JP3427713B2 - Resin-sealed semiconductor device and method of manufacturing the same - Google Patents

Resin-sealed semiconductor device and method of manufacturing the same

Info

Publication number
JP3427713B2
JP3427713B2 JP01012798A JP1012798A JP3427713B2 JP 3427713 B2 JP3427713 B2 JP 3427713B2 JP 01012798 A JP01012798 A JP 01012798A JP 1012798 A JP1012798 A JP 1012798A JP 3427713 B2 JP3427713 B2 JP 3427713B2
Authority
JP
Japan
Prior art keywords
film
resin
semiconductor device
polyimide
polyimide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01012798A
Other languages
Japanese (ja)
Other versions
JPH10270611A (en
Inventor
順 田中
敬子 磯田
潔 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01012798A priority Critical patent/JP3427713B2/en
Publication of JPH10270611A publication Critical patent/JPH10270611A/en
Application granted granted Critical
Publication of JP3427713B2 publication Critical patent/JP3427713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Semiconductor Memories (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体膜を有す
る半導体素子を備える樹脂封止型半導体装置とその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-sealed semiconductor device including a semiconductor element having a ferroelectric film and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、強誘電体(高誘電率を有する誘電
体材料、または、ペロブスカイト型結晶構造を有する物
質)の薄膜を有する不揮発性または大容量の半導体メモ
リ素子が提案されている。強誘電体膜は、自発分極や高
誘電率特性などの特徴を有している。このため、強誘電
体の分極と電界との間にヒステリシス特性があり、これ
を利用すると、不揮発性メモリを実現することができ
る。また、シリコン酸化膜に比べて誘電率が非常に大き
いため、強誘電体膜を容量絶縁膜として使用すれば、メ
モリセル面積を小さくすることができ、大容量、高集積
のRAM(Random Access Memory)を実現することがで
きる。
2. Description of the Related Art In recent years, a non-volatile or large-capacity semiconductor memory device having a thin film of a ferroelectric substance (a dielectric material having a high dielectric constant or a substance having a perovskite type crystal structure) has been proposed. The ferroelectric film has characteristics such as spontaneous polarization and high dielectric constant characteristics. Therefore, there is a hysteresis characteristic between the polarization of the ferroelectric substance and the electric field, and by utilizing this, a nonvolatile memory can be realized. In addition, since the dielectric constant is much higher than that of a silicon oxide film, if a ferroelectric film is used as a capacitive insulating film, the memory cell area can be reduced, and a large-capacity, highly integrated RAM (Random Access Memory) can be obtained. ) Can be realized.

【0003】強誘電体膜は、金属酸化物の焼結体からな
り、反応性に富む酸素を多く含んでいる。このような強
誘電体膜を容量絶縁膜に用いてキャパシタを形成する場
合は、容量絶縁膜の上部電極および下部電極に、例え
ば、白金を主成分とする合金のような、酸化反応に対し
て安定な物質を用いることが不可欠である。
The ferroelectric film is made of a sintered body of metal oxide and contains a large amount of highly reactive oxygen. When a capacitor is formed by using such a ferroelectric film as a capacitive insulating film, the upper electrode and the lower electrode of the capacitive insulating film are resistant to an oxidation reaction such as an alloy containing platinum as a main component. It is essential to use stable substances.

【0004】キャパシタや層間絶縁膜などが形成された
後、素子の最表面にパッシベーション膜が形成される。
層間絶縁膜や、パッシベーション膜には、窒化シリコン
や酸化シリコンが用いられ、通常CVD(Chemical Vap
or Depositon)法で形成されるため、その膜中に水素が
取り込まれていることが多い。
After the capacitors and the interlayer insulating film are formed, a passivation film is formed on the outermost surface of the device.
Silicon nitride or silicon oxide is used for the interlayer insulating film and the passivation film, and is generally used for CVD (Chemical Vap
or depositon) method, so hydrogen is often incorporated in the film.

【0005】[0005]

【発明が解決しようとする課題】強誘電体膜を用いた半
導体素子を民生用電子機器に利用する場合は、量産性の
良い低価格な樹脂封止型半導体装置であることが必要で
ある。特に、強誘電体不揮発性メモリは、低電力、低電
圧で、かつリフレッシュ動作の不要な不揮発性といった
特性から、フラッシュメモリに替わるメモリとして携帯
機器向けのニーズが大きく、薄型のパッケージにするた
めにも樹脂封止型半導体装置が求められている。
When a semiconductor element using a ferroelectric film is used in consumer electronic equipment, it must be a low cost resin-encapsulated semiconductor device with good mass productivity. In particular, ferroelectric non-volatile memory is a low-power, low-voltage non-volatile memory that does not require a refresh operation. There is a demand for a resin-sealed semiconductor device.

【0006】しかし、現在、強誘電体膜を容量絶縁膜と
して利用した装置はセラミック封止品が主流であり、樹
脂封止品はほとんどない。また、大容量の装置も開発で
きていない。これは、加熱処理により強誘電体膜の分極
特性が劣化してしまうためである。
At present, however, ceramic-sealed products are the mainstream of devices using a ferroelectric film as a capacitive insulating film, and there are almost no resin-sealed products. Moreover, a large-capacity device has not been developed yet. This is because the polarization characteristics of the ferroelectric film are deteriorated by the heat treatment.

【0007】強誘電体膜を有するキャパシタを水素雰囲
気下でアニール処理すると、分極特性が劣化することが
知られている(「‘96強誘電体薄膜メモリ技術フォー
ラム講演集」((株)サイエンスフォーラム発行)第4−
4頁1〜12行目)。この劣化は、上下部電極の白金が
水素と作用して還元触媒として働き、強誘電体膜を還元
するために生じると推測される。特に、大容量、高集積
の素子の場合は、強誘電体膜のサイズも微細になるた
め、このキャパシタの特性劣化が素子全体の特性に大き
く影響すると予想される。
It is known that when a capacitor having a ferroelectric film is annealed in a hydrogen atmosphere, the polarization characteristics are deteriorated ("'96 Ferroelectric thin film memory technology forum lecture collection" (Science Forum Co., Ltd.). Issue) No. 4-
Page 4, lines 1-12). It is speculated that this deterioration occurs because the platinum of the upper and lower electrodes acts with hydrogen to act as a reduction catalyst and reduce the ferroelectric film. In particular, in the case of a large-capacity and highly integrated device, the size of the ferroelectric film also becomes small, so it is expected that the characteristic deterioration of this capacitor will greatly affect the characteristics of the entire device.

【0008】トランスファモールド方式による半導体素
子の樹脂封止には、充填剤(通常、シリカ)を含む封止
樹脂が用いられる。しかし、封止樹脂に含まれる充填剤
の粒子が硬いため、封止に際して、この充填剤が素子表
面にダメージを与えてしまうことがある。さらに、強誘
電体材料が圧電性を有するため、封止の際に素子内の強
誘電体膜に圧力が加わると、強誘電体膜特性が変化して
しまう。また、DRAM(Dynamic Random Access Memo
ry)の製造においては、充填剤に含まれる放射性成分か
らα線が放出され、これがメモリのソフトエラーを引き
起こすことがある。そこで、充填剤による素子表面への
ダメージを防ぎ、強誘電体膜への加圧を防止し、充填材
からのα線を遮蔽するために、あらかじめ、素子表面に
有機膜であるポリイミドからなる保護膜を形成しておく
必要がある。このポリイミド表面保護膜は、ポリイミド
前駆体組成物膜を、通常、350〜450℃程度の温度
で加熱することにより硬化させて形成する。このポリイ
ミド前駆体の加熱硬化に際して、パッシベーション膜や
層間絶縁膜に含まれる水素が拡散することにより、強誘
電体膜の分極特性が劣化してしまうのである。従って、
熱硬化性樹脂を表面保護膜として用いた強誘電体不揮発
性素子の樹脂封止品は、現在のところ知られていない。
A sealing resin containing a filler (usually silica) is used for resin sealing of the semiconductor element by the transfer mold method. However, since the particles of the filler contained in the sealing resin are hard, the filler may damage the element surface during sealing. Further, since the ferroelectric material has piezoelectricity, the characteristics of the ferroelectric film change when pressure is applied to the ferroelectric film in the element during sealing. In addition, DRAM (Dynamic Random Access Memo)
In the production of ry), α-rays are emitted from the radioactive component contained in the filler, which may cause a memory soft error. Therefore, in order to prevent the damage to the device surface by the filler, to prevent the pressurization to the ferroelectric film, and to shield the α ray from the filler, the device surface is protected beforehand by the organic film made of polyimide. It is necessary to form a film. This polyimide surface protective film is usually formed by curing a polyimide precursor composition film by heating it at a temperature of about 350 to 450 ° C. When the polyimide precursor is heat-cured, hydrogen contained in the passivation film or the interlayer insulating film diffuses, so that the polarization characteristics of the ferroelectric film deteriorate. Therefore,
At present, there is no known resin-sealed product of a ferroelectric non-volatile element using a thermosetting resin as a surface protective film.

【0009】本発明は、強誘電体膜の分極特性が良好で
あり、信頼性の高い樹脂封止型半導体装置と、その製造
方法とを提供することを目的とする。
It is an object of the present invention to provide a highly reliable resin-sealed semiconductor device having a ferroelectric film having good polarization characteristics and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】強誘電体膜の分極特性の
劣化発生条件について検討したところ、300℃以上の
加熱が行なわれた場合に劣化が起こっていた。そこで、
本発明者らは、ポリイミド表面保護膜の加熱硬化を30
0℃以下で行なえばよいと考えたが、このような低温で
硬化する、従来のポリイミド前駆体を用いた場合、得ら
れた樹脂封止型半導体装置のハンダリフロー耐性に問題
があった。
When the conditions under which the polarization characteristics of the ferroelectric film are deteriorated were examined, it was found that the deterioration occurred when heating at 300 ° C. or higher. Therefore,
The inventors of the present invention performed heat curing of the polyimide surface protective film to 30
It was thought that it may be performed at 0 ° C. or lower, but when a conventional polyimide precursor that cures at such a low temperature is used, there is a problem in solder reflow resistance of the obtained resin-encapsulated semiconductor device.

【0011】現在、樹脂封止型半導体装置をプリント基
板に実装する方法は、面付実装法が主流である。面付実
装法は、半導体装置のリードとプリント基板の配線とを
クリームハンダにより仮止めし、半導体装置および基板
の全体を加熱してハンダ付けを行うハンダリフロー方式
を用いている。加熱の方法としては、赤外線輻射熱を利
用する赤外線リフロー法、あるいはフッ素系不活性液体
の凝縮熱を利用するベーパーフェーズリフロー法が知ら
れている。
Currently, the surface mounting method is the mainstream method for mounting a resin-sealed semiconductor device on a printed circuit board. The surface mounting method uses a solder reflow method in which the leads of the semiconductor device and the wiring of the printed circuit board are temporarily fixed with cream solder, and the entire semiconductor device and the substrate are heated for soldering. As a heating method, an infrared reflow method utilizing infrared radiation heat or a vapor phase reflow method utilizing condensation heat of a fluorine-based inert liquid is known.

【0012】また、封止樹脂としては、通常エポキシ樹
脂が用いられる。このエポキシ樹脂は、通常の環境下で
は必ず吸湿する。ハンダリフローに際して、樹脂封止型
半導体装置は215〜260℃の高温に曝されるため、
吸湿した状態で、樹脂封止型半導体装置をハンダリフロ
ー法により基板に実装すると、急激な水分の蒸発によっ
て封止樹脂にクラックが生じ、半導体装置の信頼性上、
大きな問題となっている。そこで、従来より封止樹脂の
低吸湿化や高接着化の観点から、種々の改良が加えられ
ている(「熱硬化性樹脂」13巻4号(1992年発
行)第37頁右欄8〜23行目、1996PROCEEDINGS
46th ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE
pp.48-55)。
An epoxy resin is usually used as the sealing resin. This epoxy resin always absorbs moisture under normal environment. During the solder reflow, the resin-sealed semiconductor device is exposed to a high temperature of 215 to 260 ° C.
When a resin-encapsulated semiconductor device is mounted on a substrate by a solder reflow method in a moisture-absorbed state, cracks occur in the encapsulation resin due to rapid evaporation of water, and the reliability of the semiconductor device increases.
It's a big problem. Therefore, various improvements have been made from the viewpoint of lowering moisture absorption and high adhesion of the sealing resin ("Thermosetting Resin" Vol. 13, No. 4 (issued in 1992), page 37, right column, 8 to Line 23, 1996 PROCEEDINGS
46th ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE
pp.48-55).

【0013】本発明者らは、従来の樹脂封止型半導体装
置において発生した樹脂クラックを調べ、ポリイミド素
子表面保護膜と封止樹脂との界面で剥離が起こり、これ
を発端として封止樹脂にクラックが生じることを見出し
た。またこの剥離が、表面保護膜の物性、特にガラス転
移温度およびヤング率に影響されることがわかった。
The inventors of the present invention investigated resin cracks generated in a conventional resin-encapsulated semiconductor device, and peeled off at the interface between the polyimide element surface protective film and the encapsulation resin, and this was the starting point for the encapsulation resin. It was found that cracks occur. It was also found that this peeling is affected by the physical properties of the surface protective film, particularly the glass transition temperature and Young's modulus.

【0014】そこで、さらに詳細に検討したところ、ポ
リイミド素子表面保護膜が230℃以上300℃以下の
温度範囲で熱処理されて形成される場合、強誘電体膜の
分極特性の劣化が小さいことがわかった。また、この熱
処理温度で形成されたポリイミドが、ガラス転移温度が
240℃以上400℃以下であり、かつ、ヤング率が2
600MPa以上6GPa以下である場合は、樹脂封止
された半導体装置のハンダリフロー耐性が優れ、ハンダ
リフロー時にポリイミドと封止樹脂界面での剥離が起こ
らず、信頼性が高いことがわかった。
Therefore, a more detailed study revealed that when the polyimide element surface protective film is formed by heat treatment in the temperature range of 230 ° C. or higher and 300 ° C. or lower, the deterioration of the polarization characteristics of the ferroelectric film is small. It was Further, the polyimide formed at this heat treatment temperature has a glass transition temperature of 240 ° C. or higher and 400 ° C. or lower, and a Young's modulus of 2 or less.
It was found that in the case of 600 MPa or more and 6 GPa or less, the resin-sealed semiconductor device has excellent solder reflow resistance, peeling does not occur at the interface between the polyimide and the sealing resin during solder reflow, and the reliability is high.

【0015】この新たな知見に基づき、本発明では、強
誘電性膜および表面保護膜を有する半導体素子と、樹脂
からなる封止部材とを備え、表面保護膜がポリイミドか
らなる樹脂封止型半導体装置が提供される。このような
装置は、本発明によって初めて実現可能となった。
Based on this new finding, the present invention provides a resin-encapsulated semiconductor in which a semiconductor element having a ferroelectric film and a surface protective film and a sealing member made of a resin are provided, and the surface protective film is made of polyimide. A device is provided. Such a device could only be realized by the present invention.

【0016】また、本発明では、強誘電体薄膜を有する
半導体素子の表面に、ポリイミド前駆体組成物膜を成膜
する工程と、ポリイミド前駆体組成物膜を加熱して硬化
させ、ポリイミドからなる表面保護膜とする工程と、表
面保護膜の形成された半導体素子を封止樹脂により封止
する工程とを備える樹脂封止型半導体装置の製造方法が
提供される。
Further, in the present invention, a step of forming a polyimide precursor composition film on the surface of a semiconductor device having a ferroelectric thin film, and heating and curing the polyimide precursor composition film to form a polyimide film There is provided a method of manufacturing a resin-sealed semiconductor device, which includes a step of forming a surface protective film and a step of sealing a semiconductor element having a surface protective film formed thereon with a sealing resin.

【0017】本発明において表面保護膜として用いられ
るポリイミドは、ガラス転移温度が240℃〜400℃
であり、かつ、ヤング率が2600MPa〜6GPaで
あることが望ましい。このようなポリイミドを用いるこ
とにより、ハンダリフローによってもクラックが発生す
ることがなく、信頼性が高い半導体装置を得ることがで
きる。ポリイミド前駆体組成物膜を加熱硬化させる温度
は、230℃以上300℃以下とすることが望ましい
が、300℃より高温であっても、350℃以下の短時
間(用いる半導体素子の耐熱性にもよるが、通常4分以
内)の熱処理で、かつ、形成されるポリイミド膜のヤン
グ率が3500MPa以上、ガラス転移温度が260℃
以上であれば、強誘電体膜の分極特性を劣化させること
なく、本発明の目的を達成することができる。
The polyimide used as the surface protective film in the present invention has a glass transition temperature of 240 ° C to 400 ° C.
And the Young's modulus is preferably 2600 MPa to 6 GPa. By using such a polyimide, it is possible to obtain a highly reliable semiconductor device in which cracks do not occur even by solder reflow. The temperature at which the polyimide precursor composition film is heated and cured is preferably 230 ° C. or higher and 300 ° C. or lower, but even if the temperature is higher than 300 ° C., a short time of 350 ° C. or lower (even for heat resistance of the semiconductor element used However, the polyimide film formed has a Young's modulus of 3500 MPa or more and a glass transition temperature of 260 ° C.
With the above, the object of the present invention can be achieved without degrading the polarization characteristics of the ferroelectric film.

【0018】なお、本発明の製造方法は、例えば絶縁膜
など、表面保護膜以外の用途にポリイミド膜を用いる樹
脂封止型積層体にも適用可能である。
The manufacturing method of the present invention can also be applied to a resin-sealed laminate using a polyimide film for purposes other than a surface protective film such as an insulating film.

【0019】[0019]

【発明の実施の形態】本発明に好適な、230℃〜30
0℃で加熱硬化させることにより、ガラス転移温度が2
40℃〜400℃であり、かつ、ヤング率が2600M
Pa〜6GPaであるポリイミドの得られるポリイミド
前駆体としては、下記一般式(化1)で表される繰返し
単位からなるポリアミド酸が挙げれられる。
BEST MODE FOR CARRYING OUT THE INVENTION 230 ° C. to 30 suitable for the present invention
By heat curing at 0 ° C, the glass transition temperature becomes 2
40 ° C to 400 ° C and Young's modulus of 2600M
Examples of the polyimide precursor capable of obtaining a polyimide having Pa of 6 to 6 GPa include a polyamic acid composed of a repeating unit represented by the following general formula (Formula 1).

【0020】[0020]

【化1】 [Chemical 1]

【0021】(ただし、R1は下記化学式群(化2)に
示す4価の芳香族有機基の少なくともいずれかであり、
2は下記化学式群(化3)および(化4)に示す2価
の芳香族有機基の少なくともいずれかである。)
(Wherein R 1 is at least one of tetravalent aromatic organic groups represented by the following chemical formula group (Chemical Formula 2),
R 2 is at least one of divalent aromatic organic groups represented by the following chemical formula groups (Chemical Formula 3) and (Chemical Formula 4). )

【0022】[0022]

【化2】 [Chemical 2]

【0023】[0023]

【化3】 [Chemical 3]

【0024】[0024]

【化4】 [Chemical 4]

【0025】これらのポリアミド酸のうち、R1は下記
化学式群(化7)に列挙するもの少なくともいずれかで
あり、R2は下記化学式群(化8)に列挙するものの少
なくともいずれかであるポリアミド酸が、特に本発明に
適している。
Among these polyamic acids, R 1 is at least one of those listed in the following chemical formula group (Chemical formula 7), and R 2 is at least one of those listed in the following chemical formula group (Chemical formula 8). Acids are particularly suitable for the present invention.

【0026】[0026]

【化7】 [Chemical 7]

【0027】[0027]

【化8】 [Chemical 8]

【0028】特に、下記化学式(化14)、(化16)
〜(化18)に示すものは本発明に適している。これら
のうち、化学式(化16)により表される繰返し単位か
らなるポリアミド酸が最も好ましい。
In particular, the following chemical formulas (formula 14) and (formula 16)
To (Chemical Formula 18) are suitable for the present invention. Among these, polyamic acid composed of a repeating unit represented by the chemical formula (Formula 16) is most preferable.

【0029】[0029]

【化14】 [Chemical 14]

【0030】[0030]

【化16】 [Chemical 16]

【0031】[0031]

【化17】 [Chemical 17]

【0032】[0032]

【化18】 [Chemical 18]

【0033】なお、本発明で用いられるポリアミド酸
は、分子内に、上記(化1)で表される繰返し単位に加
えて、全繰返し単位数の10.0mol%以下であれ
ば、さらに上記(化1)と同様の構造であって、R2
してシロキサン基を有する繰返し単位を有していてもよ
い。このとき、R2として用いられるシロキサン基は、
芳香族シロキサン基および脂肪族シロキサン基のいずれ
でも良く、例えば、下記化学式群(化6)に示す構造の
基の少なくともいずれかとすることができる。
The polyamic acid used in the present invention is, in addition to the repeating unit represented by the above (Chemical formula 1), in the molecule, further, if it is 10.0 mol% or less of the total number of repeating units, the above ( It may have the same structure as in Chemical formula 1) and may have a repeating unit having a siloxane group as R 2 . At this time, the siloxane group used as R 2 is
It may be either an aromatic siloxane group or an aliphatic siloxane group, and may be, for example, at least one of groups having a structure represented by the following chemical formula group (Formula 6).

【0034】[0034]

【化6】 [Chemical 6]

【0035】なお、ポリイミド前駆体組成物は、例え
ば、組成物が液状、ワニス状の場合は、素子表面に組成
物を塗布またはスプレーし、必要ならば加熱して半硬化
状態(完全にはイミド化していない状態)させることに
より成膜することができる。例えば、スピンナを用いた
回転塗布などの手段を用いてもよい。塗布膜厚は、塗布
手段、ポリイミド前駆体組成物の固形分濃度、粘度など
によって調節することができる。また、ポリイミド前駆
体組成物がシート状であれば、これを素子表面に載置ま
たは貼付することで成膜することができる。
When the composition of the polyimide precursor is liquid or varnish, for example, the composition is applied or sprayed on the surface of the device and, if necessary, heated to a semi-cured state (completely imide). It is possible to form a film by bringing the film into a non-formed state. For example, a means such as spin coating using a spinner may be used. The coating film thickness can be adjusted by the coating means, the solid content concentration of the polyimide precursor composition, the viscosity, and the like. Further, if the polyimide precursor composition is in the form of a sheet, it can be deposited by placing or sticking it on the surface of the device.

【0036】表面保護膜には、ボンディングパッド部な
ど所望の箇所で下層を露出させるための開口部を形成す
ることが多い。このような開口部を形成するためには、
半硬化状態のポリイミド前駆体組成物膜、または、加熱
硬化後のポリイミド膜の表面にレジスト膜を形成して、
通常の微細加工技術でパターン加工を行い、レジスト膜
を剥離すればよい。半硬化状態で開口した場合は、パタ
ーン加工後、加熱処理して完全に硬化させる。
An opening for exposing the lower layer is often formed in a desired portion such as a bonding pad portion in the surface protective film. To form such an opening,
A semi-cured polyimide precursor composition film, or by forming a resist film on the surface of the polyimide film after heat curing,
The resist film may be peeled off by patterning with a usual fine processing technique. In the case of opening in a semi-cured state, after patterning, heat treatment is performed to completely cure.

【0037】また、ポリイミド前駆体組成物が感光性組
成物であれば、所定のパターンのマスクを介して組成物
膜を露光させ、次に未露光部を現像液で溶解除去した
後、加熱硬化させることにより、所望のパターンのポリ
イミド膜を得ることができる。このため、本発明に用い
られるポリイミド前駆体組成物は、上記ポリアミド酸に
他、さらに、炭素−炭素2重結合を有するアミン化合
物、ビスアジド化合物、光重合開始剤、および/また
は、増感剤などを含む感光性ポリイミド前駆体組成物で
あることが望ましい。
If the polyimide precursor composition is a photosensitive composition, the composition film is exposed through a mask having a predetermined pattern, the unexposed portion is dissolved and removed with a developing solution, and then heat-cured. By doing so, a polyimide film having a desired pattern can be obtained. Therefore, the polyimide precursor composition used in the present invention has, in addition to the above polyamic acid, an amine compound having a carbon-carbon double bond, a bisazide compound, a photopolymerization initiator, and / or a sensitizer. It is desirable that the photosensitive polyimide precursor composition contains

【0038】アミン化合物としては、具体的には、2−
(N,N−ジメチルアミノ)エチルアクリレート、2−
(N,N−ジメチルアミノ)エチルメタクリレート、3
−(N,N−ジメチルアミノ)プロピルアクリレート、
3−(N,N−ジメチルアミノ)プロピルメタクリレー
ト、4−(N,N−ジメチルアミノ)ブチルアクリレー
ト、4−(N,N−ジメチルアミノ)ブチルメタクリレ
ート、5−(N,N−ジメチルアミノ)ペンチルアクリ
レート、5−(N,N−ジメチルアミノ)ペンチルメタ
クリレート、6−(N,N−ジメチルアミノ)ヘキシル
アクリレート、6−(N,N−ジメチルアミノ)ヘキシ
ルメタクリレート、2−(N,N−ジメチルアミノ)エ
チルシンナメート、3−(N,N−ジメチルアミノ)プ
ロピルシンナメート、2−(N,N−ジメチルアミノ)
エチル−2,4−ヘキサジエノエート、3−(N,N−
ジメチルアミノ)プロピル−2,4−ヘキサジエノエー
ト、4−(N,N−ジメチルアミノ)ブチル−2,4−
ヘキサジエノエート、2−(N,N−ジエチルアミノ)
エチル−2,4−ヘキサジエノエート、3−(N,N−
ジエチルアミノ)プロピル−2,4−ヘキサジエノエー
ト、などが好ましい例として挙げられる。
Specific examples of the amine compound include 2-
(N, N-dimethylamino) ethyl acrylate, 2-
(N, N-dimethylamino) ethyl methacrylate, 3
-(N, N-dimethylamino) propyl acrylate,
3- (N, N-dimethylamino) propyl methacrylate, 4- (N, N-dimethylamino) butyl acrylate, 4- (N, N-dimethylamino) butyl methacrylate, 5- (N, N-dimethylamino) pentyl Acrylate, 5- (N, N-dimethylamino) pentyl methacrylate, 6- (N, N-dimethylamino) hexyl acrylate, 6- (N, N-dimethylamino) hexyl methacrylate, 2- (N, N-dimethylamino) ) Ethyl cinnamate, 3- (N, N-dimethylamino) propyl cinnamate, 2- (N, N-dimethylamino)
Ethyl-2,4-hexadienoate, 3- (N, N-
Dimethylamino) propyl-2,4-hexadienoate, 4- (N, N-dimethylamino) butyl-2,4-
Hexadienoate, 2- (N, N-diethylamino)
Ethyl-2,4-hexadienoate, 3- (N, N-
Preferred examples include diethylamino) propyl-2,4-hexadienoate.

【0039】なお、これらは単独で用いても良いし、2
種以上混合して用いても良い。これらの配合割合は、ポ
リアミド酸ポリマ100重量部に対して、10重量部以
上、400重量部以下で用いるのが望ましい。
These may be used alone, or 2
You may use it in mixture of 2 or more types. It is desirable that the compounding ratio of these is 10 parts by weight or more and 400 parts by weight or less with respect to 100 parts by weight of the polyamic acid polymer.

【0040】ビスアジド化合物としては、具体的には下
記構造式群(化9)および(化10)に列挙する化合物
が好適なものとして挙げられる。なお、これらは単独で
用いても良いし、2種以上混合して用いても良い。これ
らの配合割合は、ポリマ100重量部に対して、0.5
重量部以上、50重量部以下で用いるのが望ましい。
Specific preferred examples of the bisazide compound include the compounds listed in the structural formula groups (formula 9) and (formula 10) below. These may be used alone or in combination of two or more. The blending ratio of these is 0.5 with respect to 100 parts by weight of the polymer.
It is desirable to use at least 50 parts by weight.

【0041】[0041]

【化9】 [Chemical 9]

【0042】[0042]

【化10】 [Chemical 10]

【0043】光重合開始剤、増感剤について好ましい例
としては、具体的にミヒラケトン、ビス−4、4’−ジ
エチルアミノベンゾフェノン、ベンゾフェノン、ベンゾ
イルエーテル、ベンゾインイソプロピルエーテル、アン
トロン、1,9−ベンゾアントロン、アクリジン、ニト
ロピレン、1,8−ジニトロピレン、5−ニトロアセト
ナフテン、2−ニトロフルオレン、ピレン−1,6−キ
ノン9−フルオレン、1,2−ベンゾアントラキノン、
アントアントロン、2−クロロ−1,2−ベンズアント
ラキノン、2−ブロモベンズアントラキノン、2−クロ
ロ−1,8−フタロイルナフタレン、3,5−ジエチル
チオキサントン、3,5−ジメチルチオキサントン、
3,5−ジイソプロピルチオキサントン、ベンジル、1
−フェニル−5−メルカプト−1H−テトラゾール、1
−フェニル−5−メルテックス、3−アセチルフェナン
トレン、1−インダノン、7−H−ベンズ[de]アン
トラセン−7−オン、1−ナフトアルデヒド、チオキサ
ンテン−9−オン、10−チオキサンテノン、3−アセ
チルインドールなどが挙げられるが、これらに限定され
ない。また、これらは単独または複数種混合して用いら
れる。本発明に用いられる光重合開始剤、増感剤の好適
な配合割合は、ポリマ100重量部に対し、0.1〜3
0重量部が好ましい。
Preferred examples of the photopolymerization initiator and the sensitizer are Michler's ketone, bis-4,4'-diethylaminobenzophenone, benzophenone, benzoyl ether, benzoin isopropyl ether, anthrone, 1,9-benzanthrone, Acridine, nitropyrene, 1,8-dinitropyrene, 5-nitroacetonaphthene, 2-nitrofluorene, pyrene-1,6-quinone 9-fluorene, 1,2-benzanthraquinone,
Antoanthrone, 2-chloro-1,2-benzanthraquinone, 2-bromobenzanthraquinone, 2-chloro-1,8-phthaloylnaphthalene, 3,5-diethylthioxanthone, 3,5-dimethylthioxanthone,
3,5-diisopropylthioxanthone, benzyl, 1
-Phenyl-5-mercapto-1H-tetrazole, 1
-Phenyl-5-meltex, 3-acetylphenanthrene, 1-indanone, 7-H-benz [de] anthracene-7-one, 1-naphthaldehyde, thioxanthen-9-one, 10-thioxanthenone, 3-acetyl. Examples include, but are not limited to, indole. Moreover, these are used individually or in mixture of 2 or more types. A suitable blending ratio of the photopolymerization initiator and the sensitizer used in the present invention is 0.1 to 3 relative to 100 parts by weight of the polymer.
0 parts by weight is preferred.

【0044】上述のフォトリソグラフィによるパターニ
ングに用いられる露光光源としては、紫外線の他、可視
光線、放射線なども用いることができる。
As the exposure light source used for the patterning by the photolithography, visible light, radiation, etc. can be used in addition to ultraviolet light.

【0045】現像液としては、N−メチル−2−ピロリ
ドン、N−アセチル−2−ピロリドン、N,N−ジメチ
ルホルムアミド、N,N−ジメチルアセトアミド、ジメ
チルスルホキシド、ヘキサメチルホスホルアミド、ジメ
チルイミダゾリジノン、n−ベンジル−2−ピロリド
ン、N−アセチル−ε−カプロラクタム、γ−ブチロラ
クトンなどの非プロトン性極性溶媒を単独で用いるか、
あるいはメタノール、エタノール、イソプロピルアルコ
ール、ベンゼン、トルエン、キシレン、メチルセルソル
ブ、水などのポリアミド酸の貧溶媒と上述の非プロトン
性極性溶媒との混合液を用いることができる。
As the developing solution, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, dimethylimidazolidinium An aprotic polar solvent such as non-, n-benzyl-2-pyrrolidone, N-acetyl-ε-caprolactam or γ-butyrolactone may be used alone or
Alternatively, a mixed solution of a poor solvent for a polyamic acid such as methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, methyl cellosolve, and water, and the above aprotic polar solvent can be used.

【0046】現像によって形成したパターンは、次い
で、リンス液によって洗浄し、現像溶媒を除去する。リ
ンス液には、現像液との混和性の良いポリアミド酸の貧
溶媒を用いることが望ましく、上記のメタノール、エタ
ノール、イソプロピルアルコール、ベンゼン、トルエ
ン、キシレン、メチルセルソルブ、水などが好適な例と
して挙げられる。
The pattern formed by development is then washed with a rinse solution to remove the developing solvent. As the rinse liquid, it is desirable to use a poor solvent of polyamic acid having good miscibility with the developer, and the above-mentioned methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, methyl cellosolve, water and the like are preferable examples. Can be mentioned.

【0047】ポリイミド前駆体組成物膜を加熱硬化させ
る際の熱処理方法としては、ホットプレートによる加熱
が望ましい。ホットプレートを使用することで、オーブ
ン炉や拡散炉などの炉体を使用した加熱処理に比べて、
短時間でポリイミド前駆体材料をイミド化し、成膜がで
きる。これにより、強誘電体膜への加熱時間を低減する
ことが可能である。
As a heat treatment method for heating and curing the polyimide precursor composition film, heating with a hot plate is desirable. By using a hot plate, compared to heat treatment using a furnace body such as an oven furnace or a diffusion furnace,
A film can be formed by imidizing a polyimide precursor material in a short time. As a result, it is possible to reduce the heating time for the ferroelectric film.

【0048】本発明の適用される半導体素子には、例え
ば、不揮発性半導体メモリや大容量のDRAMが挙げら
れる。また、半導体素子における強誘電体膜は、高誘電
率を有する誘電体材料からなる膜であればよく、例え
ば、ペロブスカイト型結晶構造を有する強誘電性材料の
膜が挙げられる。
Examples of the semiconductor device to which the present invention is applied include a non-volatile semiconductor memory and a large capacity DRAM. Further, the ferroelectric film in the semiconductor element may be a film made of a dielectric material having a high dielectric constant, and examples thereof include a film of a ferroelectric material having a perovskite type crystal structure.

【0049】誘電体材料としては、チタン酸ジルコン酸
鉛(Pb(Zr,Ti)O3、略称:PZT)、チタン酸バリウムス
トロンチウム((Ba,Sr)TiO3、略称:BST)、タンタル
酸ニオブストロンチウムビスマス(SrBi2(Nb,Ta)
2O9、略称:Y1系)などが挙げられる。これらの材料
は、化学蒸着法(CVP(Chemical Vapor Depositio
n)法)、ゾルゲル法、スパッタリング法などにより成
膜することができる。
As the dielectric material, lead zirconate titanate (Pb (Zr, Ti) O 3 , abbreviation: PZT), barium strontium titanate ((Ba, Sr) TiO 3 , abbreviation: BST), niobium tantalate is used. Strontium bismuth (SrBi 2 (Nb, Ta)
2 O 9 , abbreviation: Y1 series) and the like. These materials are chemical vapor deposition (CVP (Chemical Vapor Depositio
n) method), sol-gel method, sputtering method and the like.

【0050】次に、本発明の半導体装置の例について、
図1に示すリード・オン・チップ型(以下、LOC型と
略す)の樹脂封止型半導体装置を例に説明する。なお、
本発明の半導体装置は、LOC型には限られず、チップ
・オン・リード型(以下、COL型と略す)など、他の
形態の樹脂封止型半導体装置であってもよい。
Next, regarding an example of the semiconductor device of the present invention,
A lead-on-chip type (hereinafter abbreviated as LOC type) resin-sealed semiconductor device shown in FIG. 1 will be described as an example. In addition,
The semiconductor device of the present invention is not limited to the LOC type, and may be a resin-encapsulated semiconductor device of another form such as a chip-on-lead type (hereinafter abbreviated as COL type).

【0051】本発明の封止型半導体装置は、表面の少な
くとも一部にポリイミドからなる表面保護膜2を備える
半導体素子1と、外部端子3と、表面保護膜2を介して
半導体素子1および外部端子3を接着する接着部材4
と、半導体素子1および外部端子3間の導通を図るため
の配線5と、半導体素子1および配線5の全体を封止す
る封止部材6とを備える。表面保護膜2は、上記ポリイ
ミド前駆体を加熱硬化して得られるポリイミドからな
る。なお、図1に示す半導体装置では、外部端子3はリ
ードフレームを兼ねている。
The sealed semiconductor device of the present invention includes the semiconductor element 1 having the surface protective film 2 made of polyimide on at least a part of the surface thereof, the external terminal 3, and the semiconductor element 1 and the outside through the surface protective film 2. Adhesive member 4 for adhering terminals 3
A wiring 5 for establishing electrical continuity between the semiconductor element 1 and the external terminal 3, and a sealing member 6 for sealing the semiconductor element 1 and the wiring 5 as a whole. The surface protective film 2 is made of polyimide obtained by heating and curing the above polyimide precursor. In the semiconductor device shown in FIG. 1, the external terminal 3 also serves as a lead frame.

【0052】次に、本発明の半導体装置の製造方法例に
ついて、図2を用いて詳述する。なお、図2には、図1
に示したLOC型半導体装置の製造方法を示したが、本
発明の製造方法は、LOC型半導体装置の製造方法には
限られず、半導体素子と外部端子(リードフレーム)と
をあらかじめ接着してからモールド樹脂により封止して
得られる半導体装置であれば、COL型など他の半導体
装置の製造にも適用できる。
Next, an example of a method of manufacturing the semiconductor device of the present invention will be described in detail with reference to FIG. Note that FIG.
Although the manufacturing method of the LOC type semiconductor device shown in FIG. 1 is shown, the manufacturing method of the present invention is not limited to the manufacturing method of the LOC type semiconductor device, and after the semiconductor element and the external terminal (lead frame) are bonded in advance. A semiconductor device obtained by sealing with a mold resin can be applied to the manufacture of other semiconductor devices such as a COL type.

【0053】(1)表面保護膜形成工程 図2(a)に示すように、素子領域および配線層を作り
込んだシリコンウェハ9上にポリイミドからなる表面保
護膜2を形成する。表面保護膜2の形成方法としては、
例えば、上述のポリイミド前駆体組成物をウェハ9表面
に塗布し、加熱硬化させる方法や、予めシート状に成形
したポリイミド前駆体組成物をウェハ9表面に載置し、
加熱硬化させる方法などがある。
(1) Surface Protective Film Forming Step As shown in FIG. 2A, the surface protective film 2 made of polyimide is formed on the silicon wafer 9 in which the element region and the wiring layer are formed. As a method of forming the surface protective film 2,
For example, a method of applying the above-mentioned polyimide precursor composition to the surface of the wafer 9 and heating and curing, or placing the polyimide precursor composition formed into a sheet shape in advance on the surface of the wafer 9,
There is a method of heating and curing.

【0054】なお、上述のように、表面保護膜2はあら
かじめ定められた位置に開口部が形成されており、ボン
ディングパッド部7、スクライブ領域8の部分で素子1
の表面が露出している。ボンディングパッド部7とスク
ライブ領域8とを除くパターンの表面保護膜を形成する
には、上述したフォトレジストとポリイミドのエッチン
グ液とを用いるウエットエッチ法の他、パターン形成さ
れた無機膜または金属膜をマスクとし、露出したポリイ
ミド膜を酸素プラズマで除去するドライエッチ法等のフ
ォトエッチング技術を用いることができる。また、マス
クを用い、領域7、8の部分を除いてポリイミド前駆体
組成物を塗布するなどしても、表面保護膜2をパターン
化することができる。
As described above, the surface protection film 2 has openings formed at predetermined positions, and the element 1 is formed at the bonding pad 7 and the scribe region 8.
The surface of is exposed. In order to form the surface protection film having a pattern excluding the bonding pad portion 7 and the scribe region 8, a wet etching method using the above-described photoresist and a polyimide etching solution may be used, as well as a patterned inorganic film or a metal film. As a mask, a photoetching technique such as a dry etching method for removing the exposed polyimide film with oxygen plasma can be used. The surface protective film 2 can also be patterned by applying a polyimide precursor composition except for the regions 7 and 8 using a mask.

【0055】このようにして表面保護膜2を形成したシ
リコンウェハ9のスクライブ領域を切断し、表面保護膜
2を備える半導体素子1(図2(b)に示す)を得る。
なお、ここではシリコンウェハ9上にあらかじめ表面保
護膜2を形成してからこれを切断し、表面保護膜2を備
える半導体素子1を得る方法について説明したが、本発
明はこれに限られず、シリコンウェハ9を切断し半導体
素子1を得たのち、得られた半導体素子1の表面にポリ
イミド前駆体組成物の膜を形成し、これを加熱硬化させ
て、表面保護膜2を備える半導体素子1を得ても良い。
The scribe region of the silicon wafer 9 having the surface protective film 2 thus formed is cut to obtain the semiconductor element 1 (shown in FIG. 2B) having the surface protective film 2.
Although the method of forming the surface protection film 2 on the silicon wafer 9 in advance and cutting the surface protection film 2 to obtain the semiconductor element 1 having the surface protection film 2 has been described here, the present invention is not limited to this. After the wafer 9 is cut to obtain the semiconductor element 1, a film of the polyimide precursor composition is formed on the surface of the obtained semiconductor element 1, and the film is heat-cured to obtain the semiconductor element 1 having the surface protective film 2. You may get it.

【0056】(2)素子搭載工程 外部端子3と半導体素子1とを接着部材4を介して接着
し、図2(c)に示すような半導体素子1と外部端子3
とが表面保護膜2および接着部材4を介して接続された
ものを得る。さらに図2(d)に示すように、半導体素
子1のボンディングパッド部7と外部端子3との間にワ
イヤボンダーで金線5を配線して、半導体素子1と外部
端子3との導通を確保する。
(2) Element mounting process The external terminal 3 and the semiconductor element 1 are adhered via the adhesive member 4, and the semiconductor element 1 and the external terminal 3 as shown in FIG.
And are connected via the surface protection film 2 and the adhesive member 4. Further, as shown in FIG. 2D, a gold wire 5 is laid between the bonding pad portion 7 of the semiconductor element 1 and the external terminal 3 with a wire bonder to secure the conduction between the semiconductor element 1 and the external terminal 3. To do.

【0057】(3)封止工程 図2(e)に示すように、シリカ含有エポキシ系樹脂を
用いて、成型温度180℃、成型圧力70kg/cm2
でモールドすることにより、封止部材6を形成する。最
後に、外部端子3を所定の形に折り曲げることにより、
図2(f)に示すLOC型の樹脂封止型半導体装置が得
られる。
(3) Sealing step As shown in FIG. 2 (e), a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2 were used using a silica-containing epoxy resin.
The sealing member 6 is formed by molding with. Finally, by bending the external terminal 3 into a predetermined shape,
The LOC type resin-sealed semiconductor device shown in FIG. 2F is obtained.

【0058】次に、本発明の樹脂封止型半導体装置に用
いられる半導体素子について説明する。本発明の樹脂封
止型半導体装置に用いられる半導体素子の例として、1
トランジスタ/1キャパシタ)のメモリセルからなる強
誘電体メモリのメモリセル部の断面図を、図4に示す。
Next, a semiconductor element used in the resin-sealed semiconductor device of the present invention will be described. As an example of a semiconductor element used in the resin-encapsulated semiconductor device of the present invention, 1
FIG. 4 is a sectional view of a memory cell portion of a ferroelectric memory including memory cells of (transistor / 1 capacitor).

【0059】この強誘電体メモリ素子40は、シリコン
基板41表面に、pまたはnウェル421と、ソース4
22およびドレイン423と、酸化膜424と、ゲート
425と、絶縁層426とからなるCMOS(Compleme
ntary Metal Oxide Semiconductor)トランジスタ層4
2が形成され、さらに絶縁膜426表面に、下部電極層
431と、強誘電体薄膜432と、上部電極層433
と、金属配線層434および絶縁層435とからなるキ
ャパシタ43が形成されている積層体である。本発明
は、このように、強誘電体薄膜432を備える積層体
(半導体素子を含む)の表面にポリイミド表面保護膜を
形成した後、樹脂封止する場合に適用される。図4に示
した例では、ポリイミド表面保護膜は、キャパシタ43
の金属配線層434および絶縁層435を覆うように形
成される。
This ferroelectric memory device 40 has a p or n well 421 and a source 4 on the surface of a silicon substrate 41.
22 and drain 423, an oxide film 424, a gate 425, and an insulating layer 426.
ntary Metal Oxide Semiconductor) Transistor layer 4
2 is formed on the surface of the insulating film 426, the lower electrode layer 431, the ferroelectric thin film 432, and the upper electrode layer 433.
And a capacitor 43 composed of a metal wiring layer 434 and an insulating layer 435. As described above, the present invention is applied to the case where the polyimide surface protective film is formed on the surface of the laminated body (including the semiconductor element) provided with the ferroelectric thin film 432 and then the resin is sealed. In the example shown in FIG. 4, the polyimide surface protective film is the capacitor 43.
Is formed so as to cover the metal wiring layer 434 and the insulating layer 435.

【0060】以上詳述したように、本発明では、ポリイ
ミドの表面保護膜を備える樹脂封止型強誘電体装置が提
供される。ポリイミド前駆体の加熱硬化温度を230℃
〜300℃とすることにより、強誘電体膜の分極特性の
劣化を小さく抑えることができる。また、表面保護膜を
構成するポリイミドのガラス転移温度を240℃以上と
し、かつ、ヤング率を2600MPa以上とすることに
より、樹脂封止後のハンダリフロー耐性が優れた、ハン
ダリフロー時にポリイミドと封止樹脂界面での剥離が起
こらない半導体装置が得られる。また、ポリイミド前駆
体の加熱硬化温度が300℃より高温であっても、35
0℃以下とし、加熱時間を4分間以下とし、さらに、硬
化後に得られるポリイミドのガラス転移温度が260℃
以上かつヤング率が3500MPa以上であるポリイミ
ド前駆体組成物を用いることにより、強誘電体膜の分極
特性の劣化を小さく抑えることができ、さらに、樹脂封
止後のハンダリフロー耐性が優れた、ハンダリフロー時
にポリイミドと封止樹脂界面での剥離が起こらない半導
体装置を得ることができる。従って、本発明によれば、
信頼性の高い半導体装置が得られる。
As described in detail above, the present invention provides a resin-sealed type ferroelectric device having a polyimide surface protective film. The heat curing temperature of the polyimide precursor is 230 ° C.
By setting the temperature to ˜300 ° C., deterioration of the polarization characteristics of the ferroelectric film can be suppressed to a small level. Further, by setting the glass transition temperature of the polyimide constituting the surface protective film to 240 ° C. or higher and the Young's modulus to 2600 MPa or higher, the solder reflow resistance after resin sealing is excellent, and the polyimide and the sealing are performed during solder reflow. A semiconductor device in which peeling does not occur at the resin interface can be obtained. Moreover, even if the heat curing temperature of the polyimide precursor is higher than 300 ° C.,
The temperature is 0 ° C or lower, the heating time is 4 minutes or shorter, and the glass transition temperature of the polyimide obtained after curing is 260 ° C.
By using the polyimide precursor composition having the Young's modulus of 3500 MPa or more, deterioration of polarization characteristics of the ferroelectric film can be suppressed to a small level, and further, solder reflow resistance after resin sealing is excellent, It is possible to obtain a semiconductor device in which peeling does not occur at the interface between the polyimide and the sealing resin during reflow. Therefore, according to the present invention,
A highly reliable semiconductor device can be obtained.

【0061】以下、本発明の実施例を説明する。なお、
以下の実施例に用いたポリイミド膜について、ヤング率
およびガラス転移温度は、別途調製したポリイミド膜を
用いて測定した。すなわち、まず、ホットプレートを用
い、各実施例と同じ条件で、シリコンウェハ上にポリイ
ミド膜を形成した後、ポリイミド膜をウェハから剥離
し、水洗、乾燥して、膜厚9〜10μmのポリイミド膜
を得た。このポリイミド膜を縦25mm×横5mmに裁
断して試験片とし、「AUTOGRAPH AG-100E」引っ張り試
験機((株)島津製作所製)を用い、引っ張り速度1m
m/分の条件で膜に対する引っ張り加重と伸びとを測定
して、ヤング率を求めた。また、ポリイミド膜を長さ1
5mm×幅5mmに裁断して試験片とし、伸長方向への
荷重を2gf(約4×10-2N/m2)とし、昇温速度
を5℃/分として、「TA-1500」(真空理工ULVAC製)を
用いて熱機械測定から得られる熱膨張曲線を求め、これ
からガラス転移温度を求めた。
Examples of the present invention will be described below. In addition,
Regarding the polyimide film used in the following examples, Young's modulus and glass transition temperature were measured using a separately prepared polyimide film. That is, first, using a hot plate, under the same conditions as in each example, after forming a polyimide film on a silicon wafer, the polyimide film is peeled from the wafer, washed with water, and dried to form a polyimide film having a film thickness of 9 to 10 μm. Got This polyimide film was cut into a length of 25 mm x width of 5 mm to form a test piece, and an "AUTOGRAPH AG-100E" tensile tester (manufactured by Shimadzu Corp.) was used to pull at a speed of 1 m.
The Young's modulus was obtained by measuring the tensile load and elongation on the film under the condition of m / min. Also, the length of the polyimide film is 1
The test piece was cut into 5 mm x 5 mm width, the load in the extension direction was 2 gf (about 4 x 10 -2 N / m 2 ), and the heating rate was 5 ° C / min. The thermal expansion curve obtained from thermomechanical measurement was obtained using Riko ULVAC), and the glass transition temperature was obtained from this.

【0062】樹脂封止された半導体装置のハンダリフロ
ー耐性は、つぎのようにして測定した。まず、半導体装
置を85℃、85%の恒温、恒湿条件下で168時間放
置して加湿した。この加湿した半導体装置を、赤外ハン
ダリフロー炉を用いて、最高240〜245℃で10秒
間加熱した後室温まで放冷する工程を3回繰り返した。
その後、超音波探傷装置を用いて、ポリイミドと封止樹
脂との界面破壊を非破壊で観察し、ポリイミド表面保護
膜のハンダリフロー耐性を調べた。赤外ハンダリフロー
炉の温度プロファイルは、「表面実装形LSIパッケー
ジの実装技術とその信頼性向上」第451頁((株)日
立製作所半導体事業部編、1988年発行)に記載され
ている温度プロファイルを、最高温度240〜245℃
として踏襲した。
The solder reflow resistance of the resin-sealed semiconductor device was measured as follows. First, the semiconductor device was left standing at 85 ° C. and a constant temperature and humidity of 85% for 168 hours to be humidified. The step of heating the humidified semiconductor device at a maximum temperature of 240 to 245 ° C. for 10 seconds and then allowing it to cool to room temperature was repeated three times using an infrared solder reflow furnace.
Then, using an ultrasonic flaw detector, non-destructive observation of interfacial destruction between the polyimide and the sealing resin was carried out to examine the solder reflow resistance of the polyimide surface protective film. The temperature profile of the infrared solder reflow furnace is described in "Mounting Technology of Surface Mount LSI Package and Its Reliability Improvement" on page 451 (Hitachi, Ltd., Semiconductor Division, 1988). The maximum temperature of 240-245 ℃
Was followed as.

【0063】ポリイミド前駆体溶液の粘度は、DVR−
E型粘度計((株)トキメック製)により、25℃で測定
した。
The viscosity of the polyimide precursor solution is DVR-
It was measured at 25 ° C. with an E-type viscometer (manufactured by Tokimec Co., Ltd.).

【0064】<実施例1>窒素気流気下に4,4’−ジ
アミノジフェニルエーテル92.0g(0.46モ
ル)、4−アミノフェニル 4−アミノ−3−カルボン
アミドフェニル エーテル9.12g(0.44モル)
をN−メチル−2−ピロリドン1580.2gに溶解
し、アミン溶液を調製した。次に、この溶液を約15℃
の温度に保ちながら、撹拌しつつ、事前にピロメリット
酸二無水物54.5g(0.25モル)と3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物8
0.5g(0.25モル)を混ぜ合わせたものを加え
た。加え終えてから更に約15℃で約5時間、窒素雰囲
気下で撹拌反応させて、粘度約30ポアズのポリイミド
前駆体組成物溶液を得た。得られたポリイミド前駆体組
成物溶液は、ポリイミド前駆体として、下記一般式(化
1)で表されるポリアミド酸を含む。
<Example 1> 92.0 g (0.46 mol) of 4,4'-diaminodiphenyl ether and 9.12 g of 4-aminophenyl 4-amino-3-carbonamidophenyl ether under a nitrogen stream. 44 mol)
Was dissolved in 1580.2 g of N-methyl-2-pyrrolidone to prepare an amine solution. Next, add this solution to about 15 °
54.5 g (0.25 mol) of pyromellitic dianhydride and 3,3 ′, while stirring at the temperature of
4,4'-benzophenone tetracarboxylic acid dianhydride 8
A mixture of 0.5 g (0.25 mol) was added. After the addition was completed, the mixture was further stirred and reacted at about 15 ° C. for about 5 hours under a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains a polyamic acid represented by the following general formula (Formula 1) as a polyimide precursor.

【0065】[0065]

【化1】 [Chemical 1]

【0066】ただし、本実施例のポリアミド酸は、R1
が、
However, the polyamic acid of this embodiment is R 1
But,

【0067】[0067]

【化11】 [Chemical 11]

【0068】であり、R2が、And R 2 is

【0069】[0069]

【化12】 [Chemical 12]

【0070】である共重合体である。なお、(化11)
および(化12)において、[ ]内は一分子中の繰返
し単位数比を表す。
Is a copolymer of In addition, (Chemical formula 11)
In and (Chemical Formula 12), [] represents the ratio of the number of repeating units in one molecule.

【0071】容量絶縁膜に強誘電体材料を用いて、最表
面にシリコン窒化膜を形成し、導通を取るためのボンデ
ィングパッド部を有する半導体素子を形成したウェハを
用意した。
A ferroelectric material was used for the capacitance insulating film, a silicon nitride film was formed on the outermost surface, and a wafer having a semiconductor element having a bonding pad portion for electrical connection was prepared.

【0072】このウェハ上に、日立化成工業(株)製の
PIQカップラーをスピン塗布し、ホットプレート加熱
装置を用いて、空気中で、300℃で4分間加熱した
後、さらに、上記のポリイミド前駆体組成物溶液をスピ
ン塗布し、ホットプレート加熱装置を用い、窒素雰囲気
中で、140℃で1分間加熱した。
A PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was spin-coated on this wafer and heated at 300 ° C. for 4 minutes in the air using a hot plate heating device, and then the above polyimide precursor was added. The body composition solution was spin-coated and heated at 140 ° C. for 1 minute in a nitrogen atmosphere using a hot plate heating device.

【0073】次に、東京応化工業(株)製のポジ型フォ
トレジスト「OFPR800」をスピン塗布し、ホット
プレート加熱装置により90℃で1分間加熱して、ポリ
イミド前駆体組成物膜表面にレジスト膜を形成し、フォ
トマスクを介して露光、現像して、下のポリイミド前駆
体膜を露出する開口部をレジスト膜に形成した。次い
で、ホットプレート加熱装置により160℃で1分間加
熱した。
Next, a positive photoresist "OFPR800" manufactured by Tokyo Ohka Kogyo Co., Ltd. was spin-coated and heated at 90 ° C. for 1 minute by a hot plate heating device to form a resist film on the surface of the polyimide precursor composition film. Was formed, exposed through a photomask and developed to form an opening in the resist film for exposing the underlying polyimide precursor film. Then, it heated at 160 degreeC for 1 minute with the hot plate heating apparatus.

【0074】次に、レジストの現像液であるアルカリ水
溶液をそのまま利用して、ポリイミド前駆体組成物膜を
エッチングし、レジスト開口部に対応するポリイミド前
駆体組成物膜の箇所に開口部を形成した。レジスト剥離
液と専用のリンス液でレジスト膜を除去し、ポリイミド
前駆体組成物膜を水洗した後、230℃で4分間、30
0℃で8分間加熱してポリイミド前駆体をイミド化し、
ボンディングパッド部に開口のあるポリイミド表面保護
膜を素子表面に形成した。得られたポリイミド膜の膜厚
は2.3μmであった。また、前述のようにしてポリイ
ミド膜のヤング率およびガラス転移温度を測定したとこ
ろ、それぞれ、約3700MPaおよび約300℃であ
った。
Next, the polyimide precursor composition film was etched by using the alkaline aqueous solution as the resist developing solution as it was, and an opening was formed at the location of the polyimide precursor composition film corresponding to the resist opening. . The resist film is removed with a resist stripping solution and a dedicated rinse solution, the polyimide precursor composition film is washed with water, and then at 230 ° C. for 4 minutes, 30 minutes.
Heating at 0 ° C. for 8 minutes to imidize the polyimide precursor,
A polyimide surface protective film having an opening in the bonding pad portion was formed on the device surface. The thickness of the obtained polyimide film was 2.3 μm. Moreover, when the Young's modulus and the glass transition temperature of the polyimide film were measured as described above, they were about 3700 MPa and about 300 ° C., respectively.

【0075】その後、ポリイミド膜をマスクとして、ボ
ンディングパッド部を覆っているシリコン窒化膜を、C
494%とO26%との混合ガスでドライエッチングし
て、ボンディングパッド部のアルミニウム電極を露出さ
せた。
Then, using the polyimide film as a mask, the silicon nitride film covering the bonding pad portion is removed by C
Dry etching was performed with a mixed gas of 94% F 4 and 6% O 2 to expose the aluminum electrode in the bonding pad portion.

【0076】ここで、素子の電気特性である強誘電体膜
の残留分極率を測定したところ、PIQカップラー処理
以前の初期の強誘電体膜の残留分極率と比較して、その
値は5%低下しているだけであった。
Here, the residual polarizability of the ferroelectric film, which is an electrical characteristic of the device, was measured, and the value was 5% compared with the residual polarizability of the initial ferroelectric film before the PIQ coupler treatment. It was only decreasing.

【0077】次に、このウエハをスクライブ領域で切断
して、表面保護膜を備えた半導体素子を得た。この半導
体素子をダイボンディング工程でリードフレームに固定
し、しかる後に、半導体素子のボンディングパッド部と
外部端子間をワイヤーボンダーで金線を配線した。さら
に、日立化成工業(株)製のシリカ含有ビフェニル系エ
ポキシ樹脂を用いて、成型温度180℃、成型圧力70
kg/cm2で封止することにより、樹脂封止部を形成
した。最後に、外部端子を所定の形に折り曲げることに
より、図3に示す樹脂封止型半導体装置の完成品を得
た。
Next, this wafer was cut in the scribe region to obtain a semiconductor element having a surface protective film. This semiconductor element was fixed to a lead frame in a die bonding process, and thereafter, a gold wire was wired between a bonding pad portion of the semiconductor element and an external terminal with a wire bonder. Furthermore, using a silica-containing biphenyl epoxy resin manufactured by Hitachi Chemical Co., Ltd., a molding temperature of 180 ° C. and a molding pressure of 70
A resin-sealed portion was formed by sealing with kg / cm 2 . Finally, the external terminals were bent into a predetermined shape to obtain a completed resin-encapsulated semiconductor device shown in FIG.

【0078】得られた樹脂封止型半導体装置に対して、
上述のようにハンダリフロー耐性の評価試験を行ったと
ころ、ポリイミド表面保護膜と封止エポキシ樹脂の界面
では剥離やクラックの発生がなく、信頼性の高い半導体
装置を得ることができた。
With respect to the obtained resin-encapsulated semiconductor device,
When the solder reflow resistance evaluation test was performed as described above, no peeling or cracking occurred at the interface between the polyimide surface protective film and the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0079】<比較例1>実施例1と同様のウェハを用
意し、このウェハ上に、日立化成工業(株)製のPIQ
カップラーをスピン塗布し、ホットプレート加熱装置に
より空気中で300℃で4分間加熱した後、日立化成工
業(株)製のポリイミド前駆体溶液「PIQ−13」を
スピン塗布し、ホットプレート加熱装置により窒素雰囲
気中で、140℃で1分間加熱して、ポリイミド前駆体
組成物膜を形成した。
<Comparative Example 1> A wafer similar to that of Example 1 was prepared, and PIQ manufactured by Hitachi Chemical Co., Ltd. was placed on the wafer.
After spin-coating the coupler and heating in air at 300 ° C. for 4 minutes with a hot plate heating device, a polyimide precursor solution “PIQ-13” manufactured by Hitachi Chemical Co., Ltd. was spin-coated with a hot plate heating device. The polyimide precursor composition film was formed by heating at 140 ° C. for 1 minute in a nitrogen atmosphere.

【0080】次に実施例1と同様にして、ポリイミド前
駆体組成物膜に開口部を形成した後、ホットプレート加
熱装置により窒素雰囲気中230℃で4分間加熱し、さ
らに、横型の拡散炉により窒素雰囲気中350℃で30
分間加熱した。これにより、ボンディングパッド部に開
口部のあるポリイミド膜(PIQ−13膜)が素子表面
に形成された。得られたPIQ−13膜の膜厚は2.3
μmであった。また、前述のようにしてPIQ−13膜
のヤング率およびガラス転移温度を測定したところ、そ
れぞれ、約3300MPaおよび約310℃であった。
Next, in the same manner as in Example 1, after forming an opening in the polyimide precursor composition film, it was heated in a nitrogen atmosphere at 230 ° C. for 4 minutes by a hot plate heating device, and further, in a horizontal diffusion furnace. 30 at 350 ℃ in nitrogen atmosphere
Heated for minutes. As a result, a polyimide film (PIQ-13 film) having an opening in the bonding pad portion was formed on the element surface. The obtained PIQ-13 film has a thickness of 2.3.
was μm. Moreover, when the Young's modulus and the glass transition temperature of the PIQ-13 film were measured as described above, they were about 3300 MPa and about 310 ° C., respectively.

【0081】その後、実施例1と同様にしてボンディン
グパッド部のアルミニウム電極を露出させ、強誘電体膜
の残留分極率を測定したところ、PIQカップラー処理
以前の値から60%低下していた。
After that, the aluminum electrode of the bonding pad portion was exposed and the residual polarizability of the ferroelectric film was measured in the same manner as in Example 1. As a result, it was found that the value was 60% lower than the value before the PIQ coupler treatment.

【0082】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品を作製し、実施例1と同様にしてハン
ダリフロー耐性を評価したところ、ポリイミド表面保護
膜と封止エポキシ樹脂の界面では剥離やクラックの発生
なかった。しかし、本比較例により得られた装置は、実
施例1の装置に比べ、強誘電体膜の特性劣化が著しく、
実用には不適であった。
Next, a completed resin-encapsulated semiconductor device was prepared in the same manner as in Example 1, and solder reflow resistance was evaluated in the same manner as in Example 1. As a result, a polyimide surface protective film and an encapsulated epoxy resin were prepared. No peeling or cracking occurred at the interface. However, the device obtained in this comparative example is significantly deteriorated in the characteristics of the ferroelectric film as compared with the device of Example 1,
It was not suitable for practical use.

【0083】<比較例2>比較例1と同様にしてウエハ
表面に表面保護膜を形成した。ただし、ポリイミド前駆
体組成物膜の加熱硬化処理における350℃での加熱時
間を、8分間に短縮した。本比較例のPIQ−13膜の
ヤング率およびガラス転移温度も、比較例1と同様、約
3300MPaおよび約310℃であった。しかし、本
比較例の素子における強誘電体膜の残留分極率は、PI
Qカップラー処理以前の値から25%低下しており、実
施例1と比べると特性劣化が著しく、実用には不適であ
った。
<Comparative Example 2> In the same manner as in Comparative Example 1, a surface protective film was formed on the wafer surface. However, the heating time at 350 ° C. in the heat curing treatment of the polyimide precursor composition film was shortened to 8 minutes. Similarly to Comparative Example 1, the Young's modulus and glass transition temperature of the PIQ-13 film of this Comparative Example were about 3300 MPa and about 310 ° C. However, the residual polarizability of the ferroelectric film in the device of this comparative example is PI
The value was 25% lower than the value before the Q-coupler treatment, and the characteristic deterioration was remarkable as compared with Example 1, which was not suitable for practical use.

【0084】<比較例3>実施例1と同様のウェハを用
意し、このウェハ上に、日立化成工業(株)製のポリイ
ミド前駆体組成物「PIX8803−9L」をスピン塗
布し、ホットプレート加熱装置により窒素雰囲気中で、
100℃で1分間、さらに230℃で8分間加熱し、半
硬化状態のポリイミド前駆体組成物膜を得た。
Comparative Example 3 A wafer similar to that of Example 1 was prepared, and a polyimide precursor composition “PIX8803-9L” manufactured by Hitachi Chemical Co., Ltd. was spin-coated on this wafer and heated with a hot plate. In a nitrogen atmosphere by the device,
The film was heated at 100 ° C. for 1 minute and further at 230 ° C. for 8 minutes to obtain a semi-cured polyimide precursor composition film.

【0085】このポリイミド前駆体組成物膜に、実施例
1と同様にして開口部を形成した後、ホットプレート加
熱装置により窒素雰囲気中230℃で4分間加熱して、
ボンディングパッド部に開口部を備えるポリイミド膜
(PIX8803−9L膜)を得た。得られたポリイミ
ド膜の膜厚は2.3μmであった。また、前述のように
してPIX8803−9L膜のヤング率およびガラス転
移温度を測定したところ、それぞれ、約2000MPa
および約200℃であった。
After forming an opening in this polyimide precursor composition film in the same manner as in Example 1, the film was heated in a nitrogen atmosphere at 230 ° C. for 4 minutes by a hot plate heating device,
A polyimide film (PIX8803-9L film) having an opening in the bonding pad was obtained. The thickness of the obtained polyimide film was 2.3 μm. Moreover, when the Young's modulus and the glass transition temperature of the PIX8803-9L film were measured as described above, they were each about 2000 MPa.
And about 200 ° C.

【0086】つぎに、実施例1と同様にポリイミド膜を
マスクとしてシリコン窒化膜をドライエッチングし、ボ
ンディングパッド部のアルミニウム電極を露出させ、強
誘電体膜の残留分極率を測定したところ、得られた値
と、ポリイミド前駆体組成物塗布前の値との差は1%以
内であり、特性の劣化はほとんど見られなかった。
Next, as in Example 1, the silicon nitride film was dry-etched using the polyimide film as a mask to expose the aluminum electrode in the bonding pad portion, and the residual polarizability of the ferroelectric film was measured. The difference between the measured value and the value before coating the polyimide precursor composition was within 1%, and almost no deterioration of the characteristics was observed.

【0087】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品を作製し、実施例1と同様にしてハン
ダリフロー耐性を評価したところ、ポリイミド表面保護
膜と封止エポキシ樹脂の界面の全面に渡って剥離が見ら
れ、信頼性の著しく低い半導体装置を得ることしかでき
なかった。
Next, a completed resin-encapsulated semiconductor device was prepared in the same manner as in Example 1, and solder reflow resistance was evaluated in the same manner as in Example 1. As a result, a polyimide surface protective film and an encapsulated epoxy resin were prepared. Peeling was observed over the entire interface, and only a semiconductor device with extremely low reliability could be obtained.

【0088】<実施例2>窒素気流気下に4,4’−ジ
アミノジフェニルエーテル88.0g(0.44モ
ル)、4−アミノフェニル 4−アミノ−3−カルボン
アミドフェニル エーテル13.68g(0.06モ
ル)をN−メチル−2−ピロリドン1584gに溶解
し、アミン溶液を調製した。次に、この溶液を約15℃
の温度に保ちながら、撹拌しつつ、事前にピロメリット
酸二無水物54.5g(0.25モル)と3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物8
0.5g(0.25モル)を混ぜ合わせたものを加え
た。加え終えてから更に約15℃で約5時間、窒素雰囲
気下で撹拌反応させて、粘度約30ポアズのポリイミド
前駆体組成物溶液を得た。得られたポリイミド前駆体組
成物溶液は、ポリイミド前駆体として、R2の共重合比
が異なる他は実施例1と同様のポリアミド酸共重合体を
含む。本実施例におけるR2は、
<Example 2>4,8'-diaminodiphenyl ether 88.0 g (0.44 mol) and 4-aminophenyl 4-amino-3-carbonamido phenyl ether 13.68 g (0. (06 mol) was dissolved in 1584 g of N-methyl-2-pyrrolidone to prepare an amine solution. Next, add this solution to about 15 °
54.5 g (0.25 mol) of pyromellitic dianhydride and 3,3 ′, while stirring at the temperature of
4,4'-benzophenone tetracarboxylic acid dianhydride 8
A mixture of 0.5 g (0.25 mol) was added. After the addition was completed, the mixture was further stirred and reacted at about 15 ° C. for about 5 hours under a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains, as a polyimide precursor, the same polyamic acid copolymer as in Example 1 except that the copolymerization ratio of R 2 was different. R 2 in this example is

【0089】[0089]

【化13】 [Chemical 13]

【0090】である。なお、(化13)において[ ]
内は一分子中の繰返し単位数比を表す。
It is In addition, in [Chemical Formula 13], []
The number inside represents the ratio of the number of repeating units in one molecule.

【0091】次に、実施例1と同様のウェハを用意し、
このウェハ表面に、日立化成工業(株)製のPIQカッ
プラーをスピン塗布し、ホットプレート加熱装置を用い
て、空気中で、260℃で4分間加熱した後、さらに、
上記のポリイミド前駆体組成物溶液をスピン塗布し、ホ
ットプレート加熱装置により窒素雰囲気中140℃で1
分間加熱した。これにより、ポリイミド前駆体組成物膜
が得られた。
Next, a wafer similar to that of the first embodiment is prepared,
A PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was spin-coated on the surface of the wafer and heated at 260 ° C. for 4 minutes in the air using a hot plate heating device.
The above polyimide precursor composition solution was spin-coated and heated at 140 ° C. in a nitrogen atmosphere with a hot plate heating device at 1 ° C. for 1 hour.
Heated for minutes. As a result, a polyimide precursor composition film was obtained.

【0092】この組成物膜に、実施例1と同様にして開
口部を設けた後、230℃で4分間、260℃で8分間
加熱してポリイミド前駆体をイミド化し、ボンディング
パッド部に開口のあるポリイミド表面保護膜を素子表面
に形成した。得られたポリイミド膜の膜厚は2.3μm
であった。また、前述のようにしてポリイミド膜のヤン
グ率およびガラス転移温度を測定したところ、それぞ
れ、約3300MPaおよび約300℃であった。
After forming an opening in this composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and 260 ° C. for 8 minutes to form an opening in the bonding pad portion. A certain polyimide surface protective film was formed on the device surface. The thickness of the obtained polyimide film is 2.3 μm
Met. Moreover, when the Young's modulus and the glass transition temperature of the polyimide film were measured as described above, they were about 3300 MPa and about 300 ° C., respectively.

【0093】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値は約2%低下してい
るだけであった。
When the residual polarizability of the ferroelectric film was measured, it was only about 2% lower than the residual polarizability of the initial ferroelectric film before the PIQ coupler treatment. Met.

【0094】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was carried out on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0095】<実施例3>窒素気流気下で、4,4’−
ジアミノジフェニルエーテル90.0g(0.45モ
ル)、ビス(3−アミノプロピル)テトラメチルジシロ
キサン9.6g(0.05モル)をN−メチル−2−ピ
ロリドン1584gに溶解し、アミン溶液を調製した。
次に、この溶液を約15℃の温度に保ちながら、撹拌し
つつ、3,3’,4,4’−ビフェニルテトラカルボン
酸二無水物147g(0.5モル)を加えた。加え終え
てから更に約15℃で約5時間、窒素雰囲気下で撹拌反
応させて、粘度約50ポアズのポリイミド前駆体組成物
溶液を得た。得られたポリイミド前駆体組成物溶液は、
ポリイミド前駆体として、下記一般式(化14)で表さ
れる第1の繰返し単位と、下記一般式(化15)で表さ
れる第2の繰返し単位とからなるポリアミド酸共重合体
を含む。ただし、ポリアミド酸一分子中の、第1の繰返
し単位の数と第2の繰返し単位の数との合計に対する第
2の繰返し単位の数の割合は、10%である。
<Example 3>4,4'-under nitrogen stream
90.0 g (0.45 mol) of diaminodiphenyl ether and 9.6 g (0.05 mol) of bis (3-aminopropyl) tetramethyldisiloxane were dissolved in 1584 g of N-methyl-2-pyrrolidone to prepare an amine solution. .
Next, 147 g (0.5 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added while stirring the solution while maintaining the temperature at about 15 ° C. After the addition was completed, the mixture was further stirred and reacted at about 15 ° C. for about 5 hours under a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 50 poise. The obtained polyimide precursor composition solution,
The polyimide precursor includes a polyamic acid copolymer composed of a first repeating unit represented by the following general formula (Formula 14) and a second repeating unit represented by the following general formula (Formula 15). However, the ratio of the number of second repeating units to the total number of first repeating units and the number of second repeating units in one molecule of polyamic acid is 10%.

【0096】[0096]

【化14】 [Chemical 14]

【0097】[0097]

【化15】 [Chemical 15]

【0098】次に、実施例1と同様のウェハを用意し、
このウェハ表面に、日立化成工業(株)製のPIQカッ
プラーをスピン塗布し、ホットプレート加熱装置を用い
て、空気中で、260℃で4分間加熱した後、さらに、
上記のポリイミド前駆体組成物溶液をスピン塗布し、ホ
ットプレート加熱装置により窒素雰囲気中140℃で1
分間加熱した。これにより、ポリイミド前駆体組成物膜
が得られた。
Next, a wafer similar to that of the first embodiment is prepared,
A PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was spin-coated on the surface of the wafer and heated at 260 ° C. for 4 minutes in the air using a hot plate heating device.
The above polyimide precursor composition solution was spin-coated and heated at 140 ° C. in a nitrogen atmosphere with a hot plate heating device at 1 ° C. for 1 hour.
Heated for minutes. As a result, a polyimide precursor composition film was obtained.

【0099】この組成物膜に、実施例1と同様にして開
口部を設けた後、230℃で4分間、260℃で8分間
加熱してポリイミド前駆体をイミド化し、ボンディング
パッド部に開口のあるポリイミド表面保護膜を素子表面
に形成した。得られたポリイミド膜の膜厚は2.3μm
であった。また、前述のようにしてポリイミド膜のヤン
グ率およびガラス転移温度を測定したところ、それぞ
れ、約3000MPaおよび約255℃であった。
After forming an opening in this composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and 260 ° C. for 8 minutes to form an opening in the bonding pad portion. A certain polyimide surface protective film was formed on the device surface. The thickness of the obtained polyimide film is 2.3 μm
Met. Further, when the Young's modulus and the glass transition temperature of the polyimide film were measured as described above, they were about 3000 MPa and about 255 ° C., respectively.

【0100】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値は約2%低下してい
るだけであった。
Here, when the residual polarizability of the ferroelectric film was measured, it was only about 2% lower than the residual polarizability of the initial ferroelectric film before the PIQ coupler treatment. Met.

【0101】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, a resin-encapsulated semiconductor device was completed as in Example 1, and a solder reflow resistance evaluation test was conducted on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0102】<実施例4>窒素気流気下で、3,3’−
ジメチルベンジジン103.0g(0.5モル)をN−
メチル−2−ピロリドン1474.5gに溶解し、4,
4’−オキシフタル酸二無水物155.0g(0.5モ
ル)を加えた。加え終えてから更に約15℃で約5時
間、窒素雰囲気下で撹拌反応させて、粘度約30ポアズ
のポリイミド前駆体組成物溶液を得た。得られたポリイ
ミド前駆体組成物溶液は、ポリイミド前駆体として、下
記一般式(化16)で表される繰返し単位からなるポリ
アミド酸を含む。
<Example 4>3,3'-under nitrogen stream
Dimethylbenzidine 103.0 g (0.5 mol) was added to N-
Methyl-2-pyrrolidone dissolved in 1474.5 g, 4,
155.0 g (0.5 mol) of 4'-oxyphthalic dianhydride was added. After the addition was completed, the mixture was further stirred and reacted at about 15 ° C. for about 5 hours under a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains, as a polyimide precursor, a polyamic acid having a repeating unit represented by the following general formula (Formula 16).

【0103】[0103]

【化16】 [Chemical 16]

【0104】つぎに、実施例1と同様のウェハを用意
し、このウェハ表面に、日立化成工業(株)製のPIQ
カップラーをスピン塗布し、ホットプレート加熱装置を
用いて、空気中で、240℃で4分間加熱した後、さら
に、上記のポリイミド前駆体組成物溶液をスピン塗布
し、ホットプレート加熱装置により窒素雰囲気中140
℃で1分間加熱した。これにより、ポリイミド前駆体組
成物膜が得られた。
Next, a wafer similar to that used in Example 1 was prepared, and a PIQ manufactured by Hitachi Chemical Co., Ltd. was placed on the wafer surface.
After spin-coating the coupler and heating in air at 240 ° C. for 4 minutes using a hot plate heater, the above-mentioned polyimide precursor composition solution was spin-coated in a nitrogen atmosphere with a hot plate heater. 140
Heated at 0 ° C for 1 minute. As a result, a polyimide precursor composition film was obtained.

【0105】この組成物膜に、実施例1と同様にして開
口部を設けた後、230℃で4分間、240℃で10分
間加熱してポリイミド前駆体をイミド化し、ボンディン
グパッド部に開口のあるポリイミド表面保護膜を素子表
面に形成した。得られたポリイミド膜の膜厚は2.3μ
mであった。また、前述のようにしてポリイミド膜のヤ
ング率およびガラス転移温度を測定したところ、それぞ
れ、約4000MPaおよび約250℃であった。
After forming an opening in this composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and 240 ° C. for 10 minutes to form an opening in the bonding pad portion. A certain polyimide surface protective film was formed on the device surface. The thickness of the obtained polyimide film is 2.3μ.
It was m. When the Young's modulus and the glass transition temperature of the polyimide film were measured as described above, they were about 4000 MPa and about 250 ° C., respectively.

【0106】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値の低下は約1%以内
であった。
When the remanent polarizability of the ferroelectric film was measured, the decrease in the remanent polarizability of the ferroelectric film was within about 1% as compared with the initial remanent polarizability of the ferroelectric film before the PIQ coupler treatment. It was

【0107】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was performed on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0108】<実施例5>実施例1で合成したポリイミ
ド前駆体組成物溶液に、ポリイミド前駆体ポリマ100
重量部に対して、メタクリル酸3−(N,N−ジメチル
アミノ)プロピル20.0重量部と、2,6−ジ(p−
アジドベンザル)−4−カルボキシシクロヘキサノン
5.0重量部とを加えて溶解し、感光性組成物溶液を得
た。
Example 5 Polyimide precursor polymer 100 was added to the polyimide precursor composition solution synthesized in Example 1.
20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 2,6-di (p-
5.0 parts by weight of azidobenzal) -4-carboxycyclohexanone was added and dissolved to obtain a photosensitive composition solution.

【0109】つぎに、実施例1と同様のウェハを用意
し、このウェハ表面に、日立化成工業(株)製のPIQ
カップラーをスピン塗布し、ホットプレート加熱装置を
用いて、空気中で、250℃で4分間加熱した後、さら
に、上記の感光性組成物溶液をスピン塗布し、ホットプ
レート加熱装置により窒素雰囲気中で、85℃で1分
間、続いて95℃で1分間加熱した。これにより、ポリ
イミド前駆体組成物膜が得られた。
Next, a wafer similar to that used in Example 1 was prepared, and a PIQ manufactured by Hitachi Chemical Co., Ltd. was placed on the surface of the wafer.
The coupler was spin-coated and heated in air at 250 ° C. for 4 minutes using a hot plate heating device, and then the above photosensitive composition solution was spin-coated in a nitrogen atmosphere with a hot plate heating device. Heated at 85 ° C for 1 minute, followed by 95 ° C for 1 minute. As a result, a polyimide precursor composition film was obtained.

【0110】この組成物膜を、フォトマスクを介して露
光させ、N−メチル−2−ピロリドン4容とエタノール
1容とからなる混液で現像した後、エタノールでリンス
して、ボンディングパッド部に開口部を形成した。つぎ
に、ホットプレート加熱装置により、130℃で4分
間、170℃で4分間、220℃で4分間、250℃で
8分間、順次加熱してポリイミド前駆体を硬化させ、ボ
ンディングパッド部に開口部のあるポリイミド膜とし
た。得られたポリイミド膜の膜厚は2.3μmであっ
た。また、ポリイミド膜のヤング率およびガラス転移温
度を測定したところ、それぞれ、約3300MPaおよ
び約300℃であった。
This composition film was exposed through a photomask, developed with a mixed solution of 4 volumes of N-methyl-2-pyrrolidone and 1 volume of ethanol, and then rinsed with ethanol to open at the bonding pad portion. Parts were formed. Next, by using a hot plate heating device, the polyimide precursor is cured by sequentially heating at 130 ° C. for 4 minutes, 170 ° C. for 4 minutes, 220 ° C. for 4 minutes, and 250 ° C. for 8 minutes to open the bonding pad. A polyimide film having The thickness of the obtained polyimide film was 2.3 μm. Moreover, when the Young's modulus and the glass transition temperature of the polyimide film were measured, they were about 3300 MPa and about 300 ° C., respectively.

【0111】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値の低下は約1%以内
であった。
When the remanent polarizability of the ferroelectric film was measured, the decrease in the remanent polarizability of the ferroelectric film was within about 1% as compared with the initial remanent polarizability of the ferroelectric film before the PIQ coupler treatment. It was

【0112】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, and a solder reflow resistance evaluation test was conducted on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0113】<実施例6>実施例2で合成したポリイミ
ド前駆体組成物溶液に、ポリイミド前駆体ポリマ100
重量部に対して、メタクリル酸3−(N,N−ジメチル
アミノ)プロピル20.0重量部と、ミヒラケトン3.
0重量部と、ビス−4,4’−ジエチルアミノベンゾフ
ェノン3.0重量部と加えて溶解し、感光性組成物溶液
を得た。
<Example 6> Polyimide precursor polymer 100 was added to the polyimide precursor composition solution synthesized in Example 2.
20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and Michla ketone 3.
0 parts by weight and 3.0 parts by weight of bis-4,4′-diethylaminobenzophenone were added and dissolved to obtain a photosensitive composition solution.

【0114】つぎに、実施例1と同様のウェハを用意
し、このウェハ表面に、日立化成工業(株)製のPIQ
カップラーをスピン塗布し、ホットプレート加熱装置を
用いて、空気中で、270℃で4分間加熱した後、さら
に、上記の感光性組成物溶液をスピン塗布し、ホットプ
レート加熱装置により窒素雰囲気中で、85℃で1分
間、続いて95℃で1分間加熱した。これにより、ポリ
イミド前駆体組成物膜が得られた。
Next, a wafer similar to that used in Example 1 was prepared, and a PIQ manufactured by Hitachi Chemical Co., Ltd. was placed on the surface of the wafer.
The coupler was spin-coated and heated in air at 270 ° C. for 4 minutes using a hot plate heating device, and then the above photosensitive composition solution was spin-coated in a nitrogen atmosphere with a hot plate heating device. Heated at 85 ° C for 1 minute, followed by 95 ° C for 1 minute. As a result, a polyimide precursor composition film was obtained.

【0115】この組成物膜に実施例5と同様にして開口
部を形成した後、ホットプレート加熱装置により、13
0℃で4分間、170℃で4分間、220℃で4分間、
270℃で8分間、順次加熱してポリイミド前駆体を硬
化させ、ボンディングパッド部に開口部のあるポリイミ
ド膜とした。得られたポリイミド膜の膜厚は2.3μm
であった。また、ポリイミド膜のヤング率およびガラス
転移温度を測定したところ、それぞれ、約3300MP
aおよび約300℃であった。
After forming an opening in this composition film in the same manner as in Example 5, the film was heated to 13 by a hot plate heating device.
4 minutes at 0 ℃, 4 minutes at 170 ℃, 4 minutes at 220 ℃,
The polyimide precursor was cured by sequentially heating at 270 ° C. for 8 minutes to form a polyimide film having an opening portion in the bonding pad portion. The thickness of the obtained polyimide film is 2.3 μm
Met. Also, when Young's modulus and glass transition temperature of the polyimide film were measured, each was about 3300MP.
a and about 300 ° C.

【0116】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値の低下は約1%以内
であった。
Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 1% as compared with the residual polarizability of the initial ferroelectric film before the PIQ coupler treatment. It was

【0117】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was performed on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0118】<実施例7>実施例3で合成したポリイミ
ド前駆体組成物溶液に、ポリイミド前駆体ポリマ100
重量部に対して、メタクリル酸3−(N,N−ジメチル
アミノ)プロピル20.0重量部と、2,6−ジ(p−
アジドベンザル)−4−カルボキシシクロヘキサノン
5.0重量部とを加えて溶解し、感光性組成物溶液を得
た。
Example 7 Polyimide precursor polymer 100 was added to the polyimide precursor composition solution synthesized in Example 3.
20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 2,6-di (p-
5.0 parts by weight of azidobenzal) -4-carboxycyclohexanone was added and dissolved to obtain a photosensitive composition solution.

【0119】つぎに、実施例1と同様のウェハを用意
し、このウェハ表面に、日立化成工業(株)製のPIQ
カップラーをスピン塗布し、ホットプレート加熱装置を
用いて、空気中で、260℃で4分間加熱した後、さら
に、上記の感光性組成物溶液をスピン塗布し、ホットプ
レート加熱装置により窒素雰囲気中で、85℃で1分
間、続いて95℃で1分間加熱した。これにより、ポリ
イミド前駆体組成物膜が得られた。
Next, a wafer similar to that used in Example 1 was prepared, and a PIQ manufactured by Hitachi Chemical Co., Ltd. was placed on the surface of the wafer.
The coupler was spin-coated and heated in air at 260 ° C. for 4 minutes using a hot plate heating device, and then the above photosensitive composition solution was spin-coated in a nitrogen atmosphere with a hot plate heating device. Heated at 85 ° C for 1 minute, followed by 95 ° C for 1 minute. As a result, a polyimide precursor composition film was obtained.

【0120】この組成物膜に実施例5と同様にして開口
部を形成した後、ホットプレート加熱装置により、13
0℃で4分間、170℃で4分間、220℃で4分間、
260℃で8分間、順次加熱してポリイミド前駆体を硬
化させ、ボンディングパッド部に開口部のあるポリイミ
ド膜とした。得られたポリイミド膜の膜厚は2.3μm
であった。また、ポリイミド膜のヤング率およびガラス
転移温度を測定したところ、それぞれ、約3000MP
aおよび約260℃であった。
After forming an opening in this composition film in the same manner as in Example 5, the film was heated to 13 by a hot plate heating device.
4 minutes at 0 ℃, 4 minutes at 170 ℃, 4 minutes at 220 ℃,
The polyimide precursor was cured by sequentially heating at 260 ° C. for 8 minutes to form a polyimide film having an opening portion in the bonding pad portion. The thickness of the obtained polyimide film is 2.3 μm
Met. Moreover, when Young's modulus and glass transition temperature of the polyimide film were measured, each was about 3000 MP
a and about 260 ° C.

【0121】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値の低下は約2%以内
であった。
Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 2% as compared with the residual polarizability of the initial ferroelectric film before the PIQ coupler treatment. It was

【0122】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was conducted on the obtained completed product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0123】<実施例8>実施例4で合成したポリイミ
ド前駆体組成物溶液に、ポリイミド前駆体ポリマ100
重量部に対して、メタクリル酸3−(N,N−ジメチル
アミノ)プロピル20.0重量部と、ミヒラケトン3.
0重量部と、ビス−4,4’−ジエチルアミノベンゾフ
ェノン3.0重量部とを加えて溶解し、感光性組成物溶
液を得た。
Example 8 Polyimide precursor polymer 100 was added to the polyimide precursor composition solution synthesized in Example 4.
20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and Michla ketone 3.
0 parts by weight and 3.0 parts by weight of bis-4,4′-diethylaminobenzophenone were added and dissolved to obtain a photosensitive composition solution.

【0124】つぎに、実施例1と同様のウェハを用意
し、実施例5と同様にしてウェハ表面を「PIQカップ
ラー」により処理した後、さらに、実施例5と同様にし
て、上記の感光性組成物溶液を塗布、加熱してポリイミ
ド前駆体組成物膜を形成した。
Next, a wafer similar to that in Example 1 was prepared, the surface of the wafer was treated with a “PIQ coupler” in the same manner as in Example 5, and then the above-described photosensitivity was performed in the same manner as in Example 5. The composition solution was applied and heated to form a polyimide precursor composition film.

【0125】この組成物膜を、実施例5と同様に開口処
理した後、実施例5と同様にして加熱硬化させてポリイ
ミド膜とした。得られたポリイミド膜の膜厚は2.3μ
mであった。また、ポリイミド膜のヤング率およびガラ
ス転移温度を測定したところ、それぞれ、約4000M
Paおよび約250℃であった。
The composition film was subjected to an opening treatment in the same manner as in Example 5 and then heat-cured in the same manner as in Example 5 to form a polyimide film. The thickness of the obtained polyimide film is 2.3μ.
It was m. Also, when Young's modulus and glass transition temperature of the polyimide film were measured, each was about 4000M.
Pa and about 250 ° C.

【0126】ここで、強誘電体膜の残留分極率を測定し
たところ、PIQカップラー処理以前の初期の強誘電体
膜の残留分極率と比較して、その値の低下は約1%以内
であった。
When the remanent polarizability of the ferroelectric film was measured, the decrease in the remanent polarizability of the ferroelectric film was within about 1% as compared with the initial remanent polarizability of the ferroelectric film before the PIQ coupler treatment. It was

【0127】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、得られた完成品に対してハ
ンダリフロー耐性の評価試験を行ったところ、ポリイミ
ド表面保護膜と封止エポキシ樹脂の界面では剥離やクラ
ックの発生がなく、信頼性の高い半導体装置を得ること
ができた。
Next, after completing a resin-encapsulated semiconductor device as a finished product in the same manner as in Example 1, a solder reflow resistance evaluation test was performed on the obtained finished product. No peeling or cracking occurred at the interface of the sealing epoxy resin, and a highly reliable semiconductor device could be obtained.

【0128】<実施例9>実施例1と同様のウェハを用
意し、このウェハ表面に、日立化成工業(株)製のPI
Qカップラーをスピン塗布し、ホットプレート加熱装置
を用いて、空気中230℃で4分間加熱した後、さら
に、実施例4で合成したポリイミド前駆体組成物溶液を
スピン塗布し、ホットプレート加熱装置により窒素雰囲
気中140℃で1分間加熱した。これにより、ポリイミ
ド前駆体組成物膜が得られた。
<Embodiment 9> A wafer similar to that of Embodiment 1 is prepared, and the wafer surface is provided with PI manufactured by Hitachi Chemical Co., Ltd.
The Q coupler was spin-coated and heated in air at 230 ° C. for 4 minutes using a hot plate heating device, and then the polyimide precursor composition solution synthesized in Example 4 was spin-coated and heated by a hot plate heating device. It heated at 140 degreeC in nitrogen atmosphere for 1 minute. As a result, a polyimide precursor composition film was obtained.

【0129】この組成物膜に実施例4と同様にして開口
部を形成した後、ホットプレート加熱装置により、20
0℃で4分間、ついで230℃で10分間加熱してポリ
イミド前駆体を硬化させ、ボンディングパッド部に開口
のあるポリイミド表面保護膜とした。得られたポリイミ
ド膜の膜厚は2.3μmであった。また、前述のように
してポリイミド膜のヤング率およびガラス転移温度を測
定したところ、それぞれ、約4000MPaおよび約2
50℃であった。
After forming an opening in this composition film in the same manner as in Example 4, it was heated to 20 by a hot plate heating device.
The polyimide precursor was cured by heating at 0 ° C. for 4 minutes and then at 230 ° C. for 10 minutes to obtain a polyimide surface protective film having openings in the bonding pad portion. The thickness of the obtained polyimide film was 2.3 μm. Also, when Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 4000 MPa and about 2 MPa, respectively.
It was 50 ° C.

【0130】ここで、強誘電体膜の残留分極率を測定し
たところ、実施例4と同様に、熱処理による劣化は約1
%以内であった。また、実施例1と同様にして樹脂封止
型半導体装置の完成品とした後、得られた完成品のハン
ダリフロー耐性は、実施例4と同様に良好であった。
When the residual polarizability of the ferroelectric film was measured, the deterioration due to the heat treatment was about 1 as in Example 4.
It was within%. Further, after the resin-encapsulated semiconductor device was completed as in Example 1 to obtain a finished product, the solder reflow resistance of the obtained finished product was as good as in Example 4.

【0131】<実施例10>実施例4で合成したポリイ
ミド前駆体溶液に、ポリイミド前駆体ポリマ100重量
部に対して、メタクリル酸3−(N,N−ジメチルアミ
ノ)プロピル20.0重量部と、ミヒラケトンを6.0
重量部と加えて溶解し、感光性組成物溶液を得た。
Example 10 To the polyimide precursor solution synthesized in Example 4, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate was added to 100 parts by weight of the polyimide precursor polymer. , Mihiraketone 6.0
The solution was added with parts by weight and dissolved to obtain a photosensitive composition solution.

【0132】つぎに、実施例1と同様のウェハを用意
し、実施例9と同様にしてウェハ表面を「PIQカップ
ラー」により処理した後、さらに、上記の感光性組成物
溶液をスピン塗布し、ホットプレート加熱装置により窒
素雰囲気中で、85℃で1分間、続いて95℃で1分間
加熱してポリイミド前駆体組成物膜を形成した。
Next, a wafer similar to that in Example 1 was prepared, the surface of the wafer was treated with a “PIQ coupler” in the same manner as in Example 9, and then the above photosensitive composition solution was spin-coated. A polyimide precursor composition film was formed by heating at 85 ° C. for 1 minute and then at 95 ° C. for 1 minute in a nitrogen atmosphere with a hot plate heating device.

【0133】この組成物膜に実施例5と同様にして開口
部を形成した後、ホットプレート加熱装置により、13
0℃で4分間、170℃で4分間、200℃で4分間、
230℃で10分間、順次加熱してポリイミド前駆体を
硬化させ、ボンディングパッド部に開口部のあるポリイ
ミド膜とした。得られたポリイミド膜の膜厚は2.3μ
mであった。また、ポリイミド膜のヤング率およびガラ
ス転移温度を測定したところ、それぞれ、約4000M
Paおよび約250℃であった。
After forming an opening in this composition film in the same manner as in Example 5, the film was heated to 13 by a hot plate heating device.
4 minutes at 0 ℃, 4 minutes at 170 ℃, 4 minutes at 200 ℃,
The polyimide precursor was cured by sequentially heating at 230 ° C. for 10 minutes to form a polyimide film having an opening portion in the bonding pad portion. The thickness of the obtained polyimide film is 2.3μ.
It was m. Also, when Young's modulus and glass transition temperature of the polyimide film were measured, each was about 4000M.
Pa and about 250 ° C.

【0134】ここで、強誘電体膜の残留分極率を測定し
たところ、実施例4と同様に、熱処理による劣化は約1
%以内であった。また、実施例1と同様にして樹脂封止
型半導体装置の完成品とした後、得られた完成品のハン
ダリフロー耐性は、実施例4と同様に良好であった。
When the residual polarizability of the ferroelectric film was measured, the deterioration due to the heat treatment was about 1 as in Example 4.
It was within%. Further, after the resin-encapsulated semiconductor device was completed as in Example 1 to obtain a finished product, the solder reflow resistance of the obtained finished product was as good as in Example 4.

【0135】<実施例11>窒素気流下で、3,3’−
ジメチルベンジジン95.4g(0.45モル)と、ビ
ス(3−アミノプロピル)テトラメチルジシロキサン
9.6g(0.05モル)とを、N−メチル−2−ピロ
リドン1040gに溶解させ、アミン溶液を調製した。
次に、この溶液を約15℃に保持しながら、撹拌しつ
つ、4,4’−オキシフタル酸二無水物155.0g
(0.5モル)を加えた後、さらに約15℃で約8時間
窒素雰囲気で撹拌し、粘度約30ポアズのポリイミド前
駆体溶液を得た。
<Example 11>3,3'-under nitrogen stream
Dimethylbenzidine 95.4 g (0.45 mol) and bis (3-aminopropyl) tetramethyldisiloxane 9.6 g (0.05 mol) were dissolved in N-methyl-2-pyrrolidone 1040 g to prepare an amine solution. Was prepared.
Next, while maintaining this solution at about 15 ° C. while stirring, 4,5.0 g of 4,4′-oxyphthalic acid dianhydride was obtained.
(0.5 mol) was added, and the mixture was further stirred at about 15 ° C. for about 8 hours in a nitrogen atmosphere to obtain a polyimide precursor solution having a viscosity of about 30 poise.

【0136】得られたポリイミド前駆体溶液は、ポリイ
ミド前駆体として、上記一般式(化16)で表される第
1の繰返し単位と、下記一般式(化19)で表される第
1の繰返し単位とからなるポリアミド酸共重合体を含
む。ただし、ポリアミド酸一分子中の第2の繰返し単位
数は、全体の約10%であった。得られたポリイミド前
駆体溶液を用い、実施例5と同様にして感光性組成物溶
液を調製した。
The obtained polyimide precursor solution contains, as a polyimide precursor, a first repeating unit represented by the above general formula (Formula 16) and a first repeating unit represented by the following general formula (Formula 19). And a polyamic acid copolymer composed of units. However, the number of second repeating units in one molecule of polyamic acid was about 10% of the whole. Using the obtained polyimide precursor solution, a photosensitive composition solution was prepared in the same manner as in Example 5.

【0137】[0137]

【化19】 [Chemical 19]

【0138】つぎに、実施例1と同様のウェハを用意
し、このウェハ表面に得られた感光性組成物溶液をスピ
ン塗布し、ホットプレート加熱装置を用い、窒素雰囲気
中で、85℃で1分間、続いて95℃で1分間加熱した
後、フォトマスクを介して露光させ、N−メチル−2−
ピロリドン4容およびエタノール1容からなる混液で現
像し、エタノールでリンスして、ボンディングパッド部
を露出させる開口部を形成した。続いて、ホットプレー
ト装置を用い、窒素雰囲気中で、130℃で3分間、1
70℃で3分間、220℃で3分間、300℃で6分
間、順次加熱し、ポリイミドを硬化させた。得られたポ
リイミド膜の膜厚は2.3μmであった。また、このポ
リイミドのヤング率は約4000MPa、ガラス転移温
度は260℃であった。
Next, a wafer similar to that used in Example 1 was prepared, the obtained photosensitive composition solution was spin-coated on the surface of the wafer, and a hot plate heating device was used to perform 1-hour heating at 85 ° C. in a nitrogen atmosphere. After heating for 1 minute at 95 ° C. for 1 minute and then exposing through a photomask, N-methyl-2-
It was developed with a mixed solution of 4 volumes of pyrrolidone and 1 volume of ethanol, and rinsed with ethanol to form an opening for exposing the bonding pad section. Then, using a hot plate device, in a nitrogen atmosphere at 130 ° C. for 3 minutes, 1
The polyimide was cured by sequentially heating at 70 ° C. for 3 minutes, 220 ° C. for 3 minutes, and 300 ° C. for 6 minutes. The thickness of the obtained polyimide film was 2.3 μm. The Young's modulus of this polyimide was about 4000 MPa, and the glass transition temperature was 260 ° C.

【0139】ここで、強誘電体膜の残留分極率を測定し
たところ、ポリイミド前駆体溶液塗布以前の初期の強誘
電体膜の残留分極率と比較して、その値の低下は1%以
内であった。
Here, the residual polarizability of the ferroelectric film was measured, and as compared with the residual polarizability of the initial ferroelectric film before the application of the polyimide precursor solution, the decrease in the value was within 1%. there were.

【0140】つぎに、実施例1と同様にして樹脂封止型
半導体装置の完成品とした後、実施例1と同様にしてハ
ンダリフロー耐性の評価試験を行ったところ、実施例1
と同様に信頼性の高いものであった。
Next, a resin-encapsulated semiconductor device was completed as in Example 1, and a solder reflow resistance evaluation test was conducted in the same manner as in Example 1. Example 1
It was just as reliable as.

【0141】<実施例12>本実施例では、開口部形成
後の加熱を、130℃で3分間、170℃で3分間、2
20℃で3分間、350℃で2分間とした他は、実施例
11と同様にして、樹脂封止型半導体装置を作成したと
ころ、得られたポリイミド膜のポリイミドのヤング率お
よびガラス転移温度は、実施例11と同様であった。
<Embodiment 12> In this embodiment, heating after formation of the opening is performed at 130 ° C. for 3 minutes and 170 ° C. for 3 minutes.
A resin-encapsulated semiconductor device was produced in the same manner as in Example 11 except that the temperature was 3 minutes at 20 ° C. and the temperature was 350 ° C. for 2 minutes. The same as in Example 11.

【0142】ここで、強誘電体膜の残留分極率を測定し
たところ、ポリイミド前駆体溶液塗布以前の初期の強誘
電体膜の残留分極率と比較して、その値の低下は5%以
内であった。
Here, the residual polarizability of the ferroelectric film was measured, and as compared with the initial residual polarizability of the ferroelectric film before the application of the polyimide precursor solution, the decrease in the value was within 5%. there were.

【0143】次に、実施例1と同様にして樹脂封止型半
導体装置の完成品とした後、実施例1と同様にしてハン
ダリフロー耐性の評価試験を行ったところ、実施例1と
同様に信頼性の高いものであった。
Next, after completing a resin-encapsulated semiconductor device in the same manner as in Example 1, a solder reflow resistance evaluation test was performed in the same manner as in Example 1. It was reliable.

【0144】[0144]

【発明の効果】以上詳述したように、本発明では、ポリ
イミド前駆体の加熱硬化温度が230℃〜300℃であ
るため、強誘電体膜の分極特性劣化が小さい。また、加
熱硬化させて得られるポリイミドのガラス転移温度が2
40℃以上でありかつヤング率が2600MPa以上で
あることから、樹脂封止後の半導体装置のハンダリフロ
ー耐性が優れ、ハンダリフロー時にポリイミドと封止樹
脂界面での剥離が起こらない。また、300℃より高温
であっても、350℃以下の短時間(用いる半導体素子
の耐熱性にもよるが、通常4分以内)の熱処理で、か
つ、形成されるポリイミド膜のヤング率が3500MP
a以上、ガラス転移温度が260℃以上であれば、強誘
電体膜の分極特性を劣化させることなく、本発明の目的
を達成することができた。従って、本発明によれば、信
頼性の高い半導体装置が得られる。
As described above in detail, in the present invention, since the heat curing temperature of the polyimide precursor is 230 ° C. to 300 ° C., the polarization characteristic deterioration of the ferroelectric film is small. Further, the glass transition temperature of the polyimide obtained by heating and curing is 2
Since the temperature is 40 ° C. or higher and the Young's modulus is 2600 MPa or higher, the solder reflow resistance of the semiconductor device after resin sealing is excellent, and peeling does not occur at the interface between the polyimide and the sealing resin during solder reflow. In addition, even if the temperature is higher than 300 ° C., the heat treatment is performed at a temperature of 350 ° C. or less for a short time (usually within 4 minutes depending on the heat resistance of the semiconductor element to be used), and the Young's modulus of the formed polyimide film is 3500 MP.
When the temperature is a or higher and the glass transition temperature is 260 ° C. or higher, the object of the present invention can be achieved without deteriorating the polarization characteristics of the ferroelectric film. Therefore, according to the present invention, a highly reliable semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】LOC(Lead on Chip)型の樹脂封止型半導体
装置の断面図である。
FIG. 1 is a cross-sectional view of a LOC (Lead on Chip) type resin-sealed semiconductor device.

【図2】樹脂封止型半導体装置の製造工程例を示す説明
図である。
FIG. 2 is an explanatory diagram showing an example of a manufacturing process of a resin-sealed semiconductor device.

【図3】実施例1において作製した樹脂封止型半導体装
置の断面図である。
FIG. 3 is a cross-sectional view of the resin-sealed semiconductor device manufactured in Example 1.

【図4】強誘電体膜を有する半導体素子の構成例を示す
断面図である。
FIG. 4 is a cross-sectional view showing a configuration example of a semiconductor element having a ferroelectric film.

【符号の説明】[Explanation of symbols]

1…半導体素子、 2…表面保護
膜、3…外部端子(リードフレーム) 4…接着部
材、5…金属線 6…封止部
材、7…ボンディングパッド部、 8…スクラ
イブ領域、9…素子領域と配線層とを作り込んだシリコ
ンウェハ 40…強誘電体メモリ素子、 41…シリコン
基板、42…CMOSトランジスタ層、 421…
pまたはnウェル、422…ソース、
423…ドレイン、424…酸化膜、
425…ゲート、426…絶縁層、
43…キャパシタ、431…下部電極層、
432…強誘電体薄膜、433…上部電
極層、 434…金属配線層、435…
絶縁層。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2 ... Surface protective film, 3 ... External terminal (lead frame) 4 ... Adhesive member, 5 ... Metal wire 6 ... Sealing member, 7 ... Bonding pad section, 8 ... Scribe area, 9 ... Element area Silicon wafer 40 with built-in wiring layer ... Ferroelectric memory element, 41 ... Silicon substrate, 42 ... CMOS transistor layer, 421 ...
p or n well, 422 ... Source,
423 ... drain, 424 ... oxide film,
425 ... Gate, 426 ... Insulating layer,
43 ... Capacitor, 431 ... Lower electrode layer,
432 ... Ferroelectric thin film, 433 ... Upper electrode layer, 434 ... Metal wiring layer, 435 ...
Insulation layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/56 H01L 23/12 501V 23/12 501 27/10 451 23/31 23/30 D 27/10 451 (56)参考文献 特開 平9−293837(JP,A) 特開 平7−221259(JP,A) 特開 平9−142844(JP,A) 特開 平6−73178(JP,A) 特開 平7−78840(JP,A) 特開 平7−302863(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/29 C08G 73/10 C08L 79/08 C09D 179/08 H01L 21/312 H01L 21/56 H01L 23/12 501 H01L 23/31 H01L 27/10 451 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01L 21/56 H01L 23/12 501V 23/12 501 27/10 451 23/31 23/30 D 27/10 451 (56) Reference Documents JP-A-9-293837 (JP, A) JP-A-7-221259 (JP, A) JP-A-9-142844 (JP, A) JP-A-6-73178 (JP, A) JP-A-7- 78840 (JP, A) JP 7-302863 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 23/29 C08G 73/10 C08L 79/08 C09D 179/08 H01L 21/312 H01L 21/56 H01L 23/12 501 H01L 23/31 H01L 27/10 451

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜が熱硬化性ポリイミドであ
って、ガラス転移温度が240℃〜400℃であり、か
つ、ヤング率が2600MPa〜6GPaの特性を有し
てなることを特徴とする樹脂封止型半導体装置。
1. A semiconductor device having a ferroelectric film and a device surface protection film, and a sealing member made of a resin for sealing the semiconductor device , wherein the surface protection film is a thermosetting polyimide.
Therefore, the glass transition temperature is 240 ° C to 400 ° C.
Has a Young's modulus of 2600 MPa to 6 GPa
It is Te resin-encapsulated semiconductor device according to claim.
【請求項2】前記強誘電体膜は、キャパシタの容量絶縁
膜であることを特徴とする請求項1に記載の樹脂封止型
半導体装置。
2. The ferroelectric film is a capacitance insulator of a capacitor.
The resin-sealed semiconductor device according to claim 1, which is a film .
【請求項3】前記強誘電体膜は、ペロブスカイト型結晶
構造を有する誘電体材料からなることを特徴とする請求
項1に記載の樹脂封止型半導体装置。
3. The perovskite type crystal is used as the ferroelectric film.
2. The resin-encapsulated semiconductor device according to claim 1, which is made of a dielectric material having a structure .
【請求項4】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜は、230℃以上300℃
以下に加熱することにより硬化させて得られたものであ
ることを特徴とする樹脂封止型半導体装置。
4. A semiconductor device having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And a surface protection film of 230 ° C. or higher and 300 ° C.
A resin-encapsulated semiconductor device, which is obtained by curing by heating below .
【請求項5】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜は、300℃より高く35
0℃以下の温度で、4分間以下の時間加熱することによ
り硬化させて得られたものであることを特徴とする樹脂
封止型半導体装置。
5. A semiconductor device having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And the surface protection film is higher than 300 ° C.
Resin obtained by curing at a temperature of 0 ° C. or less for 4 minutes or less
Sealed semiconductor device.
【請求項6】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜は、300℃より高く35
0℃以下の温度で、4分間以下の時間加熱することによ
り硬化させて得られたものであり、ヤング率が3500
MPa以上、かつ、ガラス転移温度が260℃以上であ
ることを特徴とする樹脂封止型半導体装置。
6. A semiconductor device having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And the surface protection film is higher than 300 ° C.
It was obtained by curing by heating at a temperature of 0 ° C. or lower for 4 minutes or less, and the Young's modulus was 3500.
A resin-encapsulated semiconductor device having a MPa or higher and a glass transition temperature of 260 ° C. or higher .
【請求項7】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜が熱硬化性ポリイミドであ
って、ポリイミド前駆体組成物を230℃以上300℃
以下に加熱することにより硬化させて得られたものであ
ることを特徴とする樹脂封止型半導体装置。
7. A half having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And the surface protective film is a thermosetting polyimide.
Then, the polyimide precursor composition is heated to 230 ° C. or higher and 300 ° C.
A resin-encapsulated semiconductor device, which is obtained by curing by heating below .
【請求項8】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜が熱硬化性ポリイミドであ
って、ポリイミド前駆体組成物を、300℃より高く3
50℃以下の温度で、4分間以下の時間加熱することに
より硬化させて得られたものであることを特徴とする樹
脂封止型半導体装置。
8. A semiconductor device having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And the surface protective film is a thermosetting polyimide.
Then, the polyimide precursor composition is higher than 300 ° C.
A tree obtained by curing the resin by heating at a temperature of 50 ° C. or lower for 4 minutes or less.
Oil-sealed semiconductor device.
【請求項9】強誘電体膜及び素子表面保護膜を有する半
導体素子と、該半導体素子を封じる樹脂からなる封止部
材とを備え、前記表面保護膜が熱硬化性ポリイミドであ
って、ポリイミド前駆体組成物を、300℃より高く3
50℃以下の温度で、4分間以下の時間加熱することに
より硬化させて得られたものであり、ヤング率が350
0MPa以上、かつ、ガラス転移温度が260℃以上で
あることを特徴とする樹脂封止型半導体装置。
9. A semiconductor device having a ferroelectric film and a device surface protection film.
A conductor element and a sealing part made of resin for sealing the semiconductor element
And the surface protective film is a thermosetting polyimide.
Then, the polyimide precursor composition is higher than 300 ° C.
It was obtained by curing by heating at a temperature of 50 ° C. or lower for 4 minutes or less, and a Young's modulus of 350.
A resin-sealed semiconductor device having a glass transition temperature of 0 MPa or more and a glass transition temperature of 260 ° C. or more .
JP01012798A 1997-01-22 1998-01-22 Resin-sealed semiconductor device and method of manufacturing the same Expired - Fee Related JP3427713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01012798A JP3427713B2 (en) 1997-01-22 1998-01-22 Resin-sealed semiconductor device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP927697 1997-01-22
JP9-9276 1997-01-22
JP01012798A JP3427713B2 (en) 1997-01-22 1998-01-22 Resin-sealed semiconductor device and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001274432A Division JP3779579B2 (en) 1997-01-22 2001-09-11 Manufacturing method of resin-encapsulated semiconductor device

Publications (2)

Publication Number Publication Date
JPH10270611A JPH10270611A (en) 1998-10-09
JP3427713B2 true JP3427713B2 (en) 2003-07-22

Family

ID=26343960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01012798A Expired - Fee Related JP3427713B2 (en) 1997-01-22 1998-01-22 Resin-sealed semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3427713B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335663B1 (en) * 1999-10-19 2002-05-06 윤종용 Poly(Imide-Siloxane) Resin for Tapeless LOC Packaging
JP4859270B2 (en) * 2000-12-27 2012-01-25 イビデン株式会社 Capacitor, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP3977997B2 (en) 2001-05-11 2007-09-19 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
WO2006098005A1 (en) * 2005-03-15 2006-09-21 Fujitsu Limited Semiconductor device and proess for producing the same
KR101007900B1 (en) * 2005-03-23 2011-01-14 후지쯔 세미컨덕터 가부시키가이샤 Semiconductor device and method for manufacturing same
JP4711058B2 (en) * 2005-06-28 2011-06-29 信越化学工業株式会社 Resin solution composition, polyimide resin, and semiconductor device
KR100914443B1 (en) * 2007-09-04 2009-08-28 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and process for producing the same
JP5510908B2 (en) * 2010-02-26 2014-06-04 株式会社ピーアイ技術研究所 Polyimide resin composition for semiconductor device, film forming method in semiconductor device using the same, and semiconductor device
JP5872761B2 (en) * 2010-09-28 2016-03-01 Ntn株式会社 Roller bearing cage and rolling bearing using the same
JP5872762B2 (en) * 2010-09-29 2016-03-01 Ntn株式会社 Manufacturing method of rolling bearing
JP2012232975A (en) 2011-04-20 2012-11-29 Central Glass Co Ltd Siloxane compound, and cured product thereof
JP6011230B2 (en) 2011-10-25 2016-10-19 セントラル硝子株式会社 Siloxane composition, cured product thereof and use thereof
TWI799833B (en) * 2021-04-15 2023-04-21 達興材料股份有限公司 Polyimide precursor, resin composition, polyimide, polyimide used for protective sacrificial layer between semiconductor wafer and encapsulation material, and semiconductor element with protective sacrificial layer
WO2024143212A1 (en) * 2022-12-28 2024-07-04 富士フイルム株式会社 Method for manufacturing laminate, method for manufacturing semiconductor member, photosensitive resin composition, laminate, semiconductor member, and resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778840A (en) * 1992-07-30 1995-03-20 Sumitomo Bakelite Co Ltd Resin-sealed semiconductor device
JP2713051B2 (en) * 1992-08-26 1998-02-16 信越化学工業株式会社 Polyamic acid and polyimide resin, their production method, and semiconductor device protection material
JP3388369B2 (en) * 1994-01-31 2003-03-17 日本テキサス・インスツルメンツ株式会社 Semiconductor package equipment
JPH07302863A (en) * 1994-04-28 1995-11-14 Oki Electric Ind Co Ltd Resin-sealed semiconductor device, and its manufacture
JP3137004B2 (en) * 1995-09-11 2001-02-19 ソニー株式会社 Method for manufacturing capacitor structure of semiconductor device
JPH09293837A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH10270611A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US6525359B2 (en) Resin-encapsulated semiconductor apparatus and process for its fabrication
JP3427713B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
KR100477287B1 (en) Semiconductor memory device and manufacturing method with the same
Mukai et al. Planar multilevel interconnection technology employing a polyimide
JP2773660B2 (en) Semiconductor device
KR900001656B1 (en) Forming method of passivation film
JP2017044964A (en) Photosensitive resin composition, cured product and production method of patterned cured film using the composition, and semiconductor element and electronic device
JP2018036504A (en) Photosensitive resin composition, patterned cured film and method for producing the same, semiconductor element and electronic device
US6730948B2 (en) Semiconductor device including acrylic resin layer
US4675985A (en) Method for manufacturing a semiconductor memory device having a high radiation resistance
JP3779579B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP2006191128A (en) Resin-sealed semiconductor device
JP2006140533A (en) Resin-sealed semiconductor device
JP3514884B2 (en) Surface protective film, resin-encapsulated semiconductor device and method of manufacturing the same
JPH1135915A (en) Resin-sealed semiconductor device
JPH05214046A (en) Wiring structure
JPH11224934A (en) Ferroelectric memory device
JPS6210016B2 (en)
JPS60247949A (en) Semiconductor device and manufacture thereof
JPS61231758A (en) Solid-state image pickup device
JPS61185932A (en) Semiconductor device
JP2004047900A (en) Semiconductor element, semiconductor device and their manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees