JP2006140533A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device Download PDF

Info

Publication number
JP2006140533A
JP2006140533A JP2006027308A JP2006027308A JP2006140533A JP 2006140533 A JP2006140533 A JP 2006140533A JP 2006027308 A JP2006027308 A JP 2006027308A JP 2006027308 A JP2006027308 A JP 2006027308A JP 2006140533 A JP2006140533 A JP 2006140533A
Authority
JP
Japan
Prior art keywords
film
resin
semiconductor device
surface protective
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027308A
Other languages
Japanese (ja)
Inventor
Jun Tanaka
順 田中
Keiko Isoda
敬子 磯田
Kiyoshi Ogata
潔 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006027308A priority Critical patent/JP2006140533A/en
Publication of JP2006140533A publication Critical patent/JP2006140533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92147Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Abstract

<P>PROBLEM TO BE SOLVED: To improve the deterioration prevention of ferroelectric characteristics and solder reflow resistance, in a resin sealed semiconductor device that uses a ferroelectric thin film. <P>SOLUTION: A polyimide precursor composition film is heated at 230°C to 300°C is cured to form a surface protective film of the semiconductor device. The surface protective film consists of polyimide of glass transition temperature of 240°C to 400°C and a Young's modulus of 2,600 MPa to 6 GPa. In addition, the subject matter can be solved, without deteriorating the polarization characteristics of the ferroelectric film by the thermal treatment of short duration (normally within 4 minutes, however this depends on the heat resistance of the semiconductor device employed) at 350°C or lower, even if a hot setting temperature of the polyimide precursor composition is a higher temperature than 300°C, and if the Young's module is 3,500 MPa or larger and the glass transition temperature is 260°C or higher of the formed polyimide film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強誘電体膜を有する半導体素子を備える樹脂封止型半導体装置とその製造方法に関する。   The present invention relates to a resin-encapsulated semiconductor device including a semiconductor element having a ferroelectric film and a method for manufacturing the same.

近年、強誘電体(高誘電率を有する誘電体材料、または、ペロブスカイト型結晶構造を有する物質)の薄膜を有する不揮発性または大容量の半導体メモリ素子が提案されている。強誘電体膜は、自発分極や高誘電率特性などの特徴を有している。このため、強誘電体の分極と電界との間にヒステリシス特性があり、これを利用すると、不揮発性メモリを実現することができる。また、シリコン酸化膜に比べて誘電率が非常に大きいため、強誘電体膜を容量絶縁膜として使用すれば、メモリセル面積を小さくすることができ、大容量、高集積のRAM(Random Access Memory)を実現することができる。   In recent years, a nonvolatile or large-capacity semiconductor memory device having a thin film of a ferroelectric material (a dielectric material having a high dielectric constant or a substance having a perovskite crystal structure) has been proposed. The ferroelectric film has features such as spontaneous polarization and high dielectric constant characteristics. For this reason, there is a hysteresis characteristic between the polarization of the ferroelectric and the electric field, and by using this, a nonvolatile memory can be realized. In addition, since the dielectric constant is very large compared to a silicon oxide film, the use of a ferroelectric film as a capacitive insulating film can reduce the memory cell area, resulting in a large capacity, highly integrated RAM (Random Access Memory). ) Can be realized.

強誘電体膜は、金属酸化物の焼結体からなり、反応性に富む酸素を多く含んでいる。このような強誘電体膜を容量絶縁膜に用いてキャパシタを形成する場合は、容量絶縁膜の上部電極および下部電極に、例えば、白金を主成分とする合金のような、酸化反応に対して安定な物質を用いることが不可欠である。   The ferroelectric film is made of a sintered metal oxide and contains a large amount of highly reactive oxygen. When a capacitor is formed using such a ferroelectric film as a capacitor insulating film, the upper electrode and the lower electrode of the capacitor insulating film are subjected to an oxidation reaction such as an alloy containing platinum as a main component. It is essential to use stable materials.

キャパシタや層間絶縁膜などが形成された後、素子の最表面にパッシベーション膜が形成される。層間絶縁膜や、パッシベーション膜には、窒化シリコンや酸化シリコンが用いられ、通常CVD(Chemical Vapor Deposition)法で形成されるため、その膜中に水素が取り込まれていることが多い。   After the capacitor and the interlayer insulating film are formed, a passivation film is formed on the outermost surface of the element. As the interlayer insulating film and the passivation film, silicon nitride or silicon oxide is used, and is usually formed by a CVD (Chemical Vapor Deposition) method. Therefore, hydrogen is often taken into the film.

強誘電体膜を用いた半導体素子を民生用電子機器に利用する場合は、量産性の良い低価格な樹脂封止型半導体装置であることが必要である。特に、強誘電体不揮発性メモリは、低電力、低電圧で、かつリフレッシュ動作の不要な不揮発性といった特性から、フラッシュメモリに替わるメモリとして携帯機器向けのニーズが大きく、薄型のパッケージにするためにも樹脂封止型半導体装置が求められている。   When a semiconductor element using a ferroelectric film is used for a consumer electronic device, it is necessary to be a low-cost resin-encapsulated semiconductor device with good mass productivity. In particular, ferroelectric non-volatile memory is a low power, low voltage and non-volatile that does not require refresh operation, so there is a great need for portable devices as a replacement for flash memory. There is also a need for a resin-encapsulated semiconductor device.

しかし、現在、強誘電体膜を容量絶縁膜として利用した装置はセラミック封止品が主流であり、樹脂封止品はほとんどない。また、大容量の装置も開発できていない。これは、加熱処理により強誘電体膜の分極特性が劣化してしまうためである。   However, at present, ceramic encapsulated products are the mainstream of devices using ferroelectric films as capacitive insulating films, and there are almost no resin encapsulated products. Also, a large capacity device has not been developed. This is because the polarization characteristics of the ferroelectric film are deteriorated by the heat treatment.

強誘電体膜を有するキャパシタを水素雰囲気下でアニール処理すると、分極特性が劣化することが知られている(「‘96強誘電体薄膜メモリ技術フォーラム講演集」((株)サイエンスフォーラム発行)第4−4頁1〜12行目)。この劣化は、上下部電極の白金が水素と作用して還元触媒として働き、強誘電体膜を還元するために生じると推測される。特に、大容量、高集積の素子の場合は、強誘電体膜のサイズも微細になるため、このキャパシタの特性劣化が素子全体の特性に大きく影響すると予想される。   It is known that when capacitors with ferroelectric films are annealed in a hydrogen atmosphere, the polarization characteristics deteriorate (“'96 Ferroelectric Thin Film Memory Technology Forum Lectures” (published by Science Forum Inc.) 4-4 pages 1 to 12). This deterioration is presumed to occur because platinum on the upper and lower electrodes acts with hydrogen to act as a reduction catalyst and reduce the ferroelectric film. In particular, in the case of a large-capacity and highly integrated device, the size of the ferroelectric film becomes fine, and it is expected that the deterioration of the capacitor characteristics will greatly affect the characteristics of the entire device.

トランスファモールド方式による半導体素子の樹脂封止には、充填剤(通常、シリカ)を含む封止樹脂が用いられる。しかし、封止樹脂に含まれる充填剤の粒子が硬いため、封止に際して、この充填剤が素子表面にダメージを与えてしまうことがある。さらに、強誘電体材料が圧電性を有するため、封止の際に素子内の強誘電体膜に圧力が加わると、強誘電体膜特性が変化してしまう。また、DRAM(Dynamic Random Access Memory)の製造においては、充填剤に含まれる放射性成分からα線が放出され、これがメモリのソフトエラーを引き起こすことがある。そこで、充填剤による素子表面へのダメージを防ぎ、強誘電体膜への加圧を防止し、充填材からのα線を遮蔽するために、あらかじめ、素子表面に有機膜であるポリイミドからなる保護膜を形成しておく必要がある。このポリイミド表面保護膜は、ポリイミド前駆体組成物膜を、通常、350〜450℃程度の温度で加熱することにより硬化させて形成する。このポリイミド前駆体の加熱硬化に際して、パッシベーション膜や層間絶縁膜に含まれる水素が拡散することにより、強誘電体膜の分極特性が劣化してしまうのである。従って、熱硬化性樹脂を表面保護膜として用いた強誘電体不揮発性素子の樹脂封止品は、現在のところ知られていない。   A sealing resin containing a filler (usually silica) is used for resin sealing of a semiconductor element by a transfer mold method. However, since the filler particles contained in the sealing resin are hard, the filler may damage the element surface during sealing. Further, since the ferroelectric material has piezoelectricity, if pressure is applied to the ferroelectric film in the element at the time of sealing, the ferroelectric film characteristics change. Further, in the manufacture of DRAM (Dynamic Random Access Memory), α rays are emitted from radioactive components contained in the filler, which may cause a soft error of the memory. Therefore, in order to prevent damage to the element surface due to the filler, prevent pressurization on the ferroelectric film, and shield alpha rays from the filler, protection made of polyimide, which is an organic film, on the element surface in advance It is necessary to form a film. The polyimide surface protective film is formed by curing the polyimide precursor composition film by heating at a temperature of about 350 to 450 ° C. When the polyimide precursor is heat-cured, hydrogen contained in the passivation film and the interlayer insulating film diffuses to deteriorate the polarization characteristics of the ferroelectric film. Therefore, a resin-encapsulated product of a ferroelectric nonvolatile element using a thermosetting resin as a surface protective film is not known at present.

本発明は、強誘電体膜の分極特性が良好であり、信頼性の高い樹脂封止型半導体装置と、その製造方法とを提供することを目的とする。   An object of the present invention is to provide a highly reliable resin-encapsulated semiconductor device in which the ferroelectric film has good polarization characteristics and a method for manufacturing the same.

強誘電体膜の分極特性の劣化発生条件について検討したところ、300℃以上の加熱が行なわれた場合に劣化が起こっていた。そこで、本発明者らは、ポリイミド表面保護膜の加熱硬化を300℃以下で行えばよいと考えたが、このような低温で硬化する、従来のポリイミド前駆体を用いた場合、得られた樹脂封止型半導体装置のハンダリフロー耐性に問題があった。   As a result of examining the deterioration occurrence condition of the polarization characteristics of the ferroelectric film, the deterioration occurred when heating at 300 ° C. or higher was performed. Therefore, the present inventors considered that the polyimide surface protective film should be heat-cured at 300 ° C. or lower. However, when a conventional polyimide precursor that cures at such a low temperature is used, the obtained resin is used. There was a problem with the solder reflow resistance of the sealed semiconductor device.

現在、樹脂封止型半導体装置をプリント基板に実装する方法は、面付実装法が主流である。面付実装法は、半導体装置のリードとプリント基板の配線とをクリームハンダにより仮止めし、半導体装置および基板の全体を加熱してハンダ付けを行うハンダリフロー方式を用いている。加熱の方法としては、赤外線輻射熱を利用する赤外線リフロー法、あるいはフッ素系不活性液体の凝縮熱を利用するベーパーフェーズリフロー法が知られている。   Currently, the surface mounting method is the main method for mounting a resin-encapsulated semiconductor device on a printed circuit board. The surface mounting method uses a solder reflow method in which the lead of the semiconductor device and the wiring of the printed circuit board are temporarily fixed with cream solder, and the entire semiconductor device and the substrate are heated for soldering. As a heating method, an infrared reflow method using infrared radiant heat or a vapor phase reflow method using condensation heat of a fluorine-based inert liquid is known.

また、封止樹脂としては、通常エポキシ樹脂が用いられる。このエポキシ樹脂は、通常の環境下では必ず吸湿する。ハンダリフローに際して、樹脂封止型半導体装置は215〜260℃の高温に曝されるため、吸湿した状態で、樹脂封止型半導体装置をハンダリフロー法により基板に実装すると、急激な水分の蒸発によって封止樹脂にクラックが生じ、半導体装置の信頼性上、大きな問題となっている。そこで、従来より封止樹脂の低吸湿化や高接着化の観点から、種々の改良が加えられている(「熱硬化性樹脂」13巻4号(1992年発行)第37頁右欄8〜23行目、1996PROCEEDINGS 46th ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE pp.48-55)。   As the sealing resin, an epoxy resin is usually used. This epoxy resin always absorbs moisture under normal circumstances. Since the resin-encapsulated semiconductor device is exposed to a high temperature of 215 to 260 ° C. during solder reflow, when the resin-encapsulated semiconductor device is mounted on a substrate by the solder reflow method in a moisture-absorbed state, rapid evaporation of moisture occurs. Cracks occur in the sealing resin, which is a serious problem in terms of reliability of the semiconductor device. Therefore, various improvements have been made from the viewpoint of lower moisture absorption and higher adhesion of the sealing resin (“Thermosetting Resin” Vol. 13 No. 4 (published in 1992), page 37, right column 8- 23rd line, 1996 PROCEEDINGS 46th ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE pp.48-55).

本発明者らは、従来の樹脂封止型半導体装置において発生した樹脂クラックを調べ、ポリイミド素子表面保護膜と封止樹脂との界面で剥離が起こり、これを発端として封止樹脂にクラックが生じることを見出した。またこの剥離が、表面保護膜の物性、特にガラス転移温度およびヤング率に影響されることがわかった。   The present inventors investigated a resin crack generated in a conventional resin-encapsulated semiconductor device, and peeling occurred at the interface between the polyimide element surface protective film and the sealing resin, and cracks were generated in the sealing resin starting from this. I found out. It was also found that this peeling is affected by the physical properties of the surface protective film, particularly the glass transition temperature and Young's modulus.

そこで、さらに詳細に検討したところ、ポリイミド素子表面保護膜が230℃以上300℃以下の温度範囲で熱処理されて形成される場合、強誘電体膜の分極特性の劣化が小さいことがわかった。また、この熱処理温度で形成されたポリイミドが、ガラス転移温度が240℃以上400℃以下であり、かつ、ヤング率が2600MPa以上6GPa以下である場合は、樹脂封止された半導体装置のハンダリフロー耐性が優れ、ハンダリフロー時にポリイミドと封止樹脂界面での剥離が起こらず、信頼性が高いことがわかった。   Thus, a more detailed examination revealed that when the polyimide element surface protective film was formed by heat treatment in a temperature range of 230 ° C. or higher and 300 ° C. or lower, the deterioration of the polarization characteristics of the ferroelectric film was small. Further, when the polyimide formed at this heat treatment temperature has a glass transition temperature of 240 ° C. or more and 400 ° C. or less and a Young's modulus of 2600 MPa or more and 6 GPa or less, the solder reflow resistance of the resin-encapsulated semiconductor device It was found that the film was excellent in reliability, and no peeling occurred at the interface between the polyimide and the sealing resin during solder reflow, and the reliability was high.

この新たな知見に基づき、本発明では、強誘電性膜および表面保護膜を有する半導体素子と、樹脂からなる封止部材とを備え、表面保護膜がポリイミドからなる樹脂封止型半導体装置が提供される。このような装置は、本発明によって初めて実現可能となった。   Based on this new knowledge, the present invention provides a resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and a surface protective film, and a sealing member made of resin, and the surface protective film made of polyimide. Is done. Such an apparatus could be realized for the first time by the present invention.

また、本発明では、強誘電体薄膜を有する半導体素子の表面に、ポリイミド前駆体組成物膜を成膜する工程と、ポリイミド前駆体組成物膜を加熱して硬化させ、ポリイミドからなる表面保護膜とする工程と、表面保護膜の形成された半導体素子を封止樹脂により封止する工程とを備える樹脂封止型半導体装置の製造方法が提供される。   In the present invention, a step of forming a polyimide precursor composition film on the surface of a semiconductor element having a ferroelectric thin film, and a surface protection film made of polyimide by heating and curing the polyimide precursor composition film And a method for manufacturing a resin-encapsulated semiconductor device, comprising: encapsulating a semiconductor element on which a surface protection film is formed with an encapsulating resin.

本発明において表面保護膜として用いられるポリイミドは、ガラス転移温度が240℃〜400℃であり、かつ、ヤング率が2600MPa〜6GPaであることが望ましい。このようなポリイミドを用いることにより、ハンダリフローによってもクラックが発生することがなく、信頼性が高い半導体装置を得ることができる。ポリイミド前駆体組成物膜を加熱硬化させる温度は、230℃以上300℃以下とすることが望ましいが、300℃より高温であっても、350℃以下の短時間(用いる半導体素子の耐熱性にもよるが、通常4分以内)の熱処理で、かつ、形成されるポリイミド膜のヤング率が3500MPa以上、ガラス転移温度が260℃以上であれば、強誘電体膜の分極特性を劣化させることなく、本発明の目的を達成することができる。   The polyimide used as the surface protective film in the present invention preferably has a glass transition temperature of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa. By using such a polyimide, cracks are not generated even by solder reflow, and a highly reliable semiconductor device can be obtained. The temperature at which the polyimide precursor composition film is heat-cured is preferably 230 ° C. or more and 300 ° C. or less, but even when the temperature is higher than 300 ° C., the temperature is 350 ° C. or less (for the heat resistance of the semiconductor element used) However, if the Young's modulus of the formed polyimide film is 3500 MPa or more and the glass transition temperature is 260 ° C. or more, usually without deterioration of the polarization characteristics of the ferroelectric film, within 4 minutes) The object of the present invention can be achieved.

なお、本発明の製造方法は、例えば絶縁膜など、表面保護膜以外の用途にポリイミド膜を用いる樹脂封止型積層体にも適用可能である。   In addition, the manufacturing method of this invention is applicable also to the resin-sealed laminated body which uses a polyimide film for uses other than surface protective films, such as an insulating film, for example.

本発明では、ポリイミド前駆体の加熱硬化温度が230℃〜300℃であるため、強誘電体膜の分極特性劣化が小さい。また、加熱硬化させて得られるポリイミドのガラス転移温度が240℃以上でありかつヤング率が2600MPa以上であることから、樹脂封止後の半導体装置のハンダリフロー耐性が優れ、ハンダリフロー時にポリイミドと封止樹脂界面での剥離が起こらない。また、300℃より高温であっても、350℃以下の短時間(用いる半導体素子の耐熱性にもよるが、通常4分以内)の熱処理で、かつ、形成されるポリイミド膜のヤング率が3500MPa以上、ガラス転移温度が260℃以上であれば、強誘電体膜の分極特性を劣化させることなく、本発明の目的を達成することができた。従って、本発明によれば、信頼性の高い半導体装置が得られる。   In the present invention, since the heat curing temperature of the polyimide precursor is 230 ° C. to 300 ° C., the polarization characteristic deterioration of the ferroelectric film is small. Further, since the glass transition temperature of polyimide obtained by heat curing is 240 ° C. or higher and the Young's modulus is 2600 MPa or higher, the semiconductor device after resin sealing has excellent solder reflow resistance, and the polyimide is sealed with the solder during reflow. No peeling at the stop resin interface. Further, even when the temperature is higher than 300 ° C., the Young's modulus of the formed polyimide film is 3500 MPa by a heat treatment of 350 ° C. or less (usually within 4 minutes depending on the heat resistance of the semiconductor element used). As described above, when the glass transition temperature is 260 ° C. or higher, the object of the present invention can be achieved without deteriorating the polarization characteristics of the ferroelectric film. Therefore, according to the present invention, a highly reliable semiconductor device can be obtained.

本発明に好適な、230℃〜300℃で加熱硬化させることにより、ガラス転移温度が240℃〜400℃であり、かつ、ヤング率が2600MPa〜6GPaであるポリイミドの得られるポリイミド前駆体としては、下記一般式(化1)で表される繰返し単位からなるポリアミド酸が挙げれられる。   As a polyimide precursor obtained by heating and curing at 230 ° C. to 300 ° C. suitable for the present invention, a polyimide having a glass transition temperature of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa, Examples thereof include a polyamic acid composed of a repeating unit represented by the following general formula (Chemical Formula 1).

Figure 2006140533
Figure 2006140533

(ただし、R1は下記化学式群(化2)に示す4価の芳香族有機基の少なくともいずれかであり、R2は下記化学式群(化3)および(化4)に示す2価の芳香族有機基の少なくともいずれかである。) (However, R 1 is at least one of the tetravalent aromatic organic groups represented by the following chemical formula group (Chemical Formula 2), and R 2 is a divalent aromatic compound represented by the following chemical formula groups (Chemical Formula 3) and (Chemical Formula 4). Or at least one of the group organic groups.)

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

これらのポリアミド酸のうち、R1は下記化学式群(化7)に列挙するものの少なくともいずれかであり、R2は下記化学式群(化8)に列挙するものの少なくともいずれかであるポリアミド酸が、特に本発明に適している。 Among these polyamic acids, R 1 is at least one of those listed in the following chemical formula group (Chemical Formula 7), R 2 is at least one of those listed in the following chemical formula group (Chemical Formula 8), It is particularly suitable for the present invention.

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

特に、下記化学式(化14)、(化16)〜(化18)に示すものは本発明に適している。これらのうち、化学式(化16)により表される繰返し単位からなるポリアミド酸が最も好ましい。   In particular, those represented by the following chemical formulas (Chemical Formula 14) and (Chemical Formula 16) to (Chemical Formula 18) are suitable for the present invention. Of these, polyamic acid composed of repeating units represented by the chemical formula (Chemical Formula 16) is most preferable.

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

なお、本発明で用いられるポリアミド酸は、分子内に、上記(化1)で表される繰返し単位に加えて、全繰返し単位数の10.0mol%以下であれば、さらに上記(化1)と同様の構造であって、R2としてシロキサン基を有する繰返し単位を有していてもよい。このとき、R2として用いられるシロキサン基は、芳香族シロキサン基および脂肪族シロキサン基のいずれでも良く、例えば、下記化学式群(化6)に示す構造の基の少なくともいずれかとすることができる。 In addition, in addition to the repeating unit represented by the above (Chemical Formula 1) in the molecule, the polyamic acid used in the present invention is further the above (Chemical Formula 1) as long as it is 10.0 mol% or less of the total number of repeating units. And R 2 may have a repeating unit having a siloxane group. At this time, the siloxane group used as R 2 may be either an aromatic siloxane group or an aliphatic siloxane group, and may be, for example, at least one of the groups having the structure shown in the following chemical formula group (Chemical Formula 6).

Figure 2006140533
Figure 2006140533

なお、ポリイミド前駆体組成物は、例えば、組成物が液状、ワニス状の場合は、素子表面に組成物を塗布またはスプレーし、必要ならば加熱して半硬化状態(完全にはイミド化していない状態)にさせることにより成膜することができる。例えば、スピンナを用いた回転塗布などの手段を用いてもよい。塗布膜厚は、塗布手段、ポリイミド前駆体組成物の固形分濃度、粘度などによって調節することができる。また、ポリイミド前駆体組成物がシート状であれば、これを素子表面に載置または貼付することで成膜することができる。   For example, when the composition is liquid or varnished, the polyimide precursor composition is applied or sprayed on the surface of the element, and heated if necessary to be in a semi-cured state (not completely imidized). Film) can be formed. For example, means such as spin coating using a spinner may be used. The coating thickness can be adjusted by the coating means, the solid content concentration of the polyimide precursor composition, the viscosity, and the like. Moreover, if a polyimide precursor composition is a sheet form, it can form into a film by mounting or sticking this on the element surface.

表面保護膜には、ボンディングパッド部など所望の箇所で下層を露出させるための開口部を形成することが多い。このような開口部を形成するためには、半硬化状態のポリイミド前駆体組成物膜、または、加熱硬化後のポリイミド膜の表面にレジスト膜を形成して、通常の微細加工技術でパターン加工を行い、レジスト膜を剥離すればよい。半硬化状態で開口した場合は、パターン加工後、加熱処理して完全に硬化させる。   In the surface protective film, an opening for exposing a lower layer at a desired location such as a bonding pad is often formed. In order to form such an opening, a resist film is formed on the surface of a semi-cured polyimide precursor composition film or a polyimide film after heat curing, and pattern processing is performed by a normal microfabrication technique. And the resist film may be peeled off. When opening in a semi-cured state, after pattern processing, heat treatment is performed to completely cure.

また、ポリイミド前駆体組成物が感光性組成物であれば、所定のパターンのマスクを介して組成物膜を露光させ、次に未露光部を現像液で溶解除去した後、加熱硬化させることにより、所望のパターンのポリイミド膜を得ることができる。このため、本発明に用いられるポリイミド前駆体組成物は、上記ポリアミド酸に他、さらに、炭素−炭素2重結合を有するアミン化合物、ビスアジド化合物、光重合開始剤、および/または、増感剤などを含む感光性ポリイミド前駆体組成物であることが望ましい。   If the polyimide precursor composition is a photosensitive composition, the composition film is exposed through a mask having a predetermined pattern, and then the unexposed portion is dissolved and removed with a developer, followed by heat curing. A polyimide film having a desired pattern can be obtained. For this reason, the polyimide precursor composition used in the present invention includes, in addition to the above polyamic acid, an amine compound having a carbon-carbon double bond, a bisazide compound, a photopolymerization initiator, and / or a sensitizer. It is desirable that the photosensitive polyimide precursor composition contains.

アミン化合物としては、具体的には、2−(N,N−ジメチルアミノ)エチルアクリレート、2−(N,N−ジメチルアミノ)エチルメタクリレート、3−(N,N−ジメチルアミノ)プロピルアクリレート、3−(N,N−ジメチルアミノ)プロピルメタクリレート、4−(N,N−ジメチルアミノ)ブチルアクリレート、4−(N,N−ジメチルアミノ)ブチルメタクリレート、5−(N,N−ジメチルアミノ)ペンチルアクリレート、5−(N,N−ジメチルアミノ)ペンチルメタクリレート、6−(N,N−ジメチルアミノ)ヘキシルアクリレート、6−(N,N−ジメチルアミノ)ヘキシルメタクリレート、2−(N,N−ジメチルアミノ)エチルシンナメート、3−(N,N−ジメチルアミノ)プロピルシンナメート、2−(N,N−ジメチルアミノ)エチル−2,4−ヘキサジエノエート、3−(N,N−ジメチルアミノ)プロピル−2,4−ヘキサジエノエート、4−(N,N−ジメチルアミノ)ブチル−2,4−ヘキサジエノエート、2−(N,N−ジエチルアミノ)エチル−2,4−ヘキサジエノエート、3−(N,N−ジエチルアミノ)プロピル−2,4−ヘキサジエノエート、などが好ましい例として挙げられる。   Specific examples of amine compounds include 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 3- (N, N-dimethylamino) propyl acrylate, 3 -(N, N-dimethylamino) propyl methacrylate, 4- (N, N-dimethylamino) butyl acrylate, 4- (N, N-dimethylamino) butyl methacrylate, 5- (N, N-dimethylamino) pentyl acrylate 5- (N, N-dimethylamino) pentyl methacrylate, 6- (N, N-dimethylamino) hexyl acrylate, 6- (N, N-dimethylamino) hexyl methacrylate, 2- (N, N-dimethylamino) Ethyl cinnamate, 3- (N, N-dimethylamino) propyl cinnamate, 2- (N N-dimethylamino) ethyl-2,4-hexadienoate, 3- (N, N-dimethylamino) propyl-2,4-hexadienoate, 4- (N, N-dimethylamino) butyl-2 , 4-hexadienoate, 2- (N, N-diethylamino) ethyl-2,4-hexadienoate, 3- (N, N-diethylamino) propyl-2,4-hexadienoate, etc. A preferred example is given.

なお、これらは単独で用いても良いし、2種以上混合して用いても良い。これらの配合割合は、ポリアミド酸ポリマ100重量部に対して、10重量部以上、400重量部以下で用いるのが望ましい。   In addition, these may be used independently and may be used in mixture of 2 or more types. These blending ratios are desirably 10 to 400 parts by weight with respect to 100 parts by weight of the polyamic acid polymer.

ビスアジド化合物としては、具体的には下記構造式群(化9)および(化10)に列挙する化合物が好適なものとして挙げられる。なお、これらは単独で用いても良いし、2種以上混合して用いても良い。これらの配合割合は、ポリマ100重量部に対して、0.5重量部以上、50重量部以下で用いるのが望ましい。   Specific examples of the bisazide compound include compounds listed in the following structural formula groups (Chemical Formula 9) and (Chemical Formula 10). In addition, these may be used independently and may be used in mixture of 2 or more types. These blending ratios are desirably 0.5 to 50 parts by weight with respect to 100 parts by weight of the polymer.

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

光重合開始剤、増感剤について好ましい例としては、具体的にミヒラケトン、ビス−4、4’−ジエチルアミノベンゾフェノン、ベンゾフェノン、ベンゾイルエーテル、ベンゾインイソプロピルエーテル、アントロン、1,9−ベンゾアントロン、アクリジン、ニトロピレン、1,8−ジニトロピレン、5−ニトロアセトナフテン、2−ニトロフルオレン、ピレン−1,6−キノン9−フルオレン、1,2−ベンゾアントラキノン、アントアントロン、2−クロロ−1,2−ベンズアントラキノン、2−ブロモベンズアントラキノン、2−クロロ−1,8−フタロイルナフタレン、3,5−ジエチルチオキサントン、3,5−ジメチルチオキサントン、3,5−ジイソプロピルチオキサントン、ベンジル、1−フェニル−5−メルカプト−1H−テトラゾール、1−フェニル−5−メルテックス、3−アセチルフェナントレン、1−インダノン、7−H−ベンズ[de]アントラセン−7−オン、1−ナフトアルデヒド、チオキサンテン−9−オン、10−チオキサンテノン、3−アセチルインドールなどが挙げられるが、これらに限定されない。また、これらは単独または複数種混合して用いられる。本発明に用いられる光重合開始剤、増感剤の好適な配合割合は、ポリマ100重量部に対し、0.1〜30重量部が好ましい。   Preferable examples of the photopolymerization initiator and sensitizer include, specifically, mihiraketone, bis-4,4′-diethylaminobenzophenone, benzophenone, benzoyl ether, benzoin isopropyl ether, anthrone, 1,9-benzoanthrone, acridine, nitropyrene. 1,8-dinitropyrene, 5-nitroacetonaphthene, 2-nitrofluorene, pyrene-1,6-quinone 9-fluorene, 1,2-benzoanthraquinone, anthanthrone, 2-chloro-1,2-benzanthraquinone 2-bromobenzanthraquinone, 2-chloro-1,8-phthaloylnaphthalene, 3,5-diethylthioxanthone, 3,5-dimethylthioxanthone, 3,5-diisopropylthioxanthone, benzyl, 1-phenyl-5-mercapto- 1 -Tetrazole, 1-phenyl-5-mertex, 3-acetylphenanthrene, 1-indanone, 7-H-benz [de] anthracen-7-one, 1-naphthaldehyde, thioxanthen-9-one, 10-thioxanthenone , 3-acetylindole and the like, but are not limited thereto. Moreover, these are used individually or in mixture of multiple types. The preferred blending ratio of the photopolymerization initiator and sensitizer used in the present invention is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer.

上述のフォトリソグラフィによるパターニングに用いられる露光光源としては、紫外線の他、可視光線、放射線なども用いることができる。   As an exposure light source used for the above-mentioned patterning by photolithography, visible light, radiation, or the like can be used in addition to ultraviolet light.

現像液としては、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、ジメチルイミダゾリジノン、n−ベンジル−2−ピロリドン、N−アセチル−ε−カプロラクタム、γ−ブチロラクトンなどの非プロトン性極性溶媒を単独で用いるか、あるいはメタノール、エタノール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、メチルセルソルブ、水などのポリアミド酸の貧溶媒と上述の非プロトン性極性溶媒との混合液を用いることができる。   Developers include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, dimethylimidazolidinone, n -Aprotic polar solvents such as benzyl-2-pyrrolidone, N-acetyl-ε-caprolactam, γ-butyrolactone are used alone, or methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, methyl cellosolve, water A mixed solution of a poor solvent of polyamic acid such as the above-mentioned aprotic polar solvent can be used.

現像によって形成したパターンは、次いで、リンス液によって洗浄し、現像溶媒を除去する。リンス液には、現像液との混和性の良いポリアミド酸の貧溶媒を用いることが望ましく、上記のメタノール、エタノール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、メチルセルソルブ、水などが好適な例として挙げられる。   The pattern formed by development is then washed with a rinse solution to remove the developing solvent. As the rinsing solution, it is desirable to use a poor solvent of polyamic acid that is miscible with the developer. Suitable examples include methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, methyl cellosolve, and water. Can be mentioned.

ポリイミド前駆体組成物膜を加熱硬化させる際の熱処理方法としては、ホットプレートによる加熱が望ましい。ホットプレートを使用することで、オーブン炉や拡散炉などの炉体を使用した加熱処理に比べて、短時間でポリイミド前駆体材料をイミド化し、成膜ができる。これにより、強誘電体膜への加熱時間を低減することが可能である。   As a heat treatment method for heat-curing the polyimide precursor composition film, heating with a hot plate is desirable. By using a hot plate, a polyimide precursor material can be imidized and formed into a film in a shorter time than heat treatment using a furnace body such as an oven furnace or a diffusion furnace. As a result, it is possible to reduce the heating time for the ferroelectric film.

本発明の適用される半導体素子には、例えば、不揮発性半導体メモリや大容量のDRAMが挙げられる。また、半導体素子における強誘電体膜は、高誘電率を有する誘電体材料からなる膜であればよく、例えば、ペロブスカイト型結晶構造を有する強誘電性材料の膜が挙げられる。   Examples of the semiconductor element to which the present invention is applied include a nonvolatile semiconductor memory and a large capacity DRAM. Further, the ferroelectric film in the semiconductor element may be a film made of a dielectric material having a high dielectric constant, and examples thereof include a film of a ferroelectric material having a perovskite crystal structure.

誘電体材料としては、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3、略称:PZT)、チタン酸バリウムストロンチウム((Ba,Sr)TiO3、略称:BST)、タンタル酸ニオブストロンチウムビスマス(SrBi2(Nb,Ta)2O9、略称:Y1系)などが挙げられる。これらの材料は、化学蒸着法(CVP(Chemical Vapor Deposition)法)、ゾルゲル法、スパッタリング法などにより成膜することができる。 Dielectric materials include lead zirconate titanate (Pb (Zr, Ti) O 3 , abbreviation: PZT), barium strontium titanate ((Ba, Sr) TiO 3 , abbreviation: BST), bismuth strontium tantalate bismuth ( SrBi 2 (Nb, Ta) 2 O 9 , abbreviation: Y1 series). These materials can be formed by a chemical vapor deposition method (CVP (Chemical Vapor Deposition) method), a sol-gel method, a sputtering method, or the like.

次に、本発明の半導体装置の例について、図1に示すリード・オン・チップ型(以下、LOC型と略す)の樹脂封止型半導体装置を例に説明する。なお、本発明の半導体装置は、LOC型には限られず、チップ・オン・リード型(以下、COL型と略す)など、他の形態の樹脂封止型半導体装置であってもよい。   Next, an example of the semiconductor device of the present invention will be described by taking a lead-on-chip (hereinafter abbreviated as LOC type) resin-encapsulated semiconductor device shown in FIG. 1 as an example. The semiconductor device of the present invention is not limited to the LOC type, but may be a resin-encapsulated semiconductor device of another form such as a chip-on-lead type (hereinafter, abbreviated as COL type).

本発明の封止型半導体装置は、表面の少なくとも一部にポリイミドからなる表面保護膜2を備える半導体素子1と、外部端子3と、表面保護膜2を介して半導体素子1および外部端子3を接着する接着部材4と、半導体素子1および外部端子3間の導通を図るための配線5と、半導体素子1および配線5の全体を封止する封止部材6とを備える。表面保護膜2は、上記ポリイミド前駆体を加熱硬化して得られるポリイミドからなる。なお、図1に示す半導体装置では、外部端子3はリードフレームを兼ねている。   The sealed semiconductor device of the present invention includes a semiconductor element 1 having a surface protective film 2 made of polyimide on at least a part of a surface, an external terminal 3, and the semiconductor element 1 and the external terminal 3 via the surface protective film 2. An adhesive member 4 to be bonded, a wiring 5 for achieving conduction between the semiconductor element 1 and the external terminal 3, and a sealing member 6 for sealing the semiconductor element 1 and the wiring 5 as a whole are provided. The surface protective film 2 is made of polyimide obtained by heat-curing the polyimide precursor. In the semiconductor device shown in FIG. 1, the external terminal 3 also serves as a lead frame.

次に、本発明の半導体装置の製造方法例について、図2を用いて詳述する。なお、図2には、図1に示したLOC型半導体装置の製造方法を示したが、本発明の製造方法は、LOC型半導体装置の製造方法には限られず、半導体素子と外部端子(リードフレーム)とをあらかじめ接着してからモールド樹脂により封止して得られる半導体装置であれば、COL型など他の半導体装置の製造にも適用できる。   Next, an example of a method for manufacturing a semiconductor device of the present invention will be described in detail with reference to FIG. 2 shows the manufacturing method of the LOC type semiconductor device shown in FIG. 1. However, the manufacturing method of the present invention is not limited to the manufacturing method of the LOC type semiconductor device, and the semiconductor element and the external terminal (lead) The semiconductor device can be applied to the manufacture of other semiconductor devices such as a COL type as long as it is obtained by preliminarily bonding the frame) and sealing with a mold resin.

(1)表面保護膜形成工程
図2(a)に示すように、素子領域および配線層を作り込んだシリコンウェハ9上にポリイミドからなる表面保護膜2を形成する。表面保護膜2の形成方法としては、例えば、上述のポリイミド前駆体組成物をウェハ9表面に塗布し、加熱硬化させる方法や、予めシート状に成形したポリイミド前駆体組成物をウェハ9表面に載置し、加熱硬化させる方法などがある。
(1) Surface Protective Film Formation Step As shown in FIG. 2A, a surface protective film 2 made of polyimide is formed on a silicon wafer 9 in which an element region and a wiring layer are formed. As a method for forming the surface protective film 2, for example, the above-described polyimide precursor composition is applied to the surface of the wafer 9 and heated and cured, or a polyimide precursor composition previously formed into a sheet shape is mounted on the surface of the wafer 9. There are methods such as placing and curing by heating.

なお、上述のように、表面保護膜2はあらかじめ定められた位置に開口部が形成されており、ボンディングパッド部7、スクライブ領域8の部分で素子1の表面が露出している。ボンディングパッド部7とスクライブ領域8とを除くパターンの表面保護膜を形成するには、上述したフォトレジストとポリイミドのエッチング液とを用いるウエットエッチ法の他、パターン形成された無機膜または金属膜をマスクとし、露出したポリイミド膜を酸素プラズマで除去するドライエッチ法等のフォトエッチング技術を用いることができる。また、マスクを用い、領域7、8の部分を除いてポリイミド前駆体組成物を塗布するなどしても、表面保護膜2をパターン化することができる。   As described above, the surface protective film 2 has an opening formed at a predetermined position, and the surface of the element 1 is exposed at the bonding pad portion 7 and the scribe region 8. In order to form a surface protective film having a pattern excluding the bonding pad portion 7 and the scribe region 8, a patterned inorganic film or metal film is used in addition to the above-described wet etching method using a photoresist and a polyimide etching solution. A photoetching technique such as a dry etching method in which the exposed polyimide film is removed with oxygen plasma as a mask can be used. Also, the surface protective film 2 can be patterned by applying a polyimide precursor composition except for the regions 7 and 8 using a mask.

このようにして表面保護膜2を形成したシリコンウェハ9のスクライブ領域を切断し、表面保護膜2を備える半導体素子1(図2(b)に示す)を得る。なお、ここではシリコンウェハ9上にあらかじめ表面保護膜2を形成してからこれを切断し、表面保護膜2を備える半導体素子1を得る方法について説明したが、本発明はこれに限られず、シリコンウェハ9を切断し半導体素子1を得たのち、得られた半導体素子1の表面にポリイミド前駆体組成物の膜を形成し、これを加熱硬化させて、表面保護膜2を備える半導体素子1を得ても良い。   Thus, the scribe area | region of the silicon wafer 9 in which the surface protective film 2 was formed is cut | disconnected, and the semiconductor element 1 (shown in FIG.2 (b)) provided with the surface protective film 2 is obtained. Here, the method of forming the surface protective film 2 on the silicon wafer 9 in advance and then cutting the surface protective film 2 to obtain the semiconductor element 1 provided with the surface protective film 2 has been described. However, the present invention is not limited to this, and silicon After the semiconductor element 1 is obtained by cutting the wafer 9, a polyimide precursor composition film is formed on the surface of the obtained semiconductor element 1, and this is heated and cured to obtain the semiconductor element 1 including the surface protective film 2. You may get.

(2)素子搭載工程
外部端子3と半導体素子1とを接着部材4を介して接着し、図2(c)に示すような半導体素子1と外部端子3とが表面保護膜2および接着部材4を介して接続されたものを得る。さらに図2(d)に示すように、半導体素子1のボンディングパッド部7と外部端子3との間にワイヤボンダーで金線5を配線して、半導体素子1と外部端子3との導通を確保する。
(2) Element mounting step The external terminal 3 and the semiconductor element 1 are bonded via the adhesive member 4, and the semiconductor element 1 and the external terminal 3 as shown in FIG. Get what is connected through. Further, as shown in FIG. 2 (d), a gold wire 5 is wired between the bonding pad portion 7 of the semiconductor element 1 and the external terminal 3 by a wire bonder to ensure conduction between the semiconductor element 1 and the external terminal 3. To do.

(3)封止工程
図2(e)に示すように、シリカ含有エポキシ系樹脂を用いて、成型温度180℃、成型圧力70kg/cm2でモールドすることにより、封止部材6を形成する。最後に、外部端子3を所定の形に折り曲げることにより、図2(f)に示すLOC型の樹脂封止型半導体装置が得られる。
(3) Sealing Step As shown in FIG. 2 (e), the sealing member 6 is formed by molding using a silica-containing epoxy resin at a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2 . Finally, the LOC-type resin-encapsulated semiconductor device shown in FIG. 2F is obtained by bending the external terminal 3 into a predetermined shape.

次に、本発明の樹脂封止型半導体装置に用いられる半導体素子について説明する。本発明の樹脂封止型半導体装置に用いられる半導体素子の例として、1トランジスタ/1キャパシタ)のメモリセルからなる強誘電体メモリのメモリセル部の断面図を、図4に示す。   Next, a semiconductor element used in the resin-encapsulated semiconductor device of the present invention will be described. As an example of the semiconductor element used in the resin-encapsulated semiconductor device of the present invention, FIG. 4 shows a cross-sectional view of a memory cell portion of a ferroelectric memory composed of 1 transistor / 1 capacitor memory cells.

この強誘電体メモリ素子40は、シリコン基板41表面に、pまたはnウェル421と、ソース422およびドレイン423と、酸化膜424と、ゲート425と、絶縁層426とからなるCMOS(Complementary Metal Oxide Semiconductor)トランジスタ層42が形成され、さらに絶縁膜426表面に、下部電極層431と、強誘電体薄膜432と、上部電極層433と、金属配線層434および絶縁層435とからなるキャパシタ43が形成されている積層体である。本発明は、このように、強誘電体薄膜432を備える積層体(半導体素子を含む)の表面にポリイミド表面保護膜を形成した後、樹脂封止する場合に適用される。図4に示した例では、ポリイミド表面保護膜は、キャパシタ43の金属配線層434および絶縁層435を覆うように形成される。   The ferroelectric memory element 40 includes a complementary metal oxide semiconductor (CMOS) including a p or n well 421, a source 422 and a drain 423, an oxide film 424, a gate 425, and an insulating layer 426 on the surface of a silicon substrate 41. ) A transistor layer 42 is formed, and a capacitor 43 including a lower electrode layer 431, a ferroelectric thin film 432, an upper electrode layer 433, a metal wiring layer 434, and an insulating layer 435 is formed on the surface of the insulating film 426. It is a laminated body. As described above, the present invention is applied to the case where a polyimide surface protective film is formed on the surface of a laminated body (including a semiconductor element) including the ferroelectric thin film 432 and then sealed with a resin. In the example shown in FIG. 4, the polyimide surface protective film is formed so as to cover the metal wiring layer 434 and the insulating layer 435 of the capacitor 43.

以上詳述したように、本発明では、ポリイミドの表面保護膜を備える樹脂封止型強誘電体装置が提供される。ポリイミド前駆体の加熱硬化温度を230℃〜300℃とすることにより、強誘電体膜の分極特性の劣化を小さく抑えることができる。また、表面保護膜を構成するポリイミドのガラス転移温度を240℃以上とし、かつ、ヤング率を2600MPa以上とすることにより、樹脂封止後のハンダリフロー耐性が優れた、ハンダリフロー時にポリイミドと封止樹脂界面での剥離が起こらない半導体装置が得られる。また、ポリイミド前駆体の加熱硬化温度が300℃より高温であっても、350℃以下とし、加熱時間を4分間以下とし、さらに、硬化後に得られるポリイミドのガラス転移温度が260℃以上かつヤング率が3500MPa以上であるポリイミド前駆体組成物を用いることにより、強誘電体膜の分極特性の劣化を小さく抑えることができ、さらに、樹脂封止後のハンダリフロー耐性が優れた、ハンダリフロー時にポリイミドと封止樹脂界面での剥離が起こらない半導体装置を得ることができる。従って、本発明によれば、信頼性の高い半導体装置が得られる。   As described in detail above, the present invention provides a resin-encapsulated ferroelectric device including a polyimide surface protective film. By setting the heat-curing temperature of the polyimide precursor to 230 ° C. to 300 ° C., the deterioration of the polarization characteristics of the ferroelectric film can be reduced. In addition, by setting the glass transition temperature of the polyimide constituting the surface protective film to 240 ° C. or higher and the Young's modulus to 2600 MPa or higher, the solder reflow resistance after resin sealing is excellent, and the polyimide is sealed during solder reflow. A semiconductor device in which peeling at the resin interface does not occur is obtained. Moreover, even if the heat curing temperature of the polyimide precursor is higher than 300 ° C., the heat treatment time is 350 ° C. or less, the heating time is 4 minutes or less, and the glass transition temperature of the polyimide obtained after curing is 260 ° C. or more and the Young's modulus. By using a polyimide precursor composition having a viscosity of 3500 MPa or more, the deterioration of the polarization characteristics of the ferroelectric film can be suppressed to a small level, and the solder reflow resistance after resin sealing is excellent. A semiconductor device in which peeling at the sealing resin interface does not occur can be obtained. Therefore, according to the present invention, a highly reliable semiconductor device can be obtained.

以下、本発明の実施例を説明する。なお、以下の実施例に用いたポリイミド膜について、ヤング率およびガラス転移温度は、別途調製したポリイミド膜を用いて測定した。すなわち、まず、ホットプレートを用い、各実施例と同じ条件で、シリコンウェハ上にポリイミド膜を形成した後、ポリイミド膜をウェハから剥離し、水洗、乾燥して、膜厚9〜10μmのポリイミド膜を得た。このポリイミド膜を縦25mm×横5mmに裁断して試験片とし、「AUTOGRAPH AG-100E」引っ張り試験機((株)島津製作所製)を用い、引っ張り速度1mm/分の条件で膜に対する引っ張り加重と伸びとを測定して、ヤング率を求めた。また、ポリイミド膜を長さ15mm×幅5mmに裁断して試験片とし、伸長方向への荷重を2gf(約4×10-2N/m2)とし、昇温速度を5℃/分として、「TA-1500」(真空理工ULVAC製)を用いて熱機械測定から得られる熱膨張曲線を求め、これからガラス転移温度を求めた。 Examples of the present invention will be described below. In addition, about the polyimide film used for the following examples, Young's modulus and glass transition temperature were measured using a polyimide film prepared separately. That is, first, after forming a polyimide film on a silicon wafer using a hot plate under the same conditions as in each example, the polyimide film was peeled from the wafer, washed with water, and dried to obtain a polyimide film with a thickness of 9 to 10 μm. Got. This polyimide film is cut into 25 mm length x 5 mm width to make a test piece. Using an “AUTOGRAPH AG-100E” tensile tester (manufactured by Shimadzu Corporation), the tensile load on the film is set at a pulling speed of 1 mm / min. The Young's modulus was determined by measuring the elongation. Further, the polyimide film was cut into a length of 15 mm × width of 5 mm to obtain a test piece, the load in the extending direction was set to 2 gf (about 4 × 10 −2 N / m 2 ), and the temperature rising rate was set to 5 ° C./min. Using “TA-1500” (manufactured by Vacuum Riko ULVAC), the thermal expansion curve obtained from thermomechanical measurement was determined, and the glass transition temperature was determined from this.

樹脂封止された半導体装置のハンダリフロー耐性は、つぎのようにして測定した。まず、半導体装置を85℃、85%の恒温、恒湿条件下で168時間放置して加湿した。この加湿した半導体装置を、赤外ハンダリフロー炉を用いて、最高240〜245℃で10秒間加熱した後室温まで放冷する工程を3回繰り返した。その後、超音波探傷装置を用いて、ポリイミドと封止樹脂との界面破壊を非破壊で観察し、ポリイミド表面保護膜のハンダリフロー耐性を調べた。赤外ハンダリフロー炉の温度プロファイルは、「表面実装形LSIパッケージの実装技術とその信頼性向上」第451頁((株)日立製作所半導体事業部編、1988年発行)に記載されている温度プロファイルを、最高温度240〜245℃として踏襲した。   The solder reflow resistance of the resin-encapsulated semiconductor device was measured as follows. First, the semiconductor device was humidified by being left for 168 hours under a constant temperature and humidity condition of 85 ° C. and 85%. The process of heating this humidified semiconductor device using an infrared solder reflow furnace at a maximum of 240 to 245 ° C. for 10 seconds and then allowing to cool to room temperature was repeated three times. Thereafter, using an ultrasonic flaw detector, the interface destruction between the polyimide and the sealing resin was observed nondestructively, and the solder reflow resistance of the polyimide surface protective film was examined. The temperature profile of the infrared solder reflow furnace is described in "Surface mounting LSI package mounting technology and its reliability improvement", page 451 (Hitachi, Ltd., Semiconductor Division, published in 1988). Was followed at a maximum temperature of 240-245 ° C.

ポリイミド前駆体溶液の粘度は、DVR−E型粘度計((株)トキメック製)により、25℃で測定した。   The viscosity of the polyimide precursor solution was measured at 25 ° C. with a DVR-E viscometer (manufactured by Tokimec Co., Ltd.).

<実施例1>
窒素気流気下に4,4’−ジアミノジフェニルエーテル92.0g(0.46モル)、4−アミノフェニル 4−アミノ−3−カルボンアミドフェニル エーテル9.12g(0.44モル)をN−メチル−2−ピロリドン1580.2gに溶解し、アミン溶液を調製した。次に、この溶液を約15℃の温度に保ちながら、撹拌しつつ、事前にピロメリット酸二無水物54.5g(0.25モル)と3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物80.5g(0.25モル)を混ぜ合わせたものを加えた。加え終えてから更に約15℃で約5時間、窒素雰囲気下で撹拌反応させて、粘度約30ポアズのポリイミド前駆体組成物溶液を得た。得られたポリイミド前駆体組成物溶液は、ポリイミド前駆体として、下記一般式(化1)で表されるポリアミド酸を含む。
<Example 1>
Under a nitrogen stream, 92.0 g (0.46 mol) of 4,4′-diaminodiphenyl ether and 9.12 g (0.44 mol) of 4-aminophenyl 4-amino-3-carbonamidophenyl ether were added to N-methyl- An amine solution was prepared by dissolving in 1580.2 g of 2-pyrrolidone. Next, 54.5 g (0.25 mol) of pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid were added in advance while stirring the solution while maintaining the temperature at about 15 ° C. A mixture of 80.5 g (0.25 mol) of acid dianhydride was added. After the addition was completed, the mixture was further stirred at about 15 ° C. for about 5 hours in a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains a polyamic acid represented by the following general formula (Formula 1) as a polyimide precursor.

Figure 2006140533
Figure 2006140533

ただし、本実施例のポリアミド酸は、R1が、 However, in the polyamic acid of this example, R 1 is

Figure 2006140533
Figure 2006140533

であり、R2が、 And R 2 is

Figure 2006140533
Figure 2006140533

である共重合体である。なお、(化11)および(化12)において、[ ]内は一分子中の繰返し単位数比を表す。 Is a copolymer. In (Chemical Formula 11) and (Chemical Formula 12), [] represents the ratio of the number of repeating units in one molecule.

容量絶縁膜に強誘電体材料を用いて、最表面にシリコン窒化膜を形成し、導通を取るためのボンディングパッド部を有する半導体素子を形成したウェハを用意した。   A wafer was prepared in which a ferroelectric material was used for the capacitor insulating film, a silicon nitride film was formed on the outermost surface, and a semiconductor element having a bonding pad portion for conducting was formed.

このウェハ上に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、300℃で4分間加熱した後、さらに、上記のポリイミド前駆体組成物溶液をスピン塗布し、ホットプレート加熱装置を用い、窒素雰囲気中で、140℃で1分間加熱した。   On this wafer, a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied by spin coating, heated at 300 ° C. for 4 minutes in the air using a hot plate heating device, and then the polyimide precursor composition described above. The solution was spin-coated and heated at 140 ° C. for 1 minute in a nitrogen atmosphere using a hot plate heating apparatus.

次に、東京応化工業(株)製のポジ型フォトレジスト「OFPR800」をスピン塗布し、ホットプレート加熱装置により90℃で1分間加熱して、ポリイミド前駆体組成物膜表面にレジスト膜を形成し、フォトマスクを介して露光、現像して、下のポリイミド前駆体膜を露出する開口部をレジスト膜に形成した。次いで、ホットプレート加熱装置により160℃で1分間加熱した。   Next, a positive photoresist “OFPR800” manufactured by Tokyo Ohka Kogyo Co., Ltd. is spin-coated and heated at 90 ° C. for 1 minute by a hot plate heating device to form a resist film on the surface of the polyimide precursor composition film. Then, exposure and development were performed through a photomask to form an opening in the resist film to expose the lower polyimide precursor film. Subsequently, it heated at 160 degreeC for 1 minute with the hotplate heating apparatus.

次に、レジストの現像液であるアルカリ水溶液をそのまま利用して、ポリイミド前駆体組成物膜をエッチングし、レジスト開口部に対応するポリイミド前駆体組成物膜の箇所に開口部を形成した。レジスト剥離液と専用のリンス液でレジスト膜を除去し、ポリイミド前駆体組成物膜を水洗した後、230℃で4分間、300℃で8分間加熱してポリイミド前駆体をイミド化し、ボンディングパッド部に開口のあるポリイミド表面保護膜を素子表面に形成した。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3700MPaおよび約300℃であった。   Next, the polyimide precursor composition film was etched using an alkaline aqueous solution as a resist developer as it was, and openings were formed at locations on the polyimide precursor composition film corresponding to the resist openings. The resist film is removed with a resist stripping solution and a dedicated rinsing solution, and the polyimide precursor composition film is washed with water, then heated at 230 ° C. for 4 minutes and at 300 ° C. for 8 minutes to imidize the polyimide precursor, and the bonding pad portion A polyimide surface protective film having an opening was formed on the element surface. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 3700 MPa and about 300 ° C., respectively.

その後、ポリイミド膜をマスクとして、ボンディングパッド部を覆っているシリコン窒化膜を、CF494%とO26%との混合ガスでドライエッチングして、ボンディングパッド部のアルミニウム電極を露出させた。 Thereafter, using the polyimide film as a mask, the silicon nitride film covering the bonding pad portion was dry-etched with a mixed gas of 94% CF 4 and 6% O 2 to expose the aluminum electrode in the bonding pad portion.

ここで、素子の電気特性である強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値は5%低下しているだけであった。   Here, when the residual polarizability of the ferroelectric film, which is the electrical characteristic of the element, was measured, the value decreased by 5% compared to the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment. I was just there.

次に、このウエハをスクライブ領域で切断して、表面保護膜を備えた半導体素子を得た。この半導体素子をダイボンディング工程でリードフレームに固定し、しかる後に、半導体素子のボンディングパッド部と外部端子間をワイヤーボンダーで金線を配線した。さらに、日立化成工業(株)製のシリカ含有ビフェニル系エポキシ樹脂を用いて、成型温度180℃、成型圧力70kg/cm2で封止することにより、樹脂封止部を形成した。最後に、外部端子を所定の形に折り曲げることにより、図3に示す樹脂封止型半導体装置の完成品を得た。 Next, this wafer was cut in a scribe region to obtain a semiconductor element provided with a surface protective film. This semiconductor element was fixed to the lead frame in a die bonding process, and then a gold wire was wired between the bonding pad portion of the semiconductor element and the external terminal with a wire bonder. Further, a resin-sealed portion was formed by sealing at a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2 using a silica-containing biphenyl epoxy resin manufactured by Hitachi Chemical Co., Ltd. Finally, the external terminal was bent into a predetermined shape to obtain a finished product of the resin-encapsulated semiconductor device shown in FIG.

得られた樹脂封止型半導体装置に対して、上述のようにハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   When the evaluation test of solder reflow resistance was performed on the obtained resin-encapsulated semiconductor device as described above, no peeling or cracking occurred at the interface between the polyimide surface protective film and the encapsulated epoxy resin, and the reliability A semiconductor device with a high level can be obtained.

<比較例1>
実施例1と同様のウェハを用意し、このウェハ上に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置により空気中で300℃で4分間加熱した後、日立化成工業(株)製のポリイミド前駆体溶液「PIQ−13」をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、140℃で1分間加熱して、ポリイミド前駆体組成物膜を形成した。
<Comparative Example 1>
A wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer by spin coating. The wafer was heated in air at 300 ° C. for 4 minutes with a hot plate heating apparatus, and then Hitachi Chemical. A polyimide precursor solution “PIQ-13” manufactured by Kogyo Co., Ltd. was applied by spin coating, and heated at 140 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating device to form a polyimide precursor composition film.

次に実施例1と同様にして、ポリイミド前駆体組成物膜に開口部を形成した後、ホットプレート加熱装置により窒素雰囲気中230℃で4分間加熱し、さらに、横型の拡散炉により窒素雰囲気中350℃で30分間加熱した。これにより、ボンディングパッド部に開口部のあるポリイミド膜(PIQ−13膜)が素子表面に形成された。得られたPIQ−13膜の膜厚は2.3μmであった。また、前述のようにしてPIQ−13膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3300MPaおよび約310℃であった。   Next, after forming an opening in the polyimide precursor composition film in the same manner as in Example 1, it was heated in a nitrogen atmosphere at 230 ° C. for 4 minutes by a hot plate heating device, and further in a nitrogen atmosphere by a horizontal diffusion furnace. Heated at 350 ° C. for 30 minutes. As a result, a polyimide film (PIQ-13 film) having an opening in the bonding pad portion was formed on the element surface. The film thickness of the obtained PIQ-13 film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the PIQ-13 film were measured as described above, they were about 3300 MPa and about 310 ° C., respectively.

その後、実施例1と同様にしてボンディングパッド部のアルミニウム電極を露出させ、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の値から60%低下していた。   Thereafter, the aluminum electrode in the bonding pad portion was exposed in the same manner as in Example 1, and the residual polarizability of the ferroelectric film was measured. As a result, the value was 60% lower than the value before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品を作製し、実施例1と同様にしてハンダリフロー耐性を評価したところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生なかった。しかし、本比較例により得られた装置は、実施例1の装置に比べ、強誘電体膜の特性劣化が著しく、実用には不適であった。   Next, a finished product of a resin-encapsulated semiconductor device was produced in the same manner as in Example 1, and solder reflow resistance was evaluated in the same manner as in Example 1. At the interface between the polyimide surface protective film and the encapsulated epoxy resin, No peeling or cracking occurred. However, the device obtained by this comparative example was not suitable for practical use because the characteristics of the ferroelectric film were significantly deteriorated as compared with the device of Example 1.

<比較例2>
比較例1と同様にしてウエハ表面に表面保護膜を形成した。ただし、ポリイミド前駆体組成物膜の加熱硬化処理における350℃での加熱時間を、8分間に短縮した。本比較例のPIQ−13膜のヤング率およびガラス転移温度も、比較例1と同様、約3300MPaおよび約310℃であった。しかし、本比較例の素子における強誘電体膜の残留分極率は、PIQカップラー処理以前の値から25%低下しており、実施例1と比べると特性劣化が著しく、実用には不適であった。
<Comparative example 2>
In the same manner as in Comparative Example 1, a surface protective film was formed on the wafer surface. However, the heating time at 350 ° C. in the heat curing treatment of the polyimide precursor composition film was shortened to 8 minutes. The Young's modulus and glass transition temperature of the PIQ-13 film of this Comparative Example were also about 3300 MPa and about 310 ° C., as in Comparative Example 1. However, the residual polarizability of the ferroelectric film in the device of this comparative example is 25% lower than the value before the PIQ coupler treatment, and the characteristic deterioration is significant compared to Example 1, which is unsuitable for practical use. .

<比較例3>
実施例1と同様のウェハを用意し、このウェハ上に、日立化成工業(株)製のポリイミド前駆体組成物「PIX8803−9L」をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、100℃で1分間、さらに230℃で8分間加熱し、半硬化状態のポリイミド前駆体組成物膜を得た。
<Comparative Example 3>
A wafer similar to that of Example 1 was prepared, and a polyimide precursor composition “PIX8803-9L” manufactured by Hitachi Chemical Co., Ltd. was spin-coated on this wafer, and a hot plate heating apparatus was used in a nitrogen atmosphere. Heating was carried out at 1 ° C. for 1 minute and further at 230 ° C. for 8 minutes to obtain a semi-cured polyimide precursor composition film.

このポリイミド前駆体組成物膜に、実施例1と同様にして開口部を形成した後、ホットプレート加熱装置により窒素雰囲気中230℃で4分間加熱して、ボンディングパッド部に開口部を備えるポリイミド膜(PIX8803−9L膜)を得た。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてPIX8803−9L膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約2000MPaおよび約200℃であった。   After forming an opening in this polyimide precursor composition film in the same manner as in Example 1, it was heated in a nitrogen atmosphere at 230 ° C. for 4 minutes by a hot plate heating device, and a polyimide film having an opening in the bonding pad portion (PIX8803-9L membrane) was obtained. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the PIX8803-9L film were measured as described above, they were about 2000 MPa and about 200 ° C., respectively.

つぎに、実施例1と同様にポリイミド膜をマスクとしてシリコン窒化膜をドライエッチングし、ボンディングパッド部のアルミニウム電極を露出させ、強誘電体膜の残留分極率を測定したところ、得られた値と、ポリイミド前駆体組成物塗布前の値との差は1%以内であり、特性の劣化はほとんど見られなかった。   Next, as in Example 1, the silicon nitride film was dry-etched using the polyimide film as a mask to expose the aluminum electrode of the bonding pad portion, and the residual polarizability of the ferroelectric film was measured. The difference from the value before application of the polyimide precursor composition was within 1%, and almost no deterioration in characteristics was observed.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品を作製し、実施例1と同様にしてハンダリフロー耐性を評価したところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面の全面に渡って剥離が見られ、信頼性の著しく低い半導体装置を得ることしかできなかった。   Next, a finished product of a resin-encapsulated semiconductor device was produced in the same manner as in Example 1, and when solder reflow resistance was evaluated in the same manner as in Example 1, the interface between the polyimide surface protective film and the encapsulated epoxy resin was evaluated. Separation was observed over the entire surface, and it was only possible to obtain a semiconductor device with extremely low reliability.

<実施例2>
窒素気流気下に4,4’−ジアミノジフェニルエーテル88.0g(0.44モル)、4−アミノフェニル 4−アミノ−3−カルボンアミドフェニル エーテル13.68g(0.06モル)をN−メチル−2−ピロリドン1584gに溶解し、アミン溶液を調製した。次に、この溶液を約15℃の温度に保ちながら、撹拌しつつ、事前にピロメリット酸二無水物54.5g(0.25モル)と3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物80.5g(0.25モル)を混ぜ合わせたものを加えた。加え終えてから更に約15℃で約5時間、窒素雰囲気下で撹拌反応させて、粘度約30ポアズのポリイミド前駆体組成物溶液を得た。得られたポリイミド前駆体組成物溶液は、ポリイミド前駆体として、R2の共重合比が異なる他は実施例1と同様のポリアミド酸共重合体を含む。本実施例におけるR2は、
<Example 2>
Under a nitrogen stream, 4,8′-diaminodiphenyl ether 88.0 g (0.44 mol) and 4-aminophenyl 4-amino-3-carbonamidophenyl ether 13.68 g (0.06 mol) were added to N-methyl- An amine solution was prepared by dissolving in 1584 g of 2-pyrrolidone. Next, 54.5 g (0.25 mol) of pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid were added in advance while stirring the solution while maintaining the temperature at about 15 ° C. A mixture of 80.5 g (0.25 mol) of acid dianhydride was added. After the addition was completed, the mixture was further stirred at about 15 ° C. for about 5 hours in a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains the same polyamic acid copolymer as in Example 1 except that the R 2 copolymerization ratio is different. R 2 in this example is

Figure 2006140533
Figure 2006140533

である。なお、(化13)において[ ]内は一分子中の繰返し単位数比を表す。 It is. In (Chemical Formula 13), the value in [] represents the ratio of the number of repeating units in one molecule.

次に、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、260℃で4分間加熱した後、さらに、上記のポリイミド前駆体組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中140℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer surface by spin coating. After heating for a minute, the polyimide precursor composition solution was further spin-coated and heated at 140 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating device. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に、実施例1と同様にして開口部を設けた後、230℃で4分間、260℃で8分間加熱してポリイミド前駆体をイミド化し、ボンディングパッド部に開口のあるポリイミド表面保護膜を素子表面に形成した。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3300MPaおよび約300℃であった。   After opening the composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and 260 ° C. for 8 minutes, and the polyimide surface having an opening in the bonding pad portion A protective film was formed on the element surface. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 3300 MPa and about 300 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値は約2%低下しているだけであった。   Here, when the residual polarizability of the ferroelectric film was measured, the value was only about 2% lower than that of the initial ferroelectric film before the PIQ coupler treatment. .

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例3>
窒素気流気下で、4,4’−ジアミノジフェニルエーテル90.0g(0.45モル)、ビス(3−アミノプロピル)テトラメチルジシロキサン9.6g(0.05モル)をN−メチル−2−ピロリドン1584gに溶解し、アミン溶液を調製した。次に、この溶液を約15℃の温度に保ちながら、撹拌しつつ、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物147g(0.5モル)を加えた。加え終えてから更に約15℃で約5時間、窒素雰囲気下で撹拌反応させて、粘度約50ポアズのポリイミド前駆体組成物溶液を得た。得られたポリイミド前駆体組成物溶液は、ポリイミド前駆体として、下記一般式(化14)で表される第1の繰返し単位と、下記一般式(化15)で表される第2の繰返し単位とからなるポリアミド酸共重合体を含む。ただし、ポリアミド酸一分子中の、第1の繰返し単位の数と第2の繰返し単位の数との合計に対する第2の繰返し単位の数の割合は、10%である。
<Example 3>
Under a nitrogen stream, 9,0.0 g (0.45 mol) of 4,4′-diaminodiphenyl ether and 9.6 g of bis (3-aminopropyl) tetramethyldisiloxane were added to N-methyl-2- An amine solution was prepared by dissolving in 1584 g of pyrrolidone. Next, 147 g (0.5 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added while stirring the solution while maintaining the temperature at about 15 ° C. After the addition was completed, the mixture was further stirred at about 15 ° C. for about 5 hours in a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 50 poise. The obtained polyimide precursor composition solution includes, as a polyimide precursor, a first repeating unit represented by the following general formula (Formula 14) and a second repeating unit represented by the following general formula (Formula 15). A polyamic acid copolymer comprising: However, the ratio of the number of second repeating units to the sum of the number of first repeating units and the number of second repeating units in one molecule of polyamic acid is 10%.

Figure 2006140533
Figure 2006140533

Figure 2006140533
Figure 2006140533

次に、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、260℃で4分間加熱した後、さらに、上記のポリイミド前駆体組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中140℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer surface by spin coating. After heating for a minute, the polyimide precursor composition solution was further spin-coated and heated at 140 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating device. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に、実施例1と同様にして開口部を設けた後、230℃で4分間、260℃で8分間加熱してポリイミド前駆体をイミド化し、ボンディングパッド部に開口のあるポリイミド表面保護膜を素子表面に形成した。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3000MPaおよび約255℃であった。   After opening the composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and 260 ° C. for 8 minutes, and the polyimide surface having an opening in the bonding pad portion A protective film was formed on the element surface. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 3000 MPa and about 255 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値は約2%低下しているだけであった。   Here, when the residual polarizability of the ferroelectric film was measured, the value was only about 2% lower than that of the initial ferroelectric film before the PIQ coupler treatment. .

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例4>
窒素気流気下で、3,3’−ジメチルベンジジン103.0g(0.5モル)をN−メチル−2−ピロリドン1474.5gに溶解し、4,4’−オキシフタル酸二無水物155.0g(0.5モル)を加えた。加え終えてから更に約15℃で約5時間、窒素雰囲気下で撹拌反応させて、粘度約30ポアズのポリイミド前駆体組成物溶液を得た。得られたポリイミド前駆体組成物溶液は、ポリイミド前駆体として、下記一般式(化16)で表される繰返し単位からなるポリアミド酸を含む。
<Example 4>
Under a nitrogen stream, 103.0 g (0.5 mol) of 3,3′-dimethylbenzidine was dissolved in 1474.5 g of N-methyl-2-pyrrolidone, and 155.0 g of 4,4′-oxyphthalic dianhydride. (0.5 mol) was added. After the addition was completed, the mixture was further stirred at about 15 ° C. for about 5 hours in a nitrogen atmosphere to obtain a polyimide precursor composition solution having a viscosity of about 30 poise. The obtained polyimide precursor composition solution contains a polyamic acid composed of a repeating unit represented by the following general formula (Formula 16) as a polyimide precursor.

Figure 2006140533
Figure 2006140533

つぎに、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、240℃で4分間加熱した後、さらに、上記のポリイミド前駆体組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中140℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer surface by spin coating. After heating for a minute, the polyimide precursor composition solution was further spin-coated and heated at 140 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating device. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に、実施例1と同様にして開口部を設けた後、230℃で4分間、240℃で10分間加熱してポリイミド前駆体をイミド化し、ボンディングパッド部に開口のあるポリイミド表面保護膜を素子表面に形成した。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約4000MPaおよび約250℃であった。   After opening the composition film in the same manner as in Example 1, the polyimide precursor was imidized by heating at 230 ° C. for 4 minutes and at 240 ° C. for 10 minutes, and the polyimide surface having an opening in the bonding pad portion A protective film was formed on the element surface. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 4000 MPa and about 250 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は約1%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 1% as compared with the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例5>
実施例1で合成したポリイミド前駆体組成物溶液に、ポリイミド前駆体ポリマ100重量部に対して、メタクリル酸3−(N,N−ジメチルアミノ)プロピル20.0重量部と、2,6−ジ(p−アジドベンザル)−4−カルボキシシクロヘキサノン5.0重量部とを加えて溶解し、感光性組成物溶液を得た。
<Example 5>
In the polyimide precursor composition solution synthesized in Example 1, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 2,6-diethyl are added to 100 parts by weight of the polyimide precursor polymer. (P-azidobenzal) -4-carboxycyclohexanone (5.0 parts by weight) was added and dissolved to obtain a photosensitive composition solution.

つぎに、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、250℃で4分間加熱した後、さらに、上記の感光性組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、85℃で1分間、続いて95℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer surface by spin coating, and was heated at 250 ° C. in air using a hot plate heating device. After heating for 5 minutes, the above photosensitive composition solution was further spin-coated and heated in a nitrogen atmosphere at 85 ° C. for 1 minute and then at 95 ° C. for 1 minute by a hot plate heating apparatus. Thereby, a polyimide precursor composition film was obtained.

この組成物膜を、フォトマスクを介して露光させ、N−メチル−2−ピロリドン4容とエタノール1容とからなる混液で現像した後、エタノールでリンスして、ボンディングパッド部に開口部を形成した。つぎに、ホットプレート加熱装置により、130℃で4分間、170℃で4分間、220℃で4分間、250℃で8分間、順次加熱してポリイミド前駆体を硬化させ、ボンディングパッド部に開口部のあるポリイミド膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、ポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3300MPaおよび約300℃であった。   This composition film is exposed through a photomask, developed with a mixed solution of 4 volumes of N-methyl-2-pyrrolidone and 1 volume of ethanol, and then rinsed with ethanol to form an opening in the bonding pad portion. did. Next, with a hot plate heating device, the polyimide precursor is cured by sequentially heating at 130 ° C. for 4 minutes, 170 ° C. for 4 minutes, 220 ° C. for 4 minutes, and 250 ° C. for 8 minutes. It was set as the polyimide film with. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured, they were about 3300 MPa and about 300 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は約1%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 1% as compared with the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例6>
実施例2で合成したポリイミド前駆体組成物溶液に、ポリイミド前駆体ポリマ100重量部に対して、メタクリル酸3−(N,N−ジメチルアミノ)プロピル20.0重量部と、ミヒラケトン3.0重量部と、ビス−4,4’−ジエチルアミノベンゾフェノン3.0重量部と加えて溶解し、感光性組成物溶液を得た。
<Example 6>
The polyimide precursor composition solution synthesized in Example 2 was mixed with 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 3.0% by weight of Mihiraketone with respect to 100 parts by weight of the polyimide precursor polymer. Part and 3.0 parts by weight of bis-4,4′-diethylaminobenzophenone and dissolved to obtain a photosensitive composition solution.

つぎに、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、270℃で4分間加熱した後、さらに、上記の感光性組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、85℃で1分間、続いて95℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was spin-coated on the wafer surface. After heating for 5 minutes, the above photosensitive composition solution was further spin-coated and heated in a nitrogen atmosphere at 85 ° C. for 1 minute and then at 95 ° C. for 1 minute by a hot plate heating apparatus. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に実施例5と同様にして開口部を形成した後、ホットプレート加熱装置により、130℃で4分間、170℃で4分間、220℃で4分間、270℃で8分間、順次加熱してポリイミド前駆体を硬化させ、ボンディングパッド部に開口部のあるポリイミド膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、ポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3300MPaおよび約300℃であった。   After forming an opening in this composition film in the same manner as in Example 5, it was sequentially heated at 130 ° C. for 4 minutes, 170 ° C. for 4 minutes, 220 ° C. for 4 minutes, and 270 ° C. for 8 minutes. The polyimide precursor was cured by heating to obtain a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured, they were about 3300 MPa and about 300 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は約1%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 1% as compared with the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例7>
実施例3で合成したポリイミド前駆体組成物溶液に、ポリイミド前駆体ポリマ100重量部に対して、メタクリル酸3−(N,N−ジメチルアミノ)プロピル20.0重量部と、2,6−ジ(p−アジドベンザル)−4−カルボキシシクロヘキサノン5.0重量部とを加えて溶解し、感光性組成物溶液を得た。
<Example 7>
In the polyimide precursor composition solution synthesized in Example 3, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 2,6-diethyl are added to 100 parts by weight of the polyimide precursor polymer. (P-azidobenzal) -4-carboxycyclohexanone (5.0 parts by weight) was added and dissolved to obtain a photosensitive composition solution.

つぎに、実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中で、260℃で4分間加熱した後、さらに、上記の感光性組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、85℃で1分間、続いて95℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。   Next, a wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was applied onto the wafer surface by spin coating, and was heated at 260 ° C. in air using a hot plate heating device. After heating for 5 minutes, the above photosensitive composition solution was further spin-coated and heated in a nitrogen atmosphere at 85 ° C. for 1 minute and then at 95 ° C. for 1 minute by a hot plate heating apparatus. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に実施例5と同様にして開口部を形成した後、ホットプレート加熱装置により、130℃で4分間、170℃で4分間、220℃で4分間、260℃で8分間、順次加熱してポリイミド前駆体を硬化させ、ボンディングパッド部に開口部のあるポリイミド膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、ポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約3000MPaおよび約260℃であった。   After forming an opening in this composition film in the same manner as in Example 5, it was sequentially heated at 130 ° C. for 4 minutes, 170 ° C. for 4 minutes, 220 ° C. for 4 minutes, and 260 ° C. for 8 minutes. The polyimide precursor was cured by heating to obtain a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide film was 2.3 μm. The Young's modulus and glass transition temperature of the polyimide film were measured and found to be about 3000 MPa and about 260 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は約2%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 2% as compared with the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例8>
実施例4で合成したポリイミド前駆体組成物溶液に、ポリイミド前駆体ポリマ100重量部に対して、メタクリル酸3−(N,N−ジメチルアミノ)プロピル20.0重量部と、ミヒラケトン3.0重量部と、ビス−4,4’−ジエチルアミノベンゾフェノン3.0重量部とを加えて溶解し、感光性組成物溶液を得た。
<Example 8>
In the polyimide precursor composition solution synthesized in Example 4, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 3.0 parts by weight of Mihiraketone with respect to 100 parts by weight of the polyimide precursor polymer. Part and 3.0 parts by weight of bis-4,4′-diethylaminobenzophenone were added and dissolved to obtain a photosensitive composition solution.

つぎに、実施例1と同様のウェハを用意し、実施例5と同様にしてウェハ表面を「PIQカップラー」により処理した後、さらに、実施例5と同様にして、上記の感光性組成物溶液を塗布、加熱してポリイミド前駆体組成物膜を形成した。   Next, a wafer similar to that in Example 1 was prepared, and the wafer surface was treated with a “PIQ coupler” in the same manner as in Example 5. Further, in the same manner as in Example 5, the photosensitive composition solution described above was used. Was applied and heated to form a polyimide precursor composition film.

この組成物膜を、実施例5と同様に開口処理した後、実施例5と同様にして加熱硬化させてポリイミド膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、ポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約4000MPaおよび約250℃であった。   The composition film was subjected to an opening treatment in the same manner as in Example 5, and then heat-cured in the same manner as in Example 5 to obtain a polyimide film. The film thickness of the obtained polyimide film was 2.3 μm. The Young's modulus and glass transition temperature of the polyimide film were measured and found to be about 4000 MPa and about 250 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、PIQカップラー処理以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は約1%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within about 1% as compared with the initial residual polarizability of the ferroelectric film before the PIQ coupler treatment.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品に対してハンダリフロー耐性の評価試験を行ったところ、ポリイミド表面保護膜と封止エポキシ樹脂の界面では剥離やクラックの発生がなく、信頼性の高い半導体装置を得ることができた。   Next, after a resin-encapsulated semiconductor device was completed in the same manner as in Example 1, an evaluation test for solder reflow resistance was performed on the obtained finished product. As a result, a polyimide surface protective film and a sealing epoxy were obtained. There was no peeling or cracking at the resin interface, and a highly reliable semiconductor device could be obtained.

<実施例9>
実施例1と同様のウェハを用意し、このウェハ表面に、日立化成工業(株)製のPIQカップラーをスピン塗布し、ホットプレート加熱装置を用いて、空気中230℃で4分間加熱した後、さらに、実施例4で合成したポリイミド前駆体組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中140℃で1分間加熱した。これにより、ポリイミド前駆体組成物膜が得られた。
<Example 9>
A wafer similar to that in Example 1 was prepared, and a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. was spin-coated on the wafer surface, and heated at 230 ° C. in air for 4 minutes using a hot plate heating device. Furthermore, the polyimide precursor composition solution synthesized in Example 4 was spin-coated, and heated at 140 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating apparatus. Thereby, a polyimide precursor composition film was obtained.

この組成物膜に実施例4と同様にして開口部を形成した後、ホットプレート加熱装置により、200℃で4分間、ついで230℃で10分間加熱してポリイミド前駆体を硬化させ、ボンディングパッド部に開口のあるポリイミド表面保護膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、前述のようにしてポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約4000MPaおよび約250℃であった。   After an opening was formed in this composition film in the same manner as in Example 4, the polyimide precursor was cured by heating at 200 ° C. for 4 minutes and then at 230 ° C. for 10 minutes with a hot plate heating device, and bonding pad portion A polyimide surface protective film with an opening was formed. The film thickness of the obtained polyimide film was 2.3 μm. Further, when the Young's modulus and glass transition temperature of the polyimide film were measured as described above, they were about 4000 MPa and about 250 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、実施例4と同様に、熱処理による劣化は約1%以内であった。また、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品のハンダリフロー耐性は、実施例4と同様に良好であった。   Here, when the residual polarizability of the ferroelectric film was measured, as in Example 4, the degradation due to heat treatment was within about 1%. In addition, after the resin-encapsulated semiconductor device was completed as in Example 1, the finished product obtained had good solder reflow resistance as in Example 4.

<実施例10>
実施例4で合成したポリイミド前駆体溶液に、ポリイミド前駆体ポリマ100重量部に対して、メタクリル酸3−(N,N−ジメチルアミノ)プロピル20.0重量部と、ミヒラケトンを6.0重量部と加えて溶解し、感光性組成物溶液を得た。
<Example 10>
In the polyimide precursor solution synthesized in Example 4, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 6.0 parts by weight of mihiraketone with respect to 100 parts by weight of the polyimide precursor polymer. And dissolved to obtain a photosensitive composition solution.

つぎに、実施例1と同様のウェハを用意し、実施例9と同様にしてウェハ表面を「PIQカップラー」により処理した後、さらに、上記の感光性組成物溶液をスピン塗布し、ホットプレート加熱装置により窒素雰囲気中で、85℃で1分間、続いて95℃で1分間加熱してポリイミド前駆体組成物膜を形成した。   Next, a wafer similar to that in Example 1 was prepared, and the wafer surface was treated with a “PIQ coupler” in the same manner as in Example 9, and then the above photosensitive composition solution was spin-coated, followed by hot plate heating. A polyimide precursor composition film was formed by heating in an atmosphere of nitrogen at 85 ° C. for 1 minute and then at 95 ° C. for 1 minute.

この組成物膜に実施例5と同様にして開口部を形成した後、ホットプレート加熱装置により、130℃で4分間、170℃で4分間、200℃で4分間、230℃で10分間、順次加熱してポリイミド前駆体を硬化させ、ボンディングパッド部に開口部のあるポリイミド膜とした。得られたポリイミド膜の膜厚は2.3μmであった。また、ポリイミド膜のヤング率およびガラス転移温度を測定したところ、それぞれ、約4000MPaおよび約250℃であった。   After forming an opening in this composition film in the same manner as in Example 5, the hot plate heating device was sequentially used at 130 ° C. for 4 minutes, 170 ° C. for 4 minutes, 200 ° C. for 4 minutes, and 230 ° C. for 10 minutes. The polyimide precursor was cured by heating to obtain a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide film was 2.3 μm. The Young's modulus and glass transition temperature of the polyimide film were measured and found to be about 4000 MPa and about 250 ° C., respectively.

ここで、強誘電体膜の残留分極率を測定したところ、実施例4と同様に、熱処理による劣化は約1%以内であった。また、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、得られた完成品のハンダリフロー耐性は、実施例4と同様に良好であった。   Here, when the residual polarizability of the ferroelectric film was measured, as in Example 4, the degradation due to heat treatment was within about 1%. In addition, after the resin-encapsulated semiconductor device was completed as in Example 1, the finished product obtained had good solder reflow resistance as in Example 4.

<実施例11>
窒素気流下で、3,3’−ジメチルベンジジン95.4g(0.45モル)と、ビス(3−アミノプロピル)テトラメチルジシロキサン9.6g(0.05モル)とを、N−メチル−2−ピロリドン1040gに溶解させ、アミン溶液を調製した。次に、この溶液を約15℃に保持しながら、撹拌しつつ、4,4’−オキシフタル酸二無水物155.0g(0.5モル)を加えた後、さらに約15℃で約8時間窒素雰囲気で撹拌し、粘度約30ポアズのポリイミド前駆体溶液を得た。
<Example 11>
Under a nitrogen stream, 95.4 g (0.45 mol) of 3,3′-dimethylbenzidine and 9.6 g (0.05 mol) of bis (3-aminopropyl) tetramethyldisiloxane were mixed with N-methyl- An amine solution was prepared by dissolving in 1040 g of 2-pyrrolidone. Next, 155.0 g (0.5 mol) of 4,4′-oxyphthalic dianhydride was added with stirring while maintaining the solution at about 15 ° C., and then at about 15 ° C. for about 8 hours. The mixture was stirred in a nitrogen atmosphere to obtain a polyimide precursor solution having a viscosity of about 30 poise.

得られたポリイミド前駆体溶液は、ポリイミド前駆体として、上記一般式(化16)で表される第1の繰返し単位と、下記一般式(化19)で表される第1の繰返し単位とからなるポリアミド酸共重合体を含む。ただし、ポリアミド酸一分子中の第2の繰返し単位数は、全体の約10%であった。得られたポリイミド前駆体溶液を用い、実施例5と同様にして感光性組成物溶液を調製した。   The obtained polyimide precursor solution is composed of a first repeating unit represented by the above general formula (Formula 16) and a first repeating unit represented by the following general formula (Formula 19) as a polyimide precursor. A polyamic acid copolymer. However, the second number of repeating units in one molecule of polyamic acid was about 10% of the whole. A photosensitive composition solution was prepared in the same manner as in Example 5 using the obtained polyimide precursor solution.

Figure 2006140533
Figure 2006140533

つぎに、実施例1と同様のウェハを用意し、このウェハ表面に得られた感光性組成物溶液をスピン塗布し、ホットプレート加熱装置を用い、窒素雰囲気中で、85℃で1分間、続いて95℃で1分間加熱した後、フォトマスクを介して露光させ、N−メチル−2−ピロリドン4容およびエタノール1容からなる混液で現像し、エタノールでリンスして、ボンディングパッド部を露出させる開口部を形成した。続いて、ホットプレート装置を用い、窒素雰囲気中で、130℃で3分間、170℃で3分間、220℃で3分間、300℃で6分間、順次加熱し、ポリイミドを硬化させた。得られたポリイミド膜の膜厚は2.3μmであった。また、このポリイミドのヤング率は約4000MPa、ガラス転移温度は260℃であった。   Next, a wafer similar to that in Example 1 was prepared, and the photosensitive composition solution obtained was applied onto the wafer surface by spin coating, followed by 1 minute at 85 ° C. in a nitrogen atmosphere using a hot plate heating device. After heating at 95 ° C. for 1 minute, the film is exposed through a photomask, developed with a mixed solution of 4 volumes of N-methyl-2-pyrrolidone and 1 volume of ethanol, and rinsed with ethanol to expose the bonding pad portion. An opening was formed. Subsequently, using a hot plate apparatus, the polyimide was cured in a nitrogen atmosphere by sequentially heating at 130 ° C. for 3 minutes, 170 ° C. for 3 minutes, 220 ° C. for 3 minutes, and 300 ° C. for 6 minutes. The film thickness of the obtained polyimide film was 2.3 μm. The Young's modulus of this polyimide was about 4000 MPa, and the glass transition temperature was 260 ° C.

ここで、強誘電体膜の残留分極率を測定したところ、ポリイミド前駆体溶液塗布以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は1%以内であった。   Here, when the residual polarizability of the ferroelectric film was measured, the decrease in the value was within 1% compared to the initial residual polarizability of the ferroelectric film before application of the polyimide precursor solution.

つぎに、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、実施例1と同様にしてハンダリフロー耐性の評価試験を行ったところ、実施例1と同様に信頼性の高いものであった。   Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was performed in the same manner as in Example 1. As in Example 1, the reliability was confirmed. It was expensive.

<実施例12>
本実施例では、開口部形成後の加熱を、130℃で3分間、170℃で3分間、220℃で3分間、350℃で2分間とした他は、実施例11と同様にして、樹脂封止型半導体装置を作成したところ、得られたポリイミド膜のポリイミドのヤング率およびガラス転移温度は、実施例11と同様であった。
<Example 12>
In this example, the resin was formed in the same manner as in Example 11 except that heating after forming the opening was 130 ° C. for 3 minutes, 170 ° C. for 3 minutes, 220 ° C. for 3 minutes, and 350 ° C. for 2 minutes. When a sealed semiconductor device was produced, the polyimide Young's modulus and glass transition temperature of the obtained polyimide film were the same as those in Example 11.

ここで、強誘電体膜の残留分極率を測定したところ、ポリイミド前駆体溶液塗布以前の初期の強誘電体膜の残留分極率と比較して、その値の低下は5%以内であった。   Here, when the remanent polarizability of the ferroelectric film was measured, the decrease in the value was within 5% as compared with the remanent polarizability of the initial ferroelectric film before the polyimide precursor solution coating.

次に、実施例1と同様にして樹脂封止型半導体装置の完成品とした後、実施例1と同様にしてハンダリフロー耐性の評価試験を行ったところ、実施例1と同様に信頼性の高いものであった。   Next, after a resin-encapsulated semiconductor device was completed as in Example 1, a solder reflow resistance evaluation test was performed in the same manner as in Example 1. As in Example 1, the reliability was confirmed. It was expensive.

LOC(Lead on Chip)型の樹脂封止型半導体装置の断面図である。1 is a cross-sectional view of a LOC (Lead on Chip) type resin-encapsulated semiconductor device. 樹脂封止型半導体装置の製造工程例を示す説明図である。It is explanatory drawing which shows the example of a manufacturing process of a resin sealing type semiconductor device. 実施例1において作製した樹脂封止型半導体装置の断面図である。1 is a cross-sectional view of a resin-encapsulated semiconductor device manufactured in Example 1. FIG. 強誘電体膜を有する半導体素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the semiconductor element which has a ferroelectric film.

符号の説明Explanation of symbols

1…半導体素子、 2…表面保護膜、
3…外部端子(リードフレーム) 4…接着部材、
5…金属線 6…封止部材、
7…ボンディングパッド部、 8…スクライブ領域、
9…素子領域と配線層とを作り込んだシリコンウェハ
40…強誘電体メモリ素子、 41…シリコン基板、
42…CMOSトランジスタ層、 421…pまたはnウェル、
422…ソース、 423…ドレイン、
424…酸化膜、 425…ゲート、
426…絶縁層、 43…キャパシタ、
431…下部電極層、 432…強誘電体薄膜、
433…上部電極層、 434…金属配線層、
435…絶縁層。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2 ... Surface protective film,
3 ... External terminal (lead frame) 4 ... Adhesive member,
5 ... Metal wire 6 ... Sealing member,
7 ... bonding pad, 8 ... scribe area,
9 ... Silicon wafer in which element region and wiring layer are formed 40 ... Ferroelectric memory element, 41 ... Silicon substrate,
42 ... CMOS transistor layer, 421 ... p or n well,
422 ... Source, 423 ... Drain,
424 ... oxide film, 425 ... gate,
426 ... insulating layer, 43 ... capacitor,
431 ... Lower electrode layer, 432 ... Ferroelectric thin film,
433 ... upper electrode layer, 434 ... metal wiring layer,
435 ... Insulating layer.

Claims (8)

強誘電体膜と素子表面保護膜を有する半導体素子と、前記半導体素子を封じる樹脂からなる封止部材とから構成された樹脂封止型半導体装置であって、前記表面保護膜はガラス転移温度が240℃〜400℃であり、ヤング率が2600MPa〜6GPaなる特性を備えた熱硬化性ポリイミドであり、前記表面保護膜を用いてボンディングパッド部とスクライブ領域を除く領域が被覆された前記半導体素子がリードフレーム上に固定され、該リードフレームの外部端子と前記ボンディングパッド部との間が配線接続され、該配線を含む前記半導体素子とリードフレームとが樹脂封止されてなることを特徴とする樹脂封止型半導体装置。   A resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and an element surface protective film, and a sealing member made of a resin for sealing the semiconductor element, wherein the surface protective film has a glass transition temperature. The semiconductor element is a thermosetting polyimide having the characteristics of 240 ° C. to 400 ° C. and Young's modulus of 2600 MPa to 6 GPa, and the region excluding the bonding pad portion and the scribe region is covered with the surface protective film. A resin that is fixed on a lead frame, has a wiring connection between an external terminal of the lead frame and the bonding pad portion, and the semiconductor element including the wiring and the lead frame are sealed with resin. Sealed semiconductor device. 強誘電体膜と素子表面保護膜を有する半導体素子と、前記半導体素子を封じる樹脂からなる封止部材とから構成された樹脂封止型半導体装置であって、前記表面保護膜はガラス転移温度が240℃〜400℃であり、ヤング率が2600MPa〜6GPaなる特性を備えた熱硬化性ポリイミドであり、前記表面保護膜を用いてボンディングパッド部とスクライブ領域を除く領域が被覆され、該表面保護膜上にリードフレームが固定され、該リードフレームの外部端子と前記ボンディングパッド部との間が配線接続され、該配線を含む前記半導体素子とリードフレームとが樹脂封止されてなることを特徴とする樹脂封止型半導体装置。   A resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and an element surface protective film, and a sealing member made of a resin for sealing the semiconductor element, wherein the surface protective film has a glass transition temperature. A thermosetting polyimide having a characteristic of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa, wherein the surface protective film is used to cover a region excluding the bonding pad portion and the scribe region, and the surface protective film A lead frame is fixed on the lead frame, a wiring connection is made between an external terminal of the lead frame and the bonding pad portion, and the semiconductor element including the wiring and the lead frame are sealed with resin. Resin-sealed semiconductor device. 強誘電体膜と素子表面保護膜を有する半導体素子と、前記半導体素子を封じる樹脂からなる封止部材とから構成された樹脂封止型半導体装置であって、前記表面保護膜はガラス転移温度が240℃〜400℃であり、ヤング率が2600MPa〜6GPaなる特性を備えた熱硬化性ポリイミドであり、前記表面保護膜を用いてアクティブ領域が被覆された前記半導体素子がリードフレーム上に固定され、該リードフレームの外部端子とボンディングパッド部との間が配線接続され、該配線を含む前記半導体素子とリードフレームとが樹脂封止されてなることを特徴とする樹脂封止型半導体装置。   A resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and an element surface protective film, and a sealing member made of a resin for sealing the semiconductor element, wherein the surface protective film has a glass transition temperature. A thermosetting polyimide having a characteristic of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa, and the semiconductor element covered with an active region using the surface protective film is fixed on a lead frame; A resin-sealed semiconductor device, wherein an external terminal of the lead frame and a bonding pad portion are connected by wiring, and the semiconductor element including the wiring and the lead frame are resin-sealed. 強誘電体膜と素子表面保護膜を有する半導体素子と、前記半導体素子を封じる樹脂からなる封止部材とから構成された樹脂封止型半導体装置であって、前記表面保護膜はガラス転移温度が240℃〜400℃であり、ヤング率が2600MPa〜6GPaなる特性を備えた熱硬化性ポリイミドであり、前記表面保護膜を用いて前記半導体素子のアクティブ領域が被覆され、前記表面保護膜上にリードフレームが固定され、該リードフレームの外部端子とボンディングパッド部との間が配線接続され、該配線を含む前記半導体素子とリードフレームとが樹脂封止されてなることを特徴とする樹脂封止型半導体装置。   A resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and an element surface protective film, and a sealing member made of a resin for sealing the semiconductor element, wherein the surface protective film has a glass transition temperature. A thermosetting polyimide having a characteristic of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa. The active region of the semiconductor element is covered with the surface protective film, and leads are formed on the surface protective film. A resin-sealed mold in which a frame is fixed, an external terminal of the lead frame and a bonding pad portion are connected by wiring, and the semiconductor element including the wiring and the lead frame are resin-sealed Semiconductor device. 前記強誘電体膜がペロブスカイト型結晶構造を有する誘電体材料からなることを特徴とする請求項1乃至4の何れかに記載の樹脂封止型半導体装置。   The resin-encapsulated semiconductor device according to claim 1, wherein the ferroelectric film is made of a dielectric material having a perovskite crystal structure. 前記強誘電体膜がキャパシタの容量絶縁膜であることを特徴とする請求項1乃至4の何れかに記載の樹脂封止型半導体装置。   The resin-encapsulated semiconductor device according to claim 1, wherein the ferroelectric film is a capacitor insulating film of a capacitor. 前記表面保護膜は230℃以上300℃以下に加熱することにより硬化させて得られたものであることを特徴とする請求項1乃至4の何れかに記載の樹脂封止型半導体装置。   5. The resin-encapsulated semiconductor device according to claim 1, wherein the surface protective film is obtained by being cured by heating to 230 ° C. or more and 300 ° C. or less. 前記表面保護膜は300℃より高く350℃以下の温度で、4分間以下の時間加熱することにより硬化させて得られたものであることを特徴とする請求項1乃至4の何れかに記載の樹脂封止型半導体装置。   5. The surface protection film according to claim 1, wherein the surface protection film is obtained by curing at a temperature higher than 300 ° C. and lower than or equal to 350 ° C. for 4 minutes or less. Resin-sealed semiconductor device.
JP2006027308A 1997-01-22 2006-02-03 Resin-sealed semiconductor device Pending JP2006140533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027308A JP2006140533A (en) 1997-01-22 2006-02-03 Resin-sealed semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP927697 1997-01-22
JP2006027308A JP2006140533A (en) 1997-01-22 2006-02-03 Resin-sealed semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001274432A Division JP3779579B2 (en) 1997-01-22 2001-09-11 Manufacturing method of resin-encapsulated semiconductor device

Publications (1)

Publication Number Publication Date
JP2006140533A true JP2006140533A (en) 2006-06-01

Family

ID=36621061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027308A Pending JP2006140533A (en) 1997-01-22 2006-02-03 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP2006140533A (en)

Similar Documents

Publication Publication Date Title
US6525359B2 (en) Resin-encapsulated semiconductor apparatus and process for its fabrication
JP3427713B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
Mukai et al. Planar multilevel interconnection technology employing a polyimide
KR20110122135A (en) Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
EP2083326A1 (en) Photosensitive resin composition, insulating film, protective film, and electronic equipment
JP7062953B2 (en) Photosensitive resin composition, cured film, organic EL display device, semiconductor electronic component, semiconductor device
JP2773660B2 (en) Semiconductor device
KR900001656B1 (en) Forming method of passivation film
JP2017044964A (en) Photosensitive resin composition, cured product and production method of patterned cured film using the composition, and semiconductor element and electronic device
KR100840821B1 (en) Semiconductor device and method for fabricating the same
JP3779579B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP2018036504A (en) Photosensitive resin composition, patterned cured film and method for producing the same, semiconductor element and electronic device
JP2006140533A (en) Resin-sealed semiconductor device
JP2006191128A (en) Resin-sealed semiconductor device
KR100193176B1 (en) Resin-encapsulated semiconductor device and manufacturing method thereof
JP3514884B2 (en) Surface protective film, resin-encapsulated semiconductor device and method of manufacturing the same
JPH1135915A (en) Resin-sealed semiconductor device
JPH05214046A (en) Wiring structure
JP3415981B2 (en) Semiconductor device, manufacturing method thereof, and surface protective film
KR0144290B1 (en) Method for applying adhesive to microelectronic chips
JPH06180505A (en) Wiring structure and its production
JPS60247949A (en) Semiconductor device and manufacture thereof
JPH07278301A (en) Polyimide precursor, its composition and production of resin sealing type semiconductor using the same
JPH11224934A (en) Ferroelectric memory device
JPS60247931A (en) Method for treatment of photosensitive heat-resisting insulating film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202