JP3114366B2 - Battery temperature control device - Google Patents

Battery temperature control device

Info

Publication number
JP3114366B2
JP3114366B2 JP04178233A JP17823392A JP3114366B2 JP 3114366 B2 JP3114366 B2 JP 3114366B2 JP 04178233 A JP04178233 A JP 04178233A JP 17823392 A JP17823392 A JP 17823392A JP 3114366 B2 JP3114366 B2 JP 3114366B2
Authority
JP
Japan
Prior art keywords
battery
temperature
vehicle
heat
appropriate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04178233A
Other languages
Japanese (ja)
Other versions
JPH0624238A (en
Inventor
貴英 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP04178233A priority Critical patent/JP3114366B2/en
Publication of JPH0624238A publication Critical patent/JPH0624238A/en
Application granted granted Critical
Publication of JP3114366B2 publication Critical patent/JP3114366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車のバッテリ
を適正な温度範囲に制御するとともに、バッテリの排熱
を利用して車室内の暖房を行うバッテリ温度制御装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery temperature control device for controlling a battery of an electric vehicle within an appropriate temperature range and for heating the interior of a vehicle cabin by using exhaust heat of the battery.

【0002】[0002]

【従来の技術】従来技術として、SAEペーパー920
443号に開示された技術が知られている。この技術
は、バッテリの電力によって暖房装置を作動させるので
はなく、バッテリの排熱を室内暖房の熱源として利用す
るとともに、バッテリ自体の温度コントロールを行う技
術である。
2. Description of the Related Art As a conventional technique, SAE paper 920 is used.
No. 443 is known. This technology does not operate the heating device with the electric power of the battery, but uses the exhaust heat of the battery as a heat source for indoor heating and controls the temperature of the battery itself.

【0003】[0003]

【発明が解決しようとする課題】SAEペーパー920
443号に開示された技術では、使用されるバッテリと
して、高温作動型(約350℃に維持する必要がある)
であるNa−Sバッテリを使用しているため、バッテリ
自体が充分な暖房熱源となり得る反面、次の5つの問題
点を有していた。 (1) 使用されるNa−Sバッテリ自体の価格が高価であ
る。 (2) バッテリの作動温度が高いため、作動中は常時バッ
テリを冷却する必要がある。このため、バッテリを常時
冷却するためのポンプやファン等の冷却システムが必要
となるとともに、冷却システムを作動させるための消費
電力が必要になる。 (3) バッテリの作動温度が高いため、一端常温に戻ると
作動温度になるまでに長時間加熱する必要がある。この
ため、バッテリを加熱する例えばヒータの消費電力が大
きくなる。 (4) バッテリの作動温度が高いため、バッテリの放熱を
行う熱交換器を含めた配管系を耐熱材料で構成する必要
がある。このため、システム全体のコストが高くなる。 (5) バッテリの作動温度が高いため、事故発生時に高温
に対処する安全性を確保する必要があり、これによって
も、システム全体のコストが高くなる。 このように、安全面やコスト面では、高温作動型のバッ
テリではなく、作動温度が常温付近のバッテリを用いる
ことが好ましい。しかるに、作動温度が常温付近のバッ
テリでは、暖房熱源としては熱量が小さいため、暖房不
足を発生する可能性がある。また、作動温度が常温付近
のバッテリを使用する場合、寒冷地では、バッテリの温
度が低下して、バッテリ容量や出力が低下し、車両の走
向距離・加速性能が低下するため、作動温度が常温付近
のバッテリを使用する電気自動車実用化の大きな障害に
なっている。また、バッテリの温度を必要以上に上げて
しまうと、バッテリの寿命の低下を招いてしまう。
SUMMARY OF THE INVENTION SAE paper 920
According to the technology disclosed in No. 443, the battery used is a high-temperature operation type (it needs to be maintained at about 350 ° C.).
Since the battery itself can be used as a sufficient heating heat source, the battery has the following five problems. (1) The price of the used Na-S battery itself is expensive. (2) Since the operating temperature of the battery is high, it is necessary to cool the battery at all times during operation. For this reason, a cooling system such as a pump and a fan for constantly cooling the battery is required, and power consumption for operating the cooling system is required. (3) Since the operating temperature of the battery is high, it is necessary to heat it for a long time to reach the operating temperature once it returns to normal temperature. Therefore, for example, the power consumption of the heater for heating the battery is increased. (4) Since the operating temperature of the battery is high, the piping system including the heat exchanger that radiates the battery must be made of heat-resistant materials. Therefore, the cost of the entire system increases. (5) Since the operating temperature of the battery is high, it is necessary to ensure safety against high temperatures in the event of an accident, which also increases the cost of the entire system. Thus, in terms of safety and cost, it is preferable to use a battery whose operating temperature is near normal temperature, instead of a high-temperature operation type battery. However, a battery whose operating temperature is around room temperature has a small amount of heat as a heating heat source, and thus may cause insufficient heating. When a battery whose operating temperature is around room temperature is used, the temperature of the battery decreases in cold regions, the battery capacity and output decrease, and the running distance and acceleration performance of the vehicle decrease. This is a major obstacle to the practical use of electric vehicles that use nearby batteries. If the temperature of the battery is raised more than necessary, the life of the battery is shortened.

【0004】[0004]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、最適作動温度が常温付近のバッテ
リの発生する熱を利用しながら車室内を充分に暖房する
とともに、バッテリの温度が常に最適作動温度となるよ
うに制御することによってバッテリの出力、容量、寿命
の低下を防ぐことのできるバッテリ温度制御装置の提供
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to sufficiently heat a vehicle interior while utilizing heat generated by a battery whose optimum operating temperature is near room temperature, It is an object of the present invention to provide a battery temperature control device which can prevent a decrease in output, capacity and life of a battery by controlling the temperature of the battery to always be an optimum operating temperature.

【0005】[0005]

【課題を解決するための手段】本発明のバッテリ温度制
御装置は、車両を走行させるモータと、このモータに電
力を供給し、最適作動温度が常温付近のバッテリと、車
両の起動によって発熱する発熱部材と、前記バッテリの
発生する熱を車外に放熱するラジエータと、前記バッテ
リの発生する熱を車内に放熱するヒータコアと、前記バ
ッテリの温度を検出するバッテリ温度検出センサと、前
記バッテリの温度が適正範囲よりも低い時に、前記発熱
部材の発生する熱によって前記バッテリの加熱を行い、
車室内の非暖房時で、前記バッテリの温度が適正範囲よ
りも高い時に、前記バッテリの発生する熱を前記ラジエ
ータで車外に放熱させ、車内の暖房時で、前記バッテリ
の温度が適正範囲よりも高い時に、前記バッテリおよび
前記発熱部材の発生する熱を前記ヒータコアで放熱させ
る制御回路とを備える技術的手段を採用した。
SUMMARY OF THE INVENTION A battery temperature control device according to the present invention includes a motor for running a vehicle, a power supply for supplying power to the motor, and a battery having an optimum operating temperature near normal temperature and a heat generated by the start of the vehicle. A member, a radiator that radiates heat generated by the battery to the outside of the vehicle, a heater core that radiates heat generated by the battery to the inside of the vehicle, a battery temperature detection sensor that detects a temperature of the battery, and a temperature of the battery that is appropriate. When the temperature is lower than the range, the battery is heated by the heat generated by the heat generating member,
When the temperature of the battery is higher than an appropriate range during non-heating of the vehicle interior, the heat generated by the battery is radiated to the outside of the vehicle by the radiator, and when the interior of the vehicle is heated, the temperature of the battery is lower than the appropriate range. When the temperature is high, a technical circuit including a control circuit for dissipating heat generated by the battery and the heat generating member by the heater core is employed.

【0006】[0006]

【発明の作用】外気温度の低下等によって、バッテリ温
度検出センサで検出されるバッテリの温度が低い場合
は、制御回路の働きによって、発熱部材の発生する熱に
よってバッテリが加熱される。これによって、バッテリ
の温度低下が抑えられ、バッテリ容量・出力の低下を抑
えることができる。また、モータ駆動等によってバッテ
リの温度が上昇し、バッテリ温度検出センサで検出され
るバッテリの温度が高い場合で、暖房を行っていない場
合は、制御回路の働きによって、バッテリの過剰な熱を
ラジエータで放熱する。これによって、バッテリの温度
上昇が抑えられ、バッテリ寿命の低下を抑えることがで
きる。さらに、バッテリ温度検出センサで検出されるバ
ッテリの温度が高い場合で、暖房を行っている場合は、
制御回路の働きによって、バッテリの過剰な熱と発熱部
材の発生する熱をヒータコアで放熱する。これによっ
て、バッテリの温度上昇が抑えられ、バッテリ寿命の低
下を抑えることができるとともに、室内の暖房を行うこ
とができる。
When the temperature of the battery detected by the battery temperature detecting sensor is low due to a decrease in the outside air temperature or the like, the battery is heated by the heat generated by the heat generating member by the operation of the control circuit. Thus, a decrease in the temperature of the battery is suppressed, and a decrease in the battery capacity and output can be suppressed. In addition, when the temperature of the battery rises due to driving of the motor and the temperature of the battery detected by the battery temperature detection sensor is high, and when heating is not performed, excessive heat of the battery is radiated by the operation of the control circuit. To dissipate heat. As a result, an increase in the temperature of the battery can be suppressed, and a decrease in battery life can be suppressed. Furthermore, when the temperature of the battery detected by the battery temperature detection sensor is high and heating is being performed,
By the operation of the control circuit, excessive heat of the battery and heat generated by the heat generating member are radiated by the heater core. As a result, a rise in the temperature of the battery can be suppressed, a decrease in the battery life can be suppressed, and indoor heating can be performed.

【0007】[0007]

【発明の効果】本発明のバッテリ温度制御装置は、上記
の作用で示したように、バッテリの温度が、発熱部材の
発生する熱(排熱)による加熱や、ラジエータおよびヒ
ータコアによる放熱によって、適正な温度範囲内に保た
れるため、バッテリ容量の低下による走向距離の低下
や、車両の出力低下を防ぐことができる。また、バッテ
リに最適作動温度が常温付近のバッテリを使用するた
め、従来技術に開示した高温作動型の有する不具合(常
時冷却する必要がある、作動温度に達するまで時間がか
かる、耐熱性材料で構成する必要がある等)を解消する
ことができる。さらに、バッテリに最適作動温度が常温
付近のバッテリを使用するが、暖房時に、バッテリの放
熱による暖房の他に、発熱部材の発生する熱を利用して
暖房するため、最適作動温度が常温付近のバッテリの放
熱のみによる暖房不足を解消することができる。
According to the battery temperature control device of the present invention, as described above, the temperature of the battery can be properly controlled by the heat generated by the heat-generating member (exhausted heat) and the heat radiation by the radiator and the heater core. Since the temperature is kept within the proper temperature range, it is possible to prevent a decrease in running distance due to a decrease in battery capacity and a decrease in output of the vehicle. In addition, since a battery whose optimal operating temperature is around room temperature is used for the battery, the disadvantages of the high-temperature operation type disclosed in the prior art (requires constant cooling, it takes time to reach the operating temperature, Etc.). Furthermore, although a battery whose optimum operating temperature is around room temperature is used for the battery, in addition to heating by heat dissipation of the battery during heating, heating is performed using heat generated by a heat generating member, so that the optimum operating temperature is around room temperature. It is possible to eliminate insufficient heating due to only the heat radiation of the battery.

【0008】[0008]

【実施例】次に、本発明のバッテリ温度制御装置を、図
に示す一実施例に基づき説明する。 〔実施例の構成〕図1ないし図12は本発明の第1実施
例を示すもので、図1はバッテリ温度制御装置の概略構
成図である。電気自動車は、車両1に搭載するバッテリ
2の電力をインバータ3によって制御してモータ4に与
え、モータ4の発生する動力によって車両1を走行させ
るものである。この電気自動車には、バッテリ2の温度
を適正な範囲に保つバッテリ温度制御装置5が搭載され
ている。本実施例のバッテリ温度制御装置5は、本発明
の発熱部材としてのインバータ3およびモータ4の温度
の上昇を抑える機能も備える。なお、本実施例に使用さ
れるバッテリ2は、最適作動温度が常温付近(20〜7
5℃)の鉛蓄電池(Pb−酸電池)である。なお、最適
作動温度とは、バッテリ2の主要特性である出力、容
量、寿命等を考慮した上で最適と判断される温度であ
る。そして、本実施例に使用した鉛蓄電池は、図2の温
度と寿命の相関関係グラフに示すように、20〜75℃
の範囲内では高寿命であるが、その範囲外では寿命が著
しく低下する。そして、図3の出力と温度の相関関係グ
ラフ、および図4の容量と温度の相関関係グラフに示す
ように、最低使用温度を20℃以上に設定することで、
出力的な低下、および容量の低下を発生しない。また、
最適作動温度を本実施例では20〜75℃とするもう1
つの理由を次に述べる。熱を持ったバッテリ2を冷却す
る冷熱源としては、後述するように外気が用いられる。
この外気の温度は、夏場では高温(約35℃)であるた
め、バッテリ2をあまり冷却することができず、その結
果からも、最適作動温度の上限を75℃とするのが適切
である。同様に、鉛蓄電池など最適作動温度が常温付近
のバッテリ2は、バッテリ2自体の発生する熱はそれほ
ど高くない。また、発熱部材(インバータ3、モータ
4)の発生する熱もそれほど高くない。これらを考慮す
ると、冬場(外気温−20〜0℃)で用いたときには、
最適作動温度の下限を20℃とするのが適切である。
Next, a battery temperature control device according to the present invention will be described with reference to an embodiment shown in the drawings. FIG. 1 to FIG. 12 show a first embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of a battery temperature control device. In the electric vehicle, the power of a battery 2 mounted on the vehicle 1 is controlled by an inverter 3 and supplied to a motor 4, and the vehicle 1 is driven by the power generated by the motor 4. This electric vehicle is equipped with a battery temperature control device 5 for keeping the temperature of the battery 2 in an appropriate range. The battery temperature control device 5 of the present embodiment also has a function of suppressing a rise in the temperature of the inverter 3 and the motor 4 as the heat generating member of the present invention. The battery 2 used in the present embodiment has an optimum operating temperature near normal temperature (20 to 7).
5 ° C.) lead-acid battery (Pb-acid battery). Note that the optimum operating temperature is a temperature determined to be optimum in consideration of the main characteristics of the battery 2, such as output, capacity, and life. Then, the lead storage battery used in the present embodiment has a temperature of 20 to 75 ° C. as shown in the correlation graph between the temperature and the life shown in FIG.
Within the range, the life is long, but outside the range, the life is significantly reduced. Then, as shown in the correlation graph between the output and the temperature in FIG. 3 and the correlation graph between the capacity and the temperature in FIG. 4, by setting the minimum use temperature to 20 ° C. or more,
There is no reduction in output or capacity. Also,
In this embodiment, the optimum operating temperature is set to 20 to 75 ° C.
The following are two reasons. As the cold heat source for cooling the battery 2 having heat, outside air is used as described later.
Since the temperature of the outside air is high (about 35 ° C.) in summer, the battery 2 cannot be cooled much. From the result, it is appropriate to set the upper limit of the optimum operating temperature to 75 ° C. Similarly, in a battery 2 such as a lead storage battery whose optimum operating temperature is near normal temperature, the heat generated by the battery 2 itself is not so high. Also, the heat generated by the heat generating members (the inverter 3 and the motor 4) is not so high. Considering these, when used in winter (outside temperature -20 to 0 ° C),
Suitably, the lower limit of the optimal operating temperature is 20 ° C.

【0009】バッテリ温度制御装置5は、バッテリ2を
冷却、加熱するための循環水路6を備える。この循環水
路6は、バッテリ2の側面および底面を覆うバッテリ保
温槽7の内部の冷却水を車外空気(外気)と熱交換する
ラジエータ8、あるいは車内空気と熱交換するヒータコ
ア9へ循環させるもので、インバータ3およびモータ4
にも循環可能に設けられている。そして、この循環水路
6は、各種循環経路が形成できるように設けられ、各分
岐路には、冷却水の流れ方向を切り替える電磁弁10〜
17が設けられている。また、循環水路6には、保温槽
7の冷却水を循環させる第1電動ポンプ18が設けられ
るとともに、インバータ3およびモータ4の冷却水を循
環させる第2電動ポンプ19が設けられている。なお、
ラジエータ8は、ラジエータ8を流れる冷却水と外気と
を強制的に熱交換させるラジエータファン20を備え
る。また、ラジエータ8は、車両前部に設けられ、車両
走行による空気流によって冷却水が冷却されるように設
けられている。ヒータコア9は、空気調和装置の図示し
ないダクト内に設けられ、ダクト内の空気を室内に吹き
出すためのヒータファン21の作動によって、室内へ吹
き出される空気と冷却水とが強制的に熱交換される。
The battery temperature control device 5 has a circulation water passage 6 for cooling and heating the battery 2. The circulating water channel 6 circulates cooling water inside a battery heat storage tank 7 that covers the side and bottom surfaces of the battery 2 to a radiator 8 that exchanges heat with air outside the vehicle (outside air) or a heater core 9 that exchanges heat with air inside the vehicle. , Inverter 3 and motor 4
It is also provided to be able to circulate. The circulating water passage 6 is provided so that various circulating passages can be formed, and each branch passage has a solenoid valve 10 for switching a flow direction of the cooling water.
17 are provided. In the circulating water passage 6, a first electric pump 18 for circulating the cooling water in the heat retaining tank 7 is provided, and a second electric pump 19 for circulating the cooling water for the inverter 3 and the motor 4 is provided. In addition,
The radiator 8 includes a radiator fan 20 for forcibly exchanging heat between the cooling water flowing through the radiator 8 and the outside air. The radiator 8 is provided at a front portion of the vehicle, and is provided so that cooling water is cooled by an airflow generated by traveling of the vehicle. The heater core 9 is provided in a duct (not shown) of the air conditioner, and the air blown into the room and the cooling water are forcibly exchanged heat by the operation of the heater fan 21 for blowing the air in the duct into the room. You.

【0010】バッテリ温度制御装置5は、バッテリ2を
加熱するための電気ヒータ22を備える。この電気ヒー
タ22は、バッテリ保温槽7の内部に設けられ、電気ヒ
ータ22が発熱することにより、バッテリ保温槽7内の
冷却水を加熱してバッテリ2を加熱するように設けられ
ている。
[0010] The battery temperature control device 5 includes an electric heater 22 for heating the battery 2. The electric heater 22 is provided inside the battery insulation tank 7, and is provided so as to heat the cooling water in the battery insulation tank 7 and heat the battery 2 when the electric heater 22 generates heat.

【0011】バッテリ保温槽7は、バッテリ2と冷却水
とを熱交換するもので、図5に示すように、バッテリ2
を収容する容器体23と、この容器体23をOリング2
4およびマウントゴム25を介して収容するジャケット
26とからなり、容器体23とジャケット26との間に
冷却水が収容される。なお、バッテリ2と容器体23と
の間には、高熱伝導性のグリス27が配されている。
The battery heat retaining tank 7 exchanges heat between the battery 2 and the cooling water, and as shown in FIG.
And an O-ring 2
4 and a jacket 26 housed via the mounting rubber 25, and cooling water is housed between the container body 23 and the jacket 26. In addition, grease 27 having high thermal conductivity is arranged between the battery 2 and the container 23.

【0012】バッテリ温度制御装置5は、図6に示す制
御回路28によって制御される。制御回路28は、マイ
クロコンピュータを使用したもので、各種入力信号に応
じて、電磁弁10〜17、第1、第2電動ポンプ18、
19、ラジエータファン20、ヒータファン21、電気
ヒータ22の通電制御を行う。制御回路28には、上記
機能部品を通電制御するために、イグニッションのON-O
FFを検出するイグニッションセンサ29、バッテリ2が
充電されているか否かを検出する充電センサ30、車両
走行速度を検出する車速センサ31、バッテリ2の温度
を検出するバッテリ温度センサ32、車内の温度を検出
する車内温度検出センサ33、モータ4の温度を検出す
るモータ温度センサ34、インバータ3の温度を検出す
るインバータ温度センサ35等の各種センサが接続され
ている。
The battery temperature control device 5 is controlled by a control circuit 28 shown in FIG. The control circuit 28 uses a microcomputer, and according to various input signals, the solenoid valves 10 to 17, the first and second electric pumps 18,
19, energization control of the radiator fan 20, the heater fan 21, and the electric heater 22 is performed. The control circuit 28 includes an ignition ON-O to control the energization of the functional components.
An ignition sensor 29 for detecting the FF, a charge sensor 30 for detecting whether the battery 2 is charged, a vehicle speed sensor 31 for detecting the vehicle running speed, a battery temperature sensor 32 for detecting the temperature of the battery 2, and a temperature inside the vehicle. Various sensors such as an in-vehicle temperature detection sensor 33 for detecting, a motor temperature sensor 34 for detecting the temperature of the motor 4, and an inverter temperature sensor 35 for detecting the temperature of the inverter 3 are connected.

【0013】〔実施例の作動〕制御回路28にプログラ
ムされたバッテリ温度制御装置5の制御の一例を、図7
および図8のフローチャートを用いて説明する。初めに
(スタート)、イグニッションがONか否かの判断を行い
(ステップS1)、OFF の時はバッテリ2が外部電源
(例えば深夜電力)によって充電中であるか否かの判断
を行う(ステップS2 )。充電中でない場合、つまり休
止時の時は、再びステップS1 へ戻る。ステップS2 の
判断結果が充電中の場合は、バッテリ2の温度が適正範
囲(例えば、鉛畜電池の最適作動範囲である20〜75
℃の範囲)よりも高いか、適正範囲内か、低いかの判断
を行う(ステップS3 )。適正範囲内であればステップ
S1 へ戻る。適正範囲よりも低い場合は、図9に示すよ
うに、外部電源によって電気ヒータ22をONしてバッテ
リ2の温度を上昇させ(ステップS4 )、その後ステッ
プS1 へ戻る。適正範囲よりも高い場合は、車内の温度
が最適温度範囲(例えば20〜25℃)より低いか否か
の判断を行う(ステップS5 )。適温または高い場合
は、図10に示すように、バッテリ2の冷却回路を開
き、第1電動ポンプ18をONし、ラジエータファン20
をONし(ステップS6 )、その後、ステップS1 へ戻
る。適温よりも低い場合は、図11に示すように、バッ
テリ2暖房回路を開き、第1電動ポンプ18をONし、ヒ
ータファン21をONし(ステップS7 )、その後、ステ
ップS1 へ戻る。
[Operation of Embodiment] An example of control of the battery temperature control device 5 programmed in the control circuit 28 is shown in FIG.
This will be described with reference to the flowchart of FIG. At first (start), it is determined whether or not the ignition is ON (step S1). When the ignition is OFF, it is determined whether or not the battery 2 is being charged by an external power supply (for example, midnight power) (step S2). ). If the battery is not being charged, that is, if it is at rest, the process returns to step S1 again. If the result of the determination in step S2 is that the battery is being charged, the temperature of the battery 2 falls within an appropriate range (for example, 20 to 75, which is the optimal operating range of
(In the range of ° C), within the appropriate range, or lower (step S3). If it is within the proper range, the process returns to step S1. If the temperature is lower than the appropriate range, as shown in FIG. 9, the electric heater 22 is turned on by an external power source to raise the temperature of the battery 2 (step S4), and thereafter, the process returns to step S1. If the temperature is higher than the appropriate range, it is determined whether the temperature inside the vehicle is lower than the optimum temperature range (for example, 20 to 25 ° C.) (step S5). If the temperature is appropriate or high, as shown in FIG. 10, the cooling circuit for the battery 2 is opened, the first electric pump 18 is turned on, and the radiator fan 20 is turned on.
Is turned on (step S6), and thereafter, the process returns to step S1. If the temperature is lower than the appropriate temperature, as shown in FIG. 11, the battery 2 heating circuit is opened, the first electric pump 18 is turned on, the heater fan 21 is turned on (step S7), and thereafter, the process returns to step S1.

【0014】ステップS1 の判断結果により、イグニッ
ションがONの場合、車速がゼロか否かの判断を行う(ス
テップS8 )。車速がゼロの場合は、バッテリ2の温度
が適正範囲よりも低いか否かの判断を行う(ステップS
9 )。適正範囲よりも低い場合は、図9に示すように、
電気ヒータ22をONしてバッテリ2の温度を上昇させ
(ステップS10)、その後ステップS1 へ戻る。適温お
よび高い場合は、車内の温度が最適温度範囲より低いか
否かの判断を行う(ステップS11)。適温または高い場
合は、図10に示すように、バッテリ2の冷却回路を開
き、第1電動ポンプ18をONし、ラジエータファン20
をONし(ステップS12)、その後、ステップS1 へ戻
る。適温よりも低い場合は、図11に示すように、バッ
テリ2暖房回路を開き、第1電動ポンプ18をONし、ヒ
ータファン21をONし(ステップS13)、その後、ステ
ップS1 へ戻る。
If it is determined in step S1 that the ignition is ON, it is determined whether the vehicle speed is zero (step S8). If the vehicle speed is zero, it is determined whether the temperature of the battery 2 is lower than an appropriate range (step S).
9). If lower than the appropriate range, as shown in FIG.
The electric heater 22 is turned on to raise the temperature of the battery 2 (step S10), and thereafter, the process returns to step S1. If the temperature is appropriate and high, it is determined whether the temperature inside the vehicle is lower than the optimum temperature range (step S11). If the temperature is appropriate or high, as shown in FIG. 10, the cooling circuit for the battery 2 is opened, the first electric pump 18 is turned on, and the radiator fan 20 is turned on.
Is turned on (step S12), and thereafter, the process returns to step S1. When the temperature is lower than the appropriate temperature, as shown in FIG. 11, the battery 2 heating circuit is opened, the first electric pump 18 is turned on, the heater fan 21 is turned on (step S13), and thereafter, the process returns to step S1.

【0015】ステップS8 の判断結果により、車速がゼ
ロ以外の場合(走行中)は、バッテリ2の温度が適正範
囲よりも高いか、適正範囲内か、低いかの判断を行う
(ステップS14)。適正範囲内であればステップS1 へ
戻る。適正範囲よりも高い場合は、車内の温度が最適温
度範囲より低いか否かの判断を行う(ステップS15)。
適温または高い場合は、モータ4、インバータ3の温度
が最適温度範囲(例えば40〜80℃)よりも高いか否
かの判断を行う(ステップS16)。高い場合は、図12
に示すように、バッテリ2の冷却回路を開き、モータ
4、インバータ3の冷却回路を開き、第1、第2電動ポ
ンプ18、19をONし、ラジエータファン20をONし
(ステップS17)、その後、ステップS1 へ戻る。モー
タ4、インバータ3の温度が適温または低い場合は、図
10に示すように、バッテリ2の冷却回路を開き、第1
電動ポンプ18をONし、ラジエータファン20をONし
(ステップS18)、その後、ステップS1 へ戻る。ステ
ップS15の判断結果により、車内温度が適温よりも低い
場合は、モータ4、インバータ3の温度が最適温度範囲
よりも高いか否かの判断を行う(ステップS19)。高い
場合は、図13に示すように、バッテリ2の冷却回路を
開き、モータ4、インバータ3の暖房回路を開き、第
1、第2電動ポンプ18、19をONし、ヒータファン2
1をONし(ステップS20)、その後、ステップS1 へ戻
る。モータ4、インバータ3の温度が適温または低い場
合は、図11に示すように、バッテリ2暖房回路を開
き、第1電動ポンプ18をONし、ヒータファン21をON
し(ステップS21)、その後、ステップS1 へ戻る。
If the result of the determination in step S8 indicates that the vehicle speed is not zero (during running), it is determined whether the temperature of the battery 2 is higher than the proper range, within the proper range, or lower (step S14). If it is within the proper range, the process returns to step S1. If it is higher than the appropriate range, it is determined whether the temperature inside the vehicle is lower than the optimum temperature range (step S15).
If the temperature is appropriate or high, it is determined whether the temperatures of the motor 4 and the inverter 3 are higher than an optimum temperature range (for example, 40 to 80 ° C.) (step S16). If high, see FIG.
As shown in (2), the cooling circuit of the battery 2 is opened, the cooling circuits of the motor 4 and the inverter 3 are opened, the first and second electric pumps 18 and 19 are turned on, and the radiator fan 20 is turned on (step S17). The process returns to step S1. When the temperatures of the motor 4 and the inverter 3 are appropriate or low, the cooling circuit of the battery 2 is opened as shown in FIG.
The electric pump 18 is turned on, the radiator fan 20 is turned on (step S18), and the process returns to step S1. If the result of the determination in step S15 indicates that the temperature inside the vehicle is lower than the appropriate temperature, it is determined whether the temperatures of the motor 4 and the inverter 3 are higher than the optimum temperature range (step S19). If it is high, as shown in FIG. 13, the cooling circuit of the battery 2 is opened, the heating circuit of the motor 4 and the inverter 3 is opened, the first and second electric pumps 18 and 19 are turned on, and the heater fan 2 is turned on.
1 is turned on (step S20), and then the process returns to step S1. When the temperatures of the motor 4 and the inverter 3 are appropriate or low, as shown in FIG. 11, the battery 2 heating circuit is opened, the first electric pump 18 is turned on, and the heater fan 21 is turned on.
(Step S21), and then return to step S1.

【0016】ステップS14の判断結果により、バッテリ
2の温度が適正範囲よりも低い場合は、車内の温度が最
適温度範囲より高いか否かの判断を行う(ステップS2
2)。高い場合は、モータ4、インバータ3の温度が最
適温度範囲よりも低いか否かの判断を行う(ステップS
23)。適温または高い場合は、図14に示すように、バ
ッテリ2の加熱回路を開き、第1電動ポンプ18をONし
(ステップS24)、その後、ステップS1 へ戻る。モー
タ4、インバータ3の温度が適温よりも低い場合は、そ
のままステップS1 へ戻る。ステップS22の判断結果に
より、車内温度が適温または低い場合は、モータ4、イ
ンバータ3の温度が最適温度範囲よりも低いか否かの判
断を行う(ステップS25)。適温または高い場合は、図
15に示すように、バッテリ2の加熱回路を開き、モー
タ4、インバータ3の暖房回路を開き、第1、第2電動
ポンプ18、19をONし、ヒータファン21をONし(ス
テップS26)、その後、ステップS1へ戻る。モータ
4、インバータ3の温度が適温よりも低い場合は、その
ままステップS1 へ戻る。
If it is determined in step S14 that the temperature of the battery 2 is lower than the appropriate range, it is determined whether the temperature in the vehicle is higher than the optimum temperature range (step S2).
2). If the temperature is high, it is determined whether the temperatures of the motor 4 and the inverter 3 are lower than the optimum temperature range (step S).
twenty three). If the temperature is appropriate or high, as shown in FIG. 14, the heating circuit of the battery 2 is opened, the first electric pump 18 is turned on (step S24), and thereafter, the process returns to step S1. If the temperatures of the motor 4 and the inverter 3 are lower than the appropriate temperature, the process returns to step S1. If it is determined in step S22 that the temperature inside the vehicle is appropriate or low, it is determined whether the temperatures of the motor 4 and the inverter 3 are lower than the optimum temperature range (step S25). If the temperature is appropriate or high, as shown in FIG. 15, the heating circuit of the battery 2 is opened, the heating circuits of the motor 4 and the inverter 3 are opened, the first and second electric pumps 18 and 19 are turned on, and the heater fan 21 is turned on. ON (step S26), and then return to step S1. If the temperatures of the motor 4 and the inverter 3 are lower than the appropriate temperature, the process returns to step S1.

【0017】〔実施例の効果〕冬期など、充電時にバッ
テリ2の温度が適正温度よりも低い時は、電気ヒータ2
2で加熱されるため、充電時間を短縮することができ
る。また、夏期など、充電時間にバッテリ2の温度が適
正温度よりも高い時は、ラジエータ8で冷却されるた
め、同様に、充電時間を短縮することができる。始動時
に、バッテリ2の温度が適正温度よりも低い時も、電気
ヒータ22で加熱されるため、バッテリ容量の減少を防
ぐことができ、モータ4出力の低下を防ぐとともに、走
向距離の低下を抑えることができる。また、始動時にバ
ッテリ2の温度が適正温度よりも高い時は、ラジエータ
8で冷却されるため、バッテリ寿命の低下を防ぐことが
できる。充電時、冬期などで車内の温度が低い場合に、
充電によってバッテリ2の温度が適正温度よりも上昇す
ると、バッテリ2の熱で車内が加熱されるため、乗員が
車両1に乗車した時に、車内が適温に暖房されている。
また、充電完了時点でバッテリ2が適温に保温、蓄熱さ
れているため、本実施例では始動時に、乗員の必要に応
じて急速暖房を行うことができる。さらに、車両走行
時、冬期などで車内の温度が低い場合に、バッテリ2の
温度が適正温度よりも上昇すると、バッテリ2の熱で車
内が加熱されるため、暖房のための電力が不要、もしく
は著しく低減できる。同様に、車内の温度が低い場合
に、インバータ3やモータ4の温度が上昇すると、イン
バータ3やモータ4の熱でも車内が加熱されるため、寒
冷地等においてバッテリ2のみによる暖房不足を補うこ
とができるとともに、暖房のための電力が不要、もしく
は著しく低減できる。これにより、暖房に消費する電力
を減らすことができ、暖房によるバッテリ2の電力低下
が抑えられる。この結果、さらに車両走行距離を延ばす
ことができる。車両走行時にバッテリ2を加熱する場合
に、電気ヒータ22を利用せずに、モータ4やインバー
タ3の放出する熱を利用しているため、バッテリ2の電
力低下が抑えられる。制御回路28によって自動的にバ
ッテリ2の温度が適正範囲内になるように制御されるた
め、バッテリ2の適温維持が可能となり、バッテリ2の
寿命を大幅に延ばすことができる。インバータ3やモー
タ4が適温に冷却されるため、インバータ3やモータ4
の性能を高く維持することができるとともに、インバー
タ3やモータ4の寿命を延ばすことができる。バッテリ
2に、最適作動温度が常温付近の鉛蓄電池を使用するた
め、使用するバッテリ2のコストを抑えることができ
る。バッテリの作動温度が常温付近であるため、作動中
に常時バッテリを冷却する必要がない。このため、バッ
テリに高温作動型を使用した場合に比較して、冷却シス
テムを作動させるための消費電力が大幅に減少する。バ
ッテリの作動温度が常温付近であるため、一端車両を停
止するなど、バッテリ2の温度が環境温度に戻っても、
作動温度になるまでに少ない時間ですむ。バッテリの作
動温度が常温付近であるため、バッテリ2の放熱を行う
冷却系の配管系を耐熱材料で構成する必要がなく、コス
トを抑えることができる。バッテリの作動温度が常温付
近であるため、事故発生時に高温に対処する安全性確保
のコストを低く抑えることができる。
[Effects of the Embodiment] When the temperature of the battery 2 is lower than the appropriate temperature during charging, such as in winter, the electric heater 2
Since the heating is performed in step 2, the charging time can be reduced. In addition, when the temperature of the battery 2 is higher than the appropriate temperature during the charging time, such as in summer, the radiator 8 cools the battery 2, so that the charging time can be similarly reduced. At the time of starting, even when the temperature of the battery 2 is lower than the appropriate temperature, the battery is heated by the electric heater 22, so that a decrease in the battery capacity can be prevented, and a decrease in the output of the motor 4 and a decrease in the running distance can be suppressed. be able to. Further, when the temperature of the battery 2 is higher than the appropriate temperature at the time of starting, the battery 2 is cooled by the radiator 8, so that the battery life can be prevented from being shortened. When charging, when the temperature inside the car is low, such as in winter,
When the temperature of the battery 2 rises above the appropriate temperature due to charging, the inside of the vehicle is heated by the heat of the battery 2, so that when the occupant gets on the vehicle 1, the inside of the vehicle is heated to an appropriate temperature.
Further, since the battery 2 is kept warm and stored at an appropriate temperature when charging is completed, in this embodiment, rapid heating can be performed as required by the occupant at the time of starting. Furthermore, when the temperature of the battery 2 rises above an appropriate temperature when the temperature of the inside of the vehicle is low, for example, during traveling of the vehicle, in winter, etc., the inside of the vehicle is heated by the heat of the battery 2, so that electric power for heating is unnecessary, or It can be significantly reduced. Similarly, if the temperature of the inverter 3 or the motor 4 rises when the temperature inside the vehicle is low, the inside of the vehicle is also heated by the heat of the inverter 3 or the motor 4, so that the lack of heating by only the battery 2 in a cold region or the like is compensated. And electric power for heating is unnecessary or can be significantly reduced. Thereby, the power consumed for heating can be reduced, and a decrease in the power of the battery 2 due to heating can be suppressed. As a result, the vehicle traveling distance can be further increased. When heating the battery 2 during running of the vehicle, the electric heater 22 is not used, but the heat released by the motor 4 and the inverter 3 is used, so that a decrease in the power of the battery 2 is suppressed. Since the temperature of the battery 2 is automatically controlled by the control circuit 28 to be within an appropriate range, the appropriate temperature of the battery 2 can be maintained, and the life of the battery 2 can be greatly extended. Since the inverter 3 and the motor 4 are cooled to an appropriate temperature, the inverter 3 and the motor 4
Can be maintained at a high level, and the life of the inverter 3 and the motor 4 can be extended. Since a lead storage battery whose optimum operating temperature is around normal temperature is used as the battery 2, the cost of the battery 2 to be used can be reduced. Since the operating temperature of the battery is near normal temperature, there is no need to constantly cool the battery during operation. For this reason, the power consumption for operating the cooling system is significantly reduced as compared with the case where the high-temperature operation type is used for the battery. Since the operating temperature of the battery is near normal temperature, even if the temperature of the battery 2 returns to the ambient temperature, such as when the vehicle is temporarily stopped,
It takes less time to reach operating temperature. Since the operating temperature of the battery is around room temperature, it is not necessary to form a piping system of a cooling system for radiating heat of the battery 2 with a heat-resistant material, so that costs can be reduced. Since the operating temperature of the battery is around normal temperature, the cost of ensuring safety against high temperatures in the event of an accident can be reduced.

【0018】〔第2実施例〕図16はバッテリ保温槽7
の断面図を示す。本実施例のバッテリ保温槽7は、容器
体23とジャケット26とを一体化したものである。
[Second Embodiment] FIG.
FIG. The battery insulation tank 7 according to the present embodiment is obtained by integrating the container body 23 and the jacket 26.

【0019】〔第3実施例〕図17はバッテリ保温槽7
の断面図を示す。本実施例のバッテリ保温槽7は、容器
体(第1実施例参照)を廃止し、ジャケット26でバッ
テリ2を収容するものである。
[Third Embodiment] FIG. 17 shows a battery insulation tank 7.
FIG. The battery insulation tank 7 of the present embodiment eliminates the container (see the first embodiment) and accommodates the battery 2 with the jacket 26.

【0020】〔第4実施例〕図18はバッテリ保温槽7
の断面図を示す。本実施例のバッテリ保温槽7は、容器
体23の冷却水が配される側に、熱交換を促進するため
のフィン36を多数設けたものである。
[Fourth Embodiment] FIG. 18 shows a battery insulation tank 7.
FIG. The battery insulation tank 7 of this embodiment is provided with a large number of fins 36 for promoting heat exchange on the side of the container body 23 where the cooling water is provided.

【0021】〔第5実施例〕図19はバッテリ保温槽7
の断面図を示す。本実施例は、バッテリ2をセル37毎
に分離し、各セル37の間に冷却水が流れるように設
け、熱交換を促進させるものである。
[Fifth Embodiment] FIG. 19 shows a battery insulation tank 7.
FIG. In the present embodiment, the battery 2 is separated for each cell 37, and cooling water is provided between the cells 37 to promote heat exchange.

【0022】〔第6実施例〕図20は回生ブレーキシス
テムを採用したバッテリ温度制御装置の概略構成図であ
る。本実施例は、車両の制動時に、制動エネルギーを電
力に変換する回生ブレーキシステム38を搭載するもの
である。本実施例の回生ブレーキシステム38の発生す
る電力は、充電センサ30によるバッテリ2の充電状態
がフル状態で、かつバッテリ2の温度が適正温度よりも
低い場合、切替リレー39によって電気ヒータ22を通
電してバッテリ2を加熱する。また、バッテリ2の充電
状態がフル状態で、かつバッテリ2の温度が適正温度、
もしくは適正温度よりも高い場合、切替リレー39によ
ってバッテリ2および電気ヒータ22のどちらも通電し
ないようにする。バッテリ2の充電状態がフル状態でな
い場合、回生ブレーキシステム38の発生する電力は、
切替リレー39によってバッテリ2に通電され、バッテ
リ2を充電する。
Sixth Embodiment FIG. 20 is a schematic configuration diagram of a battery temperature control device employing a regenerative braking system. In this embodiment, a regenerative braking system 38 that converts braking energy into electric power when the vehicle is braked is mounted. The electric power generated by the regenerative braking system 38 of this embodiment is supplied to the electric heater 22 by the switching relay 39 when the state of charge of the battery 2 by the charge sensor 30 is full and the temperature of the battery 2 is lower than an appropriate temperature. To heat the battery 2. In addition, the state of charge of the battery 2 is full, and the temperature of the battery 2 is an appropriate temperature,
Alternatively, when the temperature is higher than the appropriate temperature, the switching relay 39 is configured not to energize both the battery 2 and the electric heater 22. When the state of charge of the battery 2 is not full, the power generated by the regenerative braking system 38 is
The battery 2 is charged by the switching relay 39 to charge the battery 2.

【0023】〔変形例〕上記の実施例では、車内の温度
が低下すると、自動的に暖房を開始するように設けた
が、手動操作によって暖房を開始するように設けても良
い。バッテリの温度が適正範囲内の場合(適正範囲の上
限に達していない場合)でも、バッテリの熱で暖房を行
うように設けても良い。また、バッテリの温度が適正範
囲内の場合(適正範囲の上限に達していない場合)で
も、バッテリに熱を蓄える目的で、発熱部材の熱でバッ
テリを加熱するように設けても良い。冷却水に代えてオ
イルを用いても良い。バッテリの一例として、Pb−酸
電池である鉛蓄電池を例に示したが、Ni−Cd電池、
Al−空気電池、Fe−空気電池、常温型Li電池、N
i−Zn電池、Ni−Fe電池、Zn−Br電池など作
動温度が常温付近の他のバッテリを適用しても良い。
[Modification] In the above embodiment, the heating is automatically started when the temperature in the vehicle is lowered. However, the heating may be started by a manual operation. Even when the temperature of the battery is within the appropriate range (when it does not reach the upper limit of the appropriate range), heating may be provided by the heat of the battery. In addition, even when the temperature of the battery is within the appropriate range (when the upper limit of the appropriate range is not reached), the battery may be heated by the heat of the heat generating member for the purpose of storing heat in the battery. Oil may be used instead of the cooling water. As an example of a battery, a lead-acid battery that is a Pb-acid battery has been described as an example, but a Ni-Cd battery,
Al-air battery, Fe-air battery, room temperature Li battery, N
Other batteries having an operating temperature near normal temperature, such as an i-Zn battery, a Ni-Fe battery, and a Zn-Br battery, may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バッテリ温度制御装置の概略構成図である(第
1実施例)。
FIG. 1 is a schematic configuration diagram of a battery temperature control device (first embodiment).

【図2】バッテリの寿命と温度との相関関係を示すグラ
フである(第1実施例)。
FIG. 2 is a graph showing a correlation between battery life and temperature (first embodiment).

【図3】バッテリの出力と温度との相関関係を示すグラ
フである(第1実施例)。
FIG. 3 is a graph showing a correlation between battery output and temperature (first embodiment).

【図4】バッテリの容量と温度との相関関係を示すグラ
フである(第1実施例)。
FIG. 4 is a graph showing a correlation between battery capacity and temperature (first embodiment).

【図5】バッテリ保温槽の断面図である(第1実施
例)。
FIG. 5 is a sectional view of a battery heat storage tank (first embodiment).

【図6】制御回路のブロック図である(第1実施例)。FIG. 6 is a block diagram of a control circuit (first embodiment).

【図7】バッテリ温度制御装置の作動説明図である(第
1実施例)。
FIG. 7 is an operation explanatory diagram of the battery temperature control device (first embodiment);

【図8】バッテリ温度制御装置の作動説明図である(第
1実施例)。
FIG. 8 is an operation explanatory diagram of the battery temperature control device (first embodiment).

【図9】バッテリ温度制御装置の作動説明図である(第
1実施例)。
FIG. 9 is an operation explanatory diagram of the battery temperature control device (first embodiment).

【図10】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 10 is a diagram illustrating the operation of the battery temperature control device (first embodiment).

【図11】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 11 is an operation explanatory diagram of the battery temperature control device (first embodiment).

【図12】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 12 is a diagram illustrating the operation of the battery temperature control device (first embodiment).

【図13】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 13 is a diagram illustrating the operation of the battery temperature control device (first embodiment).

【図14】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 14 is a diagram illustrating the operation of the battery temperature control device (first embodiment).

【図15】バッテリ温度制御装置の作動説明図である
(第1実施例)。
FIG. 15 is an operation explanatory diagram of the battery temperature control device (first embodiment).

【図16】バッテリ保温槽の断面図である(第2実施
例)。
FIG. 16 is a sectional view of a battery heat storage tank (second embodiment).

【図17】バッテリ保温槽の断面図である(第3実施
例)。
FIG. 17 is a sectional view of a battery heat insulating tank (third embodiment).

【図18】バッテリ保温槽の断面図である(第4実施
例)。
FIG. 18 is a sectional view of a battery heat storage tank (fourth embodiment).

【図19】バッテリ保温槽の断面図である(第5実施
例)。
FIG. 19 is a sectional view of a battery heat retaining tank (fifth embodiment).

【図20】回生ブレーキシステムを採用したバッテリ温
度制御装置の概略構成図である(第6実施例)。
FIG. 20 is a schematic configuration diagram of a battery temperature control device employing a regenerative braking system (sixth embodiment).

【符号の説明】[Explanation of symbols]

1 車両 2 バッテリ 4 モータ 5 バッテリ温度制御装置 8 ラジエータ 9 ヒータコア 22 電気ヒータ 28 制御回路 32 バッテリ温度センサ DESCRIPTION OF SYMBOLS 1 Vehicle 2 Battery 4 Motor 5 Battery temperature control device 8 Radiator 9 Heater core 22 Electric heater 28 Control circuit 32 Battery temperature sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (a) 車両を走行させるモータと、 (b) このモータに電力を供給し、最適作動温度が常温付
近のバッテリと、 (c) 車両の起動によって発熱する発熱部材と、 (d) 前記バッテリの発生する熱を車外に放熱するラジエ
ータと、 (e) 前記バッテリの発生する熱を車内に放熱するヒータ
コアと、 (f) 前記バッテリの温度を検出するバッテリ温度検出セ
ンサと、 (g)(g-1)前記バッテリの温度が適正範囲よりも低い時
に、前記発熱部材の発生する熱によって前記バッテリの
加熱を行い、 (g-2) 車室内の非暖房時で、前記バッテリの温度が適正
範囲よりも高い時に、前記バッテリの発生する熱を前記
ラジエータで車外に放熱させ、 (g-3) 車内の暖房時で、前記バッテリの温度が適正範囲
よりも高い時に、前記バッテリおよび前記発熱部材の発
生する熱を前記ヒータコアで放熱させる制御回路とを備
えるバッテリ温度制御装置。
(A) a motor for running the vehicle; (b) a battery that supplies power to the motor and has an optimum operating temperature near normal temperature; (c) a heat-generating member that generates heat when the vehicle is started; d) a radiator for radiating the heat generated by the battery to the outside of the vehicle; (e) a heater core for radiating heat generated by the battery to the vehicle; (f) a battery temperature detection sensor for detecting the temperature of the battery; g) (g-1) When the temperature of the battery is lower than the appropriate range, the battery is heated by the heat generated by the heat generating member. (g-2) When the vehicle compartment is not heated, the battery is heated. When the temperature is higher than the appropriate range, the heat generated by the battery is radiated to the outside of the vehicle by the radiator. (G-3) During heating of the vehicle, when the temperature of the battery is higher than the appropriate range, Before the heat generated by the heat generating member Battery temperature control device and a control circuit to dissipate in the heater core.
JP04178233A 1992-07-06 1992-07-06 Battery temperature control device Expired - Lifetime JP3114366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04178233A JP3114366B2 (en) 1992-07-06 1992-07-06 Battery temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04178233A JP3114366B2 (en) 1992-07-06 1992-07-06 Battery temperature control device

Publications (2)

Publication Number Publication Date
JPH0624238A JPH0624238A (en) 1994-02-01
JP3114366B2 true JP3114366B2 (en) 2000-12-04

Family

ID=16044926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04178233A Expired - Lifetime JP3114366B2 (en) 1992-07-06 1992-07-06 Battery temperature control device

Country Status (1)

Country Link
JP (1) JP3114366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578190B (en) * 2007-02-07 2012-11-07 丰田自动车株式会社 Cooling system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824980B1 (en) * 1996-07-21 1999-06-02 Werner Grabher Pressing device for sealingly joining a can body with a separation element
JP3321547B2 (en) * 1997-04-30 2002-09-03 本田技研工業株式会社 Heat exchange equipment for electric vehicles
DE19960960C1 (en) * 1999-12-17 2001-04-26 Bosch Gmbh Robert Heat exchanger system for hybrid vehicle passenger compartment heating utilizes waste heat generated by power semiconductors that control electric drive motor of hybrid drive
JP2009023482A (en) * 2007-07-19 2009-02-05 Valeo Thermal Systems Japan Corp Rear unit and its control device
JP2010119282A (en) * 2008-10-17 2010-05-27 Denso Corp Thermal management system
JP4692643B2 (en) 2009-01-26 2011-06-01 株式会社豊田中央研究所 Secondary battery system and vehicle equipped with secondary battery system
JP5257220B2 (en) 2009-04-23 2013-08-07 株式会社デンソー Battery system
WO2011043703A1 (en) * 2009-10-09 2011-04-14 Volvo Lastvagnar Ab Apparatus and method for controlling the temperature of a battery in a hybrid electric vehicle
FR2954405B1 (en) * 2009-12-22 2012-01-13 Renault Sa COOLING DEVICE FOR MOTOR VEHICLE
JP2012081932A (en) * 2010-10-14 2012-04-26 Mitsubishi Motors Corp Driving-battery temperature adjustment system
DE102011004624A1 (en) * 2011-02-24 2012-08-30 Zf Friedrichshafen Ag Method and device for heating a driving battery of a vehicle
FR2987315B1 (en) * 2012-02-24 2014-03-07 Valeo Systemes Thermiques DEVICE FOR THERMALLY CONDITIONING A CAR AND A TRACTION CHAIN OF A VEHICLE.
FR2989635B1 (en) * 2012-04-24 2016-03-18 Valeo Systemes Thermiques HEATING, VENTILATION, AND / OR AIR CONDITIONING INSTALLATION COMPRISING A THERMAL REGULATION DEVICE FOR A BATTERY AND CORRESPONDING METHOD OF IMPLEMENTATION THEREOF.
JP6244238B2 (en) * 2014-03-20 2017-12-06 カルソニックカンセイ株式会社 Refrigerant temperature adjusting device and vehicle air conditioner
JP6358425B2 (en) * 2014-06-04 2018-07-18 三菱自動車工業株式会社 In-vehicle battery temperature control device
KR101551097B1 (en) 2014-06-11 2015-09-08 현대자동차주식회사 Heating system of hybrid vehicle
FR3030124B1 (en) * 2014-12-16 2019-10-11 Renault S.A.S METHOD FOR MANAGING A HYBRID POWER PACKAGE OF A MOTOR VEHICLE
KR102023716B1 (en) 2016-03-03 2019-09-20 주식회사 엘지화학 Battery system for vehicle
EP3427998A4 (en) * 2016-03-11 2019-10-16 Taiyo Yuden Co., Ltd. Drive device for electrically assisted vehicle, electrically assisted vehicle, and electricity storage device
JP6358288B2 (en) * 2016-06-14 2018-07-18 マツダ株式会社 Hybrid vehicle secondary battery heating device
KR102018817B1 (en) * 2017-09-08 2019-11-05 제주대학교 산학협력단 Intergrated heated heating system for interior heating
FR3074362B1 (en) * 2017-11-24 2019-11-15 Arkema France DEVICE FOR COOLING AND / OR HEATING A BATTERY OF AN ELECTRIC OR HYBRID MOTOR VEHICLE AND COOLING AND / OR HEATING CIRCUIT THEREFOR
EP3972081A1 (en) * 2020-09-18 2022-03-23 ABB Schweiz AG An uninterruptible power supply arrangement for subsea applications
JP7203794B2 (en) * 2020-09-25 2023-01-13 本田技研工業株式会社 Vehicle circuit temperature regulation system
JP2023075845A (en) 2021-11-19 2023-05-31 サンデン株式会社 Vehicular air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578190B (en) * 2007-02-07 2012-11-07 丰田自动车株式会社 Cooling system

Also Published As

Publication number Publication date
JPH0624238A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP3114366B2 (en) Battery temperature control device
JP3044975B2 (en) Battery heating device for electric vehicles
US5432026A (en) Cooling system for high temperature battery
US10543734B2 (en) Electrified vehicle cabin heating
US5834132A (en) Battery temperature regulating apparatus
US6840050B2 (en) Thermal jacket for battery
US5490572A (en) Battery temperature control system in electric automobile
JP3817842B2 (en) Hybrid electric vehicle cooling system
WO2015162855A1 (en) Vehicle air-conditioning device
EP3923398B1 (en) Battery pack thermal management system and thermal management system for electric vehicle
JPWO2015050226A1 (en) Battery temperature control device
KR101956362B1 (en) Efficient transfer of heat to passenger cabin
JPH09259940A (en) Battery pack for electric vehicle
US20150360558A1 (en) Vehicle
JPS5934911A (en) Suppressing device for internal temperature of car compartment
US20240181835A1 (en) Vehicular heat management system
JP4930270B2 (en) Vehicle and heat exchange system
JP2008103108A (en) Warming system of battery, and automobile using battery as power source
GB2341830A (en) Controlling battery temperature in a hybrid vehicle
US11424494B2 (en) Onboard-battery temperature controller
CN211000836U (en) Rechargeable battery cooling system and electric automobile
JPH11200858A (en) Cooling system of hybrid electric automobile
JP3894180B2 (en) Hybrid vehicle cooling system
JP3631097B2 (en) Thermal storage air conditioner
KR102444474B1 (en) Vehicles with at least one electrochemical energy storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12