JP2012171522A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2012171522A
JP2012171522A JP2011036763A JP2011036763A JP2012171522A JP 2012171522 A JP2012171522 A JP 2012171522A JP 2011036763 A JP2011036763 A JP 2011036763A JP 2011036763 A JP2011036763 A JP 2011036763A JP 2012171522 A JP2012171522 A JP 2012171522A
Authority
JP
Japan
Prior art keywords
air
vehicle
outside air
outside
inside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011036763A
Other languages
Japanese (ja)
Inventor
Takuya Murayama
拓也 村山
Yoshimasa Katsumi
佳正 勝見
Kazuo Akaike
一夫 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011036763A priority Critical patent/JP2012171522A/en
Publication of JP2012171522A publication Critical patent/JP2012171522A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner for a vehicle for collecting heat by energy saving.SOLUTION: The air conditioner includes a supply air blowing passage over an air-conditioning blowout port for blowing off air-conditioning air in a vehicle from an outside air introducing port for introducing outside air, an inside air exhaust passage over an inside air exhaust port for exhausting inside air to the vehicle outside from an inside air introducing port for introducing the inside air, an outside air blowing means for generating an air flow toward the air-conditioning blowout port from the outside air introducing port in the supply air blowing passage, an inside air blowing means for generating the air flow toward the inside air exhaust port from the inside air introducing port in the inside air exhaust passage, a heat collector for collecting the heat by exchanging the heat between the inside air flowing in the inside air exhaust passage and the outside air introduced from the outside air introducing port, and a direct outside air introducing port of not passing through the heat collector. When starting cooling operation or heating operation, since the outside air is introduced from the direct outside air introducing port, electric power consumption of the outside air blowing means can be reduced.

Description

本発明は、車両用空調装置に関するものである。   The present invention relates to a vehicle air conditioner.

従来、エンジン車では、例えば、吸排気時に内気から吸熱し、外気へ放熱する全熱交換器と冷凍サイクルを備え、暖房はエンジンの排熱を利用して行う車両用空調装置が考案されている(例えば、特許文献1参照)。   Conventionally, in an engine vehicle, for example, a vehicle air conditioner has been devised that includes a total heat exchanger that absorbs heat from inside air during intake and exhaust and dissipates heat to the outside air and a refrigeration cycle, and that uses exhaust heat from the engine for heating. (For example, refer to Patent Document 1).

この車両用空調装置は、内気の熱を利用して、外気の温度を高めることができるので、外気導入による熱損失を低減でき、暖房効果を向上できるもので、冷凍サイクルのエバポレータ(冷却用熱交換器)と、その空気下流側には、エンジン冷却水(温水)を熱源とするヒータコア(加熱用熱交換器)が配置してある。そして、空調の温度制御方式として、冷温風の混合割合を調整するエアミックス方式を採用しており、ヒータコアの空気上流側で、エバポレータの空気下流側に配置したエアミックスドアの開度によりヒータコアを通過する温風とヒータコアをバイパスする冷風の風量割合を調整して、車室内への吹出空気温度を制御している。   This vehicle air conditioner can increase the temperature of the outside air by utilizing the heat of the inside air, so that heat loss due to the introduction of the outside air can be reduced and the heating effect can be improved. The evaporator (cooling heat) of the refrigeration cycle can be improved. The heater core (heating heat exchanger) which uses engine cooling water (hot water) as a heat source is disposed on the air downstream side of the exchanger. And, as the air conditioning temperature control system, an air mix system that adjusts the mixing ratio of cold and hot air is adopted, and the heater core is adjusted by the opening degree of the air mix door arranged on the upstream side of the heater core and on the downstream side of the evaporator. The temperature of the air blown into the passenger compartment is controlled by adjusting the air volume ratio between the passing hot air and the cold air bypassing the heater core.

特開平10−16531号公報Japanese Patent Laid-Open No. 10-16531

このような従来の車両用空調装置においては、内気の熱を利用して、外気の温度を内気の温度に近づけることができるので、外気導入による熱損失を低減できるが、運転開始時の立ち上がりを速くするための大風量運転時に、車室内と外気の温度差がほとんどない場合でも全熱交換器を通して外気を導入しており、圧力損失が増加するため、送風機の負荷、すなわち消費電力が増えるという課題を有していた。   In such a conventional vehicle air conditioner, the temperature of the outside air can be brought close to the temperature of the inside air by utilizing the heat of the inside air, so that heat loss due to the introduction of the outside air can be reduced, but the start-up at the start of the operation can be reduced. Even when there is almost no temperature difference between the passenger compartment and the outside air, the outside air is introduced through the total heat exchanger and the pressure loss increases, which increases the load on the blower, that is, the power consumption. Had problems.

そこで本発明は、上記従来の課題を解決するものであり、運転開始時の圧力損失の増加を抑制し、送風機の消費電力を抑えることができる車両用空調装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and an object of the present invention is to provide a vehicle air conditioner that can suppress an increase in pressure loss at the start of operation and suppress power consumption of a blower.

そして、この目的を達成するために、本発明は、外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、前記給気送風路を流れる空気を加熱する加熱用車内熱交換器と、前記給気送風路を流れる空気を冷却する冷却用車内熱交換器と、冷房運転時および暖房運転時に凝縮器として外気と熱交換する車外熱交換器と、前記冷却用車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させる冷凍サイクルと、前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、この熱回収器を通らない直接外気導入口を備え、冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入するものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a supply air passage from an outside air introduction port for introducing outside air to an air conditioning outlet for blowing conditioned air into the vehicle, and an inside air from the inside air introduction port for introducing inside air. An inside air discharge path to the inside air discharge port for discharging to the outside air, an outside air blowing means for generating an air flow from the outside air introduction port to the air conditioning outlet in the supply air blowing passage, and an inside air discharge passage from the inside air introduction port to the inside air discharge passage Inside air blowing means for generating an air flow toward the inside air discharge port, an in-vehicle heat exchanger for heating the air flowing through the supply air blowing path, and a cooling inside heat for cooling the air flowing through the supply air blowing path An exchanger, an external heat exchanger for exchanging heat with outside air as a condenser during cooling operation and heating operation, and an internal heat exchanger for cooling and a refrigeration cycle for circulating a refrigerant between the external heat exchanger and the compressor When A heat recovery unit that recovers heat by exchanging heat between the inside air flowing through the inside air discharge path and the outside air introduced from the outside air introduction port, and a direct outside air introduction port that does not pass through the heat recovery unit are provided for cooling operation or heating operation. At the start of this, outside air is directly introduced from the outside air inlet, thereby achieving the intended purpose.

本発明によれば、冷房運転または暖房運転の開始時には、直接外気導入口より外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器を通過させず直接外気導入口より外気を導入することができるため、外気の熱回収器通過による圧力損失、すなわち外気送風手段の負荷が低減でき、外気送風手段の消費電力も低減できる。   According to the present invention, when the cooling operation or the heating operation is started, the outside air is directly introduced from the outside air inlet, so that when there is almost no temperature difference between the passenger compartment and the outside air at the start of the operation, the heat recovery is performed. Since the outside air can be directly introduced from the outside air introduction port without passing through the vessel, the pressure loss due to the passage of the outside air through the heat recovery unit, that is, the load on the outside air blowing means can be reduced, and the power consumption of the outside air blowing means can also be reduced.

特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で運転する場合が多く、外気の熱回収器通過による圧力損失が通常運転より大きくなり、外気送風手段の負荷、すなわち外気送風手段の消費電力も通常運転より増加するため、熱回収器を通過させず直接外気導入口より外気を導入することにより、消費電力もより低減でき、省エネ効果のある車両用空調装置を提供するという効果を得ることができる。   In particular, at the start of operation, in order to speed up the start-up, there are many cases of operation with a larger air volume than normal operation, the pressure loss due to the passage of the outside air through the heat recovery device becomes larger than normal operation, the load of the outside air blowing means, that is, the power consumption of the outside air blowing means Therefore, by introducing the outside air directly from the outside air inlet without passing through the heat recovery device, the power consumption can be further reduced and the effect of providing an air-conditioning apparatus for vehicles with an energy saving effect can be obtained. Can do.

本発明の実施の形態1の車両用空調装置の概略構成図1 is a schematic configuration diagram of a vehicle air conditioner according to Embodiment 1 of the present invention. (a)本発明の実施の形態1の車両用空調装置の初期運転モードを示す概略構成図、(b)同車両用空調装置の通常運転モードを示す概略構成図、(c)同車両用空調装置のデフロスト運転モードを示す概略構成図(A) Schematic configuration diagram showing an initial operation mode of the vehicle air conditioner according to Embodiment 1 of the present invention, (b) Schematic configuration diagram showing a normal operation mode of the vehicle air conditioner, (c) Air conditioning for the vehicle Schematic configuration diagram showing the defrosting operation mode of the device 本発明の実施の形態2の車両用空調装置の概略構成図Schematic block diagram of the vehicle air conditioner of Embodiment 2 of the present invention (a)本発明の実施の形態2の車両用空調装置の初期運転状態を示す概略構成図、(b)同車両用空調装置の通常運転モードを示す概略構成図(A) Schematic configuration diagram showing an initial operation state of the vehicle air conditioner according to Embodiment 2 of the present invention, (b) Schematic configuration diagram showing a normal operation mode of the vehicle air conditioner 本発明の実施の形態2の熱回収器の送風路を示す概略構成図The schematic block diagram which shows the ventilation path of the heat recovery device of Embodiment 2 of this invention. 本発明の実施の形態2の熱回収器の別の送風路を示す概略構成図The schematic block diagram which shows another ventilation path of the heat recovery device of Embodiment 2 of this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、車両用空調装置は、外気、内気の送風路と冷凍サイクルシステムで構成されている。また、図2は外気および内気の環境条件、車両用空調装置の運転状態などに応じて変更する車両用空調装置の運転モードを示す。
(Embodiment 1)
As shown in FIG. 1, the vehicle air conditioner includes an outside air and inside air blowing path and a refrigeration cycle system. FIG. 2 shows an operation mode of the vehicle air conditioner that is changed according to the environmental conditions of the outside air and the inside air, the operation state of the vehicle air conditioner, and the like.

外気と内気の送風路には、外気を導入する外気導入口1から車内に空調風を吹き出す空調吹出口2にかけての給気送風路3(図中の破線矢印)と、内気導入口4から内気排出口7に向かい内気を車外へ排出する内気排出路8(図中の実線矢印)と、給気送風路3に外気導入口1から空調吹出口2に向かう空気流を発生させる外気送風手段9aと、内気排出路8に内気導入口4から内気排出口7に向かう空気流を発生させる内気送風手段9bが設けられている。   The outside air and inside air blowing passages include an air supply passage 3 (broken arrows in the figure) from an outside air introduction port 1 for introducing outside air to an air conditioning outlet 2 for blowing conditioned air into the vehicle, and an inside air from the inside air introduction port 4. An inside air discharge passage 8 (solid arrow in the figure) for discharging inside air toward the discharge port 7 and an outside air blowing means 9a for generating an air flow from the outside air introduction port 1 to the air conditioning outlet 2 in the supply air blowing passage 3. The inside air discharge path 8 is provided with an inside air blowing means 9b for generating an air flow from the inside air introduction port 4 toward the inside air discharge port 7.

また、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。   In addition, a heat recovery unit 19 that absorbs heat from the inside air flowing through the inside air discharge path 8 and dissipates heat to the outside air introduced from the outside air introduction port 1 is provided. The heat recovery unit 19 is a sensible heat exchanger that exchanges sensible heat.

また、外気の送風路には、外気を導入する直接外気導入口1aから熱回収器19を迂回して外気送風手段9aにて車内に空調風を吹き出す空調吹出口2にかけての熱回収器バイパス路30(図1、2中の点線矢印)が、内気の送風路には、車内から車両後方のトランクルームに配置した内気後方排出口23に向かい内気を車外へ排出する内気後方排出路31(図2(a)中の一点鎖線矢印)が設けられている。   In addition, in the outside air blowing path, a heat recovery device bypass path from the direct outside air introduction port 1a for introducing outside air to the air conditioning outlet 2 that bypasses the heat recovery device 19 and blows the conditioned air into the vehicle by the outside air blowing means 9a. 30 (dotted line arrow in FIGS. 1 and 2) is an inside air blowing path 31 for exhausting the inside air from the inside of the vehicle to the inside air rear outlet 23 arranged in the trunk room at the rear of the vehicle (FIG. 2). (A) dash-dot line arrow) is provided.

また、外気導入口1、直接外気導入口1aには、ダンパ21、21aを設けており、ダンパ21、21aの開閉により、外気を熱回収器19経由で導入するかどうかを選択できる。   Also, dampers 21 and 21a are provided at the outside air inlet 1 and the directly outside air inlet 1a, and whether or not the outside air is introduced via the heat recovery device 19 can be selected by opening and closing the dampers 21 and 21a.

また、内気導入口4には車内の空気温度を検知する内気温検知手段としての温度センサ5が、内気排出口7には車外の空気温度を検知する外気温検知手段としての温度センサ6が設けられている。   The inside air inlet 4 is provided with a temperature sensor 5 as an inside air temperature detecting means for detecting the air temperature inside the vehicle, and the inside air outlet 7 is provided with a temperature sensor 6 as an outside air temperature detecting means for detecting the air temperature outside the car. It has been.

熱源としては、給気送風路3とは別の送風路に凝縮器として外気と熱交換する車外熱交換器12が設けられ、給気送風路3に給気送風路3を流れる空気を冷却する冷却用車内熱交換器10(蒸発器)および加熱する加熱用車内熱交換器11(エンジンの冷却水の熱を使用したヒータコア)が設けられ、冷却用車内熱交換器10および車外熱交換器12と圧縮機13の間で冷媒を循環させる冷凍サイクルを備えている。冷凍サイクルは車外熱交換器12と冷却用車内熱交換器10の間に絞り弁16(図に示すように膨張弁16aと電磁弁16bを内蔵)を備えている。   As a heat source, an external heat exchanger 12 for exchanging heat with the outside air as a condenser is provided in an air passage different from the air supply air passage 3, and the air flowing through the air supply air passage 3 is cooled in the air supply air passage 3. A cooling in-vehicle heat exchanger 10 (evaporator) and a heating in-vehicle heat exchanger 11 (heater core using the heat of engine cooling water) are provided, and the cooling in-vehicle heat exchanger 10 and the out-of-vehicle heat exchanger 12 are provided. A refrigeration cycle for circulating the refrigerant between the compressor 13 and the compressor 13. The refrigeration cycle is provided with a throttle valve 16 (with an expansion valve 16a and an electromagnetic valve 16b as shown in the figure) between the external heat exchanger 12 and the cooling internal heat exchanger 10.

上記構成において、車両用空調装置の運転モードについて図2を用いて説明する。   In the above configuration, the operation mode of the vehicle air conditioner will be described with reference to FIG.

先ず冷房運転について説明する。図2(a)は例えば外気温度が35℃で車両が停止していて冷房運転を開始した場合を示す。車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され(ダンパ21閉、ダンパ21a開、以下同様のダンパ操作の説明は省略)、熱回収器19を迂回して熱回収器バイパス路30を通り、蒸発器の冷却用車内熱交換器10通過時に冷媒の気化熱で冷却され、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。   First, the cooling operation will be described. FIG. 2A shows a case where the cooling operation is started when the outside temperature is 35 ° C. and the vehicle is stopped. Since the temperature inside the vehicle is close to the outside air temperature and the temperature difference between the inside and outside of the vehicle is small, the outside air is directly introduced from the outside air introduction port 1a by the operation of the outside air blowing means 9a (the damper 21 is closed, the damper 21a is opened, and the following explanation of the damper operation is similar). (Omitted), bypasses the heat recovery device 19, passes through the heat recovery device bypass path 30, and is cooled by the heat of vaporization of the refrigerant when passing through the in-vehicle heat exchanger 10 for cooling the evaporator, and is a heating source of the in-vehicle heat exchanger 11 for heating Then, the temperature is adjusted to a predetermined temperature, and cool air is blown out from the air conditioning outlet 2 to the windshield and the driver. The blown out cold air circulates in the vehicle as the inside air, and the inside air is passed through the inside air rear discharge passage 31 and is discharged from the inside air rear outlet 23 located in the trunk room at the rear of the vehicle due to an increase in the inside pressure due to the introduction of the driving wind and outside air of the vehicle. Discharged.

このように冷房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。   As described above, since the outside air is directly introduced from the outside air inlet 1a at the start of the cooling operation, when there is almost no temperature difference between the passenger compartment and the outside air at the start of the operation, the heat recovery device 19 is allowed to pass. Since the outside air can be introduced directly from the outside air introduction port 1a, the pressure loss due to the passage of the outside air through the heat recovery unit 19, that is, the load on the outside air blowing means 9a can be reduced, and the power consumption of the outside air blowing means 9a can also be reduced.

特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が下がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。   In particular, at the start of operation, the outside air blowing means 9a is often operated with a larger air volume than the normal operation in order to speed up the start-up, and the pressure loss due to the passage of the outside air through the heat recovery device 19 becomes larger than the normal operation in a state where the vehicle interior temperature is lowered, Since the load of the outside air blowing means 9a, that is, the power consumption of the outside air blowing means 9a is increased as compared with the normal operation, the power consumption can be further reduced by directly introducing outside air from the outside air introduction port 1a without passing through the heat recovery device 19. .

次に図2(b)は冷房運転を開始して、車内温度が例えば25℃に下がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され(ダンパ21開、ダンパ21a閉、以下同様のダンパ操作の説明は省略)、熱回収器19で外気より温度の低い内気に冷やされ、給気送風路3を通り、蒸発器の冷却用車内熱交換器10通過時に冷媒の気化熱で冷却され、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に暖められ、内気排出口7から車外へ排出される。   Next, FIG. 2B shows a case where the cooling operation is started and the in-vehicle temperature is lowered to 25 ° C., for example. The outside air is introduced from the outside air introduction port 1 by the operation of the outside air blowing means 9a (the damper 21 is opened, the damper 21a is closed, and the description of the same damper operation is omitted hereinafter), and is cooled by the heat recovery device 19 to the inside air having a temperature lower than the outside air. The refrigerant passes through the air supply air passage 3 and is cooled by the heat of vaporization of the refrigerant when passing through the evaporator heat exchanger 10 for cooling of the evaporator, adjusted to a predetermined temperature by the heating source of the heat exchanger 11 for heating, Cool air is blown out from the exit 2 to the windshield and the driver. The blown cold air is circulated in the vehicle as inside air, and is warmed to the outside air by the heat recovery device 19 in the inside air discharge path 8 from the inside air introduction port 4 by the operation of the inside air blowing means 9b, and is discharged from the inside air discharge port 7 to the outside of the vehicle. The

このように内気より温度の高い外気と外気より温度の低い内気とを熱回収器19で熱交換して、車内温度に近づけてから外気を導入する構成にしたことにより、冷凍サイクルの冷房負荷が減り圧縮機13の消費電力を低減できる。   In this way, the heat recovery device 19 exchanges heat between the outside air having a temperature higher than the inside air and the inside air having a temperature lower than the outside air, and the outside air is introduced after the temperature is brought close to the vehicle interior temperature. Reduced power consumption of the compressor 13 can be reduced.

次に暖房運転について説明する。図2(a)は例えば外気温度が0℃で車両が停止していて暖房運転を開始した場合を示す。車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。前述の図2(a)で説明した冷房運転との違いは、冷凍サイクルを作動させず、冷却用車内熱交換器10で外気を冷却しない点である。   Next, the heating operation will be described. FIG. 2A shows a case where the heating operation is started when the outside air temperature is 0 ° C. and the vehicle is stopped. Since the temperature inside the vehicle is close to the outside air temperature and the temperature difference between the inside and outside of the vehicle is small, the outside air is directly introduced from the outside air introduction port 1a by the operation of the outside air blowing means 9a, bypasses the heat recovery device 19 and passes through the heat recovery device bypass path 30. Then, the temperature is adjusted to a predetermined temperature by the heating source of the heating in-vehicle heat exchanger 11, and hot air is blown out from the air conditioning outlet 2 to the windshield and the driver. The blown warm air circulates inside the vehicle as the inside air, and the inside air is passed through the inside air rear discharge passage 31 and the outside air outlet 23 arranged in the trunk room at the rear of the vehicle due to the increase in the inside pressure due to the introduction of the driving wind and outside air. Is discharged. The difference from the cooling operation described with reference to FIG. 2A is that the refrigeration cycle is not operated and the outside air is not cooled by the cooling vehicle interior heat exchanger 10.

このように暖房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。   As described above, when the heating operation is started, the outside air is directly introduced from the outside air introduction port 1a. Therefore, when there is almost no temperature difference between the passenger compartment and the outside air at the start of the operation, the heat recovery device 19 is passed. Since the outside air can be introduced directly from the outside air introduction port 1a, the pressure loss due to the passage of the outside air through the heat recovery unit 19, that is, the load on the outside air blowing means 9a can be reduced, and the power consumption of the outside air blowing means 9a can also be reduced.

特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が上がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。   In particular, at the start of operation, the outside air blowing means 9a is often operated with a larger air volume than the normal operation in order to make the start-up faster, and the pressure loss due to the passage of the outside air through the heat recovery device 19 becomes larger than the normal operation in a state where the vehicle interior temperature is raised, Since the load of the outside air blowing means 9a, that is, the power consumption of the outside air blowing means 9a is increased as compared with the normal operation, the power consumption can be further reduced by directly introducing outside air from the outside air introduction port 1a without passing through the heat recovery device 19. .

次に図2(b)は暖房運転を開始して、車内温度が例えば20℃に上がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の高い内気に冷やされ、給気送風路3を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に冷やされ、内気排出口7から車外へ排出される。   Next, FIG. 2B shows a case where the heating operation is started and the in-vehicle temperature rises to 20 ° C., for example. The outside air is introduced from the outside air introduction port 1 by the operation of the outside air blowing means 9a, cooled to the inside air having a temperature higher than the outside air by the heat recovery device 19, passes through the supply air blowing passage 3, and the heating source of the heating in-vehicle heat exchanger 11 Then, the temperature is adjusted to a predetermined temperature and hot air is blown out from the air conditioning outlet 2 to the windshield and the driver. The blown warm air becomes the inside air and circulates inside the vehicle, and is cooled to the outside air by the heat recovery device 19 in the inside air discharge path 8 from the inside air introduction port 4 by the operation of the inside air blowing means 9b, and discharged from the inside air discharge port 7 to the outside of the vehicle. Is done.

車両のエンジンの燃焼効率が高い場合は廃熱が少ないため、暖房運転に使用できる加熱源としての加熱用車内熱交換器11の能力が不足するが、このように内気より温度の低い外気と外気より温度の高い内気とを熱回収器19で熱交換して、車内温度に近づけてから外気を導入する構成にしたことにより、加熱用車内熱交換器11の加熱源の暖房負荷を低減できる。   When the combustion efficiency of the vehicle engine is high, there is little waste heat, so the capacity of the heating vehicle interior heat exchanger 11 as a heating source that can be used for heating operation is insufficient. The heat recovery device 19 exchanges heat with the higher temperature inside air so that the outside air is introduced after the temperature is brought close to the inside temperature of the vehicle, thereby reducing the heating load of the heating source of the heating inside heat exchanger 11.

次に図2(c)は熱回収器19を用いて図2(b)の暖房運転を継続して、熱回収器19の風路で凍結が発生した時のデフロスト運転しながらの暖房運転を示す。   Next, FIG. 2 (c) continues the heating operation of FIG. 2 (b) using the heat recovery device 19, and performs the heating operation while the defrost operation is performed when freezing occurs in the air passage of the heat recovery device 19. Show.

例えば外気温度0℃、車内温度20℃相対湿度50%で図2(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。   For example, if the operation shown in FIG. 2B is continued at an outside air temperature of 0 ° C. and a vehicle interior temperature of 20 ° C. and a relative humidity of 50%, moisture in the vehicle interior in the inside air discharge passage 8 is condensed by heat exchange with the outside air inside the heat recovery unit 19. However, freezing occurs when the operation is continued.

この凍結を解消するため図2(c)に示すように、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。   In order to eliminate this freezing, as shown in FIG. 2C, the outside air is directly introduced from the outside air introduction port 1a by the operation of the outside air blowing means 9a, bypasses the heat recovery device 19 and passes through the heat recovery device bypass path 30. Then, the temperature is adjusted to a predetermined temperature by the heating source of the heating in-vehicle heat exchanger 11, and hot air is blown out from the air conditioning outlet 2 to the windshield and the driver.

吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で凍結した氷を融解し、デフロスト水と共に、内気排出口7から車外へ排出される。   The hot air blown out becomes the inside air and circulates in the vehicle. By the operation of the inside air blowing means 9b, the frozen ice is melted by the heat recovery device 19 in the inside air discharge passage 8 from the inside air introduction port 4, and together with the defrost water, the inside air is discharged. It is discharged from the exit 7 to the outside of the vehicle.

図2(b)の熱回収器19を用いた暖房運転と図2(c)のデフロスト運転は、一定の時間間隔で運転を切替える。例えば図2(b)を50分運転後、図2(c)を10分運転し、図2(b)の運転に戻り、順次運転を切替えながら暖房運転を継続する。   The heating operation using the heat recovery unit 19 in FIG. 2B and the defrost operation in FIG. 2C are switched at regular time intervals. For example, after 50 minutes of operation in FIG. 2B, 10 minutes of operation in FIG. 2C is performed, and the operation returns to the operation in FIG. 2B, and the heating operation is continued while sequentially switching the operation.

また、別の運転手段として、車内の空気温度を検知する温度センサ5および車外の空気温度を検知する温度センサ6を用いれば、図2(b)の運転と図2(c)の運転を適宜切替えることにより、熱回収器19の凍結を防止することも可能である。   As another driving means, if the temperature sensor 5 for detecting the air temperature inside the vehicle and the temperature sensor 6 for detecting the air temperature outside the vehicle are used, the operation of FIG. 2 (b) and the operation of FIG. 2 (c) are appropriately performed. By switching, it is also possible to prevent the heat recovery unit 19 from freezing.

このように車内の暖かい内気で熱回収器19の凍結を解消または防止する構成にしたことにより、暖房時に熱回収器19を用いて熱回収した省エネの暖房運転を継続できる。   By adopting a configuration in which freezing of the heat recovery device 19 is eliminated or prevented by the warm inside air in the vehicle in this way, it is possible to continue the energy-saving heating operation in which heat is recovered using the heat recovery device 19 during heating.

(実施の形態2)
図3〜4において、図1および図2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
3-4, the same code | symbol is attached | subjected about the component similar to FIG. 1 and FIG. 2, and the detailed description is abbreviate | omitted.

図3に示すように、車両用空調装置は、外気、内気の送風路とヒートポンプシステムで構成されている。また、図4は外気および内気の環境条件、車両用空調装置の運転状態などに応じて変更する車両用空調装置の運転モードを示す。   As shown in FIG. 3, the vehicle air conditioner includes an outside air and inside air blowing path and a heat pump system. FIG. 4 shows the operation mode of the vehicle air conditioner that is changed according to the environmental conditions of the outside air and the inside air, the operation state of the vehicle air conditioner, and the like.

外気と内気の送風路には、外気を導入する外気導入口1から車内に空調風を吹き出す空調吹出口2にかけての給気送風路3(図中の破線矢印)と、内気導入口4から内気排出口7に向かい内気を車外へ排出する内気排出路8(図中の実線矢印)と、給気送風路3に外気導入口1から空調吹出口2に向かう空気流を発生させる外気送風手段9aと、内気排出路8に内気導入口4から内気排出口7に向かう空気流を発生させる内気送風手段9bが設けられている。   The outside air and inside air blowing passages include an air supply passage 3 (broken arrows in the figure) from an outside air introduction port 1 for introducing outside air to an air conditioning outlet 2 for blowing conditioned air into the vehicle, and an inside air from the inside air introduction port 4. An inside air discharge passage 8 (solid arrow in the figure) for discharging inside air toward the discharge port 7 and an outside air blowing means 9a for generating an air flow from the outside air introduction port 1 to the air conditioning outlet 2 in the supply air blowing passage 3. The inside air discharge path 8 is provided with an inside air blowing means 9b for generating an air flow from the inside air introduction port 4 toward the inside air discharge port 7.

また、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。   In addition, a heat recovery unit 19 that absorbs heat from the inside air flowing through the inside air discharge path 8 and dissipates heat to the outside air introduced from the outside air introduction port 1 is provided. The heat recovery unit 19 is a sensible heat exchanger that exchanges sensible heat.

また、外気の送風路には、外気を導入する直接外気導入口1aから熱回収器19を迂回して外気送風手段9aにて車内に空調風を吹き出す空調吹出口2にかけての熱回収器バイパス路30(図3、4中の点線矢印)と、内気の送風路には、車内から車両後方のトランクルームに配置した内気後方排出口23に向かい内気を車外へ排出する内気後方排出路31(図4(a)中の一点鎖線矢印)が設けられている。   In addition, in the outside air blowing path, a heat recovery device bypass path from the direct outside air introduction port 1a for introducing outside air to the air conditioning outlet 2 that bypasses the heat recovery device 19 and blows the conditioned air into the vehicle by the outside air blowing means 9a. 30 (dotted line arrow in FIGS. 3 and 4) and the inside air ventilation path, an inside air rear exhaust path 31 (FIG. 4) that exhausts the inside air toward the inside air rear outlet 23 arranged in the trunk room behind the vehicle from the inside of the vehicle. (A) dash-dot line arrow) is provided.

また、内気導入口4には車内の空気温度を検知する内気温検知手段としての温度センサ5が、内気排出口7には車外の空気温度を検知する外気温検知手段としての温度センサ6が設けられている。   The inside air inlet 4 is provided with a temperature sensor 5 as an inside air temperature detecting means for detecting the air temperature inside the vehicle, and the inside air outlet 7 is provided with a temperature sensor 6 as an outside air temperature detecting means for detecting the air temperature outside the car. It has been.

熱源として、給気送風路3とは別の送風路に冷房運転時凝縮器、暖房運転時蒸発器として外気と熱交換する車外熱交換器12が設けられ、給気送風路3に給気送風路3を流れる空気を冷却または加熱する第1車内熱交換器10a、第2車内熱交換器11aが設けられ、第1車内熱交換器10a、第2車内熱交換器11aおよび車外熱交換器12と圧縮機13の間で冷媒を循環させるヒートポンプを備えている。   A heat source is provided with a condenser at the time of cooling operation and a heat exchanger 12 outside the vehicle as an evaporator at the time of heating operation, and is supplied to the air supply air path 3 as a heat source. A first in-vehicle heat exchanger 10a and a second in-vehicle heat exchanger 11a for cooling or heating the air flowing through the road 3 are provided, and the first in-vehicle heat exchanger 10a, the second in-vehicle heat exchanger 11a, and the outside heat exchanger 12 are provided. And a compressor 13 for circulating the refrigerant between the compressor 13.

ここでヒートポンプの構成を説明する。   Here, the configuration of the heat pump will be described.

圧縮機13の高圧冷媒吐出側に四方弁14、四方弁14と車外熱交換器12の間に逆止弁15、車外熱交換器12と第1車内熱交換器10aの間に絞り弁16(図に示すように膨張弁16aと電磁弁16bを内蔵)、第2車内熱交換器11aと車外熱交換器12の間に逆止弁17と絞り弁18(図に示すように膨張弁18aと電磁弁18bを内蔵)を設け、ヒートポンプを構成している。ここで本実施の形態では、前述の外気温検知手段としての温度センサ6を、車外熱交換器12の吸込み側に設けている。   On the high-pressure refrigerant discharge side of the compressor 13, a four-way valve 14, a check valve 15 between the four-way valve 14 and the vehicle exterior heat exchanger 12, and a throttle valve 16 between the vehicle exterior heat exchanger 12 and the first vehicle interior heat exchanger 10a ( As shown in the figure, an expansion valve 16a and a solenoid valve 16b are incorporated), and a check valve 17 and a throttle valve 18 (an expansion valve 18a as shown in the figure) are provided between the second in-vehicle heat exchanger 11a and the out-of-vehicle heat exchanger 12. A solenoid valve 18b is built in) to constitute a heat pump. Here, in the present embodiment, the temperature sensor 6 as the above-described outside air temperature detecting means is provided on the suction side of the outside heat exchanger 12.

そして、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。   A heat recovery unit 19 that absorbs heat from the inside air flowing through the inside air discharge path 8 and dissipates heat to the outside air introduced from the outside air introduction port 1 is provided. The heat recovery unit 19 is a sensible heat exchanger that exchanges sensible heat.

そして本願の特徴は車外熱交換器12に熱回収器19を通過した内気を送風するものであり、本実施の形態では、車外熱交換器12の一部を内気排出口7と熱回収器19の間の内気排出路8に設けている。   The feature of the present application is that the inside air that has passed through the heat recovery device 19 is blown to the outside heat exchanger 12. In this embodiment, a part of the outside heat exchanger 12 is connected to the inside air discharge port 7 and the heat recovery device 19. It is provided in the inside air discharge path 8 between.

図5および図6は熱回収器19の送風路の構成を示す。   5 and 6 show the configuration of the air passage of the heat recovery unit 19.

給気送風路3において、第一開口部24は外気導入口1と熱回収器19の間に設け、第二開口部25は空調吹出口2と熱回収器19の間に設け、外気切替部28aは外気導入口1と第一開口部24または第二開口部25との接続を切替え、外気切替部28bは空調吹出口2と第一開口部24または第二開口部25との接続を切替える。内気排出路8において、第三開口部26は内気導入口4と熱回収器19の間に設け、第四開口部27は内気排出口7と熱回収器19の間に設け、内気切替部29aは内気導入口4と第三開口部26または第四開口部27との接続を切替え、内気切替部29bは内気排出口7と第三開口部26または第四開口部27との接続を切替える。   In the air supply air passage 3, the first opening 24 is provided between the outside air inlet 1 and the heat recovery unit 19, and the second opening 25 is provided between the air conditioning outlet 2 and the heat recovery unit 19, and the outside air switching unit 28 a switches the connection between the outside air inlet 1 and the first opening 24 or the second opening 25, and the outside air switching unit 28 b switches the connection between the air conditioning outlet 2 and the first opening 24 or the second opening 25. . In the inside air discharge path 8, the third opening 26 is provided between the inside air introduction port 4 and the heat recovery unit 19, and the fourth opening 27 is provided between the inside air discharge port 7 and the heat recovery unit 19, and the inside air switching unit 29a. Switches the connection between the inside air introduction port 4 and the third opening 26 or the fourth opening 27, and the inside air switching unit 29 b switches the connection between the inside air discharge port 7 and the third opening 26 or the fourth opening 27.

上記構成において、表1に記載の各運転モードについて図4を用いて説明する。   In the above configuration, each operation mode described in Table 1 will be described with reference to FIG.

Figure 2012171522
Figure 2012171522

先ず冷房運転について説明する。図4(a)は例えば外気温度が35℃で車両が停止していて冷房運転を開始した場合を示す。冷房運転時の冷媒の流れは、圧縮機13→四方弁14→逆止弁15→車外熱交換器12→絞り弁16→第1車内熱交換器10a→圧縮機13で、第2車内熱交換器11aには冷媒は流さない。   First, the cooling operation will be described. FIG. 4A shows a case where the cooling operation is started when the outside temperature is 35 ° C. and the vehicle is stopped. The flow of the refrigerant during the cooling operation is as follows: compressor 13 → four-way valve 14 → check valve 15 → external heat exchanger 12 → throttle valve 16 → first in-vehicle heat exchanger 10a → compressor 13; No refrigerant flows through the vessel 11a.

このような冷媒の流れの中、車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、蒸発器として作用する第1車内熱交換器10a通過時に冷媒の気化熱で冷却され、冷媒の流れていない第2車内熱交換器11aを通り、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。   In such a refrigerant flow, the temperature inside the vehicle is close to the outside air temperature and the temperature difference between the inside and outside of the vehicle is small. Therefore, the outside air is directly introduced from the outside air inlet 1a by the operation of the outside air blowing means 9a and bypasses the heat recovery device 19. The air conditioning outlet is passed through the heat recovery device bypass passage 30 and is cooled by the heat of vaporization of the refrigerant when passing through the first in-vehicle heat exchanger 10a acting as an evaporator and through the second in-vehicle heat exchanger 11a in which no refrigerant flows. Blow out cool wind from 2 on the windshield and driver. The blown out cold air circulates in the vehicle as the inside air, and the inside air is passed through the inside air rear discharge passage 31 and is discharged from the inside air rear outlet 23 located in the trunk room at the rear of the vehicle due to an increase in the inside pressure due to the introduction of the driving wind and outside air of the vehicle. Discharged.

このように冷房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。   As described above, since the outside air is directly introduced from the outside air inlet 1a at the start of the cooling operation, when there is almost no temperature difference between the passenger compartment and the outside air at the start of the operation, the heat recovery device 19 is allowed to pass. Since the outside air can be introduced directly from the outside air introduction port 1a, the pressure loss due to the passage of the outside air through the heat recovery unit 19, that is, the load on the outside air blowing means 9a can be reduced, and the power consumption of the outside air blowing means 9a can also be reduced.

特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が下がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。   In particular, at the start of operation, the outside air blowing means 9a is often operated with a larger air volume than the normal operation in order to speed up the start-up, and the pressure loss due to the passage of the outside air through the heat recovery device 19 becomes larger than the normal operation in a state where the vehicle interior temperature is lowered, Since the load of the outside air blowing means 9a, that is, the power consumption of the outside air blowing means 9a is increased as compared with the normal operation, the power consumption can be further reduced by directly introducing outside air from the outside air introduction port 1a without passing through the heat recovery device 19. .

次に図4(b)は冷房運転を開始して、車内温度が例えば25℃に下がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の低い内気に冷やされ、給気送風路3を通り、蒸発器として作用する第1車内熱交換器10a通過時に冷媒の気化熱で冷却され、冷媒の流れていない第2車内熱交換器11aを通り、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に暖められ、内気排出口7から車外へ排出される。   Next, FIG.4 (b) shows the case where the air_conditioning | cooling operation is started and the vehicle interior temperature falls to 25 degreeC, for example. The outside air is introduced from the outside air inlet 1 by the operation of the outside air blowing means 9a, cooled to the inside air having a temperature lower than that of the outside air by the heat recovery device 19, passes through the air supply air passage 3, and acts as an evaporator in the first vehicle interior heat exchange. Coolant is blown out from the air-conditioning outlet 2 to the windshield and the driver through the second in-vehicle heat exchanger 11a that is cooled by the heat of vaporization of the refrigerant when passing through the vessel 10a and does not flow. The blown cold air is circulated in the vehicle as inside air, and is warmed to the outside air by the heat recovery device 19 in the inside air discharge path 8 from the inside air introduction port 4 by the operation of the inside air blowing means 9b, and is discharged from the inside air discharge port 7 to the outside of the vehicle. The

このように外気より温度の低い内気をそのまま排出せず、熱回収器19で外気と熱交換させ、さらに車外熱交換器12を通過してから排出する構成にしたことにより、第1車内熱交換器10aでの冷媒による冷却負荷が減り圧縮機13の消費電力を低減できる。   In this way, the internal air having a temperature lower than the outside air is not discharged as it is, but is exchanged with the outside air by the heat recovery unit 19 and further discharged after passing through the outside heat exchanger 12, so that the first inside heat exchange is performed. The cooling load by the refrigerant in the compressor 10a is reduced, and the power consumption of the compressor 13 can be reduced.

しかも、外気温度が高く冷凍サイクル内の冷媒の蒸発温度も高くなってしまうような場合にも、凝縮器として作用する車外熱交換器12に外気より温度の低い内気を送風して冷媒の液化を促進できるので、第1車内熱交換器10aでの冷媒の蒸発温度も低くでき、冷房能力の低下を抑制できる。   Moreover, even when the outside air temperature is high and the evaporation temperature of the refrigerant in the refrigeration cycle becomes high, the inside air having a temperature lower than the outside air is blown to the outside heat exchanger 12 acting as a condenser to liquefy the refrigerant. Since it can accelerate | stimulate, the evaporation temperature of the refrigerant | coolant in the 1st in-vehicle heat exchanger 10a can also be made low, and the fall of a cooling capability can be suppressed.

次に暖房運転について説明する。図4(a)は例えば外気温度が0℃で車両が停止していて暖房運転を開始した場合を示す。暖房運転時の冷媒の流れは、圧縮機13→四方弁14→第2車内熱交換器11a→絞り弁18→車外熱交換器12→電磁弁16b→圧縮機13で、第1車内熱交換器10aには冷媒は流さない。   Next, the heating operation will be described. FIG. 4A shows a case where the outside temperature is 0 ° C., the vehicle is stopped, and the heating operation is started. The flow of the refrigerant during the heating operation is as follows: compressor 13 → four-way valve 14 → second in-vehicle heat exchanger 11a → throttle valve 18 → outside heat exchanger 12 → electromagnetic valve 16b → compressor 13; No refrigerant flows through 10a.

このような冷媒の流れの中、車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、冷媒の流れていない第1車内熱交換器10aを通り、凝縮器として作用する第2車内熱交換器11a通過時に冷媒の凝縮熱で加熱され、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。   In such a refrigerant flow, the temperature inside the vehicle is close to the outside air temperature and the temperature difference between the inside and outside of the vehicle is small. Therefore, the outside air is directly introduced from the outside air inlet 1a by the operation of the outside air blowing means 9a and bypasses the heat recovery device 19. The heat recovery device bypass passage 30 passes through the first in-vehicle heat exchanger 10a in which no refrigerant flows, and is heated by the condensation heat of the refrigerant when passing through the second in-vehicle heat exchanger 11a acting as a condenser. The hot air is blown from 2 to the windshield and the driver. The blown warm air circulates inside the vehicle as the inside air, and the inside air is passed through the inside air rear discharge passage 31 and the outside air outlet 23 arranged in the trunk room at the rear of the vehicle due to the increase in the inside pressure due to the introduction of the driving wind and outside air. Is discharged.

このように暖房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。   As described above, when the heating operation is started, the outside air is directly introduced from the outside air introduction port 1a. Therefore, when there is almost no temperature difference between the passenger compartment and the outside air at the start of the operation, the heat recovery device 19 is passed. Since the outside air can be introduced directly from the outside air introduction port 1a, the pressure loss due to the passage of the outside air through the heat recovery unit 19, that is, the load on the outside air blowing means 9a can be reduced, and the power consumption of the outside air blowing means 9a can also be reduced.

特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が上がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。   In particular, at the start of operation, the outside air blowing means 9a is often operated with a larger air volume than the normal operation in order to make the start-up faster, and the pressure loss due to the passage of the outside air through the heat recovery device 19 becomes larger than the normal operation in a state where the vehicle interior temperature is raised, Since the load of the outside air blowing means 9a, that is, the power consumption of the outside air blowing means 9a is increased as compared with the normal operation, the power consumption can be further reduced by directly introducing outside air from the outside air introduction port 1a without passing through the heat recovery device 19. .

次に図4(b)は暖房運転を開始して、車内温度が例えば20℃に上がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の高い内気に冷やされ、給気送風路3を通り、冷媒の流れていない第1車内熱交換器10aを通り、凝縮器として作用する第2車内熱交換器11a通過時に冷媒の凝縮熱で加熱され、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に冷やされ、内気排出口7から車外へ排出される。   Next, FIG.4 (b) shows the case where heating operation is started and the vehicle interior temperature rises to 20 ° C., for example. The outside air is introduced from the outside air inlet 1 by the operation of the outside air blowing means 9a, cooled to the inside air having a temperature higher than the outside air by the heat recovery device 19, passes through the supply air blowing path 3, and the first in-vehicle heat exchange in which no refrigerant flows. It passes through the vessel 10a and is heated by the condensation heat of the refrigerant when passing through the second in-vehicle heat exchanger 11a acting as a condenser, and blows warm air from the air conditioning outlet 2 to the windshield and the driver. The blown warm air becomes the inside air and circulates inside the vehicle, and is cooled to the outside air by the heat recovery device 19 in the inside air discharge path 8 from the inside air introduction port 4 by the operation of the inside air blowing means 9b, and discharged from the inside air discharge port 7 to the outside of the vehicle. Is done.

このように外気より温度の高い内気をそのまま排出せず、熱回収器19で外気と熱交換させ、さらに車外熱交換器12を通過してから排出するようにしたので、第2車内熱交換器11aでの冷媒による加熱負荷が減り圧縮機13の消費電力を低減できる。   In this way, the inside air having a temperature higher than the outside air is not discharged as it is, but is exchanged with the outside air by the heat recovery unit 19 and further discharged after passing through the outside heat exchanger 12, so that the second inside heat exchanger The heating load by the refrigerant in 11a is reduced, and the power consumption of the compressor 13 can be reduced.

しかも、外気温度が低く冷凍サイクル内の冷媒の凝縮温度も低くなってしまうような場合にも、蒸発器として作用する車外熱交換器12に外気より温度の高い内気を送風して冷媒の蒸発を促進できるので、第1車内熱交換器10aでの冷媒の凝縮温度も高くでき、暖房能力の低下を抑制できる。   Moreover, even when the outside air temperature is low and the condensation temperature of the refrigerant in the refrigeration cycle is also lowered, the inside air having a temperature higher than the outside air is blown to the outside heat exchanger 12 acting as an evaporator to evaporate the refrigerant. Since it can accelerate | stimulate, the condensing temperature of the refrigerant | coolant in the 1st in-vehicle heat exchanger 10a can also be made high, and the fall of heating capability can be suppressed.

次に熱回収器19を用いて図4(b)の暖房運転を継続して、熱回収器19の風路で凍結が発生した時のデフロスト運転しながらの暖房運転を説明する。例えば外気温度0℃、車内温度20℃相対湿度50%で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。   Next, the heating operation of FIG. 4B using the heat recovery device 19 will be continued, and the heating operation while the defrost operation is performed when freezing has occurred in the air path of the heat recovery device 19 will be described. For example, if the operation of FIG. 4B is continued at an outside air temperature of 0 ° C. and a vehicle interior temperature of 20 ° C. and a relative humidity of 50%, moisture in the vehicle interior in the inside air discharge path 8 is condensed by heat exchange with the outside air inside the heat recovery unit 19. However, freezing occurs when the operation is continued.

この凍結を解消するため図5および図6に示すように、熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる外気および内気の向きを外気切替部28a、外気切替部28b、内気切替部29a、内気切替部29bにて一定の時間間隔で反転させる。   In order to eliminate this freezing, as shown in FIG. 5 and FIG. 6, in the heat recovery unit 19, the direction of the outside air and the inside air flowing through the supply air blowing path 3 and the inside air discharge path 8 are respectively changed to the outside air switching unit 28 a and the outside air switching unit. 28b, the inside air switching unit 29a, and the inside air switching unit 29b are reversed at regular time intervals.

図5において、外気切替部28aは外気導入口1と第二開口部25を接続し、外気切替部28bは空調吹出口2と第一開口部24を接続し、内気切替部29aは内気導入口4と第三開口部26を接続し、内気切替部29bは内気排出口7と第四開口部27を接続する構成である。   In FIG. 5, the outside air switching unit 28 a connects the outside air introduction port 1 and the second opening 25, the outside air switching unit 28 b connects the air conditioning outlet 2 and the first opening 24, and the inside air switching unit 29 a is the inside air introduction port. 4 and the third opening 26 are connected, and the inside air switching part 29 b is configured to connect the inside air discharge port 7 and the fourth opening 27.

この構成で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部の第四開口部27近傍で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。この凍結(または結露)を解消するため、一定時間が経過すると図6の構成に切替える。   If the operation of FIG. 4B is continued with this configuration, the moisture in the vehicle interior in the inside air discharge path 8 is condensed by heat exchange with the outside air in the vicinity of the fourth opening 27 inside the heat recovery device 19, and further operation is performed. Freezing occurs when continued. In order to eliminate this freezing (or dew condensation), the configuration shown in FIG.

図6において、外気切替部28aは外気導入口1と第一開口部24を接続し、外気切替部28bは空調吹出口2と第二開口部25を接続し、内気切替部29aは内気導入口4と第四開口部27を接続し、内気切替部29bは内気排出口7と第三開口部26を接続する構成である。   6, the outside air switching unit 28a connects the outside air inlet 1 and the first opening 24, the outside air switching unit 28b connects the air conditioning outlet 2 and the second opening 25, and the inside air switching unit 29a is the inside air inlet. 4 and the 4th opening part 27 are connected, and the inside air switch part 29b is the structure which connects the inside air discharge port 7 and the 3rd opening part 26. FIG.

この構成で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部の第三開口部26近傍で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。この凍結を解消するため、一定時間が経過すると図5の構成に切替える。   If the operation of FIG. 4B is continued with this configuration, the moisture in the vehicle interior in the inside air discharge path 8 is condensed by heat exchange with the outside air in the vicinity of the third opening 26 inside the heat recovery device 19, and further operation is performed. Freezing occurs when continued. In order to eliminate this freezing, the configuration shown in FIG.

このように熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる気体の向きを反転手段により切替える構成にしたことにより、内気排出路8で発生した結露が内気排出路8内へ蒸発し、内気排出路8内の湿度を高めることで、熱交換運転を継続しながら結露水を外気に排出できる。   In this way, in the heat recovery device 19, the direction of the gas flowing through the supply air blowing path 3 and the inside air discharge path 8 is switched by the reversing means, so that dew condensation generated in the inside air discharge path 8 is caused to occur. By evaporating inward and increasing the humidity in the inside air discharge path 8, the condensed water can be discharged to the outside air while continuing the heat exchange operation.

また、熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる気体の向きを反転手段により切替える構成にしたことにより、内気排出路8で発生した氷が内気排出路8内へ融解し、内気排出路8内を移動することで、熱交換運転を継続しながらデフロスト運転を同時に行うことができ、暖房時に熱回収器19を用いて熱回収した省エネの暖房空調運転を継続できる。   Further, in the heat recovery unit 19, the direction of the gas flowing through the supply air blowing path 3 and the inside air discharge path 8 is switched by the reversing means, so that the ice generated in the inside air discharge path 8 is changed into the inside air discharge path 8. By defrosting and moving in the inside air discharge path 8, the defrosting operation can be performed at the same time while continuing the heat exchange operation, and the energy-saving heating air-conditioning operation in which heat is recovered using the heat recovery device 19 during heating is continued. it can.

なお本実施の形態では一定の時間間隔で図5と図6の構成を切替えると説明したが、車内の空気温度を検知する温度センサ5および車外の空気温度を検知する温度センサ6を用いて、熱回収器19の結露や凍結を行うか否かを適宜切替える。   In the present embodiment, it has been described that the configurations of FIGS. 5 and 6 are switched at regular time intervals. However, by using the temperature sensor 5 that detects the air temperature inside the vehicle and the temperature sensor 6 that detects the air temperature outside the vehicle, Whether the heat recovery unit 19 is condensed or frozen is appropriately switched.

本発明にかかる車両用空調装置は、冷房運転または暖房運転の開始時には、直接外気導入口より外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器を通過させず直接外気導入口より外気を導入することができるため、外気の熱回収器通過による圧力損失、すなわち外気送風手段の負荷、消費電力の低減を可能とするものであるので、車両用空調装置として有用である。   The vehicle air conditioner according to the present invention has a configuration in which outside air is directly introduced from the outside air inlet at the start of cooling operation or heating operation, so that there is almost no temperature difference between the vehicle interior and outside air at the start of operation. Can directly introduce outside air from the outside air inlet without passing through the heat recovery device, so that pressure loss due to passage of the outside air through the heat recovery device, that is, load on the outside air blowing means and power consumption can be reduced. Therefore, it is useful as a vehicle air conditioner.

1 外気導入口
1a 直接外気導入口
2 空調吹出口
3 給気送風路
4 内気導入口
5、6 温度センサ
7 内気排出口
8 内気排出路
9a 外気送風手段
9b 内気送風手段
10 冷却用車内熱交換器
10a 第1車内熱交換器
11 加熱用車内熱交換器
11a 第2車内熱交換器
12 車外熱交換器
13 圧縮機
14 四方弁
15、17 逆止弁
16、18 絞り弁
16a、18a 膨張弁
16b、18b 電磁弁
19 熱回収器
21、21a ダンパ
23 内気後方排出口
24 第一開口部
25 第二開口部
26 第三開口部
27 第四開口部
28a、28b 外気切替部
29a、29b 内気切替部
30 熱回収器バイパス路
31 内気後方排出路
DESCRIPTION OF SYMBOLS 1 Outside air introduction port 1a Direct outside air introduction port 2 Air conditioning blower outlet 3 Supply air ventilation path 4 Inside air introduction port 5, 6 Temperature sensor 7 Inside air discharge port 8 Inside air discharge path 9a Outside air blowing means 9b Inside air blowing means 10 Cooling vehicle interior heat exchanger DESCRIPTION OF SYMBOLS 10a 1st vehicle interior heat exchanger 11 Heating vehicle interior heat exchanger 11a 2nd vehicle interior heat exchanger 12 Vehicle exterior heat exchanger 13 Compressor 14 Four-way valve 15, 17 Check valve 16, 18 Throttle valve 16a, 18a Expansion valve 16b, 18b Solenoid valve 19 Heat recovery device 21, 21a Damper 23 Inside air rear outlet 24 First opening portion 25 Second opening portion 26 Third opening portion 27 Fourth opening portion 28a, 28b Outside air switching portion 29a, 29b Inside air switching portion 30 Heat Collector bypass passage 31 Inside air rear discharge passage

Claims (5)

外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、
内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、
前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、
前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、
前記給気送風路を流れる空気を加熱する加熱用車内熱交換器と、
前記給気送風路を流れる空気を冷却する冷却用車内熱交換器と、
冷房運転時および暖房時に凝縮器として外気と熱交換する車外熱交換器と、
前記冷却用車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させる冷凍サイクルと、
前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、
この熱回収器を通らない直接外気導入口を備え、
冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入することを特徴とする車両用空調装置。
An air supply air passage from an outside air inlet that introduces outside air to an air conditioning outlet that blows out conditioned air into the vehicle;
An inside air discharge path from an inside air introduction port for introducing inside air to an inside air discharge port for discharging inside air to the outside of the vehicle,
An outside air blowing means for generating an air flow from the outside air inlet to the air conditioning outlet in the supply air passage;
An inside air blowing means for generating an air flow from the inside air inlet to the inside air outlet in the inside air discharge path;
An in-vehicle heat exchanger for heating the air flowing through the supply air passage;
An in-vehicle heat exchanger for cooling the air flowing through the air supply air passage;
An external heat exchanger that exchanges heat with the outside air as a condenser during cooling operation and heating;
A refrigerating cycle for circulating a refrigerant between the cooling internal heat exchanger and the external heat exchanger and a compressor;
A heat recovery unit that recovers heat by exchanging heat between the inside air flowing through the inside air discharge path and the outside air introduced from the outside air inlet;
It has a direct outside air inlet that does not pass through this heat recovery unit,
An air conditioner for a vehicle, wherein outside air is directly introduced from the outside air introduction port at the start of cooling operation or heating operation.
暖房運転中の所定時間、直接外気導入口より外気を導入することを特徴とする請求項1に記載の車両用空調装置。 2. The vehicle air conditioner according to claim 1, wherein the outside air is directly introduced from the outside air inlet for a predetermined time during the heating operation. 外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、
内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、
前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、
前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、
前記給気送風路を流れる空気を冷却または加熱する第1車内熱交換器および第2車内熱交換器と、
冷房運転時凝縮器、暖房運転時蒸発器として外気と熱交換する車外熱交換器と、
前記第1車内熱交換器、前記第2車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させるヒートポンプと、
前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、
この熱回収器を通らない直接外気導入口を備え、
冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入することを特徴とする車両用空調装置。
An air supply air passage from an outside air inlet that introduces outside air to an air conditioning outlet that blows out conditioned air into the vehicle;
An inside air discharge path from an inside air introduction port for introducing inside air to an inside air discharge port for discharging inside air to the outside of the vehicle,
An outside air blowing means for generating an air flow from the outside air inlet to the air conditioning outlet in the supply air passage;
An inside air blowing means for generating an air flow from the inside air inlet to the inside air outlet in the inside air discharge path;
A first in-vehicle heat exchanger and a second in-vehicle heat exchanger for cooling or heating the air flowing through the air supply air passage;
An external heat exchanger that exchanges heat with outside air as a condenser during cooling operation and an evaporator during heating operation;
A heat pump that circulates refrigerant between the first in-vehicle heat exchanger, the second in-vehicle heat exchanger, and the external heat exchanger and the compressor;
A heat recovery unit that recovers heat by exchanging heat between the inside air flowing through the inside air discharge path and the outside air introduced from the outside air inlet;
It has a direct outside air inlet that does not pass through this heat recovery unit,
An air conditioner for a vehicle, wherein outside air is directly introduced from the outside air introduction port at the start of cooling operation or heating operation.
給気送風路と内気排出路をそれぞれ流れる気体の向きを反転させる反転手段を備え、暖房運転時、前記内気排出路を流れる気体の向きが反転することで、前記内気排出路で発生した結露が前記内気排出路内へ蒸発し、前記内気排出路内の湿度を高めることを特徴とする請求項3記載の車両用空調装置。 Reversing means for reversing the direction of the gas flowing through the supply air blowing path and the inside air discharge path is provided, and during the heating operation, the direction of the gas flowing through the inside air discharge path is reversed, so that the dew condensation generated in the inside air discharge path is generated. The vehicle air conditioner according to claim 3, wherein the vehicle air conditioner evaporates into the inside air discharge path to increase humidity in the inside air discharge path. 給気送風路と内気排出路をそれぞれ流れる気体の向きを反転させる反転手段を備え、暖房運転時、前記内気排出路を流れる気体の向きが反転することで、前記内気排出路で発生した氷が前記内気排出路内へ融解し、前記内気排出路内を移動することを特徴とする請求項3記載の車両用空調装置。 Reversing means for reversing the direction of the gas flowing through the supply air blowing path and the inside air discharge path is provided, and during the heating operation, the direction of the gas flowing through the inside air discharge path is reversed, so that the ice generated in the inside air discharge path is The vehicle air conditioner according to claim 3, wherein the vehicle air conditioner melts into the inside air discharge path and moves in the inside air discharge path.
JP2011036763A 2011-02-23 2011-02-23 Air conditioner for vehicle Withdrawn JP2012171522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036763A JP2012171522A (en) 2011-02-23 2011-02-23 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036763A JP2012171522A (en) 2011-02-23 2011-02-23 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2012171522A true JP2012171522A (en) 2012-09-10

Family

ID=46974806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036763A Withdrawn JP2012171522A (en) 2011-02-23 2011-02-23 Air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2012171522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456456B1 (en) * 2017-10-31 2019-01-23 三菱電機株式会社 Air conditioner for vehicles
WO2019202731A1 (en) * 2018-04-20 2019-10-24 三菱電機株式会社 Vehicle heat exchange system and vehicle air conditioning system
EP3895920A1 (en) * 2020-04-18 2021-10-20 Konvekta Aktiengesellschaft Heating and / or air conditioning system with improved ventilation for a ground vehicle
EP4147891A1 (en) * 2021-09-10 2023-03-15 Thermo King Corporation An environmental control system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456456B1 (en) * 2017-10-31 2019-01-23 三菱電機株式会社 Air conditioner for vehicles
WO2019202731A1 (en) * 2018-04-20 2019-10-24 三菱電機株式会社 Vehicle heat exchange system and vehicle air conditioning system
CN111989233A (en) * 2018-04-20 2020-11-24 三菱电机株式会社 Heat exchange system for vehicle and air conditioning system for vehicle
US20210008962A1 (en) * 2018-04-20 2021-01-14 Mitsubishi Electric Corporation Heat exchange system for vehicle and air conditioning system for vehicle
JPWO2019202731A1 (en) * 2018-04-20 2021-02-12 三菱電機株式会社 Vehicle heat exchange system and vehicle air conditioning system
EP3782830A4 (en) * 2018-04-20 2022-01-12 Mitsubishi Electric Corporation Vehicle heat exchange system and vehicle air conditioning system
JP6995192B2 (en) 2018-04-20 2022-01-14 三菱電機株式会社 Vehicle air conditioning system
US11833884B2 (en) 2018-04-20 2023-12-05 Mitsubishi Electric Corporation Heat exchange system for vehicle and air conditioning system for vehicle
CN111989233B (en) * 2018-04-20 2024-04-26 三菱电机株式会社 Air conditioning system for vehicle
EP3895920A1 (en) * 2020-04-18 2021-10-20 Konvekta Aktiengesellschaft Heating and / or air conditioning system with improved ventilation for a ground vehicle
CN113525024A (en) * 2020-04-18 2021-10-22 康唯特公司 Heating and/or air conditioning device for a ground vehicle with improved ventilation and method thereof
EP4147891A1 (en) * 2021-09-10 2023-03-15 Thermo King Corporation An environmental control system

Similar Documents

Publication Publication Date Title
KR102552112B1 (en) Heat pump system for vehicle
CN107428222B (en) Vehicle heat pump system
JP5187786B2 (en) Vehicle heat pump system
JP5892774B2 (en) Control method of heat pump system for vehicle
US8997503B2 (en) Vehicle air-conditioning system and operation control method therefor
JP6041423B2 (en) Vehicular heat pump system and control method thereof
US9834063B2 (en) Heat pump system for vehicle
KR102231890B1 (en) Heat pump system for vehicle
US20140116673A1 (en) Air conditioner for an electric vehicle
KR101015640B1 (en) Air conditioning system for vehicle
WO2004056594A1 (en) Air conditioner
CN111615464A (en) Air conditioner for vehicle
JP5640485B2 (en) Air conditioner for vehicles
CN108602414B (en) Air conditioning system for vehicle and control method thereof
KR20150026176A (en) Battery heating device for vehicle
KR101178945B1 (en) Heat Pump System Using Dual Heat Sources for Electric Vehicle
KR102111322B1 (en) Heat pump system for vehicle
CN109982877B (en) Vehicle heat pump system
KR20180113712A (en) Air conditioner for vehicles
CN111591100A (en) Vehicle, air conditioning system of vehicle and control method of air conditioning system
JP2012171522A (en) Air conditioner for vehicle
KR101903140B1 (en) Heat Pump For a Vehicle
JP2004182109A (en) Vehicular air conditioner
KR20070025278A (en) Heat pump system for car
JP3370043B2 (en) In-vehicle air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513