JP2004146237A - Battery temperature control device - Google Patents

Battery temperature control device Download PDF

Info

Publication number
JP2004146237A
JP2004146237A JP2002310818A JP2002310818A JP2004146237A JP 2004146237 A JP2004146237 A JP 2004146237A JP 2002310818 A JP2002310818 A JP 2002310818A JP 2002310818 A JP2002310818 A JP 2002310818A JP 2004146237 A JP2004146237 A JP 2004146237A
Authority
JP
Japan
Prior art keywords
battery
temperature
air
fluid
management device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310818A
Other languages
Japanese (ja)
Inventor
Koji Nonoyama
野々山 浩司
Yoshimitsu Inoue
井上 美光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002310818A priority Critical patent/JP2004146237A/en
Publication of JP2004146237A publication Critical patent/JP2004146237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the energy consumption of a battery temperature control device. <P>SOLUTION: Cooling air is circulated while making a circulation path composed of a battery case 3 and a reflux duct 6 as a closed circuit. A cooling capacity needed for a cooler 4 may be equivalent to a calorific value in the battery 2. Therefore, while suppressing an increase in energy consumption of a battery temperature device 1, the battery 2 can be cooled surely. Furthermore, in the case vehicle on outdoor air temperature is lower than an air temperature after finishing heat exchange with the battery 2, the battery 2 is cooled by using vehicle outdoor air. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両に搭載されたバッテリの温度を管理するバッテリ温度管理装置に関するもので、走行用の駆動源として内燃機関と電動モータとを備えるハイブリッド自動車に適用して有効である。
【0002】
【従来の技術】
従来、車両用空調装置から車室内に吹き出す空気の一部をバッテリに吹き付けることによりバッテリの温度を調節していた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−162867号公報
【0004】
【発明が解決しようとする課題】
ところで、現在、実用化されているハイブリッド自動車用のバッテリは、その温度を約40℃に保持することが望ましく、電池温度が40℃を超えると、寿命が低下してしまう。
【0005】
一方、ハイブリッド自動車の走行能力を向上させには、電動モータの出力を増大させる必要があるが、電動モータの出力を増大させると、これに呼応してバッテリの発熱量が増大してしまう。
【0006】
そして、このバッテリの発熱量増大といった問題に対しては、バッテリに吹き付ける空気の温度を低下させる、又はバッテリに吹き付ける空気の風量を増大させる等の手段が考えられる。
【0007】
しかし、特許文献1において、バッテリに吹き付ける空気の温度を低下させるには、車室内に吹き出す空気の温度を低下させるを必要があるので、車室内の空調感を悪化させる可能性がある。また、バッテリに吹き付ける空気の風量を増大させると、送風騒音が増大してしまう。
【0008】
これに対して、バッテリ冷却専用の冷却器を設けるとともに、車室内から取り込んだ空気をこの冷却器にて冷却してバッテリを冷却するといった方法が考えられるが、この方法では、後述するように、バッテリの発熱量より大きな冷凍能力を必要とするので、バッテリ冷却専用の冷却器を稼動させるに必要な動力が増大してしまう。
【0009】
本発明は、上記点に鑑み、第1には、従来と異なる新規なバッテリ温度管理装置を提供し、第2には、バッテリ温度管理装置のエネルギ消費量を抑制することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、車両に搭載されたバッテリ(2)と流体とを熱交換させることによりバッテリ(2)の温度を管理するバッテリ温度管理装置であって、バッテリ(2)に流体を循環させるポンプ手段(5)と、バッテリ(2)に供給する流体の温度を調節する温度調節手段(4)と、バッテリ(2)と熱交換を終えた流体を温度調節手段(4)の流体入口側に戻す還流ダクト手段(6)とを備えることを特徴とする。
【0011】
これにより、流体の循環経路を閉回路とすることができるので、温度調節手段(4)で必要とする能力はバッテリ(2)で必要とする分でよい。したがって、バッテリ温度管理装置のエネルギ消費量が増大することを抑制しながら、バッテリ(2)の温度を適正温度とすることができる。
【0012】
請求項2に記載の発明では、流体として空気が用いられ、流体の循環経路途中には、循環経路外から流体を循環経路に取り込むため取込口(11)が設けられていることを特徴とするものである。
【0013】
請求項3に記載の発明では、取込口(11)は、車室外と連通していることを特徴とするものである。
【0014】
請求項4に記載の発明では、取込口(11)から車室外空気を取り込んでバッテリ(2)に供給する場合と取込口(11)を閉じて循環経路を閉回路として空気を循環させる場合とを切り替える切替手段(13)を有することを特徴とするものである。
【0015】
請求項5に記載の発明では、バッテリ(2)を冷却する場合には、バッテリ(2)と熱交換を終えた空気の温度と車室外空気の温度とを比較し、温度が低い方の空気をバッテリ(2)に供給することを特徴とする。
【0016】
これにより、バッテリ温度管理装置のエネルギ消費量が増大することを抑制しながら、バッテリ(2)を確実に冷却することができる。
【0017】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0018】
【発明の実施の形態】
図1は本実施形態に係るバッテリ温度管理装置の模式図であり、図1中、一点鎖線で囲まれた機器がバッテリ温度管理装置1であり、二点差線で囲まれた部位が車両用空調装置20である。
【0019】
バッテリ温度管理装置1は、走行用電動モータに電力を供給するバッテリ2、バッテリ2を収納するバッテリケース3、バッテリケース3内のうちバッテリ2より空気流れ上流側に配置された冷却器4、バッテリ冷却用空気をバッテリ2に循環させるポンプ手段をなす送風機5、バッテリ2と熱交換を終えた空気を冷却器4の空気流れ上流側に戻す還流ダクト6等からなるものである。
【0020】
また、冷却器4は、低圧冷媒を蒸発させることにより吸熱能力(冷凍能力)を発生させる蒸気圧縮式冷凍機の低圧側熱交換器であり、本実施形態では、車両用空調装置20用の圧縮機21で圧縮された冷媒を減圧器7にて減圧した後、冷却器4に導いて蒸発させ、吸熱した熱を車両用空調装置20用の放熱器22にて車室外空気(大気)中に放熱する。
【0021】
なお、本実施形態では、減圧器7として開度が固定されたキャピラリーチューブやオリフィス等の固定絞りを採用しているが、温度式膨脹弁等のように、冷却器4出口側の冷媒過熱度が所定値となるように絞り開度を可変制御するものであってもよい。
【0022】
電磁弁8は車両用空調装置20から冷却器4に供給される冷媒の通路の連通状態を制御するバルブであり、第1温度センサ9は冷却器4を通過直後の空気温度、つまり冷却器4の温度を検出する温度検出手段であり、第2温度センサ10はバッテリ2と熱交換を終えた空気の温度を検出する温度検出手段である。
【0023】
また、外気導入口11は、バッテリ冷却用空気の循環経路、つまりバッテリケース3に車出外空気を導入する取込口であり、排出口12はバッテリ2と熱交換を終えた空気を車室外(本実施形態では、トランクルーム)に排出するための開口部である。
【0024】
冷却空気切替ドア13は、外気導入口11から車室外空気を取り込んでバッテリ2に供給する場合と外気導入口11を閉じてバッテリケース3及び還流ダクト6からなる循環経路を閉回路として空気を循環させる場合とを切り替える切替手段であり、排出ドア14は排出口12を開閉して、バッテリ2と熱交換を終えた空気を車室外に排出する場合とバッテリ2と熱交換を終えた空気を送風機5の吸入側に戻す場合とを切り替えるものである。
【0025】
そして、第1、2温度センサ9、10の検出温度は電子制御装置に入力されており、送風機5、電磁弁8、冷却空気切替ドア13及び排出ドア14の作動は電子制御装置により制御されている。
【0026】
なお、蒸発器23は、空調ケーシング24内に配置されて車室内に吹き出す空気を冷却する蒸気圧縮式冷凍機の低圧側熱交換器であり、ヒータ25はエンジン等の車両で発生する廃熱を熱源として車室内に吹き出す空気を加熱するものである。
【0027】
また、エアミックスドア26はヒータ25を迂回して流れる冷風とヒータ25を通過する温風との風量割合を調節して室内に吹き出す空気の温度を調節するもので、送風機27は室内に吹き出す空気を送風するものである。
【0028】
減圧器28は蒸発器23に流入する冷媒を減圧するもので、本実施形態では、蒸発器23出口側の冷媒過熱度が所定値となるように絞り開度を可変制御する温度式膨脹弁を採用している。電磁弁29は蒸発器23に供給する冷媒の通路の連通状態を制御するバルブである。
【0029】
なお、本実施形態では、車両用空調措置20は車両前方側に搭載され、バッテリ温度管理装置1は後席側に搭載されており、圧縮機21は走行用電動モータとは別の電動モータにより駆動されている。
【0030】
次に、本実施形態に係るバッテリ温度管理装置の特徴的作動をバッテリ2を冷却する場合を例に述べる。
【0031】
1.再循環冷却モード(図1参照)
この冷却モードは、第2温度センサ10の検出温度、つまりバッテリ2と熱交換を終えた空気の温度が車室外空気温度より低い場合に実行されるものである。
【0032】
具体的には、冷却空気切替ドア13にて外気導入口11を閉じ、かつ、排出ドア14にて排出口12を閉じてバッテリケース3及び還流ダクト6からなる循環経路を閉回路として空気を循環させるとともに、電磁弁8を開いて冷却器4で冷凍能力を発生させる。
【0033】
なお、電磁弁8の開度(本実施形態では、ON−OFFのデューティ比)及び送風機5は、第1温度センサ9の検出温度、つまり冷却器4を通過直後の空気温度がバッテリ2を所定温度(例えば、40℃)に保持する必要な温度であって、最悪、フロスト現象が発生しない温度以上となるように制御される。
【0034】
また、図示しない電子制御装置によて必要な冷却風温度を計算し、平均温度が前記所定温度となるように制御してもよい。
【0035】
2.外気循環冷却モード(図2参照)
この冷却モードは、第2温度センサ10の検出温度が車室外空気温度より以上の場合に実行されるものである。
【0036】
具体的には、冷却空気切替ドア13にて外気導入口11を開き、かつ、排出ドア14にて排出口12を開いて外気導入口11から車室外空気を取り込んでバッテリ2に供給し、バッテリ2と熱交換を終えた空気を車室外に排出する。
【0037】
なお、電磁弁8の開度、つまり冷却器4の冷却能力は、バッテリ2の発熱量を考量して決定される。すなわち、車出外空気の温度にて十分にバッテリ2を冷却することができるときは電磁弁8を閉じ、車出外空気の温度にてバッテリ2を十分に冷却できないときは、バッテリ2の発熱量に応じて電磁弁8の開度を制御する。
【0038】
因みに、本実施形態では、バッテリ2から放電される電流とバッテリ2の内部抵抗とからバッテリ2の発熱量を推定する。
【0039】
次に、本実施形態の作用効果を述べる。
【0040】
例えば、バッテリの発熱量が500Wのバッテリ2の温度を40℃に維持するために15℃の空気が150m/h必要とする場合において、温度が30℃、相対湿度が40%の空気を150m/h車室内空気から吸い込んで15℃まで冷却するに必要な冷却能力は約700Wである。
【0041】
したがって、室内空気を吸い込み、その吸い込んだ空気を冷却してバッテリ2に供給する方法では、500Wの発熱量を冷却するのに700Wの冷却能力を必要とする(図3参照)。
【0042】
これに対して、本実施形態の再循環冷却モードでは、バッテリケース3及び還流ダクト6からなる循環経路を閉回路として空気を循環させるので、温度調節手段をなす冷却器4で必要とする冷却能力は500Wでよい。したがって、バッテリ温度管理装置1のエネルギ消費量が増大することを抑制しながら、バッテリ2を確実に冷却することができる。
【0043】
また、本実施形態では、バッテリケース3及び還流ダクト6からなる循環経路を閉回路として空気を循環させるので、前席側に搭載された空調装置20から冷風を導くダクトを設ける必要がないので、車室内スペースが縮小してしまうことを未然に防止できる。
【0044】
また、バッテリ2を冷却する場合には、バッテリ2と熱交換を終えた空気の温度と車室外空気の温度とを比較し、温度が低い方の空気をバッテリ2に供給するので、バッテリ温度管理装置1のエネルギ消費量が増大することを抑制しながら、バッテリ2を確実に冷却することができる。
【0045】
(その他の実施形態)
上述の実施形態では、本発明に係るバッテリ温度管理装置を主にバッテリ2の冷却に使用したが、本発明はこれに限定されるものではなく、バッテリ2を加熱する場合にも適用することができる。なお、この場合、圧縮機21から吐出した高圧冷媒を冷却器4に導入してもよい。
【0046】
そして、バッテリ2を加熱する場合には、、バッテリ2と熱交換を終えた空気の温度と車室外空気の温度とを比較し、温度が高い方の空気をバッテリ2に供給することが望ましい。
【0047】
また、上述の実施形態では、電磁弁8にて冷却器4の能力を調節したが、減圧器7を電気式の膨脹弁として電磁弁8を廃止してもよい。
【0048】
また、上述の実施形態では、空調装置20の圧縮機21及び放熱器22をバッテリ温度管理装置用に用いたが、バッテリ温度管理装置専用の圧縮機及び放熱器を設けてもよい。
【0049】
また、上述の実施形態では、バッテリ温度管理装置は後席側に設けられていたが、本発明はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の実施形態に係るバッテリ温度管理装置の模式図である。
【図2】本発明の実施形態に係るバッテリ温度管理装置の作動説明図である。
【図3】従来の技術に係るバッテリ温度管理装置の問題点を説明するための説明図である。
【符号の説明】
1…バッテリ温度管理装置、2…バッテリ、3…バッテリケース、
4…冷却器、5…送風機、6…還流ダクト、7…減圧器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery temperature management device that manages the temperature of a battery mounted on a vehicle, and is effective when applied to a hybrid vehicle including an internal combustion engine and an electric motor as driving sources for traveling.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, the temperature of a battery has been adjusted by blowing a part of air blown into a vehicle compartment from a vehicle air conditioner to the battery (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 10-162867
[Problems to be solved by the invention]
Meanwhile, it is desirable that the temperature of a battery for a hybrid vehicle that is currently in practical use be maintained at about 40 ° C., and when the battery temperature exceeds 40 ° C., the life is shortened.
[0005]
On the other hand, it is necessary to increase the output of the electric motor in order to improve the running performance of the hybrid vehicle. However, when the output of the electric motor is increased, the calorific value of the battery is correspondingly increased.
[0006]
In order to solve the problem such as an increase in the amount of heat generated by the battery, it is conceivable to reduce the temperature of the air blown to the battery or increase the amount of air blown to the battery.
[0007]
However, in Patent Literature 1, in order to lower the temperature of the air blown to the battery, it is necessary to lower the temperature of the air blown into the vehicle cabin, which may deteriorate the air conditioning feeling in the vehicle cabin. Further, when the air volume of the air blown to the battery is increased, the blowing noise increases.
[0008]
On the other hand, a method of providing a cooler dedicated to battery cooling and cooling the battery by cooling air taken in from the vehicle interior with this cooler can be considered. In this method, as described later, Since a refrigerating capacity greater than the calorific value of the battery is required, the power required to operate the battery-cooling-only cooler increases.
[0009]
SUMMARY OF THE INVENTION In view of the above, the present invention provides, firstly, a novel battery temperature management device different from the conventional one, and secondly, to suppress the energy consumption of the battery temperature management device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a battery temperature for managing the temperature of a battery (2) by exchanging heat with a fluid mounted on a vehicle (2) mounted on a vehicle. A management device, comprising: a pump means (5) for circulating a fluid through the battery (2); a temperature adjusting means (4) for regulating the temperature of the fluid supplied to the battery (2); and heat exchange with the battery (2). And a return duct means (6) for returning the fluid after completion to the fluid inlet side of the temperature control means (4).
[0011]
Thereby, the circulation path of the fluid can be a closed circuit, so that the capacity required by the temperature control means (4) is sufficient for the battery (2). Therefore, the temperature of the battery (2) can be set to an appropriate temperature while suppressing an increase in energy consumption of the battery temperature management device.
[0012]
The invention according to claim 2 is characterized in that air is used as the fluid, and an intake (11) is provided in the middle of the circulation path of the fluid for taking the fluid into the circulation path from outside the circulation path. Is what you do.
[0013]
According to a third aspect of the present invention, the intake port (11) communicates with the outside of the vehicle compartment.
[0014]
According to the fourth aspect of the present invention, the case where air outside the vehicle compartment is taken in from the intake port (11) and supplied to the battery (2) or the case where the intake port (11) is closed to circulate the air by using a circulation path as a closed circuit. It has a switching means (13) for switching between cases.
[0015]
According to the fifth aspect of the invention, when cooling the battery (2), the temperature of the air that has completed heat exchange with the battery (2) is compared with the temperature of the outside air of the vehicle, and the temperature of the air with the lower temperature is compared. Is supplied to the battery (2).
[0016]
Thus, the battery (2) can be reliably cooled while suppressing an increase in energy consumption of the battery temperature management device.
[0017]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram of a battery temperature management device according to the present embodiment. In FIG. 1, a device surrounded by a dashed line is a battery temperature management device 1, and a portion surrounded by a two-dot line is a vehicle air-conditioning device. The device 20.
[0019]
The battery temperature management device 1 includes a battery 2 for supplying electric power to the traveling electric motor, a battery case 3 for housing the battery 2, a cooler 4 in the battery case 3 that is arranged on the airflow upstream side of the battery 2, It comprises a blower 5 serving as a pump means for circulating cooling air to the battery 2, a return duct 6 for returning the air, which has exchanged heat with the battery 2, to the air flow upstream of the cooler 4, and the like.
[0020]
The cooler 4 is a low-pressure side heat exchanger of a vapor compression refrigerator that generates an endothermic capacity (refrigeration capacity) by evaporating the low-pressure refrigerant. In the present embodiment, the cooler 4 is a compressor for the vehicle air conditioner 20. After the refrigerant compressed by the air conditioner 21 is depressurized by the decompressor 7, the refrigerant is guided to the cooler 4 to evaporate, and the absorbed heat is converted into the outside air (atmosphere) by the radiator 22 for the vehicle air conditioner 20. Dissipate heat.
[0021]
In the present embodiment, a fixed throttle such as a capillary tube or an orifice having a fixed opening is adopted as the decompressor 7, but the degree of superheat of the refrigerant at the outlet side of the cooler 4, such as a thermal expansion valve, is used. May be variably controlled such that the predetermined value is obtained.
[0022]
The solenoid valve 8 is a valve that controls the communication state of the passage of the refrigerant supplied from the vehicle air conditioner 20 to the cooler 4. The first temperature sensor 9 is an air temperature immediately after passing through the cooler 4, that is, the cooler 4. The second temperature sensor 10 is a temperature detecting means for detecting the temperature of the air which has exchanged heat with the battery 2.
[0023]
The outside air introduction port 11 is a circulation path of battery cooling air, that is, an intake port for introducing outside air from the vehicle to the battery case 3, and the discharge port 12 sends air after heat exchange with the battery 2 to the outside of the vehicle ( In the present embodiment, it is an opening for discharging to a trunk room).
[0024]
The cooling air switching door 13 circulates air in a case where air outside the vehicle compartment is taken in from the outside air inlet 11 and supplied to the battery 2, and in a case where the outside air inlet 11 is closed and a circulation path including the battery case 3 and the return duct 6 is closed. The discharge door 14 opens and closes the discharge port 12 to discharge the air that has been heat-exchanged with the battery 2 to the outside of the vehicle cabin or the blower that has completed the heat exchange with the battery 2. 5 is switched back to the suction side.
[0025]
The detected temperatures of the first and second temperature sensors 9 and 10 are input to the electronic control unit, and the operations of the blower 5, the solenoid valve 8, the cooling air switching door 13 and the discharge door 14 are controlled by the electronic control unit. I have.
[0026]
The evaporator 23 is a low-pressure side heat exchanger of a vapor compression refrigerator that cools air blown into the passenger compartment by being disposed in the air conditioning casing 24, and the heater 25 generates waste heat generated by the vehicle such as an engine. It heats the air blown into the passenger compartment as a heat source.
[0027]
The air mix door 26 adjusts the ratio of the amount of cold air flowing around the heater 25 to the amount of warm air passing through the heater 25 to adjust the temperature of the air blown into the room. Is to blow air.
[0028]
The decompressor 28 decompresses the refrigerant flowing into the evaporator 23. In the present embodiment, the decompressor 28 includes a temperature-type expansion valve that variably controls the throttle opening so that the refrigerant superheat degree at the outlet side of the evaporator 23 becomes a predetermined value. Has adopted. The solenoid valve 29 is a valve that controls the communication state of the passage of the refrigerant supplied to the evaporator 23.
[0029]
In this embodiment, the vehicle air conditioner 20 is mounted on the front side of the vehicle, the battery temperature management device 1 is mounted on the rear seat side, and the compressor 21 is driven by an electric motor different from the traveling electric motor. Being driven.
[0030]
Next, the characteristic operation of the battery temperature management device according to the present embodiment will be described by taking a case where the battery 2 is cooled as an example.
[0031]
1. Recirculation cooling mode (see Fig. 1)
This cooling mode is executed when the temperature detected by the second temperature sensor 10, that is, the temperature of the air that has exchanged heat with the battery 2 is lower than the outside air temperature.
[0032]
Specifically, the outside air inlet 11 is closed by the cooling air switching door 13, and the outlet 12 is closed by the discharge door 14, and air is circulated using the circulation path including the battery case 3 and the return duct 6 as a closed circuit. At the same time, the electromagnetic valve 8 is opened, and the cooler 4 generates a refrigeration capacity.
[0033]
The opening degree of the solenoid valve 8 (in this embodiment, the ON-OFF duty ratio) and the temperature detected by the first temperature sensor 9, that is, the air temperature immediately after passing through the cooler 4, determine the battery 2. The temperature is controlled to be a temperature required to be maintained at a temperature (for example, 40 ° C.) and, in the worst case, a temperature at which the frost phenomenon does not occur.
[0034]
Further, a necessary cooling air temperature may be calculated by an electronic control unit (not shown), and the average cooling temperature may be controlled to be the predetermined temperature.
[0035]
2. Outside air circulation cooling mode (see Fig. 2)
This cooling mode is executed when the temperature detected by the second temperature sensor 10 is higher than the outside air temperature.
[0036]
Specifically, the outside air inlet 11 is opened by the cooling air switching door 13, and the outlet 12 is opened by the discharge door 14, air outside the vehicle compartment is taken in from the outside air inlet 11, and supplied to the battery 2. The air that has completed heat exchange with 2 is discharged out of the passenger compartment.
[0037]
The opening of the solenoid valve 8, that is, the cooling capacity of the cooler 4 is determined in consideration of the amount of heat generated by the battery 2. That is, when the battery 2 can be sufficiently cooled at the temperature of the outside air, the solenoid valve 8 is closed, and when the battery 2 cannot be sufficiently cooled at the temperature of the outside air, the amount of heat generated by the battery 2 is reduced. The opening of the solenoid valve 8 is controlled accordingly.
[0038]
Incidentally, in the present embodiment, the calorific value of the battery 2 is estimated from the current discharged from the battery 2 and the internal resistance of the battery 2.
[0039]
Next, the operation and effect of the present embodiment will be described.
[0040]
For example, in a case where 150 m 3 / h of air at 15 ° C. is required to maintain the temperature of the battery 2 having a calorific value of 500 W of 40 ° C. at 40 ° C., air having a temperature of 30 ° C. and a relative humidity of 40% is supplied at 150 m 3 / h. The cooling capacity required for cooling the air to 15 ° C. from the air in the passenger compartment is about 700 W / h.
[0041]
Therefore, in the method of sucking room air and cooling the sucked air and supplying it to the battery 2, a cooling capacity of 700 W is required to cool a heat value of 500 W (see FIG. 3).
[0042]
On the other hand, in the recirculation cooling mode of the present embodiment, air is circulated by using a circulation path including the battery case 3 and the return duct 6 as a closed circuit, so that the cooling capacity required by the cooler 4 serving as a temperature control means is provided. May be 500W. Therefore, the battery 2 can be reliably cooled while suppressing an increase in energy consumption of the battery temperature management device 1.
[0043]
Further, in the present embodiment, since air is circulated by using a circulation path including the battery case 3 and the return duct 6 as a closed circuit, there is no need to provide a duct for guiding cool air from the air conditioner 20 mounted on the front seat side. It is possible to prevent the vehicle interior space from being reduced.
[0044]
When cooling the battery 2, the temperature of the air that has been subjected to the heat exchange with the battery 2 is compared with the temperature of the outside air, and the lower temperature air is supplied to the battery 2. The battery 2 can be reliably cooled while suppressing an increase in the energy consumption of the device 1.
[0045]
(Other embodiments)
In the above-described embodiment, the battery temperature management device according to the present invention is mainly used for cooling the battery 2. However, the present invention is not limited to this, and may be applied to the case where the battery 2 is heated. it can. In this case, the high-pressure refrigerant discharged from the compressor 21 may be introduced into the cooler 4.
[0046]
When heating the battery 2, it is desirable to compare the temperature of the air that has completed heat exchange with the battery 2 and the temperature of the outside air, and supply the air with the higher temperature to the battery 2.
[0047]
In the above-described embodiment, the capacity of the cooler 4 is adjusted by the solenoid valve 8, but the solenoid valve 8 may be abolished by using the decompressor 7 as an electric expansion valve.
[0048]
In the above embodiment, the compressor 21 and the radiator 22 of the air conditioner 20 are used for the battery temperature management device. However, a compressor and a radiator dedicated to the battery temperature management device may be provided.
[0049]
In the above-described embodiment, the battery temperature management device is provided on the rear seat side, but the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a battery temperature management device according to an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram of the battery temperature management device according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram for explaining a problem of the battery temperature management device according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery temperature management device, 2 ... Battery, 3 ... Battery case,
4. Cooler, 5 blower, 6 reflux duct, 7 decompressor.

Claims (5)

車両に搭載されたバッテリ(2)と流体とを熱交換させることにより前記バッテリ(2)の温度を管理するバッテリ温度管理装置であって、
前記バッテリ(2)に流体を循環させるポンプ手段(5)と、
前記バッテリ(2)に供給する流体の温度を調節する温度調節手段(4)と、
前記バッテリ(2)と熱交換を終えた流体を前記温度調節手段(4)の流体入口側に戻す還流ダクト手段(6)とを備えることを特徴とするバッテリ温度管理装置。
A battery temperature management device that manages the temperature of the battery (2) by exchanging heat with a fluid mounted on a vehicle (2) mounted on a vehicle,
Pump means (5) for circulating a fluid through the battery (2);
Temperature adjusting means (4) for adjusting the temperature of the fluid supplied to the battery (2);
A recirculation duct means (6) for returning a fluid which has completed heat exchange with the battery (2) to a fluid inlet side of the temperature control means (4).
前記流体として空気が用いられ、
前記流体の循環経路途中には、前記循環経路外から流体を前記循環経路に取り込むため取込口(11)が設けられていることを特徴とする請求項1に記載のバッテリ温度管理装置。
Air is used as the fluid,
2. The battery temperature management device according to claim 1, wherein an intake (11) is provided in the middle of the circulation path of the fluid for taking fluid into the circulation path from outside the circulation path. 3.
前記取込口(11)は、車室外と連通していることを特徴とする請求項2に記載のバッテリ温度管理装置。The battery temperature management device according to claim 2, wherein the intake port (11) communicates with the outside of the vehicle compartment. 前記取込口(11)から車室外空気を取り込んで前記バッテリ(2)に供給する場合と前記取込口(11)を閉じて前記循環経路を閉回路として空気を循環させる場合とを切り替える切替手段(13)を有することを特徴とするバッテリ温度管理装置。Switching between a case where air outside the vehicle compartment is taken in from the intake port (11) and supplied to the battery (2) and a case where air is circulated by closing the intake port (11) and using the circulation path as a closed circuit. A battery temperature management device comprising means (13). 前記バッテリ(2)を冷却する場合には、前記バッテリ(2)と熱交換を終えた空気の温度と車室外空気の温度とを比較し、温度が低い方の空気を前記バッテリ(2)に供給することを特徴とする請求項4に記載のバッテリ温度管理装置。When cooling the battery (2), the temperature of the air that has been subjected to heat exchange with the battery (2) is compared with the temperature of the outside air, and the lower temperature air is supplied to the battery (2). The battery temperature management device according to claim 4, wherein the battery temperature is supplied.
JP2002310818A 2002-10-25 2002-10-25 Battery temperature control device Pending JP2004146237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310818A JP2004146237A (en) 2002-10-25 2002-10-25 Battery temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310818A JP2004146237A (en) 2002-10-25 2002-10-25 Battery temperature control device

Publications (1)

Publication Number Publication Date
JP2004146237A true JP2004146237A (en) 2004-05-20

Family

ID=32456214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310818A Pending JP2004146237A (en) 2002-10-25 2002-10-25 Battery temperature control device

Country Status (1)

Country Link
JP (1) JP2004146237A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252659A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Temperature adjusting device
JP2010532066A (en) * 2007-04-04 2010-09-30 エスケー エナジー 株式会社 Battery temperature control device for electric vehicle using thermoelectric semiconductor element
JP2011042357A (en) * 2009-07-30 2011-03-03 Dr Ing Hcf Porsche Ag Automobile
JP2011178270A (en) * 2010-03-01 2011-09-15 Denso Corp Battery temperature adjusting device
US8034473B2 (en) 2007-05-14 2011-10-11 Calsonic Kansei Corporation Storage battery air-cooling device
CN102290618A (en) * 2011-07-26 2011-12-21 浙江吉利汽车研究院有限公司 Vehicle battery thermal management system
US8241097B2 (en) 2004-07-30 2012-08-14 Ford Global Technologies, Llc Environmental control system and method for a battery in a vehicle
FR2987886A3 (en) * 2012-03-06 2013-09-13 Renault Sa Air conditioning device for electric vehicle, has reversible heat pump cooling battery of vehicle through heat transfer fluid and being placed between passenger and engine compartments, where pump has exchanger placed in front of vehicle
JP2013256288A (en) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp Control device of vehicle air-conditioner system
JP2015015151A (en) * 2013-07-04 2015-01-22 株式会社デンソー Battery temperature control device
JP2015509177A (en) * 2011-12-07 2015-03-26 ヴァレオ システム テルミク Interface between inflator and wall
US9118092B2 (en) 2009-11-20 2015-08-25 Scania Cv Ab Cooling arrangement for at least one battery in a vehicle
CN105703039A (en) * 2016-01-29 2016-06-22 上海鹰峰电子科技有限公司 Heating system for battery pack
CN110271382A (en) * 2018-03-15 2019-09-24 开利公司 With the cooling transport refrigeration unit of integrated battery shell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203170A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd Protecting method for high temperature battery system
JPH0773908A (en) * 1993-09-01 1995-03-17 Nippondenso Co Ltd Heat-exchanger for battery
JPH09106830A (en) * 1995-10-13 1997-04-22 Mitsubishi Heavy Ind Ltd Secondary battery structure
JPH09167631A (en) * 1995-12-18 1997-06-24 Ngk Insulators Ltd Sodium-sulphur battery
JPH1064597A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Secondary battery power supply
JPH11136809A (en) * 1997-10-30 1999-05-21 Nissan Motor Co Ltd Air-conditioner for battery
JPH11240329A (en) * 1998-02-23 1999-09-07 Mitsubishi Heavy Ind Ltd On-vehicle electrical equipment controller
JP2001291532A (en) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd Battery temperature regulation device
JP2002191104A (en) * 2000-10-13 2002-07-05 Honda Motor Co Ltd Battery cooling device for vehicle
JP2002313441A (en) * 2001-04-17 2002-10-25 Zexel Valeo Climate Control Corp Battery cooling device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203170A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd Protecting method for high temperature battery system
JPH0773908A (en) * 1993-09-01 1995-03-17 Nippondenso Co Ltd Heat-exchanger for battery
JPH09106830A (en) * 1995-10-13 1997-04-22 Mitsubishi Heavy Ind Ltd Secondary battery structure
JPH09167631A (en) * 1995-12-18 1997-06-24 Ngk Insulators Ltd Sodium-sulphur battery
JPH1064597A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Secondary battery power supply
JPH11136809A (en) * 1997-10-30 1999-05-21 Nissan Motor Co Ltd Air-conditioner for battery
JPH11240329A (en) * 1998-02-23 1999-09-07 Mitsubishi Heavy Ind Ltd On-vehicle electrical equipment controller
JP2001291532A (en) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd Battery temperature regulation device
JP2002191104A (en) * 2000-10-13 2002-07-05 Honda Motor Co Ltd Battery cooling device for vehicle
JP2002313441A (en) * 2001-04-17 2002-10-25 Zexel Valeo Climate Control Corp Battery cooling device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10099532B2 (en) 2004-07-30 2018-10-16 Ford Global Technologies, Llc Environmental control system and method for a battery in a vehicle
US8241097B2 (en) 2004-07-30 2012-08-14 Ford Global Technologies, Llc Environmental control system and method for a battery in a vehicle
JP2010532066A (en) * 2007-04-04 2010-09-30 エスケー エナジー 株式会社 Battery temperature control device for electric vehicle using thermoelectric semiconductor element
US8034473B2 (en) 2007-05-14 2011-10-11 Calsonic Kansei Corporation Storage battery air-cooling device
JP2009252659A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Temperature adjusting device
JP2011042357A (en) * 2009-07-30 2011-03-03 Dr Ing Hcf Porsche Ag Automobile
US9118092B2 (en) 2009-11-20 2015-08-25 Scania Cv Ab Cooling arrangement for at least one battery in a vehicle
JP2011178270A (en) * 2010-03-01 2011-09-15 Denso Corp Battery temperature adjusting device
CN102290618A (en) * 2011-07-26 2011-12-21 浙江吉利汽车研究院有限公司 Vehicle battery thermal management system
JP2015509177A (en) * 2011-12-07 2015-03-26 ヴァレオ システム テルミク Interface between inflator and wall
FR2987886A3 (en) * 2012-03-06 2013-09-13 Renault Sa Air conditioning device for electric vehicle, has reversible heat pump cooling battery of vehicle through heat transfer fluid and being placed between passenger and engine compartments, where pump has exchanger placed in front of vehicle
JP2015015151A (en) * 2013-07-04 2015-01-22 株式会社デンソー Battery temperature control device
JP2013256288A (en) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp Control device of vehicle air-conditioner system
CN105703039A (en) * 2016-01-29 2016-06-22 上海鹰峰电子科技有限公司 Heating system for battery pack
CN110271382A (en) * 2018-03-15 2019-09-24 开利公司 With the cooling transport refrigeration unit of integrated battery shell
EP3543627A1 (en) * 2018-03-15 2019-09-25 Carrier Corporation Transportation refrigeration unit with integrated battery enclosure cooling
US11362379B2 (en) 2018-03-15 2022-06-14 Carrier Corporation Transportation refrigeration unit with integrated battery enclosure cooling

Similar Documents

Publication Publication Date Title
WO2021169946A1 (en) Heat management system of electric vehicle
JP4192625B2 (en) Battery cooling system
US6750630B2 (en) Battery temperature control device for controlling the temperature of a battery installed in vehicle which includes an air passage to the battery from a rear air-conditioning unit
KR101241223B1 (en) Heat pump system for vehicle
KR100392622B1 (en) Vehicular air conditioner
JP6041423B2 (en) Vehicular heat pump system and control method thereof
CN108790672B (en) Air conditioner for vehicle
JP2010013044A (en) Air-conditioning system for vehicle
US20210291626A1 (en) Refrigeration cycle device
JP2007327740A (en) Vehicular air-conditioning unit, and its using method
US20160159199A1 (en) Vehicular air conditioning device, and constituent unit thereof
JPH0238131A (en) Air conditioner for vehicle
JP2004146237A (en) Battery temperature control device
US20220371397A1 (en) In-vehicle temperature adjustment system
US11780293B2 (en) In-vehicle temperature control system
KR20190020617A (en) Air conditioning system for automotive vehicles and control method using the same
JP4427859B2 (en) Air conditioner for vehicles
JPH10203148A (en) Air-conditioner for electric vehicle
US11850909B2 (en) Air conditioner apparatus for electric vehicles and air conditioning system for electric vehicles using the same
JP2004106799A (en) Air conditioner for vehicle
JPH0577636A (en) Heat-pump type air conditioner for automobile
CN212604367U (en) Automobile air-conditioning box for heat pump
CN113173052B (en) Automobile air supply device and automobile
JP7494139B2 (en) Vehicle air conditioning system
KR20240084083A (en) Thermal management system for vehicle having cooling and heating cabinet mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612