JP3422048B2 - Heat exchange device for battery - Google Patents

Heat exchange device for battery

Info

Publication number
JP3422048B2
JP3422048B2 JP21781293A JP21781293A JP3422048B2 JP 3422048 B2 JP3422048 B2 JP 3422048B2 JP 21781293 A JP21781293 A JP 21781293A JP 21781293 A JP21781293 A JP 21781293A JP 3422048 B2 JP3422048 B2 JP 3422048B2
Authority
JP
Japan
Prior art keywords
battery
heat exchange
temperature
bag
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21781293A
Other languages
Japanese (ja)
Other versions
JPH0773908A (en
Inventor
貴英 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21781293A priority Critical patent/JP3422048B2/en
Publication of JPH0773908A publication Critical patent/JPH0773908A/en
Application granted granted Critical
Publication of JP3422048B2 publication Critical patent/JP3422048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、車載バッテリを冷却あ
るいは加熱するためのバッテリ用熱交換装置に関し、特
に電気自動車のバッテリの温度を適切な温度範囲に制御
する制御装置に用いて好適なものである。 【0002】 【従来の技術】車載バッテリを冷却あるいは加熱するた
めの従来技術として、実開昭57−161861号公報
に開示された技術が知られている。この技術は、バッテ
リを収容する収容ケースのうち、バッテリの側面を覆う
側壁の内部に、熱交換用流体が通過する隙間を設けたも
のである。そして、バッテリは、収容ケースを形成する
部材を介して、隙間に供給された熱交換用流体と熱交換
される。 【0003】 【発明が解決しようとする課題】収容ケースのバッテリ
を収容する収容室は、バッテリを確実に収容するため
に、バッテリの外形寸法よりも大きく設ける必要がある
とともに、バッテリと収容ケースとの熱膨張差による干
渉を防ぐ必要からも、収容部がバッテリの外形寸法より
も大きく設けられる。つまり、収容ケースとバッテリと
の間に、隙間(空気層)が生じる。収容ケースとバッテ
リとの間に隙間が生じると、収容ケースとバッテリとの
熱伝達率が急激に低下する。つまり、従来のバッテリ用
熱交換装置は、収容ケースとバッテリとの間に隙間が生
じるため、バッテリと熱交換用流体との熱交換効率が悪
い不具合を有していた。 【0004】 【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、バッテリと熱交換用流体との熱交
換効率が良いバッテリ用熱交換装置の提供にある。 【0005】 【課題を解決するための手段】本発明のバッテリ用熱交
換装置は、車両の電気部品に電力を供給するバッテリ
と、このバッテリを収容する収容ケースと、前記バッテ
リと前記収容ケースとの間に配置され、内部に熱交換用
流体が通過する変形可能な袋状に設けられた熱交換袋と
を備える技術的手段を採用した。 【0006】 【発明の作用】バッテリと収容ケースとの間に配置され
た熱交換袋は、変形可能に設けられているため、バッテ
リの外形寸法や外形形状が多少変化しても、熱交換袋内
の熱交換用流体による内圧によって、熱交換袋とバッテ
リとが密着する。そして、バッテリは、バッテリに密着
した熱交換袋を介して熱交換用流体と熱交換される。 【0007】 【発明の効果】本発明のバッテリ用熱交換装置は、上記
の作用で示したように、バッテリの外形寸法や外形形状
が多少変化しても、熱交換袋がバッテリと密着するた
め、従来に比較してバッテリと熱交換用流体との熱交換
効率が良い。 【0008】 【実施例】次に、本発明のバッテリ用熱交換装置を、電
気自動車に使用されるバッテリの温度を適切な範囲内に
保つバッテリ温度制御装置に用いた実施例に基づき、図
面を用いて説明する。 〔実施例の構成〕図1ないし図11は実施例を示すもの
で、図1はバッテリ用熱交換装置の概略断面図、図2は
図1からバッテリを取り除いた状態を示す上面図、図3
はバッテリ温度制御装置の概略構成図である。電気自動
車は、車両に搭載するバッテリ1(本実施例では複数の
バッテリ1を接続した状態で搭載される)の電力をイン
バータ2によって制御してモータ3(電気部品)に与
え、モータ3の発生する動力によって車両を走行させる
ものである。この電気自動車には、バッテリ1の温度を
適正な範囲に保つバッテリ温度制御装置5が搭載されて
いる。このバッテリ温度制御装置5は、作動時に発熱す
るインバータ2およびモータ3の温度の上昇を抑える機
能も備える。 【0009】なお、本実施例に使用されるバッテリ1と
して、最適作動温度が常温付近(20〜75℃)の鉛蓄
電池(Pb−酸電池)を示すが、他のバッテリを用いて
も良い。なお、最適作動温度とは、バッテリ1の主要特
性である出力、容量、寿命等を考慮した上で最適と判断
される温度である。そして、本実施例に使用した鉛蓄電
池は、20〜75℃の範囲内では高寿命であるが、その
範囲外では寿命が著しく低下する。そして、最低使用温
度を20℃以上に設定することで、出力の低下、および
容量の低下を発生しないものである。 【0010】また、最適作動温度を本実施例では20〜
75℃とするもう1つの理由を次に述べる。熱を持った
バッテリ1を冷却する冷熱源としては、後述するように
外気が用いられる。この外気の温度は、夏場では高温
(約35℃)であるため、バッテリ1をあまり冷却する
ことができず、その結果からも、最適作動温度の上限を
75℃とするのが適切である。同様に、鉛蓄電池など最
適作動温度が常温付近のバッテリ1は、バッテリ1自体
の発生する熱はそれほど高くない。また、発熱部材(イ
ンバータ2、モータ3)の発生する熱もそれほど高くな
い。これらを考慮すると、冬場(外気温−20〜0℃)
で用いたときには、最適作動温度の下限を20℃とする
のが適切である。 【0011】バッテリ温度制御装置5は、バッテリ1を
冷却、加熱するための熱交換用流体(例えば、冷却水
や、熱交換用のオイル等)が流れる流体循環路6を備え
る。この流体循環路6は、バッテリ1を適温に保つため
のバッテリ用熱交換装置7、熱交換用流体を車外空気
(外気)と熱交換するラジエータ8、あるいはインバー
タ2およびモータ3に接続されている。また、この流体
循環路6は、複数の循環経路が形成できるように設けら
れ、各分岐路には熱交換用流体の流れ方向を切り替える
電磁弁11〜15が設けられている。また、流体循環路
6には、流体循環路6内で熱交換用流体を循環させる電
動ポンプ16が設けられている。 【0012】なお、ラジエータ8は、ラジエータ8を流
れる熱交換用流体と外気とを強制的に熱交換させる電動
のラジエータファン17を備える。また、ラジエータ8
は、車両前部に設けられ、車両の走行風によって熱交換
用流体が冷却されるように設けられている。 【0013】バッテリ用熱交換装置7は、バッテリ1と
熱交換用流体とを熱交換するもので、図1ないし図3に
示すように、複数のバッテリ1を独立して収容する複数
の収容室21を備えた収容ケース22と、各収容室21
の内壁(下面および全側面)と各バッテリ1との間に隙
間を埋めるように配置された熱交換袋23とから構成さ
れ、この熱交換袋23内を熱交換用流体が通過する。 【0014】収容ケース22は、車両に固定される耐蝕
性に優れた樹脂または金属製の容器で、各収容室21
は、各バッテリ1との間に、熱交換袋23を配置可能な
寸法に形成されている。 【0015】熱交換袋23は、ゴム材、あるいはゴム材
の内部に繊維を織った布材を埋設した部材など、耐久
性、耐熱交換用流体性、耐バッテリ液性に優れた、変形
性に富む材質によって袋状に形成したもので、袋状の内
部を熱交換用流体が流れる。また、各収容室21内に配
置される熱交換袋23は、それぞれ連通部24によって
連結され、各収容室21内の熱交換袋23に熱交換用流
体が流れるように設けられている。なお、連通部24
は、収容ケース22の上側に設けられた溝25内に配置
され、熱交換袋23からバッテリ1を取り除いた状態で
(図2参照)、熱交換袋23が収容ケース22の上方へ
抜き出し可能に設けられている。 【0016】また、熱交換袋23の両端は、継手26を
介して流体循環路6と連結される。この継手26の一例
を、図4あるいは図5に示す。図4の継手26は、流体
循環路6の配管27の周囲に、熱交換袋23の端部に形
成されたチューブ23aを被せ、その周囲をクランプ2
8でカシメてなる。また、図5の継手26は、流体循環
路6の配管27の端部に雄ネジ27aを形成するととも
に、熱交換袋23の端部のチューブ23aに雌ネジ29
aを有する接合部材29を例えばインサート成形によっ
て設け、配管27の雄ネジ27aと熱交換袋23の雌ネ
ジ29aとをネジ込むものである。 【0017】なお、熱交換袋23は、バッテリ1の自重
によって収容ケース22の収容室21内に押し付けられ
るとともに、熱交換用流体の内圧によってバッテリ1と
収容ケース22との間に密着した状態になるため、特に
熱交換袋23を固定する必要は無いが、バッテリ1を固
定手段を用いて収容ケース22内に保持させるように設
けても良い。 〔制御回路の説明〕 【0018】バッテリ温度制御装置5は、図6に示す制
御回路30によって制御される。制御回路30は、マイ
クロコンピュータを使用したもので、各種入力信号に応
じて、電磁弁11〜15、電動ポンプ16、ラジエータ
ファン17の通電制御を行う。そして、制御回路30に
は、上記機能部品を通電制御するために、バッテリ1の
温度を検出するバッテリ温度センサ31、モータ3の温
度を検出するモータ温度センサ32、インバータ2の温
度を検出するインバータ温度センサ33等の各種センサ
が接続されている。 【0019】制御回路30にプログラムされたバッテリ
温度制御装置5の制御の一例を、図7のフローチャート
を用いて説明する。初めにモータ3が作動すると(スタ
ート)、バッテリ1の温度が最適温度範囲内にあるか、
最適温度範囲よりも低いか、あるいは最適温度範囲より
も高いかの判断を行う(ステップS1 )。 【0020】このステップS1 の判断結果により、バッ
テリ1の温度が最適温度範囲内の場合は、インバータ2
およびモータ3の温度が所定温度(例えば60℃)より
も高いか否かの判断を行う(ステップS2 )。この判断
結果がNOの場合は、電磁弁11〜15、電動ポンプ1
6、ラジエータファン17の全ての通電を停止し(ステ
ップS3 )、その後リターンする。また、この判断結果
がYES の場合は、電動ポンプ16、ラジエータファン1
7を作動させるとともに、電磁弁11〜15を通電制御
して、図8に示すように、熱交換用流体が、電動ポンプ
16→ラジエータ8→インバータ2→モータ3→電動ポ
ンプ16を循環する流体回路を形成し(ステップS4
)、その後リターンする。 【0021】ステップS1 の判断結果により、バッテリ
1の温度が最適温度範囲よりも低い場合は、インバータ
2およびモータ3の温度が所定温度よりも高いか否かの
判断を行う(ステップS5 )。この判断結果がNOの場合
は、ステップS3 へ進む。また、この判断結果がYES の
場合は、電動ポンプ16を作動させるとともに、電磁弁
11〜15を通電制御して、図9に示すように、熱交換
用流体が、電動ポンプ16→インバータ2→モータ3→
バッテリ用熱交換装置7の熱交換袋23→電動ポンプ1
6を循環する流体回路を形成し(ステップS6 )、その
後リターンする。 【0022】ステップS1 の判断結果により、バッテリ
1の温度が最適温度範囲よりも高い場合は、インバータ
2およびモータ3の温度が所定温度よりも高いか否かの
判断を行う(ステップS7 )。この判断結果がNOの場合
は、電動ポンプ16、ラジエータファン17を作動させ
るとともに、電磁弁11〜15を通電制御して、図10
に示すように、熱交換用流体が、電動ポンプ16→ラジ
エータ8→バッテリ用熱交換装置7の熱交換袋23→電
動ポンプ16を循環する流体回路を形成し(ステップS
8 )、その後リターンする。ステップS7 の判断結果が
YES の場合は、電動ポンプ16、ラジエータファン17
を作動させるとともに、電磁弁11〜15を通電制御し
て、図11に示すように、熱交換用流体が、電動ポンプ
16→ラジエータ8→インバータ2→モータ3→バッテ
リ用熱交換装置7の熱交換袋23→電動ポンプ16を循
環する流体回路を形成し(ステップS9 )、その後リタ
ーンする。 【0023】〔実施例の作動〕バッテリ用熱交換装置7
の作動を説明する。バッテリ用熱交換装置7の熱交換袋
23は、変形可能に設けられて各バッテリ1と収容ケー
ス22との間に配置されるため、電動ポンプ16が作動
すると、電動ポンプ16によって圧送される熱交換用流
体の供給圧力によって膨張し、各バッテリ1の全周側面
および底面に密着し、結果的にバッテリ1と熱交換袋2
3との間の空気層の発生を極力小さくするように作用す
る。 【0024】バッテリ1の温度が最適温度範囲よりも低
く、かつインバータ2、モータ3の温度が所定温度より
も高い場合は、バッテリ温度制御装置5の作動により、
インバータ2およびモータ3で加熱された熱交換用流体
が、熱交換袋23に供給される。そして、熱交換袋23
は、上述のように各バッテリ1の全周側面および底面に
密着しているため、熱交換袋23を流れる熱交換用流体
とバッテリ1とが、高い熱交換率で熱交換が行われ、各
バッテリ1を素早く最適温度範囲内に加熱できる。逆
に、バッテリ1の温度が最適温度範囲よりも高い場合
は、ラジエータ8で冷却された熱交換用流体が、熱交換
袋23に供給される。そして、熱交換袋23は、各バッ
テリ1の全周側面および底面に密着しているため、熱交
換袋23を流れる熱交換用流体とバッテリ1とが、高い
熱交換率で熱交換が行われ、各バッテリ1を素早く最適
温度範囲内に冷却できる。 【0025】〔実施例の効果〕バッテリ用熱交換装置7
は、上記作動で説明したように、熱交換袋23が電動ポ
ンプ16の作動により膨張し、各バッテリ1の全周側面
および底面に密着し、結果的にバッテリ1と熱交換袋2
3との間の空気層の発生を極力小さくするように作用す
る。このため、バッテリ1の外形寸法や外形形状が製造
元が変わるなどして多少変化しても、熱交換袋23がバ
ッテリ1と密着するため、バッテリ1と熱交換用流体と
の熱交換効率が大変高い。また、バッテリ1と熱交換用
流体とを素早く熱交換させる要求が大きい時、すなわち
熱交換流体の流量が大きい時ほど、熱交換袋23がバッ
テリ1と密着力が大きくなり、バッテリ1と熱交換用流
体との伝熱量が多くなる。 【0026】電動ポンプ16の停止時は、熱交換袋23
の内圧が小さいため、バッテリ1と熱交換袋23との密
着力が低下する。このため、バッテリ1を熱交換袋23
から容易に取り出したり、バッテリ1を熱交換袋23へ
容易に挿入できる。つまり、バッテリ1の交換作業を容
易に行うことができる。バッテリ1は、変形可能な熱交
換袋23に圧迫されて収容ケース22に保持されるた
め、車両の振動が熱交換袋23で緩和される。このた
め、バッテリ1を車両の振動、衝撃から保護する効果も
奏する。熱交換用流体が熱交換袋23によって覆われ
て、熱交換用流体とバッテリ1とが隔離されるため、大
電流を発生するバッテリ1の安全性を確保することがで
きる。 【0027】〔変形例〕バッテリの温度が適正範囲内の
場合(適正範囲の上限または下限に達していない場合)
でも、バッテリを冷却あるいは加熱するように設けても
良い。バッテリの一例として、Pb−酸電池である鉛蓄
電池を例に示したが、Ni−Cd電池、Al−空気電
池、Fe−空気電池、常温型Li電池、Ni−Zn電
池、Ni−Fe電池、Zn−Br電池など他のバッテリ
を適用しても良い。収容ケースおよび熱交換袋は複数の
バッテリを収容するように設けたが、1つのバッテリを
収容するように設けても良い。熱交換袋は、バッテリの
全周側面および底面に配置した例を示したが、バッテリ
の全周側面の一部(例えば、1面、2面、3面)のみに
配置したり、バッテリの底面のみに配置するなど、配置
箇所や配置面積は、使用されるバッテリの種類や使用条
件等によって変更可能なものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery heat exchanger for cooling or heating an on-vehicle battery, and more particularly, to controlling the temperature of a battery of an electric vehicle within an appropriate temperature range. It is suitable for use in a control device for controlling. 2. Description of the Related Art As a conventional technique for cooling or heating a vehicle-mounted battery, there is known a technique disclosed in Japanese Utility Model Laid-Open No. 57-161861. In this technique, a gap through which a heat exchange fluid passes is provided inside a side wall that covers a side surface of a battery in a housing case that houses a battery. The battery exchanges heat with the heat exchange fluid supplied to the gap via the member forming the storage case. [0003] The accommodation chamber for accommodating the battery of the accommodation case must be larger than the external dimensions of the battery in order to securely accommodate the battery. In order to prevent interference due to the difference in thermal expansion of the battery, the housing portion is provided larger than the external dimensions of the battery. That is, a gap (air layer) is generated between the storage case and the battery. When a gap is formed between the storage case and the battery, the heat transfer coefficient between the storage case and the battery rapidly decreases. In other words, the conventional heat exchange device for a battery has a problem that the heat exchange efficiency between the battery and the heat exchange fluid is poor because a gap is formed between the housing case and the battery. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchange device for a battery having high heat exchange efficiency between a battery and a heat exchange fluid. [0005] A heat exchange device for a battery according to the present invention includes a battery for supplying electric power to electric components of a vehicle, a housing case for housing the battery, the battery and the housing case. And a heat exchange bag provided in a deformable bag shape through which the heat exchange fluid passes. The heat exchange bag disposed between the battery and the housing case is provided so as to be deformable, so that even if the external dimensions and the external shape of the battery are slightly changed, the heat exchange bag is provided. Due to the internal pressure of the heat exchange fluid inside, the heat exchange bag and the battery come into close contact with each other. Then, the battery exchanges heat with the heat exchange fluid via the heat exchange bag in close contact with the battery. As described above, the heat exchange device for a battery according to the present invention has a heat exchange bag in close contact with the battery even when the external dimensions and the external shape of the battery slightly change. In addition, the heat exchange efficiency between the battery and the heat exchange fluid is higher than that of the related art. [0008] Next, based on an embodiment in which the battery heat exchange device of the present invention is used for a battery temperature control device for keeping the temperature of a battery used in an electric vehicle within an appropriate range, a drawing is shown. It will be described using FIG. 1 to 11 show an embodiment, FIG. 1 is a schematic sectional view of a heat exchanger for a battery, FIG. 2 is a top view showing a state where a battery is removed from FIG. 1, and FIG.
1 is a schematic configuration diagram of a battery temperature control device. The electric vehicle controls the inverter 2 to supply electric power of a battery 1 mounted on the vehicle (in this embodiment, mounted with a plurality of batteries 1 connected thereto) to a motor 3 (electrical component) to generate the motor 3 The vehicle is driven by the generated power. This electric vehicle is equipped with a battery temperature control device 5 for keeping the temperature of the battery 1 in an appropriate range. The battery temperature control device 5 also has a function of suppressing an increase in the temperature of the inverter 2 and the motor 3 that generate heat during operation. Although a lead storage battery (Pb-acid battery) whose optimum operating temperature is around normal temperature (20 to 75 ° C.) is shown as the battery 1 used in this embodiment, other batteries may be used. Note that the optimum operating temperature is a temperature determined to be optimum in consideration of the main characteristics of the battery 1, such as output, capacity, and life. The lead storage battery used in this embodiment has a long life within the range of 20 to 75 ° C., but the life is remarkably reduced outside the range. By setting the minimum operating temperature to 20 ° C. or higher, a decrease in output and a decrease in capacity do not occur. In this embodiment, the optimum operating temperature is set to 20 to
Another reason for setting the temperature to 75 ° C. will be described below. As the cold heat source for cooling the battery 1 having heat, outside air is used as described later. Since the temperature of the outside air is high (about 35 ° C.) in summer, the battery 1 cannot be cooled much. From the result, it is appropriate to set the upper limit of the optimum operating temperature to 75 ° C. Similarly, in a battery 1 such as a lead storage battery whose optimum operating temperature is near normal temperature, the heat generated by the battery 1 itself is not so high. Further, the heat generated by the heat generating members (the inverter 2 and the motor 3) is not so high. Considering these, in winter (outside temperature -20 to 0 ° C)
It is appropriate to set the lower limit of the optimum operating temperature to 20 ° C. The battery temperature control device 5 includes a fluid circulation path 6 through which a heat exchange fluid (for example, cooling water or heat exchange oil) for cooling and heating the battery 1 flows. The fluid circulation path 6 is connected to a battery heat exchange device 7 for keeping the battery 1 at an appropriate temperature, a radiator 8 for exchanging heat exchange fluid with air outside the vehicle (outside air), or the inverter 2 and the motor 3. . The fluid circulation path 6 is provided so that a plurality of circulation paths can be formed, and each branch path is provided with electromagnetic valves 11 to 15 for switching the flow direction of the heat exchange fluid. Further, the fluid circulation path 6 is provided with an electric pump 16 for circulating the heat exchange fluid in the fluid circulation path 6. The radiator 8 is provided with an electric radiator fan 17 for forcibly exchanging heat between the heat exchange fluid flowing through the radiator 8 and the outside air. The radiator 8
Is provided at the front of the vehicle and is provided such that the heat exchange fluid is cooled by the traveling wind of the vehicle. The battery heat exchange device 7 exchanges heat between the battery 1 and a heat exchange fluid. As shown in FIGS. 1 to 3, a plurality of storage chambers for independently storing a plurality of batteries 1 are provided. Storage case 22 provided with
, And a heat exchange bag 23 arranged so as to fill a gap between each battery 1 and a heat exchange fluid passes through the heat exchange bag 23. The storage case 22 is a resin or metal container having excellent corrosion resistance fixed to the vehicle.
Are formed in such a size that the heat exchange bag 23 can be arranged between each battery 1. The heat exchange bag 23 is made of a rubber material or a member in which a fiber material is embedded in a rubber material, and is made of a material having excellent durability, heat exchange fluidity, battery fluid resistance, and deformability. The heat exchange fluid flows through the inside of the bag, which is formed into a bag by abundant materials. Further, the heat exchange bags 23 arranged in the respective accommodation chambers 21 are connected to each other by the communication portions 24, and are provided so that the heat exchange fluid flows through the heat exchange bags 23 in the respective accommodation chambers 21. The communication section 24
Is disposed in a groove 25 provided on the upper side of the storage case 22 so that the heat exchange bag 23 can be pulled out of the storage case 22 with the battery 1 removed from the heat exchange bag 23 (see FIG. 2). Is provided. Both ends of the heat exchange bag 23 are connected to the fluid circulation path 6 via a joint 26. An example of the joint 26 is shown in FIG. 4 or FIG. The joint 26 shown in FIG. 4 covers a tube 23 a formed at the end of the heat exchange bag 23 around a pipe 27 of the fluid circulation path 6, and clamps around the tube 23 a.
It is caulked at 8. 5 has a male screw 27a at the end of the pipe 27 of the fluid circulation path 6, and a female screw 29 at the tube 23a at the end of the heat exchange bag 23.
The joining member 29 having a is provided by, for example, insert molding, and the male screw 27a of the pipe 27 and the female screw 29a of the heat exchange bag 23 are screwed. The heat exchange bag 23 is pressed into the storage chamber 21 of the storage case 22 by the weight of the battery 1 and is brought into close contact with the battery 1 and the storage case 22 by the internal pressure of the heat exchange fluid. Therefore, it is not necessary to fix the heat exchange bag 23 in particular. However, the battery 1 may be provided so as to be held in the housing case 22 by using fixing means. [Description of Control Circuit] The battery temperature control device 5 is controlled by a control circuit 30 shown in FIG. The control circuit 30 uses a microcomputer, and controls energization of the solenoid valves 11 to 15, the electric pump 16, and the radiator fan 17 according to various input signals. The control circuit 30 includes a battery temperature sensor 31 for detecting the temperature of the battery 1, a motor temperature sensor 32 for detecting the temperature of the motor 3, and an inverter for detecting the temperature of the inverter 2 in order to control the energization of the functional components. Various sensors such as a temperature sensor 33 are connected. An example of the control of the battery temperature control device 5 programmed in the control circuit 30 will be described with reference to the flowchart of FIG. First, when the motor 3 is operated (start), it is determined whether the temperature of the battery 1 is within the optimum temperature range.
It is determined whether the temperature is lower than the optimum temperature range or higher than the optimum temperature range (step S1). When the temperature of the battery 1 is within the optimum temperature range according to the result of the determination in step S1, the inverter 2
Then, it is determined whether the temperature of the motor 3 is higher than a predetermined temperature (for example, 60 ° C.) (step S2). If the determination result is NO, the solenoid valves 11 to 15 and the electric pump 1
6. All the energization of the radiator fan 17 is stopped (step S3), and the process returns. If the result of this determination is YES, the electric pump 16 and the radiator fan 1
7 and the energization control of the solenoid valves 11 to 15 so that the heat exchange fluid circulates through the electric pump 16 → radiator 8 → inverter 2 → motor 3 → electric pump 16 as shown in FIG. Form a circuit (Step S4
), Then return. If the result of the determination in step S1 indicates that the temperature of the battery 1 is lower than the optimum temperature range, it is determined whether or not the temperatures of the inverter 2 and the motor 3 are higher than a predetermined temperature (step S5). If the result of this determination is NO, the operation proceeds to step S3. If the determination result is YES, the electric pump 16 is operated, and the energization control of the solenoid valves 11 to 15 is performed. As shown in FIG. Motor 3 →
Heat exchange bag 23 of battery heat exchange device 7 → electric pump 1
6 is formed (step S6), and the process returns. If the result of the determination in step S1 indicates that the temperature of the battery 1 is higher than the optimum temperature range, it is determined whether or not the temperatures of the inverter 2 and the motor 3 are higher than a predetermined temperature (step S7). When the determination result is NO, the electric pump 16 and the radiator fan 17 are operated, and the energization of the solenoid valves 11 to 15 is controlled.
As shown in (1), a fluid circuit is formed in which the heat exchange fluid circulates through the electric pump 16 → radiator 8 → heat exchange bag 23 of the battery heat exchange device 7 → electric pump 16 (step S).
8), then return. The result of step S7 is
In the case of YES, the electric pump 16 and the radiator fan 17
And the solenoid valves 11 to 15 are energized to control the heat exchange fluid so that the heat exchange fluid is heated by the electric pump 16 → the radiator 8 → the inverter 2 → the motor 3 → the heat of the battery heat exchange device 7 as shown in FIG. A fluid circuit that circulates from the exchange bag 23 to the electric pump 16 is formed (step S9), and the process returns. [Operation of Embodiment] Heat Exchanger 7 for Battery
The operation of will be described. The heat exchange bag 23 of the battery heat exchange device 7 is provided so as to be deformable and is disposed between each battery 1 and the housing case 22, so that when the electric pump 16 operates, the heat pumped by the electric pump 16 It is inflated by the supply pressure of the replacement fluid, and is in close contact with the entire side and bottom surfaces of each battery 1, and as a result, the battery 1
3 so as to minimize the generation of an air layer. When the temperature of the battery 1 is lower than the optimum temperature range and the temperatures of the inverter 2 and the motor 3 are higher than predetermined temperatures, the operation of the battery temperature controller 5
The heat exchange fluid heated by the inverter 2 and the motor 3 is supplied to the heat exchange bag 23. And the heat exchange bag 23
Is in close contact with the entire peripheral side surface and bottom surface of each battery 1 as described above, so that the heat exchange fluid flowing through the heat exchange bag 23 and the battery 1 exchange heat at a high heat exchange rate, The battery 1 can be quickly heated to an optimum temperature range. Conversely, when the temperature of the battery 1 is higher than the optimum temperature range, the heat exchange fluid cooled by the radiator 8 is supplied to the heat exchange bag 23. Since the heat exchange bag 23 is in close contact with the entire peripheral side surface and bottom surface of each battery 1, the heat exchange fluid flowing through the heat exchange bag 23 and the battery 1 exchange heat at a high heat exchange rate. Thus, each battery 1 can be quickly cooled to an optimum temperature range. [Effects of Embodiment] Heat exchange device 7 for battery
As described in the above operation, the heat exchange bag 23 expands due to the operation of the electric pump 16 and comes into close contact with the entire peripheral side surface and bottom surface of each battery 1, and as a result, the battery 1 and the heat exchange bag 2
3 so as to minimize the generation of an air layer. For this reason, even if the external dimensions and the external shape of the battery 1 slightly change due to a change in the manufacturer or the like, the heat exchange bag 23 is in close contact with the battery 1, so that the heat exchange efficiency between the battery 1 and the heat exchange fluid is very low. high. Further, when the demand for quickly exchanging heat between the battery 1 and the heat exchange fluid is large, that is, when the flow rate of the heat exchange fluid is large, the adhesive strength of the heat exchange bag 23 with the battery 1 increases, and the heat exchange bag 23 exchanges heat with the battery 1. The amount of heat transfer with the working fluid increases. When the electric pump 16 is stopped, the heat exchange bag 23
Is small, the adhesion between the battery 1 and the heat exchange bag 23 is reduced. For this reason, the battery 1 is
And the battery 1 can be easily inserted into the heat exchange bag 23. That is, the replacement work of the battery 1 can be easily performed. Since the battery 1 is pressed by the deformable heat exchange bag 23 and held in the housing case 22, vibration of the vehicle is reduced by the heat exchange bag 23. For this reason, the effect of protecting the battery 1 from vibration and impact of the vehicle is also exerted. Since the heat exchange fluid is covered with the heat exchange bag 23 and the heat exchange fluid and the battery 1 are isolated, the safety of the battery 1 that generates a large current can be ensured. [Modification] When the battery temperature is within an appropriate range (when the upper limit or lower limit of the appropriate range is not reached)
However, it may be provided to cool or heat the battery. As an example of a battery, a lead storage battery which is a Pb-acid battery has been described as an example, but a Ni-Cd battery, an Al-air battery, an Fe-air battery, a room temperature Li battery, a Ni-Zn battery, a Ni-Fe battery, Another battery such as a Zn-Br battery may be applied. Although the storage case and the heat exchange bag are provided to store a plurality of batteries, they may be provided to store one battery. Although the example in which the heat exchange bags are arranged on the entire peripheral side surface and the bottom surface of the battery is shown, the heat exchange bag is disposed only on a part of the peripheral surface of the battery (for example, one, two, or three surfaces) or on the bottom surface of the battery. The location and area of the battery can be changed depending on the type of the battery used, the operating conditions, and the like, such as the location of the battery.

【図面の簡単な説明】 【図1】バッテリ用熱交換装置の概略断面図である。 【図2】図1からバッテリを取り除いた状態を示す上面
図である。 【図3】バッテリ温度制御装置の概略構成図である。 【図4】流体循環路と熱交換袋との接続部分の継手の断
面図である。 【図5】流体循環路と熱交換袋との接続部分の継手の断
面図である。 【図6】制御回路のブロック図である。 【図7】制御回路の作動を示すフローチャートである。 【図8】バッテリ温度制御装置の作動説明図である。 【図9】バッテリ温度制御装置の作動説明図である。 【図10】バッテリ温度制御装置の作動説明図である。 【図11】バッテリ温度制御装置の作動説明図である。 【符号の説明】 1 バッテリ 3 モータ(電気部品) 7 バッテリ用熱交換装置 22 収容ケース 23 熱交換袋
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a battery heat exchange device. FIG. 2 is a top view showing a state where a battery is removed from FIG. 1; FIG. 3 is a schematic configuration diagram of a battery temperature control device. FIG. 4 is a sectional view of a joint at a connection portion between a fluid circulation path and a heat exchange bag. FIG. 5 is a sectional view of a joint at a connection portion between a fluid circulation path and a heat exchange bag. FIG. 6 is a block diagram of a control circuit. FIG. 7 is a flowchart showing the operation of the control circuit. FIG. 8 is an operation explanatory diagram of the battery temperature control device. FIG. 9 is a diagram illustrating the operation of the battery temperature control device. FIG. 10 is a diagram illustrating the operation of the battery temperature control device. FIG. 11 is an operation explanatory diagram of the battery temperature control device. [Description of Signs] 1 Battery 3 Motor (electric parts) 7 Battery heat exchange device 22 Housing case 23 Heat exchange bag

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/50 B60K 1/04 B60R 16/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/50 B60K 1/04 B60R 16/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】(a)車両の電気部品に電力を供給するバ
ッテリと、 (b)このバッテリを収容する収容ケースと、 (c)前記バッテリと前記収容ケースとの間に配置さ
れ、内部に熱交換用流体が通過する変形可能な袋状に設
けられた熱交換袋と を備えるバッテリ用熱交換装置。
(57) Claims: (a) a battery for supplying power to an electric component of a vehicle; (b) a housing case for housing the battery; (c) the battery and the housing case And a heat exchange bag provided in a deformable bag shape through which the heat exchange fluid passes.
JP21781293A 1993-09-01 1993-09-01 Heat exchange device for battery Expired - Fee Related JP3422048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21781293A JP3422048B2 (en) 1993-09-01 1993-09-01 Heat exchange device for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21781293A JP3422048B2 (en) 1993-09-01 1993-09-01 Heat exchange device for battery

Publications (2)

Publication Number Publication Date
JPH0773908A JPH0773908A (en) 1995-03-17
JP3422048B2 true JP3422048B2 (en) 2003-06-30

Family

ID=16710131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21781293A Expired - Fee Related JP3422048B2 (en) 1993-09-01 1993-09-01 Heat exchange device for battery

Country Status (1)

Country Link
JP (1) JP3422048B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089750A1 (en) * 2002-02-19 2005-04-28 Chin-Yee Ng Temperature control apparatus and method for high energy electrochemical cells
JP2004146237A (en) * 2002-10-25 2004-05-20 Denso Corp Battery temperature control device
JP3695659B2 (en) 2003-04-17 2005-09-14 株式会社東京機械製作所 Rotary press having a printing unit in which printing means are stacked
JP5168853B2 (en) * 2006-08-23 2013-03-27 トヨタ自動車株式会社 Power system
JP2009054297A (en) * 2007-08-23 2009-03-12 Toshiba Corp Battery pack
JP5347558B2 (en) * 2009-02-23 2013-11-20 トヨタ自動車株式会社 In-vehicle battery heating device
DE102010005097A1 (en) * 2010-01-20 2011-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Temperature-controlled battery cell arrangement, has retaining pockets directly or indirectly connected with one another, such that passage channel is formed between adjacent retaining pockets, where medium flows through channel
US8704401B2 (en) 2010-03-03 2014-04-22 Honda Motor Co., Ltd. Vehicle electric power supply system
JP5548484B2 (en) * 2010-03-03 2014-07-16 本田技研工業株式会社 Vehicle power supply system
KR20130044309A (en) * 2010-07-30 2013-05-02 파나소닉 주식회사 Battery module
JP5422596B2 (en) * 2011-04-22 2014-02-19 株式会社日立製作所 Secondary battery module and secondary battery pack
JPWO2013047430A1 (en) * 2011-09-30 2015-03-26 三洋電機株式会社 Assembled battery
JP2013218984A (en) * 2012-04-12 2013-10-24 Kayaba Ind Co Ltd Temperature control system, and drive system of hybrid construction machine provided with temperature control system
DE102013200774A1 (en) * 2013-01-18 2014-07-24 Robert Bosch Gmbh Device for controlling temperature of battery module of battery system for e.g. electric vehicle, has chamber formed and filled with coolant such that device expands in region of contact surface with inner pressure rising in chamber
US9312571B2 (en) * 2014-03-19 2016-04-12 Ford Global Technologies, Llc Traction battery thermal plate with flexible bladder
US10899212B2 (en) 2015-02-19 2021-01-26 Honda Motor Co., Ltd. Vehicle power supply system and cooling circuit
WO2017065762A1 (en) * 2015-10-14 2017-04-20 Covestro Llc Phosphazene modified polycarbonate molded battery cooling device
JP2017128297A (en) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 Hybrid vehicle
CN105576321B (en) * 2016-03-02 2019-03-12 宁德时代新能源科技股份有限公司 Battery pack thermal management system
EP3449527A1 (en) * 2016-04-25 2019-03-06 Telefonaktiebolaget LM Ericsson (PUBL) A battery and a battery thermal arrangement
JP7378204B2 (en) * 2018-11-13 2023-11-13 日立Astemo株式会社 temperature regulation system
CN110323381B (en) * 2019-06-18 2022-08-05 蜂巢能源科技有限公司 Casing, power battery package and vehicle
JP7431630B2 (en) * 2020-03-17 2024-02-15 日立Astemo株式会社 Electric motor cooling control device
WO2023133783A1 (en) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing device therefor, battery, and electric apparatus
CN114824565B (en) * 2022-05-13 2023-03-21 合肥召洋电子科技有限公司 New forms of energy battery uses supplementary heat dissipation battery package frock

Also Published As

Publication number Publication date
JPH0773908A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
JP3422048B2 (en) Heat exchange device for battery
JP3114366B2 (en) Battery temperature control device
JP7094908B2 (en) Battery heating device for hybrid vehicles
CN101633306B (en) Vehicle HVAC and RESS thermal management
US6840050B2 (en) Thermal jacket for battery
JP7094907B2 (en) Battery temperature riser
US5432026A (en) Cooling system for high temperature battery
JPH11204151A (en) Battery cooling device of electric vehicle
CN106299411B (en) Fuel cell thermal management system and vehicle with same
CN112238727B (en) Thermal management system for vehicle and integrated thermal management module
JP2019040731A (en) Battery temperature adjustment device and external heat source-supplying device
KR20200124340A (en) System and method of managing a battery for eco-friendly vehicle
CN112952277A (en) Battery module assembly with integrated thermal management system and battery management system
JP2003175720A (en) On-vehicle air-conditioning system
CN108631021A (en) battery temperature management system
KR102693383B1 (en) Electric or hybrid vehicle having a cooling system for cooling a removable battery module
CN210000061U (en) Thermal management system of electric automobile
KR20210147145A (en) Coolant heater module apparatus
KR20190051234A (en) Motor housing heating / cooling device and automobile having same
JP2003527994A (en) Heating system for heating the interior of a car
CN111801236B (en) Vehicle with at least one electrochemical energy store
CN210851945U (en) Hybrid electric vehicle and thermal management system thereof
CN221315827U (en) Liquid cooling fills electric pile
CN221315728U (en) Cooling device
CN115366658B (en) Vehicle control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees