JP3418788B2 - Continuous treatment type heating furnace and carbonization method using the same - Google Patents

Continuous treatment type heating furnace and carbonization method using the same

Info

Publication number
JP3418788B2
JP3418788B2 JP31239899A JP31239899A JP3418788B2 JP 3418788 B2 JP3418788 B2 JP 3418788B2 JP 31239899 A JP31239899 A JP 31239899A JP 31239899 A JP31239899 A JP 31239899A JP 3418788 B2 JP3418788 B2 JP 3418788B2
Authority
JP
Japan
Prior art keywords
hollow annular
heating
raw material
members
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31239899A
Other languages
Japanese (ja)
Other versions
JP2001132928A (en
Inventor
▲廣▼重 中塚
寛治 阿部
明人 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allmighty Co Ltd
Original Assignee
Allmighty Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allmighty Co Ltd filed Critical Allmighty Co Ltd
Priority to JP31239899A priority Critical patent/JP3418788B2/en
Publication of JP2001132928A publication Critical patent/JP2001132928A/en
Application granted granted Critical
Publication of JP3418788B2 publication Critical patent/JP3418788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品廃棄物などの
動植物性残渣、畜産汚泥、鶏糞、下水汚泥などの有機性
汚泥、或いは無機汚泥などの産業廃棄物を密閉加熱によ
り炭化させることに適した加熱炉及びこれを用いた炭化
方法に関し、特に、密閉された加熱空間内の所定の経路
に沿って原料を移動させ、この移動中に加熱を行う、連
続処理型の加熱炉及びこれを用いた炭化方法に関する。
TECHNICAL FIELD The present invention is suitable for carbonizing industrial wastes such as animal and plant residues such as food wastes, livestock sludges, chicken manure, sewage sludges, or industrial sludges by closed heating. The present invention relates to a heating furnace and a carbonization method using the same, and particularly to a continuous processing type heating furnace and a heating furnace for moving a raw material along a predetermined path in a closed heating space and performing heating during the movement. The carbonization method was used.

【0002】[0002]

【従来の技術】従来より、生活、産業過程で生じる廃棄
物の減量化、再資源化、再利用化のために使用される炭
化装置が知られている。このような炭化装置のうち、廃
棄物等の原料を連続的に供給して炭化を行う連続処理型
の炭化装置が、実用新案登録番号第3009966号に
示されている。
2. Description of the Related Art Conventionally, a carbonization apparatus used for reducing, recycling, and recycling wastes generated in daily life and industrial processes has been known. Among such carbonization devices, a continuous treatment type carbonization device that continuously supplies raw materials such as waste to perform carbonization is shown in Utility Model Registration No. 3009966.

【0003】図1は、従来の連続処理型の炭化装置90
の縦断面を示す。この装置90において、角筒状の炉体
92内を中空直線状の原料移送用円筒パイプ94は、つ
づらおり状に上方から下方へと多段配置されている。パ
イプ94内に供給された畜産汚泥などの原料は、パイプ
94内を延びるスクリューコンベア96を回転させるこ
とによって連続して移送される。スクリューコンベア9
6は、中心軸棒に螺旋状のブレードをスクリュー状に設
けて構成されており、このブレードの回転に応じて原料
が移送される。このようにして原料はパイプ94内を水
平移動し、パイプの端部に設けた接続部においてすぐ下
の段のパイプへと落下し、この動作を上段から下段へと
繰り返すことにより各パイプ内を連続的に移動する。
FIG. 1 shows a conventional continuous treatment type carbonization apparatus 90.
The longitudinal section of is shown. In this apparatus 90, hollow linear raw material transfer cylindrical pipes 94 are arranged in a square tube-shaped furnace body 92 in a zigzag form from top to bottom. Raw materials such as livestock sludge supplied into the pipe 94 are continuously transferred by rotating a screw conveyor 96 extending in the pipe 94. Screw conveyor 9
Reference numeral 6 denotes a central shaft rod provided with a spiral blade in a screw shape, and the raw material is transferred according to the rotation of the blade. In this way, the raw material horizontally moves in the pipe 94 and drops to the pipe in the immediately lower stage at the connecting portion provided at the end of the pipe. By repeating this operation from the upper stage to the lower stage, Move continuously.

【0004】この原料の移送中に、パイプ94は燃焼室
98からの燃焼ガスによって加熱され、これによりスク
リューコンベア96によってパイプ内を移動中の原料が
脱水乾燥炭化される。このようにして炭化された原料
は、最下段のパイプに設けられた排出口より装置外に排
出される。
During the transfer of the raw material, the pipe 94 is heated by the combustion gas from the combustion chamber 98, whereby the raw material moving in the pipe is dehydrated, dried and carbonized by the screw conveyor 96. The raw material carbonized in this way is discharged to the outside of the apparatus through the discharge port provided in the lowermost pipe.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
炭化装置90では、炉体92内を直線状に延びる移送用
パイプ94がつづら折り状に設けられた構成であるの
で、原料供給口から排出口までの経路を長くすることが
容易ではなかった。すなわち、この場合に、直線状パイ
プ94の段数を多くするか、又は各段のパイプ長を長く
する必要が生じ、いずれの場合にも、装置全体として平
面形状が細長い形状になったり、高さが高くなったりし
て、装置を安定して設置し難いことがある。或いは、安
定した設置を行うために、支持用の部材を余分に設ける
必要が生じる。従って、実際上つづら折り状に配置され
たパイプの全長は比較的短く設計されていた。
However, in the above-mentioned carbonization device 90, since the transfer pipe 94 that extends linearly in the furnace body 92 is provided in a zigzag shape, from the raw material supply port to the discharge port. It was not easy to lengthen the route. That is, in this case, it is necessary to increase the number of stages of the straight pipes 94 or increase the pipe length of each stage. In either case, the plane shape of the entire device becomes elongated and the height is increased. It may be difficult to install the device in a stable manner. Or, in order to perform stable installation, it is necessary to additionally provide a supporting member. Therefore, in practice, the overall length of the pipes arranged in a zigzag shape was designed to be relatively short.

【0006】また、このようなパイプの配置では、加熱
装置からパイプへの熱伝達が効率よくに行われない傾向
があった。すなわち、熱伝達媒体である燃焼ガスは、炉
体92内を放射状に拡散しながら、装置上方へと垂直方
向に上昇するため、水平方向に直線状に設けられたパイ
プに、均一に、効率良く、熱が伝達されることは困難で
あった。
Further, in such a pipe arrangement, there is a tendency that heat is not efficiently transferred from the heating device to the pipe. That is, the combustion gas, which is a heat transfer medium, rises vertically in the furnace body 92 while being diffused radially, so that it is evenly and efficiently distributed in the pipe linearly provided in the horizontal direction. , It was difficult for heat to be transferred.

【0007】さらに、この装置では、上述のように原料
の移送をパイプ内を回転するスクリューコンベアを用い
て行っているため、原料に含まれる水分が多い場合や、
粘性が高い場合には、目詰まりを起こすことがあり、適
切にパイプ内を移送されないこともあった。また、この
ようなスクリューコンベアでの移送により、原料が移動
中に絞られたような圧縮状態になることから、装置から
排出される炭化物を例えば顆粒状等の形状で得ることが
できなかった。
Further, in this apparatus, since the raw material is transferred using the screw conveyor rotating in the pipe as described above, when the raw material contains a large amount of water,
If the viscosity is high, it may cause clogging and may not be properly transferred in the pipe. Further, since the raw material enters a compressed state as if the raw material was squeezed during the transfer by such a screw conveyor, it was not possible to obtain the carbide discharged from the apparatus in the form of granules or the like.

【0008】本発明は、上記問題を解決するためになさ
れたものであり、加熱効率が良好で、廃棄物等の原料が
良好に移送され得る連続処理型の加熱炉及びこれを用い
た炭化方法を提供することをその目的とする。
The present invention has been made in order to solve the above problems, and has a heating furnace of good heating efficiency and capable of transferring raw materials such as wastes satisfactorily, and a carbonization method using the same. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明の連続処理型の加
熱炉は、筒形の炉壁及び該炉壁の上端開口に設けられた
蓋部を備えた炉本体と、該炉本体によって支持され、前
記炉壁の軸線方向に沿って間隔を開けて並設された複数
の中空環状部材であって、各々は前記炉壁の内周面に沿
って環状をなす複数の中空環状部材と、前記複数の中空
環状部材の各々の内側において前記炉本体により支持さ
れ該中空環状部材に沿って回転可能とされた回転部材で
あって、前記中空環状部材の周方向に形成されたスリッ
トを経て該中空環状部材内に延びる複数の原料移送用羽
板部材を備えた回転部材と、該回転部材に連結されて該
回転部材を駆動する駆動部と、前記複数の中空環状部材
を加熱するための加熱手段と、前記炉本体の上部に設け
られ、最上部に位置する前記中空環状部材と連通する原
料供給口と、前記炉本体の下部に設けられ、最下部に位
置する前記中空環状部材と連通する原料排出口とを備え
ており、前記軸線方向に並ぶ複数の中空環状部材のうち
の隣り合う中空環状部材は、それぞれに設けられた対向
する開口を備えた連通部を介して互いに連通されてお
り、該軸線方向に並ぶ中空環状部材の連通部のうちの前
記軸線方向に隣り合う連通部は、前記中空環状部材の周
方向にずれた位置に設けられていることにより上記目的
を達成する。
A continuous processing type heating furnace according to the present invention includes a furnace body having a cylindrical furnace wall and a lid portion provided at an upper end opening of the furnace wall, and a furnace body supporting the furnace body. And a plurality of hollow annular members arranged side by side at intervals along the axial direction of the furnace wall, each of a plurality of hollow annular members forming an annular shape along the inner peripheral surface of the furnace wall, A rotary member that is supported by the furnace body inside each of the plurality of hollow annular members and is rotatable along the hollow annular members, and through a slit formed in the circumferential direction of the hollow annular members. A rotating member provided with a plurality of raw material transfer vane members extending into the hollow annular member, a drive unit connected to the rotating member to drive the rotating member, and heating for heating the plurality of hollow annular members. Means, provided at the top of the furnace body, at the top A raw material supply port that communicates with the hollow annular member that is provided, and a raw material discharge port that is provided in the lower portion of the furnace body and that communicates with the hollow annular member that is located at the bottom, and that has a plurality of lined up in the axial direction Adjacent hollow annular members of the hollow annular members are communicated with each other via a communicating portion provided with an opening provided in each of the adjacent hollow annular members, and among the communicating portions of the hollow annular members arranged in the axial direction, The above-mentioned object is achieved by providing the communicating portions adjacent to each other in the axial direction at positions displaced in the circumferential direction of the hollow annular member.

【0010】前記加熱手段は、前記炉本体の下方におい
て設けられ、前記炉本体内の前記中間環状部材が設けら
れた空間に加熱用ガスを供給するための開口を有した燃
焼室を備えるようであってもよい。
The heating means may include a combustion chamber provided below the furnace body and having an opening for supplying a heating gas to a space in the furnace body in which the intermediate annular member is provided. It may be.

【0011】前記中空環状部材の内周側に沿って同心状
に延びる複数の環状ブレードが該中空環状部材及び前記
回転部材に各々設けられ、該中空環状部材の環状ブレー
ドと該回転部材の環状ブレードとは、前記中空環状部材
内外の遮蔽性を増すように噛合していてもよい。
A plurality of annular blades extending concentrically along the inner peripheral side of the hollow annular member are provided on the hollow annular member and the rotating member respectively, and the annular blade of the hollow annular member and the annular blade of the rotating member are provided. And may be in mesh with each other so as to increase the shielding property inside and outside the hollow annular member.

【0012】或いは、本発明の炭化方法は、上記本発明
の加熱炉を用いて炭素含有物を炭化する方法であり、粒
状の炭素含有物を、前記加熱炉の前記原料供給口に供給
する工程と、前記加熱手段により加熱された複数の中空
環状部材の内部において、前記複数の原料移送用羽板部
材の周方向への移動による押圧により、前記供給された
粒状の炭素含有物を移動させて、該炭素含有物を加熱す
る工程と、前記加熱炉の原料排出口から炭化された炭素
含有物を粒状で排出する工程とを包含することにより上
記目的を達成する。
Alternatively, the carbonization method of the present invention is a method of carbonizing a carbon-containing material using the heating furnace of the present invention, and a step of supplying granular carbon-containing material to the raw material supply port of the heating furnace. And inside the plurality of hollow annular members heated by the heating means, the supplied granular carbon-containing material is moved by pressing the plurality of raw material transfer vane members in the circumferential direction. The above object is achieved by including a step of heating the carbon-containing material and a step of discharging the carbonized carbon-containing material in a granular form from the raw material discharge port of the heating furnace.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る実施形態の加
熱炉を図面を参照しつつ説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A heating furnace according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】図2及び図3は、本実施形態による加熱炉
1の構造を示す。図2と図3とは互いに90°異なる方
向からみたときの加熱炉1の断面を示している。
2 and 3 show the structure of the heating furnace 1 according to this embodiment. 2 and 3 show a cross section of the heating furnace 1 when viewed from directions different from each other by 90 °.

【0015】加熱炉1は、加熱用空間2を包囲する蓋部
4及び円筒壁(炉壁)6を備えた炉本体と、加熱用空間
2内において円筒壁6の内壁に支持された環状をなす複
数の中空移送経路部材10と、移送経路部材10内を周
回するように配置された羽板22及びこれにスポーク部
材24を介して接続する駆動シャフト26により構成さ
れた回転部材としての原料移送装置20と、バーナ32
及び燃焼室34により構成された加熱手段30(図3)
とを備える。
The heating furnace 1 includes a furnace body having a lid 4 and a cylindrical wall (furnace wall) 6 surrounding the heating space 2, and an annular shape supported by the inner wall of the cylindrical wall 6 in the heating space 2. Raw material transfer as a rotary member configured by a plurality of hollow transfer path members 10 formed, a blade 22 arranged so as to circulate in the transfer path member 10 and a drive shaft 26 connected to the blades 22 via spoke members 24. Device 20 and burner 32
And heating means 30 constituted by the combustion chamber 34 (FIG. 3)
With.

【0016】加熱用空間2を包囲する炉本体(蓋部4及
び円筒壁6)及び加熱手段30の燃焼室34の内壁は、
キャスタブル耐火材などからなる所定厚さの耐熱部材で
覆われ、耐火性が付与されている。
The furnace body (the lid 4 and the cylindrical wall 6) surrounding the heating space 2 and the inner wall of the combustion chamber 34 of the heating means 30 are
It is covered with a heat-resistant member of castable refractory material or the like having a predetermined thickness to provide fire resistance.

【0017】移送経路部材10は、円筒壁6の軸線方向
Aに沿って7段構成をなして並設されており、円筒壁6
の支持部材6aにより支持されている。各移送経路部材
は、例えば、断面内周が約10cm角の矩形形状をな
し、直径約1mの環状を成すように構成される。これら
の移送経路部材のうち、最上段(第1段目)の移送経路
部材10aは、これに連通し、蓋部4上に延びる供給パ
イプ12を有している。供給パイプ12の端部に位置す
る供給口8は、例えば原料を蓄積するためのホッパ80
などの容器の排出口と接続可能に設計されている。この
ような構造により、装置の外部から最上段の移送経路部
材10aに原料を投入することができる。なお、加熱炉
1の供給口8への原料の供給には、従来の種々の供給手
段を利用することも可能である。
The transfer path members 10 are arranged in parallel along the axial direction A of the cylindrical wall 6 in a 7-step configuration.
Is supported by the support member 6a. Each transfer path member is configured to have, for example, a rectangular shape with an inner circumference of about 10 cm square and an annular shape with a diameter of about 1 m. Of these transfer path members, the uppermost (first step) transfer path member 10a has a supply pipe 12 that communicates with the transfer path member 10a and extends above the lid portion 4. The supply port 8 located at the end of the supply pipe 12 has, for example, a hopper 80 for accumulating raw materials.
It is designed so that it can be connected to the outlet of a container such as. With such a structure, the raw material can be charged into the uppermost transfer path member 10a from the outside of the apparatus. It is also possible to use various conventional supply means for supplying the raw material to the supply port 8 of the heating furnace 1.

【0018】また、最上段の移送経路部材10aは、蓋
部4上方から炉本体外へ延びる外筒50に接続されてお
り、これにより、原料の加熱過程において炭化時などに
発生し得るガスは、この外筒50を通り、炉本体の外側
底部に配置されたブロワ52などによって燃焼室34内
へと導かれる構造とされている。
Further, the uppermost transfer path member 10a is connected to the outer cylinder 50 extending from the upper side of the lid portion 4 to the outside of the furnace main body, so that the gas which may be generated at the time of carbonization in the heating process of the raw material is not generated. The structure is such that it passes through the outer cylinder 50 and is guided into the combustion chamber 34 by a blower 52 or the like arranged at the outer bottom of the furnace body.

【0019】また、第2段目から第6段目までの移送経
路部材10において、軸線方向Aに隣接する2段の移送
経路部材のうち上側の移送経路部材(例えば第2段目)
の底面と、下側の移送経路部材(例えば第3段目)の上
面とに、開口が対向するようにそれぞれに設けられてお
り、これらの開口がほぼ垂直方向(軸線方向)に延びる
連通管によって接続されている。これにより、隣接する
移送経路部材は、移送経路部材の外側と遮蔽された状態
で連通される。このような各移送経路部材の底面に設け
られる開口(又は連通管)の位置は、下段に進むに従っ
て周方向において例えば約30°ずつ後述する搬送方向
の上流側にずらされている。従って、隣り合う3段以上
にわたって開口が同じ位置に位置することはない。ま
た、最下段(第7段目)の移送経路部材10bの底面に
は、炉本体外に延びる排出管14に通じる開口が設けら
れている。なお、各段の移送経路部材間には、種々の形
態の支持用部材が設けられても良く、これにより各移送
経路部材が適切に支持され得る。
In addition, in the transfer path members 10 from the second step to the sixth step, the upper transfer path member (for example, the second step) of the two transfer path members adjacent to each other in the axial direction A.
Of the lower side of the transfer path member and the upper surface of the lower transfer path member (for example, the third step) are provided so that the openings face each other, and these openings extend in a substantially vertical direction (axial direction). Connected by. As a result, the adjacent transfer path member communicates with the outside of the transfer path member while being shielded. The positions of the openings (or the communication pipes) provided on the bottom surface of each of the transfer path members are shifted in the circumferential direction by, for example, about 30 ° toward the upstream side in the transport direction described later, as the position goes down. Therefore, the openings are not located at the same position in three or more adjacent stages. Further, an opening communicating with the discharge pipe 14 extending outside the furnace body is provided on the bottom surface of the transfer path member 10b at the lowermost stage (seventh stage). It should be noted that various types of supporting members may be provided between the transfer path members at each stage, and thus each transfer path member can be appropriately supported.

【0020】図4は、複数の環状中空の移送経路部材1
0を形成するための構成部材100の構造の一例を示
す。移送経路部材10は、図4(a)及び図4(b)に
示すような、隣接する移送経路部材のうちの上側の移送
経路部材の下半分102と、下側の移送経路部材の上半
分104とを接合したドーナツ状の構成部材100を複
数作製し、これらを重ねて合わせて外周側をボルトなど
で互いに固定することにより形成される。このとき、連
結された2つの構成部材100の間には、これらの内周
側の位置において所定の間隙が設けられるようになって
いる。すなわち、2つの構成部材100の連結により形
成される移送経路部材の内周側には、周方向に延びるス
リットが形成されるようになっている。これは、後述す
る回転羽部材28(図6)がこのスリットを通って移送
経路部材外に延びることを可能にするためである。な
お、これらの部材は、例えばステンレス製とすることが
できる。
FIG. 4 shows a plurality of annular hollow transfer path members 1
An example of the structure of the constituent member 100 for forming 0 is shown. The transfer path member 10 includes a lower half 102 of an upper transfer path member and an upper half half of a lower transfer path member among the adjacent transfer path members as shown in FIGS. 4A and 4B. It is formed by manufacturing a plurality of doughnut-shaped constituent members 100 that are joined to 104, stacking them, and fixing the outer peripheral sides to each other with bolts or the like. At this time, a predetermined gap is provided between the two connected component members 100 at positions on the inner peripheral side thereof. That is, a slit extending in the circumferential direction is formed on the inner peripheral side of the transfer path member formed by connecting the two constituent members 100. This is to enable the rotary vane member 28 (FIG. 6) described later to extend outside the transfer path member through this slit. Note that these members can be made of stainless steel, for example.

【0021】この構成部材100において、上側移送経
路部材と下側移送経路部材とを連通させるための連通管
106aが、上側移送経路部材の下半分102の底面及
び下側移送経路部材の上半分104の上面に設けられた
対向する開口106に接続されている。また、構成部材
100の内周寄りの位置には円周状の凹溝108を2本
形成する環状ブレード109が3本設けられている。こ
れは、後述する複数の羽板22を備えた回転羽部材28
(図6)の凸壁(環状ブレード)284と嵌合可能とさ
れており、移送経路部材内部を加熱用空間2に対して遮
蔽するために設けられている。
In this structural member 100, a communication pipe 106a for communicating the upper transfer path member and the lower transfer path member is provided with a bottom surface of the lower half 102 of the upper transfer path member and an upper half 104 of the lower transfer path member. Are connected to the opposing openings 106 provided on the upper surface of the. Further, three annular blades 109 that form two circumferential grooves 108 are provided at positions near the inner circumference of the component member 100. This is a rotary blade member 28 including a plurality of blades 22 described later.
It can be fitted with the convex wall (annular blade) 284 (FIG. 6) and is provided to shield the inside of the transfer path member from the heating space 2.

【0022】このように環状に設けられた多段式の移送
経路部材10は、一段につき、比較的長い移送経路(約
3m以上)を形成することができる。このような本実施
形態の装置の構造によれば、装置1全体を安定して設置
しつつ、円柱状の加熱用空間2内において、供給パイプ
12の供給口8から排出管14の排出口16まで、比較
的長い移動経路を得ることが可能である。
The multi-stage transfer path member 10 thus provided in an annular shape can form a relatively long transfer path (about 3 m or more) per step. According to the structure of the apparatus of the present embodiment as described above, the apparatus 1 as a whole is stably installed, and in the cylindrical heating space 2, the supply port 8 of the supply pipe 12 to the discharge port 16 of the discharge pipe 14 are provided. It is possible to obtain a relatively long path of travel.

【0023】図5は、図2のX−X線に沿った断面を示
す。図に示すように、環状移送経路部材10の内部に
は、例えば20枚の羽板22を備えた回転羽部材28が
設置される。この回転羽部材28は、上述した移送経路
部材10の内周側に形成された周方向に延びるスリット
を経て、6本のスポーク部材24に対してボルト留め等
によって固定される。このスポーク部材24は、駆動シ
ャフト26に固定されている。このようにして、駆動シ
ャフト26の軸回転によって回転羽部材28を軸回りに
回転させることが可能であり、移送経路部材10内に配
置された羽板22を連動して周回させることができる。
FIG. 5 shows a cross section taken along line XX of FIG. As shown in the drawing, a rotary vane member 28 including, for example, 20 vanes 22 is installed inside the annular transfer path member 10. The rotary vane member 28 is fixed to the six spoke members 24 by bolting or the like through the circumferentially extending slits formed on the inner peripheral side of the transfer path member 10 described above. The spoke member 24 is fixed to the drive shaft 26. In this way, the rotary wing member 28 can be rotated around the axis by the axial rotation of the drive shaft 26, and the wing plate 22 arranged in the transfer path member 10 can be orbitally linked.

【0024】図6は、図5に示した回転羽部材28を拡
大して示す。図6(a)に示すように、回転羽部材28
は、厚さ例えば約9mmのステンレス製のドーナツ状基
部282と、この基部282の外周に沿って所定の間隔
で放射状に配置され固定された20枚のステンレス製の
羽板22とを有している。なお、羽板の枚数は、所望に
応じて適切な枚数を選択できる。また、ドーナツ状基部
282の表裏面には、周方向に延びる環状の凸壁(環状
ブレード)284が2本設けられている。これらの凸壁
は、上述のような移送経路部材10内面に形成された凹
溝108(図4)と摺動可能に嵌合して(すなわち、移
送経路部材10の内周側に沿って同心状に設けられた環
状ブレード109と回転羽部材28に同心状に設けられ
た環状ブレード284とが噛合して)、図2及び図3に
示すようなラビリンス構造18を形成する。このような
構造により、移送経路部材10内部の気密性を高めると
ともに、移送経路部材10内に配置される羽板22をそ
の外部に位置する駆動シャフト26の軸回転によって周
回させることが可能である。
FIG. 6 is an enlarged view of the rotary vane member 28 shown in FIG. As shown in FIG. 6A, the rotary vane member 28
Has a doughnut-shaped base portion 282 made of stainless steel having a thickness of, for example, about 9 mm, and 20 stainless steel blades 22 radially arranged and fixed at a predetermined interval along the outer periphery of the base portion 282. There is. It should be noted that the number of blades can be appropriately selected as desired. In addition, two annular convex walls (annular blades) 284 extending in the circumferential direction are provided on the front and back surfaces of the donut-shaped base portion 282. These convex walls slidably fit with the concave grooves 108 (FIG. 4) formed on the inner surface of the transfer path member 10 as described above (that is, concentric along the inner peripheral side of the transfer path member 10). The annular blade 109 provided in a circular shape and the annular blade 284 provided concentrically with the rotary vane member 28 mesh with each other to form the labyrinth structure 18 as shown in FIGS. 2 and 3. With such a structure, the airtightness inside the transfer path member 10 can be enhanced, and the blades 22 arranged inside the transfer path member 10 can be rotated by the axial rotation of the drive shaft 26 located outside thereof. .

【0025】以下、図2及び図3を参照して、上述のよ
うに構成された加熱炉1の動作を説明する。
The operation of the heating furnace 1 configured as described above will be described below with reference to FIGS. 2 and 3.

【0026】まず、加熱炉1内における原料の移動経路
について説明する。有機性汚泥、動植物性汚泥などの加
熱すべき原料は、例えば、投入ホッパを利用して加熱炉
1の原料供給口8に投入され、供給パイプ12を通って
最上段の移送経路部材10a内に供給される。
First, the movement path of the raw material in the heating furnace 1 will be described. Raw materials such as organic sludge and animal and plant sludge to be heated are put into the raw material supply port 8 of the heating furnace 1 by using, for example, a feeding hopper and passed through the supply pipe 12 into the uppermost transfer path member 10a. Supplied.

【0027】一方、駆動シャフト26が中心軸A回りに
軸回転され、これにより移送経路部材10内に配置され
た複数の羽板22が連動して周方向に沿って並進運動す
る。駆動シャフト26の回転は、蓋部4を越えて延びる
駆動シャフト26の係合部に、これに並設して設けられ
た駆動モータ29の回転をチェーン29aで伝達させる
ことにより行われ得る。駆動シャフト26の回転数は、
例えば一分あたり1/2周に設定される。また、回転の
方向は、各移送経路部材間を連通させる連通管(図4)
の配置に応じて、材料が各移送経路部材内をほぼ一周に
わたり周回できる方向が適切に選択される。
On the other hand, the drive shaft 26 is axially rotated about the central axis A, whereby the plurality of blades 22 arranged in the transfer path member 10 interlock with each other and move in translation along the circumferential direction. The rotation of the drive shaft 26 can be performed by transmitting the rotation of the drive motor 29 provided in parallel to the engagement portion of the drive shaft 26 extending beyond the lid portion 4 by the chain 29a. The rotation speed of the drive shaft 26 is
For example, it is set to 1/2 round per minute. In addition, the direction of rotation is such that a communication pipe that connects the transfer path members (FIG. 4).
Depending on the arrangement, the direction in which the material can circulate in each of the transfer path members for almost one round is appropriately selected.

【0028】このようにして、原料は、羽板22に押さ
れるようにして移送経路部材10a内を周回する。本実
施形態の加熱炉1は、好適には、羽板22の上端部22
aと移送経路部材10の上面との間に所定の隙間が設け
られるように構成されており、原料の逃げ路が確保され
るとともに、原料から発生するガスの流路も確保され
る。このようにして移送される原料は、羽板の並進運動
による押圧を受けて移動されるため、スクリューコンベ
アによる場合のように移動途中に絞られるように圧縮を
受けて固まるということがない。
In this way, the raw material circulates inside the transfer path member 10a while being pushed by the blades 22. The heating furnace 1 of the present embodiment is preferably the upper end portion 22 of the blade 22.
A predetermined gap is provided between a and the upper surface of the transfer path member 10, so that an escape path for the raw material is ensured and a flow path for gas generated from the raw material is also secured. The raw material transferred in this way is moved by being pressed by the translational movement of the blades, so that it is not compressed and solidified so as to be squeezed during the movement unlike the case of using a screw conveyor.

【0029】第1段目の移送経路部材10a内をほぼ一
周したところで、原料は、移送経路部材10aの底面に
設けられた開口を通り連通管内を落下して、第2段目の
移送経路部材へと送られる。同様にして、第2段目の移
送経路部材に送られた原料は、これをほぼ一周した後に
開口を通り連通管内を落下して、第3段目の移送経路部
材に送られる。その後、最下段である第7段目まで、同
様の動作を繰り返して各段を移送される。最下段の移送
経路部材10bに到達した原料は、この移送経路部材1
0bの底面に設けられた開口を介して炉本体外部へ延び
る排出管14に送られる。排出管14内には、例えばス
クリューコンベアなどの移送手段が設けられており、こ
れを駆動して原料を排出管14の排出口16に送ること
ができる。なお、排出管14に移送された時点で、原料
は加熱後の水分を多く含まない状態(例えば炭化物)に
されているので、上述のようにスクリューコンベアを用
い得る。その後、原料は排出口16に取り付けられたバ
ルブを開くことで加熱炉1の外部へ取り出される。
When the inside of the transfer path member 10a of the first stage has been circulated almost once, the raw material passes through the opening provided in the bottom surface of the transfer path member 10a and drops in the communicating pipe, and the transfer path member of the second step is formed. Sent to. Similarly, the raw material sent to the second-stage transfer path member is sent to the third-step transfer path member after passing through the opening, passing through the opening, and dropping in the communication pipe. After that, the same operation is repeated until the 7th step, which is the lowest step, and each step is transferred. The raw material reaching the lowermost transfer path member 10b is transferred to the transfer path member 1
It is sent to the discharge pipe 14 extending to the outside of the furnace main body through the opening provided on the bottom surface of 0b. A transfer means such as a screw conveyor is provided in the discharge pipe 14, and the raw material can be sent to the discharge port 16 of the discharge pipe 14 by driving the transfer means. In addition, since the raw material is in a state of not containing much water after heating (for example, carbide) at the time of being transferred to the discharge pipe 14, the screw conveyor can be used as described above. After that, the raw material is taken out of the heating furnace 1 by opening a valve attached to the discharge port 16.

【0030】この過程において、上述のように各移送経
路部材10に設けられた底面開口及び供給口8の周方向
における位置は、各段ごとに所定距離だけずらされてい
るので、例えば、供給口から投入した原料が、直接第2
段目の移送経路部材に送られるというようなことはな
い。原料は、供給口8から排出口16まで、密封状態で
各段の移送経路部材内を周回しながら連続的に移動され
る。
In this process, as described above, the positions of the bottom opening provided in each transfer path member 10 and the position of the supply port 8 in the circumferential direction are shifted by a predetermined distance for each step. The raw material input from the
It is not sent to the transfer path member of the stage. The raw material is continuously moved from the supply port 8 to the discharge port 16 in a hermetically sealed state while circulating in the transfer path member of each stage.

【0031】次に、上述のようにして移動される原料の
加熱について説明する。図3に示すように、炉本体の下
方に設けられた加熱手段30のバーナ32は、燃焼室3
4内に火炎を放射する。ここで、燃焼室34内の温度
は、例えば約800℃〜約900℃とされる。これによ
り燃焼室34内で発生した燃焼ガスは、燃焼室34と加
熱用空間2とを隔てる隔壁36において上面からみて移
送経路部材10の内側、駆動シャフト26寄りの位置に
設けられた加熱用ガス供給孔38を通って、加熱用空間
2内に流入する。このガス供給孔38は、好適には、隔
壁36において複数個が対称配置された構成とされる。
Next, heating of the raw material moved as described above will be described. As shown in FIG. 3, the burner 32 of the heating means 30 provided below the furnace body is
Fire a flame within 4. Here, the temperature in the combustion chamber 34 is, for example, about 800 ° C to about 900 ° C. As a result, the combustion gas generated in the combustion chamber 34 is heated in the partition wall 36 that separates the combustion chamber 34 and the heating space 2 from the upper surface inside the transfer path member 10 and at a position near the drive shaft 26. It flows into the heating space 2 through the supply hole 38. A plurality of the gas supply holes 38 are preferably arranged symmetrically on the partition wall 36.

【0032】ガス供給孔38から加熱用空間2内に流れ
込んだ燃焼ガスは、各段の移送経路部材10の内周側を
加熱しながら、加熱炉の蓋部4付近(加熱用空間2の最
上方)まで上昇する。その後、蓋部4付近に達した燃焼
ガスは、円筒壁6の方向に移動し、移送経路部材10の
外周側を加熱しながら下降し、加熱用空間2の最下方に
おいて円筒壁6に設けられた排気口40を介して煙突4
2を通り、燃焼排ガスとして外界へと放出される。
The combustion gas flowing from the gas supply hole 38 into the heating space 2 heats the inner peripheral side of the transfer path member 10 at each stage, and the vicinity of the lid 4 of the heating furnace (the maximum temperature of the heating space 2). Up). After that, the combustion gas reaching the vicinity of the lid portion 4 moves toward the cylindrical wall 6, descends while heating the outer peripheral side of the transfer path member 10, and is provided on the cylindrical wall 6 at the lowermost part of the heating space 2. Chimney 4 through the exhaust port 40
It passes through 2 and is discharged to the outside as combustion exhaust gas.

【0033】このように、本実施形態の加熱炉1によれ
ば、加熱用の燃焼ガスの上昇過程において移送経路部材
10の内周面側を加熱し、下降過程において移送経路部
材10の外周面側を加熱するという、2つの経路によっ
て移送経路部材10を加熱することができるので、熱伝
達効率が向上される。また、ガス供給孔38を通して燃
焼ガスを流入させることで、移送経路部材10は炎によ
り直接加熱されることなく、ガス伝導又は輻射熱により
間接加熱されるので、移送経路部材10の損傷の可能性
が低減される。このような間接加熱を行う本実施形態の
加熱炉1において、加熱用空間2内の温度は例えば約5
00℃〜約600℃とされる。
As described above, according to the heating furnace 1 of the present embodiment, the inner peripheral surface side of the transfer path member 10 is heated in the ascending process of the combustion gas for heating, and the outer peripheral surface of the transfer path member 10 is in the descending process. Since the transfer path member 10 can be heated by the two paths of heating the side, the heat transfer efficiency is improved. Further, since the transfer path member 10 is indirectly heated by the gas conduction or the radiant heat without being directly heated by the flame by causing the combustion gas to flow in through the gas supply hole 38, the transfer path member 10 may be damaged. Will be reduced. In the heating furnace 1 of the present embodiment that performs such indirect heating, the temperature in the heating space 2 is, for example, about 5
The temperature is set to 00 ° C to about 600 ° C.

【0034】さらに、ガス供給孔38から流入した高温
の燃焼ガスは、加熱用空間2内を上昇するにつれて温度
が低下し、その後下降するにつれてさらに温度が低下す
る。従って、各段の移送経路部材10に付与される熱
は、内周側からの熱と外周側からの熱とを合計した全体
では、移送経路部材10が設けられている高さ(すなわ
ち燃焼室34との距離)に拘わらず均一化されることに
なる。このように各段の移送経路部材に与える熱を均一
化することで、その内部を通過する原料の温度を比較的
一定に保つことができる。このように供給口から排出口
に移動する原料を一定温度で加熱することができるの
で、加熱による炭化等の作用が適切に得られる。
Further, the temperature of the high temperature combustion gas flowing in from the gas supply hole 38 decreases as it rises in the heating space 2, and then further decreases as it falls. Therefore, the heat applied to the transfer path member 10 at each stage is the total height of the heat from the inner peripheral side and the heat from the outer peripheral side, that is, the height at which the transfer path member 10 is provided (that is, the combustion chamber). It becomes uniform regardless of the distance from 34). By uniformizing the heat given to the transfer path members of each stage in this way, the temperature of the raw material passing through the inside can be kept relatively constant. In this way, the raw material that moves from the supply port to the discharge port can be heated at a constant temperature, so that an action such as carbonization due to heating can be appropriately obtained.

【0035】このように、本実施形態の加熱炉において
も従来の炭化装置等と同様に、移送経路部材内の原料
は、密閉された状態で加熱されるので、爆発が生じた
り、ガス漏れが生じたりすることはない。また、図2及
び図3に示すように、加熱炉1は、移送経路部材10と
連通してガス流路を形成する外筒50を備え、原料の加
熱過程において炭化時などに発生し得るガスをブロワ5
2などによって燃焼室34内へと導き、これを燃焼させ
るので、直接外界に放出することが防止され、悪臭や煙
の発生を抑止することができる。
As described above, also in the heating furnace of this embodiment, the raw material in the transfer path member is heated in a sealed state as in the case of the conventional carbonization device and the like, so that explosion or gas leakage occurs. It does not happen. Further, as shown in FIGS. 2 and 3, the heating furnace 1 includes an outer cylinder 50 that communicates with the transfer path member 10 to form a gas flow path, and a gas that may be generated during carbonization during the heating process of the raw material. Blower 5
Since it is guided to the inside of the combustion chamber 34 by 2 or the like and burned, it is prevented from being directly discharged to the outside world, and the generation of foul odors and smoke can be suppressed.

【0036】このように、本実施形態の加熱炉によれ
ば、環状に設けられた移送経路部材内を羽板の並進運動
によって材料を移送させながら加熱する構造であるの
で、含有水分率が高い原料であってもつまりが無く、効
率よく加熱され得る。また、例えば、本実施形態の加熱
炉を原料の水分調整を行うのに利用する場合、原料の加
熱時間の制御は、羽の回転速度、すなわち駆動シャフト
の回転速度の制御により容易に達成できるので、バーナ
の火力を制御してこれを行うよりも正確であり、適切に
水分調整を行うことができる。
As described above, according to the heating furnace of this embodiment, since the heating is performed while the material is transferred by the translational motion of the blades in the annular transfer path member, the moisture content is high. Even if it is a raw material, it is not clogged and can be efficiently heated. Further, for example, when the heating furnace of the present embodiment is used to adjust the water content of the raw material, the control of the heating time of the raw material can be easily achieved by controlling the rotation speed of the blades, that is, the rotation speed of the drive shaft. It is more accurate than controlling the burner's heating power to do this and allows proper moisture control.

【0037】また、例えば直径約5〜約10mmの粒状
(顆粒状)の原料を原料供給口から投入した場合にも、
スクリューコンベアの場合のように移送中に必要以上に
加圧されることがないので、顆粒状態を維持したままに
炭化する事も可能になる。例えば直径約5mmの顆粒状
態で得られた炭化物は、粉体のものとは異なり雨などで
流出しにくいので、様々な用途において有利に使用され
る。このようにして得られた炭化物は、例えば、肥料と
しての利用に適している。
Further, for example, when a granular (granular) raw material having a diameter of about 5 to about 10 mm is introduced from the raw material supply port,
It is possible to carbonize while maintaining the granular state, because the pressure is not excessively increased during the transfer as in the case of the screw conveyor. For example, a carbide obtained in a granular state with a diameter of about 5 mm is unlikely to flow out due to rain unlike a powder, and thus is advantageously used in various applications. The carbide thus obtained is suitable for use as a fertilizer, for example.

【0038】以上、本発明を一実施形態に基づいて説明
したが、例えば、中空環状の移送経路部材10の段数、
駆動シャフトと羽板との接続形態などは適宜変更しても
よく、種々の形態とすることが可能である。また、移送
経路部材10及び回転羽部材28は、ステンレス以外に
も、耐熱性、耐腐食性が良好な種々の金属、セラミック
等から形成されていても良い。
The present invention has been described above based on the embodiment. For example, the number of stages of the hollow annular transfer path member 10,
The connection form between the drive shaft and the blades may be changed as appropriate, and various forms are possible. Further, the transfer path member 10 and the rotary vane member 28 may be formed of various metals having good heat resistance and corrosion resistance, ceramics, or the like, other than stainless steel.

【0039】また、本発明の加熱炉は、種々の材料の炭
化及び水分調整に使用し得る。例えば、コーヒー殻など
の食品廃棄物、下水道脱水汚泥、屎尿、畜産汚泥、畜産
廃棄物など様々な農水産廃棄物の炭化のために使用でき
る。また、加熱温度、時間を調節するなどして、カプロ
ラクトン容器などの生分解性プラスチック(非石油系プ
ラスチック)製品の炭化にも使用し得る。
Further, the heating furnace of the present invention can be used for carbonizing various materials and adjusting water content. For example, it can be used for carbonization of various agricultural and marine wastes such as food waste such as coffee husks, sewer dewatering sludge, human waste, livestock sludge, and livestock waste. It can also be used for carbonizing biodegradable plastic (non-petroleum plastic) products such as caprolactone containers by adjusting the heating temperature and time.

【0040】[0040]

【発明の効果】本発明の加熱炉によれば、環状の中空部
材内を周回する羽板の押圧によって、原料を密閉加熱し
ながら移送するので、原料を効率よく加熱することがで
きる。また、移送中に原料を絞るように圧縮した状態に
することなく、加熱炉への供給時の形状とほぼ同様の形
状で加熱後の原料を得ることができる。また、燃焼室か
ら加熱用ガスを供給して中空環状部材の加熱を行えば、
中空環状部材は間接加熱されるので、炎による直接加熱
の場合に比べて受け得る損傷が小さい。このような構成
により加熱炉の小型化が実現され、コストの低減化の実
現される。
According to the heating furnace of the present invention, since the raw material is transferred while being hermetically heated by the pressing of the blades circulating in the annular hollow member, the raw material can be efficiently heated. Further, the raw material after heating can be obtained in a shape substantially similar to the shape when the raw material is supplied to the heating furnace without being compressed so as to squeeze the raw material during transfer. Further, if heating gas is supplied from the combustion chamber to heat the hollow annular member,
Since the hollow annular member is indirectly heated, the damage that can be received is smaller than in the case of direct heating by a flame. With such a configuration, the heating furnace can be downsized and the cost can be reduced.

【0041】或いは、本発明の加熱炉を用いた炭化方法
によれば、粒状で供給された炭素含有物を加熱して、粒
状の炭化物を得ることができる。このような炭化物は、
粉体状のものに比べ雨などで流出しにくく様々な用途に
おける使用に適している。
Alternatively, according to the carbonization method using the heating furnace of the present invention, it is possible to obtain a granular carbide by heating the carbon-containing material supplied in the granular form. Such carbides are
It is less likely to flow out due to rain compared to powder and is suitable for use in various applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の炭化装置を示す正面図である。FIG. 1 is a front view showing a conventional carbonization device.

【図2】本発明の実施形態による加熱炉の所定方向から
みた縦断正面図である。
FIG. 2 is a vertical cross-sectional front view of the heating furnace according to the embodiment of the present invention viewed from a predetermined direction.

【図3】図2に示す加熱炉の縦断側面図である。FIG. 3 is a vertical sectional side view of the heating furnace shown in FIG.

【図4】図2に示す加熱炉の環状移送経路部材を形成す
るための構成部材を示す図であり、図4(a)は平面
図、図4(b)は、図4(a)のY−Y線に沿った断面
図である。
4A and 4B are views showing constituent members for forming an annular transfer path member of the heating furnace shown in FIG. 2, FIG. 4A being a plan view, and FIG. 4B being a view showing FIG. 4A. It is sectional drawing which followed the YY line.

【図5】図2に示す加熱炉のX−X線に沿った断面図で
ある。
5 is a sectional view taken along line XX of the heating furnace shown in FIG.

【図6】図2に示す加熱炉の回転羽部材を示す図であ
り、図6(a)は平面図、図6(b)は、図6(a)の
Z−Z線に沿った断面図である。
6A and 6B are views showing a rotary vane member of the heating furnace shown in FIG. 2, FIG. 6A being a plan view and FIG. 6B being a cross section taken along line ZZ of FIG. 6A. It is a figure.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 加熱用空間 4 蓋部 6 円筒壁(炉壁) 8 供給口 12 供給パイプ 10 移動経路部材 14 排出管 16 排出口 18 ラビリンス構造 20 移送装置(回転部材) 22 羽板 24 スポーク部材 26 駆動シャフト 29 駆動モータ 30 加熱手段 32 バーナ 34 燃焼室 36 隔壁 38 ガス供給孔 40 排気口 42 煙突 1 heating furnace 2 heating space 4 Lid 6 Cylindrical wall (furnace wall) 8 supply ports 12 Supply pipe 10 Movement path member 14 Discharge pipe 16 outlet 18 Labyrinth structure 20 Transfer device (rotating member) 22 feather board 24 spoke members 26 Drive shaft 29 Drive motor 30 heating means 32 burners 34 Combustion chamber 36 bulkheads 38 Gas supply hole 40 exhaust port 42 chimney

フロントページの続き (56)参考文献 特開 平11−60225(JP,A) 特開 昭50−47472(JP,A) 特開 平10−8063(JP,A) 特開 昭57−96084(JP,A) 特開 昭54−58972(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 7/00 C10B 53/00 B09B 1/00 - 5/00 Continuation of front page (56) Reference JP-A-11-60225 (JP, A) JP-A-50-47472 (JP, A) JP-A-10-8063 (JP, A) JP-A-57-96084 (JP , A) JP 54-58972 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F23G 7/00 C10B 53/00 B09B 1/00-5/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料を移動経路に沿って移動させつつ連
続的に加熱処理を行う連続処理型の加熱炉であって、 筒形の炉壁及び該炉壁の上端開口に設けられた蓋部を備
えた炉本体と、 該炉本体によって支持され、前記炉壁の軸線方向に沿っ
て間隔を開けて並設された複数の中空環状部材であっ
て、各々は前記炉壁の内周面に沿って環状をなす複数の
中空環状部材と、 前記複数の中空環状部材の各々の内側において前記炉本
体により支持され該中空環状部材に沿って回転可能とさ
れた回転部材であって、前記中空環状部材の周方向に形
成されたスリットを経て該中空環状部材内に延びる複数
の原料移送用羽板部材を備えた回転部材と、 該回転部材に連結されて該回転部材を駆動する駆動部
と、 前記複数の中空環状部材を加熱するための加熱手段と、 前記炉本体の上部に設けられ、最上部に位置する前記中
空環状部材と連通する原料供給口と、 前記炉本体の下部に設けられ、最下部に位置する前記中
空環状部材と連通する原料排出口と、を備え、 前記軸線方向に並ぶ複数の中空環状部材のうちの隣り合
う中空環状部材は、それぞれに設けられた対向する開口
を備えた連通部を介して互いに連通されており、該軸線
方向に並ぶ中空環状部材の連通部のうちの前記軸線方向
に隣り合う連通部は、前記中空環状部材の周方向にずれ
た位置に設けられていることを特徴とする加熱炉。
1. A continuous processing type heating furnace for continuously performing heat processing while moving a raw material along a moving path, wherein a cylindrical furnace wall and a lid portion provided at an upper end opening of the furnace wall. And a plurality of hollow annular members supported by the furnace body and arranged in parallel along the axial direction of the furnace wall at intervals, each on the inner peripheral surface of the furnace wall. A plurality of hollow annular members that are annular along the hollow annular members, and a rotating member that is supported by the furnace body inside each of the plurality of hollow annular members and is rotatable along the hollow annular members, A rotary member provided with a plurality of raw material transfer vane members extending into the hollow annular member through slits formed in the circumferential direction of the member; and a drive unit connected to the rotary member to drive the rotary member, Heating means for heating the plurality of hollow annular members A raw material supply port provided at the upper part of the furnace body and communicating with the hollow annular member located at the uppermost part, and a raw material discharge port provided at the lower part of the furnace body and communicating with the hollow annular member located at the lowermost part An outlet and an adjacent hollow annular member of the plurality of hollow annular members arranged in the axial direction are communicated with each other through a communication portion having an opening provided in each of the adjacent hollow annular members, and the axial line Among the communication parts of the hollow annular members arranged in the direction, the communication parts adjacent to each other in the axial direction are provided at positions displaced in the circumferential direction of the hollow annular member.
【請求項2】 前記加熱手段は、前記炉本体の下方にお
いて設けられ、前記炉本体内の前記中間環状部材が設け
られた空間に加熱用ガスを供給するための開口を有した
燃焼室を備えていることを特徴とする請求項1に記載の
加熱炉。
2. The heating means includes a combustion chamber provided below the furnace body, the combustion chamber having an opening for supplying a heating gas to a space in the furnace body in which the intermediate annular member is provided. The heating furnace according to claim 1, wherein:
【請求項3】 前記中空環状部材の内周側に沿って同心
状に延びる複数の環状ブレードが該中空環状部材及び前
記回転部材に各々設けられ、該中空環状部材の環状ブレ
ードと該回転部材の環状ブレードとは、前記中空環状部
材内外の遮蔽性を増すように噛合していることを特徴と
する請求項1又は2に記載の加熱炉。
3. A plurality of annular blades concentrically extending along the inner peripheral side of the hollow annular member are provided in the hollow annular member and the rotating member, respectively, and the annular blade of the hollow annular member and the rotating member are provided. The heating furnace according to claim 1 or 2, wherein the annular blade is meshed with the hollow annular member so as to increase shielding properties inside and outside the hollow annular member.
【請求項4】 請求項1に記載の加熱炉を用いて炭素含
有物を炭化する方法であって、 粒状の炭素含有物を、前記加熱炉の前記原料供給口に供
給する工程と、 前記加熱手段により加熱された複数の中空環状部材の内
部において、前記複数の原料移送用羽板部材の周方向へ
の移動による押圧により、前記供給された粒状の炭素含
有物を移動させて、該炭素含有物を加熱する工程と、 前記加熱炉の原料排出口から、炭化された炭素含有物を
粒状で排出する工程と、 を包含する炭化方法。
4. A method of carbonizing a carbon-containing material by using the heating furnace according to claim 1, comprising supplying a granular carbon-containing material to the raw material supply port of the heating furnace, Inside the plurality of hollow annular members heated by the means, the supplied granular carbon-containing material is moved by pressing by the circumferential movement of the plurality of raw material transfer vane members, and the carbon-containing A carbonization method comprising: a step of heating a material; and a step of discharging a carbonized carbon-containing material in a granular form from a raw material discharge port of the heating furnace.
JP31239899A 1999-11-02 1999-11-02 Continuous treatment type heating furnace and carbonization method using the same Expired - Fee Related JP3418788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31239899A JP3418788B2 (en) 1999-11-02 1999-11-02 Continuous treatment type heating furnace and carbonization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31239899A JP3418788B2 (en) 1999-11-02 1999-11-02 Continuous treatment type heating furnace and carbonization method using the same

Publications (2)

Publication Number Publication Date
JP2001132928A JP2001132928A (en) 2001-05-18
JP3418788B2 true JP3418788B2 (en) 2003-06-23

Family

ID=18028775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31239899A Expired - Fee Related JP3418788B2 (en) 1999-11-02 1999-11-02 Continuous treatment type heating furnace and carbonization method using the same

Country Status (1)

Country Link
JP (1) JP3418788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925779A (en) * 2014-03-21 2014-07-16 沈阳新思维数控机床有限公司 Efficient vertical pyrolysis drying equipment

Also Published As

Publication number Publication date
JP2001132928A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP5896073B1 (en) Drying processing equipment
US20050240068A1 (en) Dephlegmatic phased method of organic waste utilization and dephlegmatic pyrolysis apparatus
US3774555A (en) Compact incinerator
TWI740118B (en) Carbonizing furnace
KR101916958B1 (en) Apparatus and method for pyrolysis carbonizing of sludge
CZ2007475A3 (en) Device for drying loose and pasty materials and sludge
JP4066262B2 (en) Waste pyrolysis equipment
CN110775975A (en) Furnace tube fixed type active carbon drying and regenerating integrated furnace
CN110038541A (en) A kind of fixed Powdered Activated Carbon regenerating furnace of the boiler tube of silicon carbide furnace tube material
CN108779397B (en) Multi-frame furnace used at low temperature
CN108167834A (en) Drying type burning facility in a kind of environment-friendly type
WO2014167141A1 (en) Screw conveyor reactor and use for pyrolysis or torrefaction of biomass
JP3418788B2 (en) Continuous treatment type heating furnace and carbonization method using the same
JP4552999B2 (en) Raw material distributor for a split rotary kiln
WO1992002773A1 (en) Rotary heat-treatment apparatus
HUT60851A (en) Multilateral water-cooled rotary combustion chamber
JP3558358B2 (en) Horizontal rotation activation device
EP3405727B1 (en) Apparatus for thermal treatment of organic waste
JP2013159778A (en) Carbonization apparatus and carbonized material
JP7190641B1 (en) Continuous carbonization equipment
RU15218U1 (en) DRUM DRYER FOR BULK MATERIALS (OPTIONS)
JP3840584B2 (en) Sludge carbonization equipment
KR20010077414A (en) Multiple grate incinerator
JP7200703B2 (en) carbonization furnace
JP3599608B2 (en) Raw material processing method and raw material processing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees