is extremely large. It takes a long time to connect to the wiring layer, and has the disadvantage that the productivity of the semiconductor device is poor and the semiconductor device as a product is expensive. Further, since the lead terminals have substantially the same shape and a very large number, skill is required to accurately attach them to a predetermined metallized wiring layer, and erroneous attachment is likely to occur. If the terminals are attached to different metallized wiring layers, the electrodes of the semiconductor element cannot be accurately and electrically connected to a predetermined external electric circuit. SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned drawbacks, and has as its object that even if the density of semiconductor elements is increased and the integration is increased and the number of electrodes is greatly increased, each of the electrodes is electrically connected to an external electrode. It is an object of the present invention to provide an inexpensive semiconductor device which can be accurately and reliably electrically connected to a circuit. [0010] A semiconductor device according to the present invention comprises:
A plurality of metallized wiring layers made of sapphire, which is a translucent material, and formed in a fan shape from the central portion of the upper surface toward the outer peripheral portion and having a three-layer structure of an adhesion layer, an intermediate metal layer, and a main conductor layer. An insulating substrate having a plurality of iron-nickel alloys or iron-nickel-cobalt alloys attached to one end of the metallized wiring layer via solder, and having a surface coated with solder by a plating method. A lead element, a semiconductor element having a plurality of electrodes connected to the other end of the metallized wiring layer by flip-chip connection, and an insulating substrate having the metallized wiring layer, a semiconductor element, and a part of the lead terminal are covered. And a resin member. According to the semiconductor device of the present invention, since the electrodes of the semiconductor element are connected to the metallized wiring layer provided on the insulating substrate by flip-chip connection, even if the number of electrodes of the semiconductor element is large, all the electrodes are connected. Electrical connection can be made to the metallized wiring layer at one time. As a result, the productivity of the semiconductor device is greatly improved, and the semiconductor device can be made inexpensive as a product. Further, according to the semiconductor device of the present invention, since the insulating substrate having the metallized wiring layer is formed of a translucent material, the electrode of the semiconductor element is flip-chip connected to the metallized wiring layer, or When attaching the lead terminals to the metallized wiring layer and the electrodes of the semiconductor element, and the metallized wiring layer and the lead terminals can be accurately aligned through the substrate, as a result, each electrode and the lead terminal of the semiconductor element can be fixed to a predetermined position. And the electrodes of the semiconductor element can be accurately and reliably electrically connected to predetermined external electric circuits via lead terminals. Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a semiconductor device according to the present invention, in which 1 is a substrate made of an electrically insulating translucent material, 2 is a lead terminal, and 3 is a semiconductor element. The insulating substrate 1 is made of sapphire, which is a light-transmitting material, and has a plurality of metallized wiring layers 4 spread in a fan shape from the center of the upper surface to the outer periphery. The metallized wiring layer 4 formed on the upper surface of the insulating substrate 1 serves to connect each electrode of the semiconductor element 3 described later to the lead terminal 2. Each electrode of the semiconductor element 3 is connected to one end by flip-chip connection, and a lead terminal 2 is connected to the other end.
Is attached. The metallized wiring layer 4 includes an adhesion layer made of titanium, nickel-chromium alloy, tantalum nitride, or the like, an intermediate metal layer made of nickel, chromium, palladium, rhodium, platinum, or the like, and a main conductor made of copper, gold, or the like. It has a three-layer structure, and each of the above materials is sequentially placed on the upper surface of the insulating substrate
It is applied by sputtering, vapor deposition, or ion plating, and is processed into a predetermined pattern by photolithography, so that it is applied on the upper surface of the insulating substrate 1 so as to spread in a fan shape from the center to the outer periphery. It is formed. The metallized wiring layer 4 is formed on the insulating substrate 1
The electrode of the semiconductor element 3 is flip-chip connected to a portion located at the center of the semiconductor substrate. More specifically, the semiconductor element 3 is attached to the upper surface of the insulating substrate 1, and the metallized wiring layer 4 and the semiconductor are attached to the upper surface of the insulating substrate 1. The solder bumps previously attached to the respective electrodes of the element 3 are placed so as to face each other, and then the solder bumps are heated and melted, and the metallized wiring layer 4 of the insulating substrate 1 and each of the semiconductor elements 3 are formed. The semiconductor element 3 is attached to the upper surface of the insulating substrate 1 with the electrodes electrically connected to the metallized wiring layer 4 by soldering the electrodes. In this case, even if the total number of the electrodes of the semiconductor element 3 is large, all of the electrodes can be electrically connected to the metallized wiring layer 4 attached to the surface of the insulating substrate 1 at once and firmly via solder. As a result, the electrical connection between each electrode of the semiconductor element 3 and the metallized wiring layer 4 can be made extremely short, thereby greatly improving the productivity of the semiconductor device. When the electrodes of the semiconductor element 3 are connected to the metallized wiring layer 4 attached to the upper surface of the insulating substrate 1 by flip-chip connection, the metallized surface is formed from the lower surface side of the insulating substrate 1 because the insulating substrate 1 is made of a translucent material. The opposing state between the wiring layer 4 and the electrode of the semiconductor element 3 can be confirmed. As a result, each electrode of the semiconductor element 3 can be easily and accurately connected to a predetermined metallized wiring layer 4. . A lead terminal 2 is attached to the metallized wiring layer 4 at a position located on an outer peripheral portion of the insulating substrate 1, and the lead terminal 2 connects each electrode of the semiconductor element 3 to an external electric circuit. Works. Lead terminal 2 to metallized wiring layer 4
Is mounted by placing the lead terminal 2 on the metallized wiring layer 4 via solder and then heating and melting the solder. In this case, since the insulating substrate 1 is made of a translucent material, the alignment between the metallized wiring layer 4 and the lead terminals 2 can be confirmed from the lower surface side of the insulating substrate 1, and as a result, the metallized wiring layer 4 Lead terminal 2 can be easily and accurately attached. Further, in the lead terminal 2, the metallized wiring layer 4 to which the lead terminal 2 is attached extends fanwise from the center of the upper surface of the insulating base 1 toward the outer peripheral portion. Since the width and the distance between adjacent metallized wiring layers 4 are wide, the line width is reduced.
It can be as wide as 0.25mm (approximately 70% wider than the conventional product) and the adjacent space can be wide as 0.25mm (approximately 70% wider than the conventional product). As a result, the external electric circuit Even when an external force is applied when the lead terminals 2 are connected, the lead terminals 2 do not undergo large deformation, and the lead terminals 2 are connected to a predetermined external electric circuit while maintaining electrical insulation between the adjacent lead terminals 2. It is possible to make accurate and strong electrical connection. The lead terminal 2 attached to the metallized wiring layer 4 is made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy.
An ingot (lumps) of a cobalt alloy or the like is formed into a predetermined shape by employing a conventionally known metal working method such as a rolling method or a punching method. The lead terminal 2 may be formed by plating a metal having excellent corrosion resistance such as nickel and gold and having good wettability with a brazing material to a thickness of 0.1 to 20.0 μm on a surface thereof by plating. 2 can be effectively prevented, and the connection between the lead terminal 2 and the metallized wiring layer 4 and the connection between the lead terminal 2 and an external electric circuit can be improved. Therefore, it is preferable that the lead terminals 2 have nickel, gold or the like layered on the surface thereof in a thickness of 0.1 to 20.0 μm. Further, the lead terminals 2 are coated with solder to a thickness of 1.0 to 20.0 μm on a surface thereof by a plating method, so that connection of the lead terminals 2 to an external electric circuit becomes easy. The semiconductor element 3 and the lead terminal 2 are provided on the upper surface.
The insulating substrate 1 to which is attached is molded with a resin member 5 made of an epoxy resin except for a part of the lead terminal 2, and the semiconductor element 3 is completely shielded from the outside air to become a semiconductor device as a final product. The molding of the semiconductor element 3 and the lead terminal 2 by the resin member 5 sets the insulating substrate 1 on which the semiconductor element 3 and the lead terminal 2 are attached on the upper surface in a predetermined jig and sets the insulating substrate 1 in the jig. A liquid resin such as an epoxy resin is dropped and injected, and thereafter, the injected resin is thermally cured by applying a temperature of about 180 ° C and a pressure of 100 kgf / mm 2 . Thus, the semiconductor device of the present invention is mounted on an information processing apparatus such as a computer by connecting the lead terminal 2 to an external electric circuit and electrically connecting the internal semiconductor element 3 to the external electric circuit. Become. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. According to the semiconductor device of the present invention, the electrodes of the semiconductor element are connected by flip-chip connection to a plurality of metallized wiring layers provided so as to spread in a fan shape on the insulating substrate and the lower surface of the insulating substrate. Since it is possible to check the facing state between the metallized wiring layer and the electrode of the semiconductor element from the side, even if the number of electrodes of the semiconductor element is large, all the electrodes can be electrically connected to the metallized wiring layer at once, As a result, the productivity of the semiconductor device is greatly improved, and the semiconductor device can be made inexpensive as a product. Further, according to the semiconductor device of the present invention, since the insulating substrate having the metallized wiring layer is formed of a translucent material, the electrode of the semiconductor element is flip-chip connected to the metallized wiring layer, or When attaching the lead terminals to the metallized wiring layer and the electrodes of the semiconductor element, and the metallized wiring layer and the lead terminals can be accurately aligned through the substrate, as a result, each electrode and the lead terminal of the semiconductor element can be fixed to a predetermined position. And the electrodes of the semiconductor element can be accurately and reliably electrically connected to predetermined external electric circuits via lead terminals.

【図面の簡単な説明】 【図1】本発明の半導体装置の一実施例を示す断面図で
ある。 【図2】従来の半導体装置の平面図である。 【符号の説明】 1・・・・・・絶縁基板 2・・・・・・リード端子 3・・・・・・半導体素子 4・・・・・・メタライズ配線層 5・・・・・・樹脂部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing one embodiment of a semiconductor device of the present invention. FIG. 2 is a plan view of a conventional semiconductor device. [Description of Signs] 1 ... Insulating substrate 2 ... Lead terminal 3 ... Semiconductor element 4 ... Metalized wiring layer 5 ... Resin Element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B29L 31:34 H01L 23/12 K (58)調査した分野(Int.Cl.7,DB名) H01L 23/12 H01L 21/60 H01L 23/28 B29C 43/18 B29C 43/34 B29L 31:34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI B29L 31:34 H01L 23/12 K (58) Investigated field (Int.Cl. 7 , DB name) H01L 23/12 H01L 21 / 60 H01L 23/28 B29C 43/18 B29C 43/34 B29L 31:34

Claims (1)

(57)【特許請求の範囲】 【請求項1】 透光性材料であるサファイヤから成り、
上面中央部より外周部に向かって扇状に広がって形成さ
れた、密着層と中間金属層と主導体層との3層構造を有
する複数個のメタライズ配線層を有する絶縁基板と、前
記メタライズ配線層の一端に半田を介して取着された、
鉄−ニッケル合金または鉄−ニッケル−コバルト合金か
ら成るとともに表面に半田がメッキ法により被着された
複数個のリード端子と、前記メタライズ配線層の他端に
フリップチップ接続により接続された、複数個の電極を
有する半導体素子と、前記メタライズ配線層を有する絶
縁基板、半導体素子及びリード端子の一部を被覆する樹
脂部材とから成ることを特徴とする半導体装置。
(57) [Claims 1] It is made of sapphire which is a translucent material,
An insulating substrate having a plurality of metallized wiring layers having a three-layer structure of an adhesion layer, an intermediate metal layer, and a main conductor layer, formed in a fan-like manner from a central portion of the upper surface to an outer peripheral portion; Attached to one end via solder ,
A plurality of lead terminals made of an iron-nickel alloy or an iron-nickel-cobalt alloy and having a surface coated with solder by a plating method, and connected to the other end of the metallized wiring layer by flip chip connection. A semiconductor device comprising: a semiconductor element having a plurality of electrodes; an insulating substrate having the metallized wiring layer; and a resin member covering a part of the semiconductor element and the lead terminals.
JP28492894A 1994-11-18 1994-11-18 Semiconductor device Expired - Fee Related JP3434918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28492894A JP3434918B2 (en) 1994-11-18 1994-11-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28492894A JP3434918B2 (en) 1994-11-18 1994-11-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH08148527A JPH08148527A (en) 1996-06-07
JP3434918B2 true JP3434918B2 (en) 2003-08-11

Family

ID=17684880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28492894A Expired - Fee Related JP3434918B2 (en) 1994-11-18 1994-11-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3434918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355508B4 (en) 2003-11-27 2006-07-06 Infineon Technologies Ag Ultra-thin semiconductor circuit with contact bumps and associated manufacturing method

Also Published As

Publication number Publication date
JPH08148527A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
USRE39603E1 (en) Process for manufacturing semiconductor device and semiconductor wafer
US6198165B1 (en) Semiconductor device
US6767820B2 (en) Chip scale surface mounted device and process of manufacture
JP3207738B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP2001024135A (en) Manufacture of semiconductor device
US7309910B2 (en) Micro lead frame packages and methods of manufacturing the same
JP3434918B2 (en) Semiconductor device
JPH04127564A (en) Manufacture of lead frame
JPH0917910A (en) Semiconductor device and its manufacture, inspection method and mounting board
JP3314574B2 (en) Method for manufacturing semiconductor device
JP2879629B2 (en) Lead frame and manufacturing method thereof
JPH07249708A (en) Semiconductor device and its mounting structure
JP3508683B2 (en) Semiconductor device and manufacturing method thereof
JPH08335662A (en) Semiconductor device
JPH09270435A (en) Manufacture of semiconductor device
JP2972679B2 (en) Lead frame, resin-encapsulated semiconductor device and method of manufacturing the same
JP3279846B2 (en) Method for manufacturing semiconductor device
JP2785441B2 (en) Semiconductor device and manufacturing method thereof
JP2841822B2 (en) Manufacturing method of hybrid integrated circuit
JPH11163253A (en) Mounting structure of semiconductor chip, semiconductor device and manufacture of the semiconductor device
JPH05218280A (en) Lead frame and its manufacture
JP2552943B2 (en) Semiconductor device
JPH08306848A (en) Lead frame, its manufacture, and semiconductor device
JPS5835953A (en) Semiconductor device
JPH0992767A (en) Compound lead frame and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees