JP3419393B2 - Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same - Google Patents

Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same

Info

Publication number
JP3419393B2
JP3419393B2 JP2000335502A JP2000335502A JP3419393B2 JP 3419393 B2 JP3419393 B2 JP 3419393B2 JP 2000335502 A JP2000335502 A JP 2000335502A JP 2000335502 A JP2000335502 A JP 2000335502A JP 3419393 B2 JP3419393 B2 JP 3419393B2
Authority
JP
Japan
Prior art keywords
separator
porous
thickness
secondary battery
aramid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335502A
Other languages
Japanese (ja)
Other versions
JP2002141042A (en
Inventor
英之 植田
聡 倉中
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000335502A priority Critical patent/JP3419393B2/en
Publication of JP2002141042A publication Critical patent/JP2002141042A/en
Application granted granted Critical
Publication of JP3419393B2 publication Critical patent/JP3419393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、安全性の高い非水
電解質二次電池のためのセパレータとそのセパレータの
実用的な製造方法に関する。
TECHNICAL FIELD The present invention relates to a separator for a highly safe non-aqueous electrolyte secondary battery and a practical method for manufacturing the separator.

【0002】[0002]

【従来の技術】非水電解質二次電池の正極と負極を電気
的に隔離する方法としては、大きく分けてセパレータを
用いる方法と固体電解質を用いる方法がある。
2. Description of the Related Art As a method of electrically isolating a positive electrode and a negative electrode of a non-aqueous electrolyte secondary battery, there are roughly classified a method using a separator and a method using a solid electrolyte.

【0003】電池の安全性に関して、セパレータの果す
役割としては、通常時の正極、負極間の短絡防止がある
が、非水電解質二次電池のセパレータに特有の機能とし
て、多孔質ポリオレフィンセパレータなどでは、外部短
絡による過剰電流等により電池温度が著しく上昇した場
合、多孔質セパレータが軟化することにより実質的に無
孔質となり電流を流させなくする、いわゆるシャットダ
ウン機能がある。
Regarding the safety of the battery, the separator plays a role of preventing a short circuit between the positive electrode and the negative electrode at normal times, but as a function peculiar to the separator of the non-aqueous electrolyte secondary battery, the porous polyolefin separator or the like has a function. When the battery temperature rises remarkably due to an excess current due to an external short circuit, the porous separator is softened to become substantially non-porous so that no current can flow.

【0004】シャットダウン後も電池の温度が上昇する
と、セパレータが溶融して大きく穴が開き正極、負極間
が短絡してしまう。(以下メルトダウンと称す)この時
の温度は高いのが、安全性は高いと言える。シャットダ
ウン機能を強化するために、熱溶融性を高めるとメルト
ダウン温度が低くなり、安全性は逆に下がる。この相反
する関係を解決することが問題となっていた。
If the temperature of the battery rises even after shutdown, the separator melts and a large hole opens, resulting in a short circuit between the positive electrode and the negative electrode. (Hereinafter referred to as meltdown) At this time, the temperature is high, but it can be said that the safety is high. If the heat melting property is increased to enhance the shutdown function, the meltdown temperature becomes lower, and the safety is decreased. Solving this conflicting relationship has been a problem.

【0005】この問題を解決するために、異なる機能を
持つ複合膜からなるセパレータが多数提案されてきた。
例えば、耐熱多孔質層とシャットダウン層からなる複合
膜(特開2000―100408号公報)やパラアラミ
ド系樹脂層と熱可塑性ポリマーからなる複合膜(特開平
10−6453号公報)などがある。その他にも、セパ
レータ表面に固体電解質をコーティングしたもの(特開
2000−195494号公報)やアラミド繊維とポリ
弗化ビニリデンとからなるセパレータ(特開平11−3
39555号公報)がある。
In order to solve this problem, many separators made of composite membranes having different functions have been proposed.
For example, there are a composite film composed of a heat resistant porous layer and a shutdown layer (JP-A 2000-100408), a composite film composed of a para-aramid resin layer and a thermoplastic polymer (JP-A-10-6453), and the like. In addition, a separator surface coated with a solid electrolyte (Japanese Patent Laid-Open No. 2000-195494) or a separator made of aramid fiber and polyvinylidene fluoride (Japanese Patent Laid-Open No. 11-3
39555).

【0006】[0006]

【発明が解決しようとする課題】近年の開発競争によ
り、非水電解質二次電池は、ますます高容量となってい
る。この高容量化は、電極の活物質の改良により高性能
化している面もあるが、電池構成上、活物質以外の部材
の容積を少なくして、電池内の実質的な活物質の量を多
くして行われている。したがって、セパレータは益々薄
くなっていく方向である。セパレータが薄くなると、短
絡などに対する安全性は悪くなる方向であるが、実質的
な活物質の量が多くなるため、安全性に対する要求は逆
に大きくなる。
[Problems to be Solved by the Invention] Due to recent development competition, the capacity of non-aqueous electrolyte secondary batteries is increasing. This increase in capacity is partly due to improvements in the active material of the electrodes, but due to the structure of the battery, the volume of members other than the active material is reduced to reduce the substantial amount of active material in the battery. Has been done a lot. Therefore, the separator is becoming thinner and thinner. As the separator becomes thinner, the safety against short circuits and the like tends to worsen, but since the amount of the active material increases substantially, the requirement for safety increases conversely.

【0007】前述の従来の技術である複合膜では、単一
組成膜に比べ薄くできないか、薄くした場合は、安全性
が要求される性能より低くなるという課題があった。
The above-mentioned conventional composite film has a problem in that it cannot be made thinner than a single-composition film, or if it is made thinner, the safety becomes lower than the required performance.

【0008】本発明は、前述の課題を解決し、薄くて安
全性の高いセパレータを使用することにより、高容量で
信頼性に優れた非水電解質二次電池を提供することを目
的とする。
An object of the present invention is to solve the above problems and to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent reliability by using a thin and highly safe separator.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の電池は、渦巻き状に捲回した極板群に用い
るセパレータが、耐熱多孔質樹脂と多孔質ポリオレフィ
ンとゲルポリマーの3層が一体化したものからなり、前
記多孔質ポリオレフィンを中心に、前記耐熱多孔質樹脂
が正極側に、前記ゲルポリマーが負極側に配置されてい
ることを特徴とする。
In order to solve the above problems, in the battery of the present invention, the separator used in the spirally wound electrode plate group is composed of a heat-resistant porous resin, a porous polyolefin and a gel polymer. The heat-resistant porous resin is arranged on the positive electrode side, and the gel polymer is arranged on the negative electrode side, with the porous polyolefin as the center.

【0010】この多層構造のセパレータにより、厚み的
に薄くなったセパレータでありながら、電池の高容量
化、安全性の向上を達成することができる。そのため、
高容量で信頼性に優れた非水電解質二次電池を提供する
ことが可能になる。
With this multi-layered separator, it is possible to achieve high capacity and improved safety of the battery, even though the separator is thin in thickness. for that reason,
It is possible to provide a non-aqueous electrolyte secondary battery having high capacity and excellent reliability.

【0011】また、本発明のセパレータは、多孔質ポリ
エチレン層(PE層という)とを中心に片方にアラミド
樹脂層、もう片方に繰り返し単位内にポリ弗化ビニリデ
ン構造を持つ共重合体からなる層(以下PVdF層とい
う。)を配置した非水電解質二次電池用セパレータであ
る。このアラミド樹脂は、電池の異常昇温時に耐熱支持
体の役割を果し、その好適な厚みは2〜3μmである。
また、PE層は、電池の異常昇温時に、シャットダウン
機能を果す役割を果し、その好適な厚みは5〜9μmで
ある。そしてPVdF層は、負極を保護する機能を果す
役割を果し、その好適な厚みは、2〜3μmである。し
たがって、セパレータ全体の厚みは、9〜15μmとな
る。
The separator of the present invention has a porous polyethylene layer (referred to as a PE layer) as a center, an aramid resin layer on one side, and a copolymer layer having a polyvinylidene fluoride structure in the repeating unit on the other side. (Hereinafter referred to as PVdF layer) is a separator for a non-aqueous electrolyte secondary battery. This aramid resin plays the role of a heat-resistant support at the time of abnormal temperature rise of the battery, and its preferable thickness is 2-3 μm.
Further, the PE layer plays a role of performing a shutdown function at the time of abnormal temperature rise of the battery, and its preferable thickness is 5 to 9 μm. The PVdF layer plays a role of protecting the negative electrode, and its preferable thickness is 2 to 3 μm. Therefore, the thickness of the entire separator is 9 to 15 μm.

【0012】さらにまた、本発明のセパレータは、PE
層を中心に片方にアラミド樹脂層、もう片方に繰り返し
単位内にポリエチレンオキサイド構造を持つ重合体と電
解液とからなるゲルポリマー(以下PEO系ゲルポリマ
ーと称す)を配置したセパレータであることを特徴とす
る。これらは、好ましくは、アラミド樹脂層の厚みは2
〜3μmであり、PE層の厚みは5〜9μmであり、負
極を保護するゲルポリマーの厚みは、3〜5μmであ
り、セパレータ全体の厚みが10〜17μmである。
Furthermore, the separator of the present invention is PE
A separator having a aramid resin layer on one side of the layer and a gel polymer (hereinafter referred to as PEO-based gel polymer) composed of a polymer having a polyethylene oxide structure in the repeating unit and an electrolytic solution on the other side. And These preferably have an aramid resin layer thickness of 2
The thickness of the PE layer is 5 to 9 μm, the thickness of the gel polymer that protects the negative electrode is 3 to 5 μm, and the thickness of the entire separator is 10 to 17 μm.

【0013】次に、本発明のセパレータの製造方法は、
支持体となるPE膜を製造し、さらにアラミド樹脂膜と
一体化した後、PE側に繰り返し単位内にポリ弗化ビニ
リデン構造を持つ共重合体(PVdF系ポリマー)をコ
ーティングするセパレータの製造方法である。出来上が
ったセパレータは、巻き取られて保管され、極板群の作
成の際に巻き出されて使用される。
Next, the manufacturing method of the separator of the present invention is as follows.
A method for producing a separator, in which a PE film to be a support is manufactured, and then integrated with an aramid resin film, and then a copolymer (PVdF polymer) having a polyvinylidene fluoride structure in the repeating unit is coated on the PE side. is there. The completed separator is wound up and stored, and is unwound and used when forming the electrode plate group.

【0014】また、本発明のセパレータの製造方法は、
支持体となるPE膜を製造し、さらにアラミド樹脂膜と
一体化した後、PE側に、三次元架橋前の繰り返し単位
内にポリエチレンオキサイド構造を持つ重合体(PEO
系マクロマー)と重合開始剤と電解液とからなるプレカ
ーサー液をコーティングし、熱または紫外線により三次
元架橋させるセパレータの製造方法である。出来上がっ
たセパレータは、PETフィルムなどで保護して保管さ
れ、極板群の作成の際に、PETフィルムをはがして使
用される。
The method of manufacturing the separator of the present invention is
After producing a PE film as a support and further integrating it with an aramid resin film, a polymer having a polyethylene oxide structure in the repeating unit before three-dimensional crosslinking (PEO) on the PE side.
It is a method for producing a separator in which a precursor solution consisting of a (system macromer), a polymerization initiator and an electrolytic solution is coated and three-dimensionally crosslinked by heat or ultraviolet rays. The completed separator is protected by a PET film or the like and stored, and the PET film is peeled off and used when the electrode plate group is prepared.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、正極と負極と非水溶媒に電解質塩を溶解した非水電
解質とセパレータを備えた非水電解質二次電池におい
て、前記セパレータが耐熱多孔質樹脂と多孔質ポリオレ
フィンとゲルポリマーの3層からなり、前記多孔質ポリ
オレフィンを中心に、前記耐熱多孔質樹脂が正極側に、
前記ゲルポリマーが負極側に配置されていることを特徴
とする非水電解質二次電池としたものである。正極と負
極と非水溶媒に電解質塩を溶解した非水電解質は、従来
公知のものが使える。これらのうち、多孔質ポリオレフ
ィンは、外部短絡による過剰電流等による電池温度の異
常な上昇に際し、シャットダウン機能により電流を遮断
し、発熱を押さえる作用を有する。耐熱多孔質樹脂は、
シャットダウン後も、何らかの原因で電池の温度が上昇
し、多孔質ポリオレフィンがメルトダウンを起こした場
合もセパレータの絶縁機能を保持する作用を有する。さ
らに、ゲルポリマーは、負極と一体化することにより、
環境温度の異常高温時もセパレータの熱収縮を防ぐとい
う前記耐熱多孔質樹脂の作用を補助すると同時に、負極
を保護し、高温保存時のガス発生を押さえる作用を有す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and a separator. Consists of three layers of a heat resistant porous resin, a porous polyolefin and a gel polymer, with the porous polyolefin as the center, the heat resistant porous resin on the positive electrode side,
The non-aqueous electrolyte secondary battery is characterized in that the gel polymer is arranged on the negative electrode side. As the non-aqueous electrolyte prepared by dissolving the electrolyte salt in the positive electrode, the negative electrode and the non-aqueous solvent, conventionally known ones can be used. Among them, the porous polyolefin has a function of shutting off current and suppressing heat generation when the battery temperature abnormally rises due to an excess current due to an external short circuit. Heat resistant porous resin is
Even after the shutdown, even if the temperature of the battery rises for some reason and the porous polyolefin melts down, the insulating function of the separator is maintained. Furthermore, the gel polymer is integrated with the negative electrode,
It has the function of assisting the action of the heat-resistant porous resin to prevent thermal contraction of the separator even when the environmental temperature is abnormally high, and at the same time protecting the negative electrode and suppressing gas generation during high temperature storage.

【0016】ここでゲルポリマーを、負極側でなく正極
側に使用すると、正極が高電位にあり、かつ高温になっ
た場合に、ゲルポリマーが酸化により分解されやすく不
適である。正極側に配置されている耐熱多孔質樹脂は、
酸化分解に強いので、前述の問題は起こらない。
If the gel polymer is used not on the negative electrode side but on the positive electrode side, the gel polymer is apt to be decomposed by oxidation when the positive electrode is at a high potential and is at a high temperature, which is not suitable. The heat resistant porous resin arranged on the positive electrode side is
Since it is strong against oxidative decomposition, the above-mentioned problems do not occur.

【0017】本発明の請求項2に記載の発明は、請求項
1記載の非水電解質二次電池で、耐熱多孔質樹脂をアラ
ミド樹脂としたものである。請求項1記載の非水電解質
二次電池に好ましい耐熱多孔質樹脂には、アラミド樹
脂、ポリイミド樹脂、ポリアミドイミド、ポリエーテル
サルホン、ポリエーテルイミド等の耐熱性に優れた樹脂
が挙げられるが、多孔質の薄膜を製造するという観点か
ら、アラミド樹脂が特に好ましい。
The invention according to claim 2 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1, wherein the heat-resistant porous resin is an aramid resin. Examples of the heat-resistant porous resin preferable for the non-aqueous electrolyte secondary battery according to claim 1 include resins having excellent heat resistance such as aramid resin, polyimide resin, polyamideimide, polyethersulfone, and polyetherimide. An aramid resin is particularly preferable from the viewpoint of producing a porous thin film.

【0018】本発明の請求項3に記載の発明は、請求項
1記載の非水電解質二次電池で、多孔質ポリオレフィン
が、シャットダウン温度が120〜140℃である多孔
質ポリエチレン(PE)としたものである。請求項1記
載の非水電解質二次電池に好ましい多孔質ポリオレフィ
ンとしては、低密度ポリエチレン、高密度ポリプロピレ
ン、ポリエチレンとポリプロピレンの混合物が挙げられ
る。これらのシャットダウン温度は低いほうが安全性が
高いが、メルトダウン温度も低くなるため、本発明の電
池に使われる多層セパレータの中心層として、特に好ま
しくは、多孔質ポリエチレンからなるシャットダウン温
度が120〜140℃であるものが挙げられる。
The invention according to claim 3 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1, wherein the porous polyolefin is porous polyethylene (PE) having a shutdown temperature of 120 to 140 ° C. It is a thing. Preferred porous polyolefins for the non-aqueous electrolyte secondary battery according to claim 1 include low density polyethylene, high density polypropylene, and a mixture of polyethylene and polypropylene. The lower the shutdown temperature, the higher the safety, but the lower the meltdown temperature. Therefore, as the central layer of the multilayer separator used in the battery of the present invention, it is particularly preferable that the shutdown temperature of the porous polyethylene is 120 to 140. Those at ° C.

【0019】本発明の請求項4に記載の発明は、請求項
1記載の非水電解質二次電池で、ゲルポリマーが繰り返
し単位内にポリ弗化ビニリデン構造を持つ共重合体また
は繰り返し単位内にポリエチレンオキサイド構造を持つ
重合体を含むとしたものである。請求項1記載の非水電
解質二次電池に好ましいゲルポリマーの主成分として
は、繰り返し単位内にポリエチレンオキサイド構造を持
つ重合体(PEO系ポリマー)、繰り返し単位内にポリ
アクリロニトリル構造を持つ共重合体(PAN系ポリマ
ー)、繰り返し単位内にポリメチルメタクリレート構造
を持つ共重合体(PMMA系ポリマー)およびポリ弗化
ビニリデン構造を持つ共重合体(PVdF系ポリマー)
が挙げられるが、電解液との相性と、機械強度の点から
PVdF系ポリマーおよびPEO系ポリマーが、特に好
ましい。
The invention according to claim 4 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1, wherein the gel polymer is a copolymer having a polyvinylidene fluoride structure in the repeating unit or in the repeating unit. It is intended to include a polymer having a polyethylene oxide structure. The main component of the gel polymer preferable for the non-aqueous electrolyte secondary battery according to claim 1 is a polymer having a polyethylene oxide structure in the repeating unit (PEO-based polymer), and a copolymer having a polyacrylonitrile structure in the repeating unit. (PAN-based polymer), copolymer having a polymethylmethacrylate structure in the repeating unit (PMMA-based polymer) and copolymer having a polyvinylidene fluoride structure (PVdF-based polymer)
However, PVdF-based polymers and PEO-based polymers are particularly preferable from the viewpoint of compatibility with the electrolytic solution and mechanical strength.

【0020】本発明の特に好ましいPVdF系ポリマー
には、弗化ビニリデン、ヘキサフロロプロピレン(Vd
F−HFP)共重合体や弗化ビニリデン、3弗化モノク
ロロエチレン(VdF−CTFE)共重合体や弗化ビニ
リデン、パーフルオロメチルビニルエーテル(VdF−
FMVE)共重合体がある。
Particularly preferred PVdF polymers of the present invention include vinylidene fluoride and hexafluoropropylene (Vd
F-HFP) copolymer, vinylidene fluoride, trifluoromonochloroethylene (VdF-CTFE) copolymer, vinylidene fluoride, perfluoromethyl vinyl ether (VdF-
FMVE) copolymer.

【0021】また、本発明の特に好ましいPEO系ポリ
マーには、エチレンオキサイド(EO)重合体からなる
ポリエーテルや、エチレンオキサイド、プロピレンオキ
サイド(EO−PO)共重合体からなるポリエーテル
や、ジエチレングリコール、アジピン酸(DEG−A
A)共重合体からなるポリエステルがある。これらのポ
リマーの末端には、二重結合を有する官能基を導入する
のが好ましく、より好ましくは、アクリロイル基または
メタクリレイト基で変性するのが良い。
Further, particularly preferable PEO-based polymers of the present invention include polyethers made of ethylene oxide (EO) polymers, polyethers made of ethylene oxide and propylene oxide (EO-PO) copolymers, diethylene glycol, Adipic acid (DEG-A
A) There is a polyester composed of a copolymer. It is preferable to introduce a functional group having a double bond into the terminal of these polymers, and it is more preferable that the functional group is modified with an acryloyl group or a methacrylate group.

【0022】本発明の請求項5に記載の発明は、多孔質
ポリエチレン層(PE層)を中心に片方にアラミド樹脂
層、もう片方に繰り返し単位内にポリ弗化ビニリデン構
造を持つ共重合体からなる層(PVdF層)を配置した
セパレータであって、前記アラミド樹脂の厚みは2〜3
μmであり、前記PE層の厚みは5〜9μmであり、前
記PVdF層の厚みは、2〜3μmであり、セパレータ
全体の厚みが9〜15μmであることを特徴とする非水
電解質二次電池用セパレータとしたものである。
The invention according to claim 5 of the present invention comprises a porous polyethylene layer (PE layer) as a center, an aramid resin layer on one side, and a copolymer having a polyvinylidene fluoride structure in the repeating unit on the other side. Which has a layer (PVdF layer) formed therein, wherein the thickness of the aramid resin is 2 to 3
The thickness of the PE layer is 5 to 9 μm, the thickness of the PVdF layer is 2 to 3 μm, and the thickness of the entire separator is 9 to 15 μm. It was used as a separator.

【0023】アラミド樹脂は電池の異常昇温時に耐熱支
持体の役割を果すが、アラミド樹脂の厚みを2μm未満
になると均一に薄膜化するのが困難であり、リチウム二
次電池に用いた場合、PE層がメルトダウンを起こした
場合に、容易に短絡してしまう。また、4μm以上では
安全性の面では問題がなく、10μm以上でもかまわな
いが、電池の高容量化という点と、高率放電などの電池
特性の点から3μm以下が好ましい。PE層は、セパレ
ータ全体の支持体となる。さらに、電池の異常昇温時に
はシャットダウンにより、反応の進行を阻止する役割を
持つ。PE層の厚みが5μm未満になると均一に薄膜化
するのが困難であり、強度が非常に弱くなる上に、シャ
ットダウン機能が十分に機能しなくなる。また、10μ
m以上では安全性の面では問題がなく、20μm以上で
もかまわないが、電池の高容量化という点と、高率放電
などの電池特性の点から9μm以下が好ましい。PVd
F層は、電解液を吸収して膨潤し、ゲルポリマー(PV
dF系ゲルポリマー)となり、負極を保護する役割を持
つ。PVdF系ゲルポリマーが、負極の異常高温時の吸
熱物質となると同時に、異常反応時に電解液などの供給
を遅らせて反応の進行を阻害する。また、保存時の負極
からのガス発生量を少なくする効果も有する。PVdF
層の厚みが2μm未満になると均一に薄膜化するのが困
難であり、強度が非常に弱くなる上に、負極の保護機能
が十分に機能しなくなる。また、4μm以上では安全性
の面では問題がなく、10μm以上でもかまわないが、
電池の高容量化という点と、高率放電などの電池特性の
点から3μm以下が好ましい。
The aramid resin plays a role of a heat-resistant support at the time of abnormal temperature rise of the battery, but if the thickness of the aramid resin is less than 2 μm, it is difficult to form a uniform thin film, and when used in a lithium secondary battery, When the PE layer melts down, it is easily short-circuited. Further, if it is 4 μm or more, there is no problem in safety, and 10 μm or more may be used, but 3 μm or less is preferable from the viewpoint of high capacity of the battery and battery characteristics such as high rate discharge. The PE layer serves as a support for the entire separator. Further, when the temperature of the battery rises abnormally, it shuts down to prevent the reaction from proceeding. If the thickness of the PE layer is less than 5 μm, it is difficult to form a uniform thin film, the strength becomes extremely weak, and the shutdown function does not function sufficiently. Also 10μ
If it is at least m, there is no problem in terms of safety, and it may be at least 20 μm, but it is preferably at most 9 μm from the viewpoint of high capacity of the battery and battery characteristics such as high rate discharge. PVd
The F layer absorbs the electrolytic solution and swells, and the gel polymer (PV
It becomes a dF-based gel polymer) and has a role of protecting the negative electrode. The PVdF-based gel polymer serves as an endothermic substance at an abnormally high temperature of the negative electrode, and at the same time, delays the supply of an electrolytic solution or the like during an abnormal reaction to hinder the progress of the reaction. It also has the effect of reducing the amount of gas generated from the negative electrode during storage. PVdF
If the layer thickness is less than 2 μm, it is difficult to form a uniform thin film, the strength becomes very weak, and the protective function of the negative electrode fails to function sufficiently. If it is 4 μm or more, there is no problem in terms of safety, and 10 μm or more may be used.
From the viewpoint of increasing the capacity of the battery and the characteristics of the battery such as high rate discharge, it is preferably 3 μm or less.

【0024】本発明の請求項6に記載の発明は、PE層
を中心に片方にアラミド樹脂層、もう片方に繰り返し単
位内にポリエチレンオキサイド構造を持つ重合体と電解
液とからなるゲルポリマー(PEO系ゲルポリマー)を
配置したセパレータであって、前記アラミド樹脂の厚み
は2〜3μmであり、前記PE層の厚みは5〜9μmで
あり、前記ゲルポリマーの厚みは、3〜5μmであり、
セパレータ全体の厚みが10〜17μmであることを特
徴とする非水電解質二次電池用セパレータとしたもので
ある。
The invention according to claim 6 of the present invention is a gel polymer (PEO) comprising a PE layer as a center, an aramid resin layer on one side, and a polymer having a polyethylene oxide structure in the repeating unit on the other side, and an electrolytic solution. System gel polymer), the aramid resin has a thickness of 2 to 3 μm, the PE layer has a thickness of 5 to 9 μm, and the gel polymer has a thickness of 3 to 5 μm.
A separator for a non-aqueous electrolyte secondary battery is characterized in that the thickness of the entire separator is 10 to 17 μm.

【0025】PE層およびアラミド樹脂の作用、効果お
よび好適な厚さは、請求項5に記載の発明と同一であ
る。PEO系ゲルポリマーは、PVdF系ゲルポリマー
と同様に、負極の異常高温時の吸熱物質となると同時
に、異常反応時に電解液などの供給を遅らせて反応の進
行を阻害する。また、同じく、保存時の負極からのガス
発生量を少なくする効果も有する。PEO系ゲルポリマ
ーの厚みが3μm未満になると均一に薄膜化するのが困
難であり、強度が非常に弱くなる上に、負極の保護機能
が十分に機能しなくなる。また、6μm以上では安全性
の面では問題がなく、10μm以上でもかまわないが、
電池の高容量化という点と、高率放電などの電池特性の
点から5μm以下が好ましい。PVdF層に比べ、少し
厚くなっているのは、電解液がセパレータの段階ですで
に含まれているからである。
The action, effect and suitable thickness of the PE layer and the aramid resin are the same as in the invention described in claim 5. Like the PVdF gel polymer, the PEO gel polymer serves as an endothermic substance at an abnormally high temperature of the negative electrode, and at the same time, delays the supply of an electrolytic solution or the like during an abnormal reaction to hinder the progress of the reaction. Further, it also has an effect of reducing the amount of gas generated from the negative electrode during storage. If the thickness of the PEO-based gel polymer is less than 3 μm, it is difficult to form a uniform thin film, the strength becomes extremely weak, and the protective function of the negative electrode does not function sufficiently. If it is 6 μm or more, there is no problem in terms of safety, and 10 μm or more may be used.
From the viewpoint of increasing the capacity of the battery and the characteristics of the battery such as high rate discharge, the thickness is preferably 5 μm or less. The PVdF layer is slightly thicker than the PVdF layer because the electrolytic solution is already contained at the stage of the separator.

【0026】本発明の請求項7に記載の発明は、(1)
多孔質ポリエチレン膜(PE膜)を製造し、(2)前記
PE膜の一方の表面にアラミド樹脂をコーティングした
後、(3)前記アラミド樹脂を多孔質化し、さらに、
(4)前記PE膜の他方の表面に、繰り返し単位内にポ
リ弗化ビニリデン構造を持つ共重合体(PVdF系ポリ
マー)をコーティングするセパレータの製造方法とした
ものである。
The invention according to claim 7 of the present invention is (1)
A porous polyethylene membrane (PE membrane) is produced, (2) one surface of the PE membrane is coated with an aramid resin, (3) the aramid resin is made porous, and further,
(4) A method for producing a separator in which the other surface of the PE film is coated with a copolymer (PVdF polymer) having a polyvinylidene fluoride structure in the repeating unit.

【0027】(1)の工程においては、従来公知の方
法、例えば相分離法や延伸開孔法で、微多孔を生成した
ポリエチレンフィルムを製造する。
In the step (1), a polyethylene film having microporosity is produced by a conventionally known method such as a phase separation method or a stretch opening method.

【0028】(2)の工程においては、アラミド樹脂を
溶液状態で、PE膜に塗工し、脱溶媒処理をしてコーテ
ィングを行う。溶媒には極性有機溶媒が好ましい。この
極性有機溶剤には、N−メチル−2−ピロリドン(NM
P)などがある。
In the step (2), the aramid resin is applied to the PE film in a solution state, and the PE film is subjected to solvent removal treatment for coating. The solvent is preferably a polar organic solvent. This polar organic solvent includes N-methyl-2-pyrrolidone (NM
P) etc.

【0029】アラミド溶液には、後の(3)工程のため
に、あらかじめアルカリ金属またはアルカリ土類金属の
塩化物を数wt%混入させておく。
The aramid solution is preliminarily mixed with several wt% of a chloride of an alkali metal or an alkaline earth metal for the later step (3).

【0030】(3)の工程においては、コーティングさ
れたアラミド樹脂層を水洗し、アルカリ金属またはアル
カリ土類金属の塩化物を除去する。そのとき、残留して
いた極性有機溶媒も洗浄される。
In the step (3), the coated aramid resin layer is washed with water to remove chlorides of alkali metal or alkaline earth metal. At that time, the remaining polar organic solvent is also washed.

【0031】(4)の工程については、PE膜におい
て、アラミド樹脂のコーティングされていない側の表面
にPVdF系ポリマーを溶液状態で、PE膜に塗工し、
脱溶媒処理をしてコーティングを行う。溶媒には極性有
機溶媒が好ましい。この極性有機溶剤には、NMPやア
セトンなどがある。
Regarding the step (4), the PE film is coated with the PVdF polymer in a solution state on the surface of the PE film on which the aramid resin is not coated,
Desolvation treatment is performed and coating is performed. The solvent is preferably a polar organic solvent. The polar organic solvent includes NMP and acetone.

【0032】本発明の請求項8に記載の発明は、(1)
PE膜を製造し、(2)前記PE膜の一方の表面にアラ
ミド樹脂をコーティングした後、(3)前記アラミド樹
脂を多孔質化し、さらに、(4)前記PE膜の他方の表
面に、三次元架橋前の繰り返し単位内にポリエチレンオ
キサイド構造を持つ重合体(PEO系マクロマー)と重
合開始剤と電解液とからなるプレカーサー液をコーティ
ングし、熱または紫外線により三次元架橋させるセパレ
ータの製造方法としたものである。
The invention according to claim 8 of the present invention is (1)
A PE film is produced, and (2) one surface of the PE film is coated with an aramid resin, (3) the aramid resin is made porous, and (4) a third layer is formed on the other surface of the PE film. A separator was prepared by coating a precursor solution consisting of a polymer having a polyethylene oxide structure (PEO-based macromer), a polymerization initiator and an electrolytic solution in the repeating unit before the original crosslinking and three-dimensionally crosslinking by heat or ultraviolet rays. It is a thing.

【0033】(1)から(3)の工程においては、請求
項7の発明の実施の形態で説明したものと同一の工程で
ある。
The steps (1) to (3) are the same as those described in the embodiment of the present invention.

【0034】(4)の工程においては、PEO系ポリマ
ーと重合開始剤と電解液とからなるプレカーサー液を調
整する。重合開始剤には、2、2−ジメトキシ−2−フ
ェニルアセトフェノン(DMPA)などの光重合開始剤
や、有機過酸化物またはアゾ化合物などの熱重合開始剤
が好ましい。その後、プレカーサー液をPE膜の他方の
表面にコーティングし、熱または紫外線により三次元架
橋させる。この架橋反応は、プレカーサー液の組成比率
に大きく依存するのはもちろんだが、熱架橋の場合は加
熱時間および加熱温度の条件により、反応率および反応
終了時間が異なる。また、紫外線照射の場合は、照射強
度も大きなファクターになる。また、この製造方法にお
いては、すでにゲルポリマーとして電解液が含まれてい
るので、熱架橋の場合は、PETフィルムに挟んで熱重
合を行う。また、紫外線照射の場合は、そのまま光重合
を行うが、架橋後は直ちに電池の組み立てに回すか、P
ETフィルムにはさんで保管する。
In the step (4), a precursor solution containing a PEO polymer, a polymerization initiator and an electrolytic solution is prepared. The polymerization initiator is preferably a photopolymerization initiator such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) or a thermal polymerization initiator such as an organic peroxide or an azo compound. Then, the precursor solution is coated on the other surface of the PE film, and three-dimensionally crosslinked by heat or ultraviolet rays. This crosslinking reaction depends largely on the composition ratio of the precursor solution, but in the case of thermal crosslinking, the reaction rate and the reaction end time differ depending on the heating time and heating temperature conditions. Further, in the case of ultraviolet irradiation, the irradiation intensity also becomes a large factor. Further, in this manufacturing method, since the electrolytic solution is already contained as the gel polymer, in the case of thermal cross-linking, it is sandwiched between PET films to carry out thermal polymerization. In the case of UV irradiation, photopolymerization is carried out as it is, but immediately after crosslinking, immediately turn it into a battery assembly or P
Store in ET film.

【0035】[0035]

【実施例】次に、実施例を用いて、本発明の具体例につ
いて説明する。
EXAMPLES Next, specific examples of the present invention will be described using examples.

【0036】本発明の電池の過充電時の温度変化を評価
するため、以下に説明する円筒形電池を作製した。
In order to evaluate the temperature change during overcharge of the battery of the present invention, a cylindrical battery described below was produced.

【0037】図1に本発明の実施例の円筒形電池の構造
図(一部断面図)を示す。
FIG. 1 shows a structural view (partially sectional view) of a cylindrical battery according to an embodiment of the present invention.

【0038】図1において、非水電解質二次電池1は、
正極2と負極3とセパレータ4が、捲回されて、ケース
5内に非水溶媒に電解質塩を溶解した非水電解質(図示
せず)、とともに内蔵されており、封口板6で密閉され
ている。
In FIG. 1, the non-aqueous electrolyte secondary battery 1 is
The positive electrode 2, the negative electrode 3, and the separator 4 are wound and incorporated in a case 5 together with a non-aqueous electrolyte (not shown) in which an electrolyte salt is dissolved in a non-aqueous solvent, and are sealed with a sealing plate 6. There is.

【0039】封口板には、一般の市販電池においては、
安全弁やPTC素子などの安全素子が組み込まれている
が、実施例の電池においては安全性試験のために、封口
板6には一切の安全機構は組み込まれていない。
For the sealing plate, in a general commercial battery,
Although safety elements such as a safety valve and a PTC element are incorporated, in the battery of the embodiment, no safety mechanism is incorporated in the sealing plate 6 for the safety test.

【0040】正極2は、コバルト酸リチウム粉末85重
量%に対し、導電剤の炭素粉末10重量%と結着剤のポ
リ弗化ビニリデン樹脂(PVdF樹脂)5重量%を混合
し、これらを脱水NMPに分散させてスラリーを作製
し、アルミ箔からなる正極集電体状に塗布し、乾燥後、
圧延して作製した。
The positive electrode 2 was prepared by mixing 10% by weight of carbon powder as a conductive agent and 5% by weight of polyvinylidene fluoride resin (PVdF resin) as a binder with 85% by weight of lithium cobalt oxide powder, and dehydrating NMP. To prepare a slurry, which is applied as a positive electrode current collector made of aluminum foil and dried,
It was made by rolling.

【0041】負極3は、負極活物質として人造黒鉛粉末
を用い、これの95重量%に対して、結着剤のPVdF
樹脂を5重量%を混合し、これらを脱水NMPに分散さ
せてスラリーを作製し、銅箔からなる正極集電体状に塗
布し、乾燥後、圧延して作製した。
For the negative electrode 3, artificial graphite powder was used as the negative electrode active material, and the binder PVdF was added to 95% by weight of the artificial graphite powder.
5 wt% of a resin was mixed, and these were dispersed in dehydrated NMP to prepare a slurry, which was applied on a positive electrode current collector made of copper foil, dried, and then rolled.

【0042】また、非水電解質には、エチレンカーボネ
ート(EC)とエチルメチルカーボネート(EMC)の
体積比1:1の混合溶媒にLiPF6を1モル/リット
ル溶解したものを使用した。
The non-aqueous electrolyte used was a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1 in which LiPF 6 was dissolved at 1 mol / liter.

【0043】なお、この作製した円筒形電池は直径18
mm、高さ65mmである。本サイズで、通常市販され
ているものの設計容量は1800mAhであり、セパレ
ータ4の厚みも、25から27μmのものが一般的であ
る。本実施例の電池は、それよりも高容量の2200m
Ahを設計容量とした。このため、セパレータ4の厚み
は、20μm以上になると、捲回した極板群が、ケース
に確実に挿入できなかった。
The cylindrical battery thus produced had a diameter of 18
mm and height 65 mm. This size, which is generally commercially available, has a design capacity of 1800 mAh, and the thickness of the separator 4 is generally 25 to 27 μm. The battery of this example has a higher capacity of 2200 m.
Ah was taken as the design capacity. For this reason, when the thickness of the separator 4 was 20 μm or more, the wound electrode plate group could not be reliably inserted into the case.

【0044】図2に、本発明の電池の極板群のセパレー
タを中心とした拡大模式図を示す。
FIG. 2 shows an enlarged schematic diagram centering on the separator of the electrode plate group of the battery of the present invention.

【0045】セパレータ4は、耐熱多孔質樹脂4aと多
孔質ポリオレフィン4bとゲルポリマー4cの3層から
なっており、多孔質ポリオレフィン4bを中心に、耐熱
多孔質樹脂4aが正極2側に、ゲルポリマー4cが負極
3側に配置されている。
The separator 4 is composed of three layers of a heat-resistant porous resin 4a, a porous polyolefin 4b and a gel polymer 4c, and the heat-resistant porous resin 4a is on the positive electrode 2 side with the porous polyolefin 4b as the center, and the gel polymer. 4c is arranged on the negative electrode 3 side.

【0046】セパレータ4に関してのみ、条件を変えて
以下に述べる実施例および比較例の電池を作製した。
Batteries of Examples and Comparative Examples described below were produced by changing the conditions only for the separator 4.

【0047】<実施例1>本実施例では、耐熱多孔質樹
脂4aとしてアラミド樹脂、多孔質ポリオレフィン4b
としてPE膜、ゲルポリマー4cとしてPVdF系ゲル
ポリマーであるものを作製した。
<Example 1> In this example, the heat-resistant porous resin 4a is an aramid resin or a porous polyolefin 4b.
A PE film was prepared as the above, and a PVdF gel polymer was prepared as the gel polymer 4c.

【0048】まず、以下に述べる方法で、PE膜を製造
した。
First, a PE film was manufactured by the method described below.

【0049】高密度ポリエチレン(平均分子量15万)
40重量部と流動パラフィン60重量部とを二軸押出機
内で溶融混練した。コートハンガーダイから冷却ロール
上に押出キャストすることにより高分子ゲルシートを作
製した。厚みはこの時点で、0.9mmであった。この
高分子ゲルシートを同時二軸延伸機を用いて122℃で
8×8倍に抽出前延伸をした。その後、塩化メチレン中
に浸漬して流動パラフィンを抽出除去し、厚さ8μmの
PE膜を作成し、セパレータの支持体とした。このセパ
レータのシャットダウン温度(SD温度)を測定した
ら、130℃であった。
High density polyethylene (average molecular weight 150,000)
40 parts by weight and 60 parts by weight of liquid paraffin were melt-kneaded in a twin-screw extruder. A polymer gel sheet was produced by extrusion casting from a coat hanger die onto a cooling roll. The thickness was 0.9 mm at this point. This polymer gel sheet was stretched 8 × 8 times at 122 ° C. before extraction using a simultaneous biaxial stretching machine. Then, it was immersed in methylene chloride to extract and remove the liquid paraffin to form a PE film having a thickness of 8 μm, which was used as a support for the separator. When the shutdown temperature (SD temperature) of this separator was measured, it was 130 ° C.

【0050】次に、以下に述べる方法で、PE膜の表面
にアラミド樹脂をコーティングした。
Next, the surface of the PE film was coated with an aramid resin by the method described below.

【0051】反応槽内で、NMP100重量部に対し、
乾燥した無水塩化カルシウムを6.5重量部添加し、加
温して完全に溶解した。この塩化カルシウム添加NMP
溶液を常温に戻した後、パラフェニレンジアミン(PP
D)を3.2重量部添加し、完全に溶解した。反応槽
を、20℃の恒温槽に入れ、テレフタル酸ジクロライド
(TPC)5.8重量部を、少しづつ1時間かけて滴下
し、重合反応によりポリパラフェニレンテレフタルアミ
ド(PPTA)を合成した。その後、1時間恒温槽内で
放置し、反応が終了した後、真空槽に入れ替え、減圧下
で、30分撹拌して脱気した。得られた重合液を、さら
に、塩化カルシウム添加NMP溶液にて、希釈し、PP
TA濃度が1.4重量%のPPTA溶液を調整した。
In the reaction vessel, with respect to 100 parts by weight of NMP,
6.5 parts by weight of dried anhydrous calcium chloride was added and heated to completely dissolve. This calcium chloride added NMP
After returning the solution to room temperature, paraphenylenediamine (PP
3.2 parts by weight of D) were added and completely dissolved. The reaction tank was placed in a thermostat at 20 ° C., and 5.8 parts by weight of terephthalic acid dichloride (TPC) was added dropwise little by little over 1 hour to synthesize polyparaphenylene terephthalamide (PPTA) by polymerization reaction. After that, the mixture was left for 1 hour in a constant temperature bath, and after the reaction was completed, it was replaced with a vacuum bath, and degassed by stirring for 30 minutes under reduced pressure. The obtained polymerization liquid is further diluted with a calcium chloride-added NMP solution to obtain PP.
A PPTA solution having a TA concentration of 1.4% by weight was prepared.

【0052】PPTA液をPE膜上にバーコーターによ
り、薄くコートし、60℃で加熱乾燥し、PPTAから
なるアラミド樹脂層を形成し、複合膜とした。この複合
膜を、純水で十分に水洗して塩化カルシウムを除去する
ことによりアラミド樹脂層を多孔質化し、乾燥した。ア
ラミド樹脂層の乾燥後の膜厚は2μmだった。
A PPTA solution was thinly coated on a PE film with a bar coater and dried by heating at 60 ° C. to form an aramid resin layer made of PPTA to form a composite film. This composite membrane was washed sufficiently with pure water to remove calcium chloride, thereby making the aramid resin layer porous and dried. The film thickness of the aramid resin layer after drying was 2 μm.

【0053】最後に、以下に述べる方法で、複合膜のP
E側の表面に、PVdF系ポリマーをコーティングし
た。
Finally, the P of the composite film is prepared by the method described below.
The surface on the E side was coated with PVdF polymer.

【0054】反応槽内で、アセトン100重量部に対
し、平均分子量約38万のVdF−HFP(88:1
2)共重合体(アトフィナ・ジャパンKynar FL
EX 2801)10重量部を、添加して懸濁させ、こ
の懸濁液にジブチルフタレート(DBP)10重量部を
加え、加温して完全に溶解した。その後、室温で数時間
熟成させた。この溶液を、複合膜のPE側の表面に、バ
ーコーターにより、薄くコートし、室温で乾燥空気によ
り乾燥した。乾燥後の複合膜をキシレンに浸漬し、DB
Pを抽出した後、減圧乾燥を行った。ゲルポリマー層の
乾燥後の膜厚は2μmだった。
In the reaction vessel, VdF-HFP (88: 1 having an average molecular weight of about 380,000) was added to 100 parts by weight of acetone.
2) Copolymer (Atofina Japan Kynar FL
10 parts by weight of EX 2801) was added and suspended, and 10 parts by weight of dibutyl phthalate (DBP) was added to this suspension and heated to completely dissolve. Then, it was aged at room temperature for several hours. This solution was thinly coated on the surface of the composite membrane on the PE side with a bar coater, and dried with dry air at room temperature. Dip the dried composite film in xylene to remove DB
After extracting P, it was dried under reduced pressure. The film thickness of the gel polymer layer after drying was 2 μm.

【0055】できあがったセパレータ4を一時保管後、
電池に組み立てた。
After temporarily storing the completed separator 4,
Assembled into batteries.

【0056】<比較例1>実施例1のPE膜作製方法と
同様の方法で厚さ8μm、SD温度130℃のPE膜を
作製し、それのみでセパレータ4とした。
<Comparative Example 1> A PE film having a thickness of 8 μm and an SD temperature of 130 ° C. was prepared by the same method as the PE film preparation method of Example 1, and the separator 4 alone was prepared.

【0057】<実施例2から7および比較例2から4>
以下、実施例1と同様の方法で、表1に示すような耐熱
多孔質樹脂、多孔質ポリオレフィンおよびゲルポリマー
からなる実施例2から7および比較例1から4の電池を
作製した。
<Examples 2 to 7 and Comparative Examples 2 to 4>
Hereinafter, in the same manner as in Example 1, batteries of Examples 2 to 7 and Comparative Examples 1 to 4 made of a heat resistant porous resin, a porous polyolefin and a gel polymer as shown in Table 1 were produced.

【0058】[0058]

【表1】 [Table 1]

【0059】ここで、膜厚1μm以下のアラミド樹脂、
膜厚4μm以下の多孔質ポリエチレン、膜厚1μm以下
のPVdF系ポリマーは、作製できなかった。
Here, an aramid resin having a film thickness of 1 μm or less,
Porous polyethylene having a film thickness of 4 μm or less and PVdF-based polymer having a film thickness of 1 μm or less could not be produced.

【0060】<実施例8>本実施例では、耐熱多孔質樹
脂4aとしてアラミド樹脂、多孔質ポリオレフィン4b
としてPE膜、ゲルポリマー4cとしてPEO系ゲルポ
リマーであるものを作製した。
<Embodiment 8> In this embodiment, an aramid resin and a porous polyolefin 4b are used as the heat resistant porous resin 4a.
A PE film was prepared as the above, and a PEO gel polymer was prepared as the gel polymer 4c.

【0061】まず、実施例1と同様の方法で厚さ8μ
m、SD温度130℃のPE膜を作製し、セパレータの
支持体とした。
First, in the same manner as in Example 1, the thickness is 8 μm.
m, an PE film having an SD temperature of 130 ° C. was prepared and used as a support for the separator.

【0062】次に、実施例1と同様の方法で、PE膜の
表面に厚さ2μmのアラミド樹脂をコーティングした。
Then, in the same manner as in Example 1, the surface of the PE film was coated with an aramid resin having a thickness of 2 μm.

【0063】最後に、以下に述べる方法で、複合膜のP
E側の表面に、PEO系ゲルポリマーをコーティングし
た。
Finally, the P of the composite film is prepared by the method described below.
The surface on the E side was coated with a PEO-based gel polymer.

【0064】乾燥空気雰囲気下の反応槽内で、ECとE
MCの体積比1:1の混合溶媒にLiPF6を1モル/
リットル溶解した非水電解質90重量部に対し、平均分
子量が約8千で末端にアクリロイル基を有する三官能性
アクリレートであるポリエチレン、ポリプロピレン共重
合体(第一工業製薬製 エレクセルTA−140)10
重量部を、添加して混合した。この混合液に重合開始剤
としてDMPAを0.1重量部を加え、完全に溶解し
た。この溶液を、乾燥空気雰囲気下で、複合膜のPE側
の表面に、バーコーターにより、薄くコートした。さら
に、乾燥空気雰囲気下で、照射強度7mW/cm2の紫
外線を10分間照射し、光架橋した。このときのゲルポ
リマー層の膜厚は4μmだった。
EC and E in a reaction vessel under a dry air atmosphere.
1 mol / mL of LiPF 6 in a mixed solvent of MC with a volume ratio of 1: 1.
Polyethylene / polypropylene copolymer (Elexel TA-140 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), which is a trifunctional acrylate having an average molecular weight of about 8,000 and having an acryloyl group at the end, based on 90 parts by weight of the dissolved non-aqueous electrolyte.
Parts by weight were added and mixed. To this mixed solution, 0.1 part by weight of DMPA as a polymerization initiator was added and completely dissolved. This solution was thinly coated with a bar coater on the PE-side surface of the composite film in a dry air atmosphere. Further, in a dry air atmosphere, ultraviolet rays having an irradiation intensity of 7 mW / cm 2 were irradiated for 10 minutes to perform photocrosslinking. The thickness of the gel polymer layer at this time was 4 μm.

【0065】できあがったセパレータ4をPETフィル
ムで挟んで一時保管後、電池に組み立てた。
The resulting separator 4 was sandwiched between PET films and temporarily stored, and then assembled into a battery.

【0066】<実施例9から14および比較例5から7
>以下、実施例8と同様の方法で、表2に示すような耐
熱多孔質樹脂、多孔質ポリオレフィンおよびゲルポリマ
ーからなる実施例2から7および比較例1から4の電池
を作製した。
<Examples 9 to 14 and Comparative Examples 5 to 7
In the following, in the same manner as in Example 8, batteries of Examples 2 to 7 and Comparative Examples 1 to 4 made of a heat resistant porous resin, a porous polyolefin and a gel polymer as shown in Table 2 were prepared.

【0067】[0067]

【表2】 [Table 2]

【0068】ここで、膜厚1μm以下のアラミド樹脂、
膜厚4μm以下の多孔質ポリエチレン、膜厚2μm以下
のPVdF系ポリマーは、作製できなかった。
Here, an aramid resin having a film thickness of 1 μm or less,
Porous polyethylene having a film thickness of 4 μm or less and PVdF polymer having a film thickness of 2 μm or less could not be produced.

【0069】<電池の評価>これら作製した電池、計2
1個を以下に述べる方法で評価した。
<Evaluation of Batteries> A total of 2 batteries were prepared.
One piece was evaluated by the method described below.

【0070】電池の設計容量は、2200mAである。
まず、1100mAの定電流で、4.2Vになるまで充
電した後、1100mAの定電流で3.0Vになるまで
放電する充放電サイクルを10サイクル繰り返した。こ
の10サイクル目の放電容量を各電池の初期容量とし
た。また、充放電は20℃の恒温槽の中で行った。その
後、各電池を4.2Vまで1100mAの定電流で充電
し、さらに、1800mAの定電流で3時間の過充電試
験を行い、この過程での電池の表面温度の測定を行い、
電池の最高到達温度を評価した。これらの結果を、表3
に示す。
The designed capacity of the battery is 2200 mA.
First, a charging / discharging cycle in which the battery was charged at a constant current of 1100 mA to 4.2 V and then discharged at a constant current of 1100 mA to 3.0 V was repeated 10 times. The discharge capacity at the 10th cycle was used as the initial capacity of each battery. In addition, charge and discharge was performed in a constant temperature bath at 20 ° C. After that, each battery was charged to 4.2V with a constant current of 1100 mA, and further subjected to an overcharge test for 3 hours at a constant current of 1800 mA, and the surface temperature of the battery in this process was measured.
The maximum temperature reached by the battery was evaluated. These results are shown in Table 3.
Shown in.

【0071】[0071]

【表3】 [Table 3]

【0072】表3からわかる通り、実施例の電池ではセ
パレータが薄くなっているのもかかわらず、異常昇温が
抑えられた。すべての実施例の電池で、電流が流れなく
なっており、セパレータのシャットダウン機能が正常に
働いていた。
As can be seen from Table 3, in the batteries of Examples, the abnormal temperature rise was suppressed even though the separator was thin. In the batteries of all the examples, current stopped flowing, and the shutdown function of the separator worked normally.

【0073】比較例1の電池は、シャットダウン機能は
働いたが、その後、メルトダウンを起こし、急激な温度
上昇を示した。これは、ポリエチレンのみの構成のた
め、セパレータが薄型なのでメルトダウンが起こってし
まった。
In the battery of Comparative Example 1, the shutdown function worked, but after that, meltdown occurred and a rapid temperature rise was exhibited. This is because the separator is thin because it is composed only of polyethylene, so meltdown has occurred.

【0074】比較例2および5の電池は、シャットダウ
ン機能は働いたが、ガス発生による電池の変形が大き
く、そのため急激な温度上昇が起こった。これは、セパ
レータが厚すぎたため、電池の残空間が少なく、そのた
め少量のガス発生の影響が大きかったためであった。
In the batteries of Comparative Examples 2 and 5, the shutdown function worked, but the deformation of the batteries due to the generation of gas was large, so that a rapid temperature rise occurred. This was because the separator was too thick and the remaining space of the battery was small, so that a small amount of gas generation had a great influence.

【0075】比較例3および6の電池は、シャットダウ
ン機能が正常に働かず、電池の異常昇温が発生した。こ
れは、ポリエチレンのシャットダウン温度が高すぎたた
めであった。
In the batteries of Comparative Examples 3 and 6, the shutdown function did not work normally, and abnormal temperature rise of the batteries occurred. This was because the polyethylene shutdown temperature was too high.

【0076】比較例4および7の電池は、シャットダウ
ンが完全に終了する前に、電池の異常昇温が発生した。
これは、ポリエチレンのシャットダウン温度が低すぎた
ためであった。
In the batteries of Comparative Examples 4 and 7, abnormal temperature rise of the batteries occurred before the shutdown was completely completed.
This was because the polyethylene shutdown temperature was too low.

【0077】[0077]

【発明の効果】以上述べた通り、本発明によれば、薄い
セパレータを用いたにもかかわらず非水電解質二次電池
の高温状況下での安全性を高めることができる。
As described above, according to the present invention, it is possible to enhance the safety of a non-aqueous electrolyte secondary battery under high temperature conditions even though a thin separator is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた円筒形電池の概略図
(一部断面図)
FIG. 1 is a schematic view (partially sectional view) of a cylindrical battery used in an example of the present invention.

【図2】本発明の実施例で用いた円筒形電池の要部拡大
模式図
FIG. 2 is an enlarged schematic view of a main part of a cylindrical battery used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 正極 3 負極 4 セパレータ 4a 耐熱多孔質樹脂 4b 多孔質ポリオレフィン 4c ゲルポリマー 5 ケース 6 封口板 1 Non-aqueous electrolyte secondary battery 2 positive electrode 3 Negative electrode 4 separator 4a Heat resistant porous resin 4b Porous polyolefin 4c gel polymer 5 cases 6 sealing plate

フロントページの続き (56)参考文献 特開2000−100408(JP,A) 特開 平7−220761(JP,A) 特開 平11−339555(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 H01M 10/40 Continuation of front page (56) Reference JP 2000-100408 (JP, A) JP 7-220761 (JP, A) JP 11-339555 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2/16 H01M 10/40

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と負極と非水溶媒に電解質塩を溶解
した非水電解質とセパレータを備えた非水電解質二次電
池において、前記セパレータが耐熱多孔質樹脂と多孔質
ポリオレフィンとゲルポリマーの3層からなり、前記多
孔質ポリオレフィンを中心に、前記耐熱多孔質樹脂が正
極側に、前記ゲルポリマーが負極側に配置されているこ
とを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and a separator, wherein the separator is made of a heat-resistant porous resin, a porous polyolefin and a gel polymer. A non-aqueous electrolyte secondary battery comprising a layer, wherein the heat-resistant porous resin is arranged on the positive electrode side and the gel polymer is arranged on the negative electrode side, with the porous polyolefin as the center.
【請求項2】 前記耐熱多孔質樹脂がアラミド樹脂であ
ることを特徴とする請求項1記載の非水電解質二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the heat resistant porous resin is an aramid resin.
【請求項3】 前記多孔質ポリオレフィンが、実質的に
無孔質になるシャットダウン温度が120〜140℃で
ある多孔質ポリエチレンであることを特徴とする請求項
1記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the porous polyolefin is porous polyethylene having a shutdown temperature of 120 to 140 ° C. at which the porous polyolefin becomes substantially non-porous.
【請求項4】 前記ゲルポリマーが、繰り返し単位内に
ポリ弗化ビニリデン構造を持つ共重合体または繰り返し
単位内にポリエチレンオキサイド構造を持つ重合体を含
むことを特徴とする請求項1記載の非水電解質二次電
池。
4. The non-aqueous solution according to claim 1, wherein the gel polymer contains a copolymer having a polyvinylidene fluoride structure in a repeating unit or a polymer having a polyethylene oxide structure in a repeating unit. Electrolyte secondary battery.
【請求項5】 多孔質ポリエチレン層を中心に片方にア
ラミド樹脂層、もう片方に繰り返し単位内にポリ弗化ビ
ニリデン構造を持つ共重合体からなる層を配置して一体
化したセパレータであって、前記アラミド樹脂の厚みは
2〜3μmであり、前記ポリエチレンの厚みは5〜9μ
mであり、前記繰り返し単位内にポリ弗化ビニリデン構
造を持つ共重合体からなる層の厚みは、2〜3μmであ
り、セパレータ全体の厚みが9〜15μmであることを
特徴とする非水電解質二次電池用セパレータ。
5. A separator comprising a porous polyethylene layer as a center, an aramid resin layer on one side and a layer made of a copolymer having a polyvinylidene fluoride structure in a repeating unit on the other side, which are integrated, The aramid resin has a thickness of 2 to 3 μm, and the polyethylene has a thickness of 5 to 9 μm.
m, the thickness of the layer made of a copolymer having a polyvinylidene fluoride structure in the repeating unit is 2 to 3 μm, and the thickness of the entire separator is 9 to 15 μm. Secondary battery separator.
【請求項6】 多孔質ポリエチレン層を中心に片方にア
ラミド樹脂層、もう片方に繰り返し単位内にポリエチレ
ンオキサイド構造を持つ重合体と電解液とからなる薄膜
状ゲルポリマーを配置したセパレータであって、前記ア
ラミド樹脂の厚みは2〜3μmであり、前記ポリエチレ
ンの厚みは5〜9μmであり、前記ゲルポリマーの厚み
は3〜5μmであり、セパレータ全体の厚みが10〜1
7μmであることを特徴とする非水電解質二次電池用セ
パレータ。
6. A separator comprising a porous polyethylene layer as a center, an aramid resin layer on one side, and a thin film gel polymer consisting of a polymer having a polyethylene oxide structure in the repeating unit and an electrolyte solution on the other side, The thickness of the aramid resin is 2-3 μm, the thickness of the polyethylene is 5-9 μm, the thickness of the gel polymer is 3-5 μm, and the thickness of the entire separator is 10-1.
A separator for a non-aqueous electrolyte secondary battery, which has a thickness of 7 μm.
【請求項7】 多孔質ポリエチレン膜を製造し、前記多
孔質ポリエチレン膜の一方の表面にアラミド樹脂をコー
ティングした後、前記アラミド樹脂を多孔質化し、さら
に、前記多孔質ポリエチレン膜の他方の表面に、繰り返
し単位内にポリ弗化ビニリデン構造を持つ共重合体をコ
ーティングするセパレータの製造方法。
7. A porous polyethylene membrane is produced, and one surface of the porous polyethylene membrane is coated with an aramid resin, the aramid resin is made porous, and the other surface of the porous polyethylene membrane is further coated. , A method for producing a separator, which comprises coating a copolymer having a polyvinylidene fluoride structure in a repeating unit.
【請求項8】 多孔質ポリエチレン膜を製造し、前記多
孔質ポリエチレン膜の一方の表面にアラミド樹脂をコー
ティングした後、前記アラミド樹脂を多孔質化し、さら
に、前記多孔質ポリエチレン膜の他方の表面に、繰り返
し単位内にポリエチレンオキサイド構造を持つ重合体と
重合開始剤と電解液とからなるプレカーサー液をコーテ
ィングし、熱または紫外線により三次元架橋させるセパ
レータの製造方法。
8. A porous polyethylene membrane is produced, one surface of the porous polyethylene membrane is coated with an aramid resin, the aramid resin is made porous, and the other surface of the porous polyethylene membrane is further coated. A method for producing a separator in which a repeating unit is coated with a precursor liquid comprising a polymer having a polyethylene oxide structure, a polymerization initiator, and an electrolytic solution, and three-dimensionally crosslinked by heat or ultraviolet rays.
JP2000335502A 2000-11-02 2000-11-02 Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same Expired - Fee Related JP3419393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335502A JP3419393B2 (en) 2000-11-02 2000-11-02 Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335502A JP3419393B2 (en) 2000-11-02 2000-11-02 Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002141042A JP2002141042A (en) 2002-05-17
JP3419393B2 true JP3419393B2 (en) 2003-06-23

Family

ID=18811236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335502A Expired - Fee Related JP3419393B2 (en) 2000-11-02 2000-11-02 Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3419393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573358B1 (en) 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 Separator for lithium-ion secondary battery and lithium-ion secondary battery comprising the same
JP4565812B2 (en) * 2003-04-28 2010-10-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4703155B2 (en) * 2004-09-29 2011-06-15 三洋電機株式会社 Non-aqueous electrolyte battery
KR20070069188A (en) * 2005-03-31 2007-07-02 마쯔시다덴기산교 가부시키가이샤 Lithium secondary battery
JP4986009B2 (en) 2005-04-04 2012-07-25 ソニー株式会社 Secondary battery
CN101449417B (en) 2006-03-17 2012-06-27 三洋电机株式会社 Nonaqueous electrolyte battery and method for manufacturing same
US8053112B2 (en) 2006-03-17 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP5095121B2 (en) * 2006-04-28 2012-12-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP5251060B2 (en) * 2007-10-01 2013-07-31 パナソニック株式会社 Vaporization filter and humidifier
JP2010267475A (en) * 2009-05-14 2010-11-25 Panasonic Corp Lithium ion secondary battery
KR101246825B1 (en) * 2010-11-01 2013-03-28 주식회사 아모그린텍 Separator with heat resistance, rechargeable battery using the same and method of manufacturing the same
JP2012074403A (en) * 2012-01-19 2012-04-12 Sony Corp Secondary battery
JP5657177B2 (en) 2012-11-30 2015-01-21 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2014160684A (en) * 2014-06-10 2014-09-04 Sony Corp Secondary battery separator and secondary battery
KR101984721B1 (en) * 2016-07-14 2019-05-31 주식회사 엘지화학 Lithium secondary battery comprising cathode with Li metal, manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device

Also Published As

Publication number Publication date
JP2002141042A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
JP6924795B2 (en) Integrated electrode assembly and electrochemical device containing it
JP3419393B2 (en) Non-aqueous electrolyte secondary battery, separator and method of manufacturing the same
US9711776B2 (en) Laminated body, separator, and nonaqueous secondary battery
JP5771621B2 (en) Non-aqueous battery separator, non-aqueous battery using the same, and method for producing non-aqueous battery separator
JP2019133940A (en) Protective film, and separator and secondary battery using the same
KR102619992B1 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery and manufacturing method of non-aqueous secondary battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JPWO2013058370A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
WO2013122010A1 (en) Battery separator, and battery separator manufacturing method
KR19990088434A (en) Polymeric membranes having electrolytes and secondary cells using the same
JP2020511736A (en) Separation membrane, lithium secondary battery including the same, and method for manufacturing the same
US5409588A (en) Electrochemical cell diaphragm and an electrochemical cell
KR20150141403A (en) Complex fibrous separator, manufacturing method thereof and secondary battery using the same
WO2013136404A1 (en) Separator for electrochemical element and method for producing same, and electrochemical element
JP6166575B2 (en) Electrode integrated separator and method for manufacturing the same
WO2013042235A1 (en) Electrochemical device separator, manufacturing method therefor and electrochemical device
JP2007257904A (en) Separator for electronic component and electronic component
JP5387871B1 (en) Battery separator and battery separator manufacturing method
US6426165B1 (en) Electrochemical cell separators with high crystallinity binders
JP4942249B2 (en) Method for producing lithium ion secondary battery
TW200423449A (en) Secondary cell with polymer coated anode
JP2001035535A (en) Nonaqueous secondary battery and manufacture thereof
JP4209985B2 (en) Polyolefin microporous membrane
JP2000212323A (en) Finely porous polyolefin-based separator for secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees