JP3558358B2 - Horizontal rotation activation device - Google Patents

Horizontal rotation activation device Download PDF

Info

Publication number
JP3558358B2
JP3558358B2 JP31107993A JP31107993A JP3558358B2 JP 3558358 B2 JP3558358 B2 JP 3558358B2 JP 31107993 A JP31107993 A JP 31107993A JP 31107993 A JP31107993 A JP 31107993A JP 3558358 B2 JP3558358 B2 JP 3558358B2
Authority
JP
Japan
Prior art keywords
cylindrical body
space
partition wall
horizontal rotation
activation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31107993A
Other languages
Japanese (ja)
Other versions
JPH07144909A (en
Inventor
達 地崎
大藏 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chisaki Co Ltd
Original Assignee
Chisaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisaki Co Ltd filed Critical Chisaki Co Ltd
Priority to JP31107993A priority Critical patent/JP3558358B2/en
Publication of JPH07144909A publication Critical patent/JPH07144909A/en
Application granted granted Critical
Publication of JP3558358B2 publication Critical patent/JP3558358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は粉粒状の炭素質材料を加熱して乾留・炭化させ、その粉粒状炭素質材料を水蒸気と接触させて賦活するにあたり、処理条件に好適な温度・雰囲気・滞留時間を与えると共に、原料粉粒体の乾燥・炭化・賦活・冷却の諸工程を連続一貫して一つの装置内において高い能率で達成させ、環境汚染を起こすことなく高い熱効率をもって長期間安定操業を行なうに適した、活性炭製造のための横型回転賦活装置に関する。
【0002】
【従来の技術】
椰子殻・鋸屑などの植物原料あるいは褐炭・石炭などの原料の粉粒、及び成型したペレットからの活性炭を製造する場合には、乾燥・炭化・賦活・冷却の四工程を経る必要があり、従来はそれを別個の装置において行なっている。
【0003】
炭化工程によって得られた炭素質粉粒の水蒸気による賦活は、従来、多くの場合、別途用意された多段床炉、内熱式回転炉及び流動層炉のいづれかにより行なわれている。
【0004】
多段床炉は粉粒体が落下する空間を形成する多段の炉床を有し、加熱ガスを下方から上記空間を経て上昇せしめて、順次落下する粉粒体を各炉床で加熱することにより次第に賦活せんとするものである。
【0005】
内熱式回転炉は水平面に対し若干傾斜せる軸線まわりに回転する筒状炉内で上端から下端に向け粉粒体を移行させる一方、下端から上端に向けて加熱ガスを上記粉粒体に対して向流させることにより、上記粉粒体を加熱して賦活するものである。
【0006】
また、流動層炉は、縦方向筒状体内に設けられた網状体上に粉粒体を配し、下方から供給される加熱ガスを上記粉粒体に貫流せしめることにより粉粒体を加熱して賦活するものである。
【0007】
【発明が解決しようとする課題】
しかしながら、上述の従来の装置による場合には、目的たる活性炭を、環境を汚染することなく安全かつ連続的・経済的に得るにあたり次のような問題点がある。
【0008】
▲1▼炭素質粉粒の水蒸気による賦活を行なう上記多段床炉、内熱式回転炉、流動層炉においては、処理条件に好適な温度・雰囲気・滞留時間を同時に満足させることができず、特に多段床炉と内熱式回転炉においては炉内の水蒸気濃度を賦活反応に最適な値に保持する手段を有していないので、賦活に長い時間を必要とする。また、流動層炉は炭素質粉粒の滞留時間を一定にするために連続操作ができない。
【0009】
▲2▼賦活反応によって単位質量の製品あたり大量の可燃ガスが発生するのに拘らず、上記の各型式の賦活のための炉においては、その保有するエネルギーの大部分を有効に利用することができず、空しく燃焼ガスとして大気中に放出している。
【0010】
▲3▼従来の上記装置による場合は、乾燥装置、炭化炉、賦活炉そして冷却装置の四つの装置が必要であるから装置の建設費・運転費・人件費が大きくなる。またこれらの炉は別途設けられるため炉間における粉粒状の炭素質材料の取扱時に漏洩する機会が多くなり、そのために作業環境を著しく劣化している。
【0011】
本発明は、従来装置がかかえていた上記問題を解決し、乾燥、炭化、賦活そして冷却の四工程が必要である活性炭製造を、一つの装置の中で一貫して連続的に達成させ、しかも単位質量の製品あたり大量に発生する可燃ガスを濃い状態のまま副製品として利用可能とし、低温の製品を連続的に取り出すことのできる横型回転賦活装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明によれば上記目的は、回転軸線がほぼ水平で該軸線方向の一端に開口部を有し他端が閉鎖された回転自在な筒状体と、該筒状体の内部に配され実質的に軸線を該筒状体と共有もしくは平行に有し両端が開口された内筒と、上記筒状体と上記内筒の間の環状空間が軸線方向の中間部で区分される開口部側領域及び奥部側領域の二つの領域を軸線方向に延びる複数の軸線方向空間に区分する上記軸線にほぼ平行な仕切壁と、軸線に対して傾斜角を有し軸線方向に間隔をもって配設されるように少なくとも開口部側領域の仕切壁の両面に取り付けられた複数のガイド板を有し、該ガイド板の上記傾斜角は仕切壁の各面が上方に向いたとき仕切壁のそれぞれの面でのガイド板同士で逆方向をなし、軸方向に配設された複数のガイド板のそれぞれの縁部は筒状体の内面との間で少なくとも部分的に隙間を形成し上記仕切壁により区分された複数の軸線方向空間同士軸方向にて開口部位置、中間部位置及び奥部位置にて互に連通されており、該軸線方向空間は上記奥部側領域に外部から水蒸気の供給を受け該水蒸気を軸線方向空間内に向け噴射するための噴気孔が形成されていることにより達成される。
【0013】
【作用】
粉粒状の原料は一般に水分を含んでおり、該原料は筒状体の一端の開口部に設けられる送入口から、該筒状体と内筒との間の環状空間に供給される。筒状体は実質的に水平な軸線のまわりに回転しており、環状空間において開口部側領域に設置された仕切壁及びガイド板の作用により、筒状体の回転にしたがい粉粒体は仕切壁の両端の間で循環流を形成し、一部が次の奥部側領域に進入する。
【0014】
回転する筒状体は加熱されているので水分を含む原料粉粒体は上記開口部側領域でほぼ一定の温度で乾燥される。水分を含まない原料に対しては、この開口部側領域での工程を省略することができる。
【0015】
乾燥された原料粉粒体は、筒状体と内筒の間の環状空間において、順次奥部側領域に進む。この奥部側領域では、特には粉粒体を積極的に移送せしめる手段が設けられていなくとも、上記開口部側領域に順次原料粉粒体が供給されるので、該開口部側領域で循環せる粉粒体の一部が奥部側領域に進入し、これが該奥部側領域内の粉粒体を奥部へと押して移送せしめる。その際、回転する筒状体は加熱されているので、原料粉粒体はほぼ一定温度で加熱され、奥部側領域の前部にて可燃ガスを放出して炭化反応の一部あるいは全部を達成する。
【0016】
炭化した粉粒体は奥部側領域の後部に達すると、該領域に設けられた噴気孔から水蒸気が噴射されて、水蒸気を含有せる状態で賦活反応に必要が温度にまで温度上昇して賦活が行なわれる。
【0017】
賦活反応が終了した高温度の活性炭は、奥部側領域の奥部からその向きを変えて内筒内に流入し、該筒状体の回転にしたがって内筒中を原料送入側開口部に向かって移動し、該開口部から装置の外部に流出する。その際、筒状体と内筒の間の環状空間内には低温の原料粉粒体が存在しているので、これとの内筒を介しての熱エネルギー交換により製品としての活性炭は低温の状態で取り出される。
【0018】
筒状体中で発生した水蒸気・原料の熱分解によって発生した可燃ガス、炭素質粉粒の賦活によって発生した可燃ガス及び未反応水蒸気は、原料粉粒体の供給側の開口部付近と製品の取り出し側開口部(内筒の一端)の両方あるいは一方から装置外に排出されるが、これらは燃焼ガスとの混合は無いので、大量の可燃ガスを希釈しないままに副産物として得ることができる。
【0019】
実質的に水平な軸線のまわりに回転する筒状体は、内部空間容積に対する粉粒体の体積充填率を35〜45%程度にまで上げることができ、かつ噴気孔からの水蒸気の送入によって賦活反応に必要な時間を大幅に短縮し、装置が従来の技術に比べてはるかに小さくてすむ。
【0020】
【実施例】
以下、添付図面にもとづき本発明の実施例を説明する。
【0021】
〈第一実施例〉
図1において、軸線1は実質的に水平であり、軸線1のまわりに回転駆動を受ける筒状体2が軸受(図示せず)によって回転自在に支持されている。該筒状体2は該筒状体2の開口側にて空間に固定された原料側フード3及び製品側フード4に対して気密を保ったまま相対回転することができるようになっている。気密回転のためのシールの方法は任意である。なお、上記原料側フード3には原料送入管8及び排気管14が、そして製品側フード4には製品排出管13及び排気管15がそれぞれ取り付けられている。
【0022】
筒状体2の内部には、実質的に軸線を共有する内筒5が上記筒状体2と一体的に設けられており、該内筒5の内部には、好ましい形態として、傾斜せるガイド板6,6’を有する仕切壁7が取り付けられている。上記仕切壁7は軸線1を含む面もしくは平行な面に配されていて、内筒5の内部空間を軸線方向に延びる二つの空間に区分している。ガイド板6,6’はこの仕切壁7の両面にそれぞれ設けられていて、仕切壁7のそれぞれの面が上方に向く位置から下方に向け回転する際に、粉粒体がガイド板6,6’を滑落して図1にて左方に進むように傾斜して取り付けられている。なお、上記ガイド板6,6’を有する仕切壁7に代えて公知の螺旋板としてもよい。
【0023】
上記内筒5と筒状体2との間の環状空間は、軸線方向の中間部にて、開口部側領域と奥部側領域とに区分され、それぞれの領域にて軸線1を含む面あるいは平行な面に配された仕切壁9,11により複数の軸線方向空間に区分されている。図示の例の場合、開口部側領域では図2(A)にも見られるように一つの面での仕切壁9によって二つの軸線方向空間に、奥部側領域では図2(B)にも見られるように十字をなす二つの面での仕切壁11によって四つの軸線方向空間に区分されている。仕切壁9,11によりそれぞれ区分された複数の軸線方向空間は、筒状体2の開口部P、中間部Q、及び奥部Rにおいて連通している。
【0024】
上記仕切壁9には傾斜せるガイド板10,10’が該仕切壁9の両面に設けられている。これらのガイド板10,10’は、仕切壁9の上記両面のそれぞれが上方に向いたとき、それらのガイド板10,10’が互いに逆向きに取り付けられている。又、図2(A)にも見られるように、ガイド板10,10’の縁は部分的に直線的に切り落とされて筒状体2の内面との間に隙間を有し、軸方向で隣接するガイド板間に形成される空間同士が上記筒状体2の内面位置で連通している。したがって、一方の面上の粉粒体は該面が上方から下方に向くように回転したときガイド板を滑落しながら筒状体2の内面に沿って図1にて右方に進み、これに対し、他方の面上の粉粒体は左方に進むようになっている。
【0025】
上記奥部側空間を四つの軸線方向空間に区分する仕切壁11は、その奥部側(右部)に噴気孔12が多数穿設されている(図2(C)をも参照)。該噴気孔12は、図示の例の場合、奥部になる程密に分布しており、外部から水蒸気の供給を受けこれを軸線方向空間内に噴出するようになっている。
【0026】
かかる本実施例装置において、活性炭の製造は次の要領でなされる。
【0027】
活性炭製造の原料となる炭素質原料粉粒体は、原料送入管8から筒状体と内筒の間の環状空間(開口部側領域)に送入され、筒状体2及び内筒5の回転に伴い環状空間の底部において転動する。既述のごとく、開口部側領域においては、仕切壁9により区分された二つの軸線方向空間で粉粒体は、回転時にガイド板10,10’の作用により逆方向に進行するので、開口部P及び中間部Qを経て上記二つの軸線方向空間で循環流を生起する。
【0028】
上記筒状体5は、図示しない手段により外部から加熱されており、上記循環流を形成する原料粉粒体は、ほぼ均一な温度に加熱されて十分乾燥される。
【0029】
軸線方向において上記仕切壁9の範囲に形成される粉粒体の循環流が形成されているが、ここには原料送入管8から逐次粉粒体原料が供給されるので、これに押されて上記循環流の一部は次の奥部側領域に進入する。該奥部側領域は仕切壁11によって、四つの軸線方向空間に分割されていて、特段、粉粒体移送のための手段を積極的には有していないが、上記奥部側領域に進入してくる開口部側領域からの粉粒体に押されて粉粒体はさらに奥部へと移行する。
【0030】
上記仕切壁11が存在する奥部側領域においても筒状体2を介して粉粒体は均一温度に加熱される。そして移行に伴い、粉粒体は該領域の前部にて乾留・炭化が進行する。
【0031】
上記炭化された粉粒体は、奥部側領域の後部に達すると、噴気孔12から水蒸気の噴射を受け十分なる水蒸気と接触し、ここでの加熱により賦活がなされ活性炭が生成される。その際、粉粒体は図1において右方に進む程温度が高くなるので、これに対応して、右方程水蒸気の噴射量が多くなるように、噴気孔12の分布密度が高くなっている。
【0032】
所定の温度で、水蒸気雰囲気の状態で賦活された、高温の活性炭は筒状体1の底部から所定高さまで溜ると、図1において仕切壁11の一端近傍から内筒5の右端に流入し、筒状体2の回転に伴なって内筒5中をガイド板6,6’の作用により左方すなわち製品側フード4の方向にほぼ一定の速度で移動し、上記製品側フード4の製品排出管13を経て装置外に排出される。その際、内筒5中を移動する高温の活性炭は、筒状体2と内筒5の間の環状空間を転動する低温の原料粉粒体と、内筒5を介して熱エネルギーを交換し、降温して製品排出管13に至る。
【0033】
また、排気管14,15からは、熱分解ガス、賦活による可燃ガス及び未反応水蒸気が取り出され、熱分解及び賦活に要求される条件によりその一方あるいは両方を同時に使用することができる。
【0034】
〈第二実施例〉
図3は、前実施例装置が対象とする原料粉粒体よりも水分を多く含有する原料粉粒体を賦活するのに好適な場合を示す第二実施例装置である。図3においては仕切壁11に前実施例の場合と同様に設けられた水蒸気噴気孔12の範囲を符号16として示している。
【0035】
本実施例では、前実施例の開口部側領域における仕切壁が軸線方向の中間部で開口していて、該領域の前部と後部にてそれぞれ循環流が生ずるようになっている点に特徴がある。図3に具体的に示す例では、前実施例装置の前段にもう一つ開口部側領域と同じ構造の仕切壁17そしてガイド板18,18’を追加的に設けた構造となっている。
【0036】
かかる本実施例にあっては、水分を多く含有する原料粉粒体は送入後に筒状体2と内筒5の間の環状空間に落下してその底部で転動し、該環状空間に追加的に設置された上記仕切壁17と、これに設けられたガイド板18,18’の作用により、仕切壁17の両端の間に循環流を形成する。上記仕切壁17の両側の間で循環する原料粉粒体は筒状体2の外側からの加熱によって水分が蒸発し、水分の少ない状態になって仕切壁9の領域に進行する。
【0037】
筒状体2と内筒5の間の環状空間で仕切壁9の領域に進行した原料粉粒体の挙動は第一実施例と同じである。
【0038】
第一、第二実施例において、図1、図3のY−Y’断面は図2(B)で示されているものに限らず、筒状体と内筒の間の環状空間における仕切壁は図4(A),(B)のように二枚あるいは三枚のものであってもよく、また仕切壁の軸線方向範囲の全部あるいは一部に図4(C),(D)で示されるようなガイド板19,19’が設けられているものであってもよい。その際内筒内に設置される仕切壁7の角度は必ずしも図1に示される角度に限定されず、例えば45度など任意の角度であってもよく、また公知の螺旋板を内装するものであってもよい。また筒状体2と内筒の間の環状空間内に、図4(C),(D)のようにガイド板19,19’,19”,19”’を設置するものであっもよい。
【0039】
〈第三実施例〉
図5は、第三実施例として、筒状体2と内筒5の間の環状空間における奥部側領域の最右端の範囲の仕切壁11にガイド板19,19’を設置した図4(C)に示す構造の場合の例である。本実施例によれば、奥部側領域での粉粒体の右方の移送は促進される。
【0040】
〈第四実施例〉
図6は第四実施例として、筒状体2と内筒5の間の環状空間における奥部側領域の最右端の範囲の仕切壁11にガイド板19,19’,19”,19”’を設置した図4(D)に示す構造の場合の例である。
【0041】
〈第五実施例〉
本実施例は、図7に示すごとく、筒状体2を耐熱・断熱性材料の外筒20で覆い、該外筒20の内面に加熱装置として電気抵抗発熱体21,21’,21”を設けたことを特徴としている。かくして、既述の各実施例の筒状体2は上記電気抵抗発熱体21,21’,21”によって加熱される。その際電気抵抗発熱体の種類、形状、配置及び数は任意である。また実質的に水平な軸線1のまわりに回転する筒状体2に対し、外筒20は空間に固定していても、もしくは筒状体2と一緒に回転してもよい。
【0042】
〈第六実施例〉
図8は、第五実施例のごとくの電気抵抗発熱体を用いずに、筒状体2と外筒20の間の環状空間に高温の燃焼ガスを流通させることによって筒状体2を加熱する場合を示す第六実施例である。図8において22は燃料送入管であり、常温もしくは予熱された空気を該送入管22より送入して燃焼室24の内部で燃料を燃焼する。ここに25は筒状体2の一端面を保護するための耐火材料壁であるが、必要のない場合には省略しても差し支えない。燃焼室24の内部で発生した高温の燃焼ガスは、筒状体2と外筒20の間の環状空間に形成された流路26の中を、筒状体2の原料送入管8が設けられている端部に向かって流動しながら筒状体2を加熱し、外筒20の端部近傍に設けられた単数または複数の燃焼ガス排出口27を通って装置外に排出される。その際燃焼ガス排出フード28を用いて燃焼ガスを流出させることができる。外筒20の中間位置に単数または複数の空気送入口29を設け、導管30、バルブ31によって空気を送入して温度の調整を図ることもできる。その際空気送入口29の形状・寸法・数及び配置は任意であり、かつバルブ31の形式・作用方式も任意である。
【0043】
図8は筒状体2と外筒20が一体となって軸線のまわりに回転する例であり、筒状体2は燃焼ガスの流路を有し、軸線方向の適宜位置に設けられた支持部32によって外筒20に支持されるので、筒状体2が高温のもとで強度が低下しても筒状体2に変形にもとづく大きな応力が働かなくてすみ、したがって高温において筒状体2が破断する虞れがない。筒状体2の高温における軟化点に近い高い温度で操作する場合でも、水平軸のまわりに回転しまた全周で支持可能なので、筒状体の断面は実質的に円形に保たれる。
【0044】
図8に示す支持部は外筒20を構成する耐熱性・断熱性の材料と同様な材料を用いた場合の例であって、その形状・寸法・材質は任意であり、例えば図9に示す耐熱金属製の支持体33のようなものであってもよく、その形状・寸法・数及び配置方法は任意である。
【0045】
筒状体2と外筒20の間の環状空間を流れる燃焼ガスから筒状体2に熱エネルギーが伝達し易くするために、筒状体2の外表面に図9に示すような略半周にわたるバッフル板34を軸方向の複数位置に、交互にその周方向位置を変えて設置することができる。その際、バッフル板34の形状・寸法・数・配置方法は任意である。
【0046】
また、筒状体2の外表面に図9に示されるバッフル板34を設置する代わりに、外筒20の内表面の断面積を任意の位置において図10(A),(B)のように構成することもできる。
【0047】
図8において燃焼室24の内部で燃料を燃焼させる代わりに、図9に示されるように、空間に対して固定する燃焼器(図示せず)において発生した高温の燃焼ガスを、外筒20の一端から送入し、燃焼ガス分配部35を経て燃焼ガスを筒状体2と外筒20の内の環状空間26に流通させることもできる。その際回転する外筒20と燃焼ガス送入管36の間のシール方法は任意である。
【0048】
図8、図9、図10は筒状体2と外筒20が同時に軸線1のまわりに回転する場合の実施例を示しているが、燃焼ガスによる筒状体2の加熱方法は必ずしも上記のものに限定されず、空間に固定した外筒20の中で、筒状体2が軸線1のまわりに回転する構成のものであってもよい。
【0049】
【発明の効果】
以上のように本発明においては、回転する筒状体の中に内筒が設置されており、水分を含有する原料粉粒体は筒状体の一端の開口部から、筒状体と内筒の間の環状空間に送入され、開口部側領域にて筒状体の回転に伴うガイド板付仕切壁の作用によって原料粉粒体の循環流が形成されるので、開口部側領域の範囲が短くとも筒状体外部からの加熱によって粉粒体は十分に乾燥される。
【0050】
乾燥された原料粉粒体は、引き続き次の奥部側領域の前部に進み、筒状体の外部からの加熱により、炭化反応に好適な温度で炭化が進行し強度が高くなる。炭素質となった粉粒体は奥部側領域の後部に進み、進行しながら徐々に加熱を受け、水蒸気の送入を受けて賦活反応が進行し、高温の活性炭となる。上記乾燥から賦活まで一連の工程が連続して行なわれるので、装置の小型化及び熱効率の向上が図れる。
【0051】
高温活性炭は筒状体の回転に伴なって内筒に進入し、その向きを変えて内筒中を原料送入端の方向に移動するので装置の小型化が図れ、またその際内筒の壁面を通じ筒状体と内筒の間の環状空間にある低温の炭素質粉粒及び乾燥中の原料粉粒体に熱エネルギーを伝達して、内筒から排出される時には低温になっているので、熱効率の向上が図れる。
【0052】
さらには、発生する可燃ガス・蒸気は希釈されることなく、副製品として取り出すことができるので、活性炭製造プラントの建設費と人件費を大幅に低下させるだけではなく、エネルギーの有効使用及び環境浄化を促進することができる。
【図面の簡単な説明】
【図1】本発明の第一実施例装置の軸線を含む面での断面図である。
【図2】図1装置の軸線に直角な断面図である。
【図3】本発明の第二実施例装置の軸線を含む面での断面図である。
【図4】図1装置、図2装置の軸線に直角な断面図である。
【図5】本発明の第三実施例装置の軸線を含む面での断面図である。
【図6】本発明の第四実施例装置の軸線を含む面での断面図である。
【図7】本発明の第五実施例装置の軸線を含む面での断面図である。
【図8】本発明の第六実施例装置の軸線を含む面での断面図である。
【図9】本発明の第六実施例装置における他の構成を示す、軸線を含む面での断面図である。
【図10】本発明の第六実施例装置における他の構成を示す、軸線に直角な断面図である。
【符号の説明】
1 軸線
2 筒状体
5 内筒
9 仕切壁
10,10’ ガイド板
21,21’,21” 電気抵抗発熱体
[0001]
[Industrial applications]
The present invention provides a temperature, atmosphere, and residence time suitable for processing conditions while heating and granulating the powdery carbonaceous material to dry distill and carbonize the powdery carbonaceous material by contacting the powdery carbonaceous material with steam. Activated carbon suitable for long-term stable operation with high thermal efficiency without causing environmental pollution by achieving various processes of drying, carbonizing, activating, and cooling powders continuously and consistently in one unit with high efficiency. The present invention relates to a horizontal rotary activation device for production.
[0002]
[Prior art]
When manufacturing activated carbon from plant raw materials such as coconut shells and sawdust or raw materials such as lignite and coal, and activated carbon from molded pellets, it is necessary to go through four steps of drying, carbonization, activation and cooling. Do it in a separate device.
[0003]
The activation of the carbonaceous powder particles obtained by the carbonization step with water vapor has been conventionally performed in many cases by using any of a separately prepared multi-stage floor furnace, an internally heated rotary furnace and a fluidized bed furnace.
[0004]
The multi-stage furnace has a multi-stage hearth that forms a space in which the granules fall, and the heating gas is raised from below through the space, and the granules falling sequentially are heated in each hearth. It will be activated gradually.
[0005]
The internal heating type rotary furnace transfers powder particles from the upper end to the lower end in a cylindrical furnace that rotates around an axis that is slightly inclined with respect to the horizontal plane, while heating gas is applied to the powder particles from the lower end to the upper end. The powder is heated and activated by countercurrent.
[0006]
Further, the fluidized bed furnace heats the granular material by disposing the granular material on a mesh provided in the vertical cylindrical body, and allowing the heating gas supplied from below to flow through the granular material. Is activated.
[0007]
[Problems to be solved by the invention]
However, in the case of the above-mentioned conventional apparatus, there are the following problems in safely, continuously and economically obtaining the target activated carbon without polluting the environment.
[0008]
{Circle around (1)} In the multi-stage floor furnace, the internally heated rotary furnace, and the fluidized bed furnace in which the carbonaceous powder is activated by steam, the temperature, atmosphere, and residence time suitable for the processing conditions cannot be simultaneously satisfied. In particular, the multi-stage furnace and the internally heated rotary furnace do not have a means for maintaining the steam concentration in the furnace at an optimum value for the activation reaction, so that the activation requires a long time. Further, the fluidized bed furnace cannot be operated continuously to keep the residence time of the carbonaceous powder particles constant.
[0009]
(2) Despite the fact that a large amount of combustible gas is generated per unit mass of product due to the activation reaction, in the furnaces for activation of each of the above types, it is necessary to effectively use most of the energy possessed by the furnace. It cannot be released and is released into the atmosphere as combustion gas.
[0010]
{Circle around (3)} In the case of the above-mentioned conventional apparatus, the construction cost, operation cost, and labor cost of the apparatus are increased because four apparatuses, a drying apparatus, a carbonizing furnace, an activation furnace, and a cooling apparatus are required. In addition, since these furnaces are provided separately, there is an increased chance of leakage during handling of the particulate carbonaceous material between the furnaces, which significantly deteriorates the working environment.
[0011]
The present invention solves the above-mentioned problems of the conventional apparatus, and enables the continuous production of activated carbon, which requires four steps of drying, carbonization, activation and cooling, in a single apparatus consistently and continuously. It is an object of the present invention to provide a horizontal rotation activation device that enables a large amount of combustible gas generated per unit mass of a product to be used as a by-product in a dense state and that can continuously remove low-temperature products.
[0012]
[Means for Solving the Problems]
According to the present invention, the object is to provide a rotatable cylindrical body whose rotation axis is substantially horizontal, has an opening at one end in the axial direction, and has the other end closed. An inner cylinder having an axial line shared or parallel to the cylindrical body and open at both ends, and an opening side where an annular space between the cylindrical body and the inner cylinder is divided at an intermediate portion in the axial direction. and substantially parallel partition walls in the axial line divided into a plurality of axial space extending two regions of a region and the innermost side region in the axial direction, are arranged at intervals in the axial direction have a tilt angle with respect to the axis A plurality of guide plates attached to at least both sides of the partition wall in the opening side region so that the inclination angle of the guide plate is such that each surface of the partition wall faces upward when each surface of the partition wall faces upward. Guide plates in opposite directions, and each of a plurality of guide plates arranged in the axial direction Edges plurality of axial space between which is divided by at least partially form a gap above the partition wall between the inner surface of the tubular body, in the axial direction, the opening position, an intermediate portion position and the rear portion The axial space is communicated with each other at a position, and the axial space is provided with a blow hole for receiving supply of steam from the outside and injecting the steam toward the axial space in the back side region. Achieved.
[0013]
[Action]
The raw material in powder form generally contains moisture, and the raw material is supplied to an annular space between the cylindrical body and the inner cylinder from an inlet provided at an opening at one end of the cylindrical body. The cylindrical body rotates around a substantially horizontal axis, and due to the action of the partition wall and the guide plate installed in the opening side area in the annular space, the powder and granules are partitioned according to the rotation of the cylindrical body. A circulating flow is formed between the two ends of the wall, part of which enters the next deeper area.
[0014]
Since the rotating cylindrical body is heated, the raw material powder containing water is dried at a substantially constant temperature in the opening side region. For a raw material containing no water, the step in the opening side region can be omitted.
[0015]
The dried raw material particles sequentially proceed to the back side region in the annular space between the cylindrical body and the inner cylinder. In the rear region, the raw material particles are sequentially supplied to the opening-side region even if a means for positively transferring the particles is not provided. A part of the granules to be introduced enters the inner region, which pushes the granules in the inner region to the inner part to be transferred. At that time, since the rotating cylindrical body is heated, the raw material powder is heated at a substantially constant temperature, and a part or all of the carbonization reaction is released by releasing combustible gas in the front part of the back side area. To achieve.
[0016]
When the carbonized powder reaches the rear part of the back side area, steam is injected from the fuze holes provided in the area, and the temperature rises to the temperature necessary for the activation reaction in a state where the steam is contained, and the activation is performed. Is performed.
[0017]
The activated carbon at a high temperature after the activation reaction changes its direction from the back of the back side region, flows into the inner cylinder, and flows toward the raw material inlet opening through the inner cylinder as the cylindrical body rotates. And flows out of the device through the opening. At that time, since the low-temperature raw material particles exist in the annular space between the cylindrical body and the inner cylinder, the activated carbon as a product is cooled by the heat energy exchange through the inner cylinder with the low-temperature raw material. It is taken out in a state.
[0018]
The combustible gas generated by thermal decomposition of water vapor and raw materials generated in the cylindrical body, the combustible gas generated by activation of carbonaceous particles, and unreacted water vapor are located near the opening on the supply side of the raw material particles and the product. Although discharged from the apparatus from both or one of the outlet openings (one end of the inner cylinder), these are not mixed with the combustion gas, so that a large amount of combustible gas can be obtained as a by-product without being diluted.
[0019]
The cylindrical body rotating around a substantially horizontal axis can increase the volume filling ratio of the granular material with respect to the internal space volume to about 35 to 45%, and by the introduction of water vapor from the blowing holes. The time required for the activation reaction is greatly reduced, and the equipment is much smaller than in the prior art.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0021]
<First embodiment>
In FIG. 1, an axis 1 is substantially horizontal, and a cylindrical body 2 which is driven to rotate around the axis 1 is rotatably supported by a bearing (not shown). The cylindrical body 2 can rotate relative to the raw material side hood 3 and the product side hood 4 fixed in the space at the opening side of the cylindrical body 2 while maintaining airtightness. The method of sealing for hermetic rotation is optional. The raw material side hood 3 is provided with a raw material feed pipe 8 and an exhaust pipe 14, and the product side hood 4 is provided with a product discharge pipe 13 and an exhaust pipe 15, respectively.
[0022]
An inner cylinder 5 having substantially the same axis is provided integrally with the cylindrical body 2 inside the cylindrical body 2, and as a preferred embodiment, an inclined guide is provided inside the inner cylinder 5. A partition wall 7 having plates 6, 6 'is mounted. The partition wall 7 is disposed on a plane including the axis 1 or a parallel plane, and divides the internal space of the inner cylinder 5 into two spaces extending in the axial direction. The guide plates 6 and 6 ′ are provided on both sides of the partition wall 7, and when the respective surfaces of the partition wall 7 rotate downward from a position where the partition wall 7 faces upward, the powder and granules are separated from the guide plates 6 and 6 ′. 'And slide down to go to the left in Fig. 1. It should be noted that a known spiral plate may be used instead of the partition wall 7 having the guide plates 6 and 6 ′.
[0023]
The annular space between the inner cylinder 5 and the tubular body 2 is divided into an opening-side region and a back-side region at an intermediate portion in the axial direction, and a surface including the axis 1 in each region or It is divided into a plurality of axial spaces by partition walls 9, 11 arranged on parallel surfaces. In the case of the illustrated example, as shown in FIG. 2A, in the opening-side region, the partition wall 9 on one surface forms two axial spaces, and in the back-side region, FIG. As can be seen, it is divided into four axial spaces by a partition wall 11 on two sides forming a cross. The plurality of axial spaces separated by the partition walls 9 and 11 communicate with each other at an opening P, an intermediate portion Q, and a depth R of the tubular body 2.
[0024]
Guide plates 10 and 10 ′ that are inclined are provided on the partition wall 9 on both sides of the partition wall 9. These guide plates 10, 10 'are mounted in opposite directions to each other when each of the two surfaces of the partition wall 9 faces upward. 2A, the edges of the guide plates 10, 10 'are partially cut off linearly to have a clearance between the guide plate 10, 10' and the inner surface of the cylindrical body 2, so that the guide plates 10 and 10 ' Spaces formed between adjacent guide plates communicate with each other at the inner surface position of the tubular body 2. Therefore, granular material on one surface along the inner surface of the cylindrical body 2 while sliding the guide plate when said surface is rotated to face downward from above proceeds to the right in FIG. 1, to On the other hand, the granular material on the other surface advances to the left.
[0025]
The partition wall 11 that divides the inner space into four axial spaces has a large number of blowholes 12 formed in the inner wall (right portion) (see also FIG. 2C). In the case of the example shown in the figure, the fumaroles 12 are more densely distributed toward the inner part, and are supplied with water vapor from the outside and blow it out into the axial space.
[0026]
In the apparatus of this embodiment, the production of activated carbon is performed in the following manner.
[0027]
The carbonaceous raw material powder as a raw material for the production of activated carbon is fed from a raw material feed pipe 8 into an annular space (opening side region) between the cylindrical body and the inner cylinder, and then into the cylindrical body 2 and the inner cylinder 5. Rolls at the bottom of the annular space with the rotation of. As described above, in the opening-side region, the powder and granules travel in the opposite directions due to the action of the guide plates 10 and 10 ′ during rotation in the two axial spaces separated by the partition wall 9. A circulating flow is created in the two axial spaces via P and the intermediate section Q.
[0028]
The cylindrical body 5 is externally heated by means (not shown), and the raw material particles forming the circulating flow are heated to a substantially uniform temperature and sufficiently dried.
[0029]
In the axial direction, a circulating flow of the granular material formed in the area of the partition wall 9 is formed. Here, since the granular material is sequentially supplied from the raw material feed pipe 8, it is pushed by this. Thus, a part of the circulating flow enters the next deeper side area. The inner region is divided into four axial spaces by a partition wall 11 and does not particularly have a means for transferring the granular material. The granular material is pushed by the granular material from the opening side region, and the granular material further moves to the back.
[0030]
The granular material is also heated to a uniform temperature via the tubular body 2 in the deep region where the partition wall 11 exists. Then, along with the transition, the dry distillation and carbonization of the granular material proceed at the front of the region.
[0031]
When the carbonized powder reaches the rear part of the back side region, it receives the injection of water vapor from the fumarole 12 and comes into contact with sufficient water vapor, and is activated by heating here to generate activated carbon. At this time, since the temperature of the powder increases as it moves to the right in FIG. 1, the distribution density of the blast holes 12 is correspondingly increased so that the steam injection amount increases toward the right in response to this. .
[0032]
At a predetermined temperature, activated carbon activated at a predetermined temperature and in a steam atmosphere flows from the bottom of the cylindrical body 1 to a predetermined height, and flows into the right end of the inner cylinder 5 from near one end of the partition wall 11 in FIG. With the rotation of the tubular body 2, it moves in the inner cylinder 5 to the left, that is, in the direction of the product side hood 4 at a substantially constant speed by the action of the guide plates 6 and 6 ′, and discharges the product side hood 4. It is discharged out of the device via the pipe 13. At this time, the high-temperature activated carbon moving in the inner cylinder 5 exchanges thermal energy via the inner cylinder 5 with the low-temperature raw material powder rolling in the annular space between the cylindrical body 2 and the inner cylinder 5. Then, the temperature is lowered to reach the product discharge pipe 13.
[0033]
The pyrolysis gas, combustible gas by activation and unreacted steam are taken out from the exhaust pipes 14 and 15, and one or both of them can be used at the same time depending on the conditions required for the pyrolysis and activation.
[0034]
<Second embodiment>
FIG. 3 shows a second embodiment of the apparatus according to the present invention, which is suitable for activating a raw material powder containing more moisture than the target raw material. In FIG. 3, reference numeral 16 denotes a range of the steam blowing holes 12 provided on the partition wall 11 in the same manner as in the previous embodiment.
[0035]
The present embodiment is characterized in that the partition wall in the opening side region of the previous embodiment is opened at an intermediate portion in the axial direction, and a circulating flow is generated at a front portion and a rear portion of the region. There is. In the example specifically shown in FIG. 3, another partition wall 17 and guide plates 18 and 18 'having the same structure as the opening side area are additionally provided at the front stage of the apparatus of the previous embodiment.
[0036]
In this embodiment, the raw material granules containing a large amount of water fall into the annular space between the cylindrical body 2 and the inner cylinder 5 after being fed and roll at the bottom thereof, and The circulation flow is formed between both ends of the partition wall 17 by the action of the additional partition wall 17 and the guide plates 18 and 18 ′ provided thereon. The raw material particles circulating between the two sides of the partition wall 17 evaporate moisture by heating from the outside of the cylindrical body 2, and enter a region of the partition wall 9 with a small amount of moisture.
[0037]
The behavior of the raw material particles that have advanced to the region of the partition wall 9 in the annular space between the cylindrical body 2 and the inner cylinder 5 is the same as in the first embodiment.
[0038]
In the first and second embodiments, the section taken along the line YY 'in FIGS. 1 and 3 is not limited to the one shown in FIG. 2B, but may be a partition wall in an annular space between the cylindrical body and the inner cylinder. May be two or three as shown in FIGS. 4 (A) and 4 (B), and may be shown in FIGS. 4 (C) and 4 (D) in all or a part of the axial range of the partition wall. May be provided with such guide plates 19, 19 '. At that time, the angle of the partition wall 7 installed in the inner cylinder is not necessarily limited to the angle shown in FIG. 1, and may be any angle such as, for example, 45 degrees, and includes a known spiral plate. There may be. Further, guide plates 19, 19 ', 19 ", 19"' may be provided in the annular space between the cylindrical body 2 and the inner cylinder as shown in FIGS.
[0039]
<Third embodiment>
FIG. 5 shows a third embodiment in which guide plates 19 and 19 ′ are installed on a partition wall 11 in a range of the rightmost end of a deep side region in an annular space between the cylindrical body 2 and the inner cylinder 5 (FIG. 4). This is an example in the case of the structure shown in C). According to the present embodiment, the rightward transfer of the granular material in the inner region is promoted.
[0040]
<Fourth embodiment>
FIG. 6 shows a fourth embodiment in which guide plates 19, 19 ′, 19 ″, 19 ′ ″ are provided on a partition wall 11 in the rightmost end region of the back side region in the annular space between the cylindrical body 2 and the inner cylinder 5. This is an example in the case of the structure shown in FIG.
[0041]
<Fifth embodiment>
In this embodiment, as shown in FIG. 7, the cylindrical body 2 is covered with an outer cylinder 20 made of a heat-resistant and heat-insulating material, and electric resistance heating elements 21, 21 ′, 21 ″ are provided on the inner surface of the outer cylinder 20 as a heating device. Thus, the cylindrical body 2 of each of the above-described embodiments is heated by the electric resistance heating elements 21, 21 ', 21 ". At that time, the type, shape, arrangement and number of the electric resistance heating elements are arbitrary. The outer cylinder 20 may be fixed in a space with respect to the cylindrical body 2 rotating around the substantially horizontal axis 1, or may rotate together with the cylindrical body 2.
[0042]
<Sixth embodiment>
FIG. 8 shows that the cylindrical body 2 is heated by flowing a high-temperature combustion gas through the annular space between the cylindrical body 2 and the outer cylinder 20 without using the electric resistance heating element as in the fifth embodiment. This is a sixth embodiment showing the case. In FIG. 8, reference numeral 22 denotes a fuel inlet pipe, which feeds air at normal temperature or preheated from the inlet pipe 22 to burn fuel inside the combustion chamber 24. Here, reference numeral 25 denotes a refractory material wall for protecting one end surface of the cylindrical body 2, but may be omitted if unnecessary. The high-temperature combustion gas generated inside the combustion chamber 24 is provided with a material feed pipe 8 of the cylindrical body 2 through a flow path 26 formed in an annular space between the cylindrical body 2 and the outer cylinder 20. The tubular body 2 is heated while flowing toward the end portion, and is discharged outside the apparatus through one or more combustion gas discharge ports 27 provided near the end portion of the outer tube 20. At that time, the combustion gas can be discharged using the combustion gas discharge hood 28. One or more air inlets 29 may be provided at an intermediate position of the outer cylinder 20, and air may be sent in through the conduit 30 and the valve 31 to adjust the temperature. At this time, the shape, size, number and arrangement of the air inlets 29 are arbitrary, and the type and operation method of the valve 31 are also arbitrary.
[0043]
FIG. 8 shows an example in which the cylindrical body 2 and the outer cylinder 20 are integrally rotated around an axis. The cylindrical body 2 has a flow path for combustion gas, and is provided at an appropriate position in the axial direction. Since the cylindrical body 2 is supported by the outer cylinder 20 by the portion 32, even if the strength of the cylindrical body 2 is reduced at a high temperature, a large stress based on the deformation does not act on the cylindrical body 2; There is no fear that 2 will break. Even when operating at a high temperature close to the softening point of the cylindrical body 2 at high temperatures, the cross section of the cylindrical body is kept substantially circular because it rotates around the horizontal axis and can be supported all around.
[0044]
The support portion shown in FIG. 8 is an example in which the same material as the heat-resistant and heat-insulating material constituting the outer cylinder 20 is used. The shape, size, and material are arbitrary, and for example, as shown in FIG. The support 33 may be made of a heat-resistant metal, and its shape, dimensions, number, and arrangement method are arbitrary.
[0045]
In order to facilitate the transfer of thermal energy from the combustion gas flowing through the annular space between the tubular body 2 and the outer barrel 20 to the tubular body 2, the outer surface of the tubular body 2 extends over a substantially half circumference as shown in FIG. The baffle plate 34 can be installed at a plurality of positions in the axial direction while alternately changing its circumferential position. At this time, the shape, size, number, and arrangement method of the baffle plates 34 are arbitrary.
[0046]
Also, instead of installing the baffle plate 34 shown in FIG. 9 on the outer surface of the cylindrical body 2, the cross-sectional area of the inner surface of the outer cylinder 20 is changed at an arbitrary position as shown in FIGS. It can also be configured.
[0047]
Instead of burning the fuel inside the combustion chamber 24 in FIG. 8, high-temperature combustion gas generated in a combustor (not shown) fixed to the space is supplied to the outer cylinder 20 as shown in FIG. 9. Combustion gas can be sent from one end and passed through the combustion gas distribution section 35 to flow through the cylindrical body 2 and the annular space 26 in the outer cylinder 20. At this time, the sealing method between the rotating outer cylinder 20 and the combustion gas inlet pipe 36 is arbitrary.
[0048]
FIGS. 8, 9 and 10 show an embodiment in which the cylindrical body 2 and the outer cylinder 20 are simultaneously rotated around the axis 1. However, the method of heating the cylindrical body 2 by the combustion gas is not necessarily described above. The configuration is not limited thereto, and a configuration in which the cylindrical body 2 rotates around the axis 1 in the outer cylinder 20 fixed to the space may be used.
[0049]
【The invention's effect】
As described above, in the present invention, the inner cylinder is provided in the rotating cylindrical body, and the raw material powder containing water is supplied from the opening at one end of the cylindrical body to the cylindrical body and the inner cylinder. The circular flow of the raw material particles is formed by the action of the partition wall with the guide plate accompanying the rotation of the tubular body in the opening side region, so that the range of the opening side region is At least, the powder is sufficiently dried by heating from the outside of the cylindrical body.
[0050]
The dried raw material particles continue to advance to the front part of the next inner region, and carbonization proceeds at a temperature suitable for the carbonization reaction by heating from the outside of the cylindrical body, thereby increasing the strength. The carbonized granular material proceeds to the rear part of the back side region, is gradually heated while proceeding, receives the supply of steam, and the activation reaction proceeds, and becomes high-temperature activated carbon. Since a series of steps from the drying to the activation are continuously performed, the size of the apparatus can be reduced and the thermal efficiency can be improved.
[0051]
The high-temperature activated carbon enters the inner cylinder with the rotation of the cylindrical body, changes its direction and moves in the inner cylinder in the direction of the raw material feeding end, so that the size of the apparatus can be reduced, and at that time, the wall surface of the inner cylinder The heat energy is transferred to the low-temperature carbonaceous powder and the raw material powder during drying in the annular space between the cylindrical body and the inner cylinder through, and the temperature is low when discharged from the inner cylinder, Thermal efficiency can be improved.
[0052]
Furthermore, the combustible gas and steam generated can be taken out as a by-product without being diluted, which not only significantly reduces the construction and labor costs of an activated carbon production plant, but also effectively uses energy and purifies the environment. Can be promoted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an apparatus according to a first embodiment of the present invention in a plane including an axis.
FIG. 2 is a sectional view perpendicular to the axis of the apparatus of FIG. 1;
FIG. 3 is a cross-sectional view of a device including a second embodiment of the present invention in a plane including an axis.
FIG. 4 is a cross-sectional view perpendicular to the axis of the apparatus of FIGS. 1 and 2;
FIG. 5 is a cross-sectional view of a device including a third embodiment of the present invention in a plane including an axis.
FIG. 6 is a cross-sectional view of a device including a fourth embodiment of the present invention in a plane including an axis.
FIG. 7 is a sectional view of a device including a fifth embodiment of the present invention in a plane including an axis.
FIG. 8 is a sectional view of a device including a sixth embodiment of the present invention in a plane including an axis.
FIG. 9 is a cross-sectional view taken along a plane including an axis, showing another configuration of the device according to the sixth embodiment of the present invention.
FIG. 10 is a cross-sectional view perpendicular to an axis, showing another configuration of the device according to the sixth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Axis 2 Cylindrical body 5 Inner cylinder 9 Partition wall 10, 10 'Guide plate 21, 21', 21 "Electric resistance heating element

Claims (6)

回転軸線がほぼ水平で該軸線方向の一端に開口部を有し他端が閉鎖された回転自在な筒状体と、該筒状体の内部に配され実質的に軸線を該筒状体と共有もしくは平行に有し両端が開口された内筒と、上記筒状体と上記内筒の間の環状空間が軸線方向の中間部で区分される開口部側領域及び奥部側領域の二つの領域を軸線方向に延びる複数の軸線方向空間に区分する上記軸線にほぼ平行な仕切壁と、軸線に対して傾斜角を有し軸線方向に間隔をもって配設されるように少なくとも開口部側領域の仕切壁の両面に取り付けられた複数のガイド板を有し、該ガイド板の上記傾斜角は仕切壁の各面が上方に向いたとき仕切壁のそれぞれの面でのガイド板同士で逆方向をなし、軸方向に配設された複数のガイド板のそれぞれの縁部は筒状体の内面との間で少なくとも部分的に隙間を形成し上記仕切壁により区分された複数の軸線方向空間同士軸方向にて開口部位置、中間部位置及び奥部位置にて互に連通されており、該軸線方向空間は上記奥部側領域に外部から水蒸気の供給を受け該水蒸気を軸線方向空間内に向け噴射するための噴気孔が形成されていることとする横型回転賦活装置。A rotatable cylindrical body whose rotation axis is substantially horizontal and has an opening at one end in the axial direction and the other end of which is closed, and which is disposed inside the cylindrical body and substantially has the axis defined by the cylindrical body. An inner cylinder that is shared or parallel and has both ends opened, and an annular space between the cylindrical body and the inner cylinder, an opening-side area and an inner-side area that are separated at an intermediate portion in the axial direction. and substantially parallel partition walls in the axial line divided into a plurality of axial space extending regions axially, at least the opening side region so as to be arranged at intervals in the axial direction have a tilt angle with respect to the axis It has a plurality of guide plates attached to both sides of the partition wall, and the inclination angle of the guide plates is such that when the respective surfaces of the partition wall face upward, the guide plates on the respective surfaces of the partition wall face in opposite directions. None, each edge of a plurality of guide plates arranged in the axial direction is between the inner surface of the cylindrical body At least partially forming a gap plurality of axial space between which is partitioned by the partition wall, in the axial direction, the opening position, are mutually communicated at an intermediate portion position and the rear portion position, said axis A horizontal rotation activation device in which the directional space is provided with a blowing hole for receiving a supply of steam from the outside in the back side region and injecting the steam toward the axial space. 筒状体が加熱装置を備えていることとする請求項1に記載の横型回転賦活装置。The horizontal rotation activation device according to claim 1, wherein the tubular body is provided with a heating device. 加熱装置が外部より給電を受ける電気抵抗発熱体であることとする請求項に記載の横型回転賦活装置。The horizontal rotation activation device according to claim 2 , wherein the heating device is an electric resistance heating element that receives power supply from outside. 筒状体が外部からの燃焼ガスにより加熱されるようになっていることとする請求項1に記載の横型回転賦活装置。The horizontal rotation activation device according to claim 1, wherein the cylindrical body is heated by a combustion gas from the outside. 筒状体は外筒内に収められ、筒状体と外筒の間の空間が奥部側領域から開口部側領域に向けて高温ガスを流通せしめる加熱空間を形成していることとする請求項に記載の横型回転賦活装置。The cylindrical body is housed in the outer cylinder, and the space between the cylindrical body and the outer cylinder forms a heating space through which high-temperature gas flows from the back side region toward the opening side region. Item 5. The horizontal rotation activation device according to Item 4 . 筒状体と外筒との間の空間に外部から降温用の空気を送入する空気送入口を外筒に設けたこととする請求項に記載の横型回転賦活装置。6. The horizontal rotation activation device according to claim 5 , wherein an air inlet for supplying air for cooling from outside to the space between the cylindrical body and the outer cylinder is provided in the outer cylinder.
JP31107993A 1993-11-18 1993-11-18 Horizontal rotation activation device Expired - Fee Related JP3558358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31107993A JP3558358B2 (en) 1993-11-18 1993-11-18 Horizontal rotation activation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31107993A JP3558358B2 (en) 1993-11-18 1993-11-18 Horizontal rotation activation device

Publications (2)

Publication Number Publication Date
JPH07144909A JPH07144909A (en) 1995-06-06
JP3558358B2 true JP3558358B2 (en) 2004-08-25

Family

ID=18012871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31107993A Expired - Fee Related JP3558358B2 (en) 1993-11-18 1993-11-18 Horizontal rotation activation device

Country Status (1)

Country Link
JP (1) JP3558358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072615A (en) * 2011-09-29 2013-04-22 Chisaki:Kk Raw material heating device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560198B2 (en) * 2000-10-23 2010-10-13 株式会社チサキ Adhesive substance heat treatment apparatus and method
JP4803973B2 (en) * 2004-06-14 2011-10-26 株式会社エスケーテック Continuous carbonization method and apparatus
JP2006316143A (en) * 2005-05-11 2006-11-24 Chisaki:Kk Apparatus for gasifying granule
CN117387362B (en) * 2023-12-11 2024-02-23 江苏瑞材装备有限公司 Lithium electric material calcining equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072615A (en) * 2011-09-29 2013-04-22 Chisaki:Kk Raw material heating device

Also Published As

Publication number Publication date
JPH07144909A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US8444828B2 (en) Pyrolyzer furnace apparatus and method for operation thereof
CN103923676B (en) HY type dry distillation furnace
JP2006206856A (en) Manufacturing method of carbide and carbide manufacturing unit
JPS5816934B2 (en) Activated carbon regeneration equipment
JP3558358B2 (en) Horizontal rotation activation device
JP4529230B2 (en) Rotary kiln
RU2545199C1 (en) Gasifier of solid domestic waste and solid fuel
JPH11263979A (en) Lamination type apparatus for heat treatment
CN201462857U (en) Mould sludge incinerator
JP4552999B2 (en) Raw material distributor for a split rotary kiln
CN105953575A (en) Self-detection indirect heating type rotary furnace
CN206280975U (en) Heat accumulating type spiral pyrolysis installation
KR101408686B1 (en) A carbonizing apparatus of combustible waste
JPS61149780A (en) Rotary baking furnace
CN207608525U (en) A kind of revolving bed pyrolysis oven
CN105154107A (en) Rotary biomass powder carbonization furnace
CN113636553B (en) External heat rotary high-quality active carbon efficient energy-saving environment-friendly production device
JP4367806B2 (en) Activated carbon regenerator
KR100490051B1 (en) Drying apparatus for organic waste
KR200335340Y1 (en) Drying apparatus for organic waste
JP7125532B1 (en) rotary kiln
CN113446857B (en) Pyrolysis melting kiln for manufacturing vitrified ceramsite by biomass heat source
CN216203372U (en) Multi-mode operation&#39;s vertical multistage retort
WO2023063312A1 (en) Continuous carbonization device
JP7267846B2 (en) Sludge combustion furnace and sludge combustion method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees