JP3418083B2 - Apparatus and method for multipolar magnetizing permanent magnet - Google Patents

Apparatus and method for multipolar magnetizing permanent magnet

Info

Publication number
JP3418083B2
JP3418083B2 JP7312697A JP7312697A JP3418083B2 JP 3418083 B2 JP3418083 B2 JP 3418083B2 JP 7312697 A JP7312697 A JP 7312697A JP 7312697 A JP7312697 A JP 7312697A JP 3418083 B2 JP3418083 B2 JP 3418083B2
Authority
JP
Japan
Prior art keywords
magnetizing
permanent magnet
magnetized
shaped
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7312697A
Other languages
Japanese (ja)
Other versions
JPH10270247A (en
Inventor
浩二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7312697A priority Critical patent/JP3418083B2/en
Publication of JPH10270247A publication Critical patent/JPH10270247A/en
Application granted granted Critical
Publication of JP3418083B2 publication Critical patent/JP3418083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モータやアクチュ
エータに用いられる平板状あるいはリング状の永久磁石
を、片面あたり2極以上の極数に磁化する永久磁石の多
極着磁装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-pole magnetizing device for permanent magnets for magnetizing flat permanent magnets or ring permanent magnets used in motors and actuators with two or more poles per surface. .

【0002】[0002]

【従来の技術】モータやアクチュエータには、図4や図
5に示されるような平板状あるいはリング状の永久磁石
を、片面あたり2極以上の極数に磁化した永久磁石が用
いられることが多く、図4は扁平タイプのDCブラシレ
スモータに用いられる端面8極着磁の永久磁石14の例
で、図5はハードディスクドライブ用ボイスコイルモー
タ(以下VCMとする)に用いられる端面2極着磁の永
久磁石24の例である。この永久磁石の材質には、一般に
フェライト磁石や希土類磁石がもちいられている。永久
磁石を片面あたり2極以上の極数に磁化する装置として
は、図6および図7に示すような着磁装置を使用してい
る。図6(a)はDCブラシレスモータに用いられる端
面8極着磁の永久磁石の着磁装置の構成を示した分解図
で、図7はVCMに用いられる端面2極着磁の永久磁石
の着磁装置の構成図である。使用例を図6(a)で説明
する。電磁軟鉄で作られた着磁ヘッド11端面に目的の極
数ができるようにコイル(銅線)12を巻きつけ(図は端
面8極)、この着磁ヨーク19に永久磁石14をのせ、その
上に着磁ヨーク19からの磁界16が回路を組むように電磁
軟鉄製のヨーク13ではさむ。銅線を大電流パルス電源18
の端子に接続し数千アンペア以上の大電流15が着磁コイ
ル12に流れ着磁ヘッド11で強磁場が発生し、永久磁石14
が着磁される。大電流パルス電源は、図6(b)に示す
ように、まずスイッチswを充電側p1 にして交流を昇
圧し平滑する高電圧直流源Pから抵抗Rを介してコンデ
ンサCに充電する。次にスイッチswを放電側p2 に切
り替え、サイリスタSのゲートを開いて導通状態にする
と、コンデンサCに蓄えられた電荷は瞬間的なパルス電
流iとなって着磁コイル12に流れる。この方法を一般に
パルス着磁と呼んでいる。
2. Description of the Related Art For motors and actuators, a flat plate-shaped or ring-shaped permanent magnet as shown in FIGS. 4 and 5 is often used with permanent magnets magnetized to have two or more poles on one side. FIG. 4 shows an example of an end face 8 pole magnetized permanent magnet 14 used in a flat type DC brushless motor, and FIG. 5 shows an end face 2 pole magnetized used in a voice coil motor for hard disk drive (hereinafter referred to as VCM). This is an example of the permanent magnet 24. Ferrite magnets and rare earth magnets are generally used as the material of the permanent magnets. A magnetizing device as shown in FIGS. 6 and 7 is used as a device for magnetizing the permanent magnet to have two or more poles per surface. FIG. 6 (a) is an exploded view showing the structure of a magnetizing device for an end face 8-pole magnetized permanent magnet used in a DC brushless motor, and FIG. 7 is a diagram showing an end face 2-pole magnetized permanent magnet used for a VCM. It is a block diagram of a magnetic device. An example of use will be described with reference to FIG. A coil (copper wire) 12 is wound around the end face of a magnetizing head 11 made of electromagnetic soft iron so that the desired number of poles can be obtained (the end face has 8 poles), and a permanent magnet 14 is placed on this magnetizing yoke 19 The electromagnetic soft iron yoke 13 sandwiches the magnetic field 16 from the magnetizing yoke 19 so as to form a circuit. Copper wire high current pulse power supply 18
, A large current 15 of several thousand amperes or more flows into the magnetizing coil 12, a strong magnetic field is generated in the magnetizing head 11, and the permanent magnet 14
Is magnetized. As shown in FIG. 6B, the high-current pulse power source charges the capacitor C via the resistor R from the high-voltage DC source P that boosts and smoothes the alternating current by setting the switch sw to the charging side p 1 . Next, when the switch sw is switched to the discharge side p 2 and the gate of the thyristor S is opened to make it conductive, the electric charge accumulated in the capacitor C becomes an instantaneous pulse current i and flows into the magnetizing coil 12. This method is generally called pulse magnetization.

【0003】[0003]

【発明が解決しようとする課題】また、図7の様に、永
久磁石24の厚みが厚い場合や、ヨーク23に接着されてい
て着磁磁場が出にくい場合には、永久磁石24の両側から
着磁ヨーク29で挟みこんで、着磁磁場を効率的に流す方
法がある。図7の着磁ヨーク29はVCM用の例であり、
着磁ヘッド21に端面に2極の磁場が発生するように着磁
コイル22が巻かれており、ヨーク23に接着された永久磁
石24を挟み込むように配置されたものである。そこで、
着磁コイル29にパルス電源より大電流25を流すと、着磁
ヨーク29が永久磁石部分に作る磁界26は、図8(a)の
様に着磁コイル22から離れた部分では磁化方向に平行に
なっているが、着磁コイル22近くではコイルに巻き付く
ように流れ、磁化方向に垂直方向となって着磁に有効な
磁化方向に平行な成分はほとんど無くなる。したがっ
て、この着磁ヨーク29で着磁された永久磁石24の着磁状
態は、図8(b)のように着磁コイル22の付近では未着
磁状態である。この未着磁部分の幅はコイル幅と着磁ヘ
ッドの間隔及び磁石の材質で変化するが、一般に希土類
磁石では、 未着磁部分の幅=着磁コイル幅+着磁ヘッド間隔/2 が目安である。この様に未着磁部分があると磁気回路の
磁束が減って、製品の性能を落としてしまうという問題
がある。
Further, as shown in FIG. 7, when the thickness of the permanent magnet 24 is large or when the permanent magnet 24 is adhered to the yoke 23 and the magnetizing magnetic field is hard to be generated, the permanent magnet 24 is applied from both sides. There is a method of efficiently inserting a magnetizing magnetic field by sandwiching the magnetizing yoke 29. The magnetizing yoke 29 of FIG. 7 is an example for VCM,
A magnetizing coil 22 is wound around the magnetizing head 21 so as to generate a two-pole magnetic field on the end face, and is arranged so as to sandwich a permanent magnet 24 adhered to a yoke 23. Therefore,
When a large current 25 is applied to the magnetizing coil 29 from the pulse power source, the magnetic field 26 created by the magnetizing yoke 29 in the permanent magnet portion is parallel to the magnetization direction in the portion away from the magnetizing coil 22 as shown in FIG. However, in the vicinity of the magnetizing coil 22, there is almost no component that flows so as to wind around the coil, becomes perpendicular to the magnetizing direction, and is parallel to the magnetizing direction effective for magnetizing. Therefore, the magnetized state of the permanent magnet 24 magnetized by the magnetizing yoke 29 is not magnetized near the magnetizing coil 22 as shown in FIG. 8B. The width of this non-magnetized portion varies depending on the coil width, the gap between the magnetized heads and the material of the magnet. Generally, for rare earth magnets, the width of the non-magnetized portion = magnetized coil width + magnetized head gap / 2 Is. If there is such a non-magnetized portion, there is a problem that the magnetic flux of the magnetic circuit decreases and the performance of the product deteriorates.

【0004】[0004]

【課題を解決するための手段】本発明は、平板状あるい
はリング状の永久磁石を片面あたり2極以上の極数に磁
化する着磁装置において、着磁ヘッドを永久磁石に接す
る様に設け、着磁装置は1度の通電後永久磁石を着磁磁
場方向の垂直方向に未着磁部分の幅だけスライドさせて
もう一度通電するためのスライド機構を有することを特
徴とする永久磁石の多極着磁装置である。着磁ヘッ
は、永久磁石をはさんで対向して対として設けられる着
磁装置であり得る。 また、本発明の永久磁石の多極着磁
方法は、平板状あるいはリング状の永久磁石を、片面あ
たり2極以上の極数に磁化する着磁方法であって、着磁
ヘッドを永久磁石に接する様に設けて1度通電して初回
着磁後、永久磁石を着磁磁場方向の垂直方向に初回着磁
における未着磁部分の幅分だけスライドさせてもう一度
通電して仕上げ着磁することを特徴とする。着磁ヘッド
は、ヨークに接着された前記永久磁石をはさんで対向し
て対として設けられるものであり得る。かかる本発明の
着磁装置および着磁方法により1回目の着磁によってで
きた永久磁石の極の変わり目の未着磁部分が、永久磁石
を着磁磁場方向の垂直方向にスライドさせてもう一度通
電することによって着磁され、永久磁石を全面にわたっ
て強く着磁することができる。
SUMMARY OF THE INVENTION The present invention is a magnetizing device for magnetizing a flat plate-shaped or ring-shaped permanent magnet with two or more poles per surface, and a magnetizing head is provided so as to be in contact with the permanent magnet. multipolar permanent magnet magnetizing apparatus characterized by having a sliding mechanism for energizing again slide by the width of the non-arrival magnet portion minute permanent magnets after energization of one degree in the direction perpendicular to the magnetizing magnetic field direction Chaku磁装is the location. Magnetized heads
May be wearing <br/> magnetic device eclipsed set in pairs to face across the permanent magnet. Further, the permanent magnet of the present invention is magnetized in multiple poles.
The method is to use a plate-shaped or ring-shaped permanent magnet on one side.
Or a magnetizing method of magnetizing to two or more poles.
The head is installed so as to be in contact with the permanent magnet and energized once for the first time.
After magnetization, the permanent magnet is first magnetized in the direction perpendicular to the magnetizing magnetic field direction.
Slide by the width of the unmagnetized part in
It is characterized in that it is energized for finish magnetization. Magnetizing head
Face each other by sandwiching the permanent magnet bonded to the yoke.
Can be provided as a pair. Arrive magnet portion fraction of turn of wearing磁装location and permanent magnets made by more first magnetized in magnetizing method poles of such invention, again by sliding the permanent magnet in the direction perpendicular to the magnetizing magnetic field direction It is magnetized by energizing, and the permanent magnet can be strongly magnetized over the entire surface.

【0005】[0005]

【発明の実施の形態】以下、図面によって本発明を詳細
に説明する。本発明の多極着磁装置の一例として、VC
M用の端面2極着磁ヨークについて説明する。図1は本
発明のVCM用の多極着磁装置の構成図で、着磁ヨーク
9には着磁ヘッド1に端面に2極の磁場が発生するよう
に着磁コイル2が巻かれており、ヨーク3に接着された
永久磁石4を挟み込むように対向して配置されたもの
に、永久磁石4及び永久磁石が接着したヨーク3を着磁
方向の垂直方向にスライドさせるためのシャフト71を有
するスライド機構7が設けられている。本発明の装置で
は、先ず図1(a)に示す様に、第1工程で着磁コイル
2に大電流パルス電源(図示せず)より大電流5を1回
通電した後、図1(b)に示す様に、第2工程でシャフ
ト71により永久磁石4を着磁方向の垂直方向にスライド
した後にもう一回通電する着磁ステップをとる。本発明
による第1、2工程の各着磁ステップでの永久磁石4の
着磁状態を図2に示す。第1工程の1回目の着磁状態は
着磁コイル2近くの、永久磁石4の極性の変わり目では
未着磁部分が存在する(図2(a))。次に第2工程
で、この永久磁石4をスライド機構7により未着磁部分
の幅だけスライドさせる(図2(b))。スライド後の
2回目の着磁によって未着磁部分が着磁される(図2
(c))。この未着磁部分の幅はコイル幅と着磁ヘッド
の間隔及び磁石の材質で変化するが、一般に希土類磁石
では、 未着磁部分の幅=着磁コイル幅+着磁ヘッド間隔/2 である。本発明の装置で着磁する際には、永久磁石4の
極性の変わり目が着磁コイル幅の中心にこないので、永
久磁石4のセット位置をあらかじめ1回目の着磁ででき
る未着磁部分幅の半分だけスライドさせる方向の逆方向
にずらしておくとよい。スライド機構は永久磁石を着磁
方向の垂直方向にスライドさせることができるものであ
ればよく、例えば図1のようにシャフト71等が例示させ
る。本発明の着磁装置は、アルニコ磁石、フェライト磁
石、希土類磁石などの磁石の着磁についても有効である
が、特に大きな着磁磁場を必要とする希土類磁石につい
ては効率が高い。以上VCM用永久磁石の多極着磁装置
の場合について説明したが、DCブラシレスモータ用の
端面8極着磁の永久磁石の多極着磁装置の場合も同様に
行うことができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. As an example of the multi-pole magnetizing device of the present invention, a VC
The end face two-pole magnetizing yoke for M will be described. FIG. 1 is a block diagram of a multi-pole magnetizing device for a VCM according to the present invention, in which a magnetizing head 9 is wound with a magnetizing coil 2 so that a magnetic field of two poles is generated at an end face thereof. And a shaft 71 for sliding the permanent magnet 4 and the yoke 3 to which the permanent magnet is adhered in a direction perpendicular to the magnetizing direction, which is disposed so as to face each other so as to sandwich the permanent magnet 4 adhered to the yoke 3. A slide mechanism 7 is provided. In the apparatus of the present invention, as shown in FIG. 1 (a), first, in the first step, a large current 5 is applied to the magnetizing coil 2 from a large current pulse power source (not shown) once, In the second step, the permanent magnet 4 is slid in the direction perpendicular to the magnetizing direction by the shaft 71, and then a magnetizing step of energizing the permanent magnet 4 is performed again. FIG. 2 shows the magnetized state of the permanent magnet 4 in each magnetizing step of the first and second steps according to the present invention. In the first magnetized state of the first step, there is an unmagnetized portion near the magnetized coil 2 and at the change of the polarity of the permanent magnet 4 (FIG. 2A). Next, in the second step, the permanent magnet 4 is slid by the sliding mechanism 7 by the width of the unmagnetized portion (FIG. 2B). The non-magnetized portion is magnetized by the second magnetization after sliding (Fig. 2
(C)). The width of the non-magnetized portion varies depending on the coil width, the gap between the magnetized heads and the material of the magnet. Generally, in a rare earth magnet, the width of the non-magnetized portion is equal to the magnetized coil width + the magnetized head gap / 2. . When magnetized by the device of the present invention, since the polarity change of the permanent magnet 4 does not come to the center of the magnetizing coil width, the set position of the permanent magnet 4 can be set in advance by the first magnetizing. It is recommended to shift it in the direction opposite to the direction in which it is slid by half. The slide mechanism may be any mechanism that can slide the permanent magnet in the direction perpendicular to the magnetizing direction, and is exemplified by the shaft 71 and the like as shown in FIG. The magnetizing device of the present invention is effective for magnetizing magnets such as alnico magnets, ferrite magnets, and rare earth magnets, but is highly efficient for rare earth magnets that require a particularly large magnetizing magnetic field. The case of the VCM permanent magnet multipole magnetizer has been described above, but the same can be applied to the case of a DC brushless motor end face 8-pole magnetizer permanent magnet multipole magnetizer.

【0006】[0006]

【実施例】 実施例、比較例 実施例として本発明の図1の着磁装置により着磁した永
久磁石と、比較例として従来の図7の着磁装置により着
磁した永久磁石とを、図5のVCMに組み込んで、駆動
トルクの関係を比較した。なお、着磁ヨークに流した電
流は10kA、永久磁石は寸法が40mm×20mm×4mm のNd-F
e-B焼結磁石で最大エネルギー積が42MGOe、VCMは3.
5 インチ用で、コイル幅を2mm、着磁ヘッド間隔を8mm
とし、実施例ではスライド距離を3mmとして未着磁部分
の着磁を行った。図3にその結果をしめす。図3は駆動
コイル位置とトルク定数(駆動トルクを駆動コイルに流
した電流値で割ったもの)の関係を求めた図である。ハ
ードディスクで行なわれている高速高精度位置決め制御
には、トルク定数が駆動コイル位置によらず一定(トル
クのリニアリティ誤差が小さい)でかつ大きいことが要
求される。実施例と比較例による着磁永久磁石の結果を
比べると、実施例のものの方が広い範囲でトルクが大き
くなっているが、これは未着磁部分がなくなったことに
よるものである。図3より、下式(1)によってVCM
の駆動コイルの駆動範囲が±12°の範囲でのトルクのリ
ニアリティ誤差を求めると、比較例では6.0 %、実施例
では4.3%となり、実施例では1.7 %改善された。なお
トルクのリニアリティ誤差は、駆動範囲内でのトルクの
最大と最小の差(Δk)をピークトルク(kpeak)で割
ったもので下式(1)によりもとめた。 トルクのリニアリティ誤差(%)=(Δk/kpeak)×100…(1)
EXAMPLES Examples and Comparative Examples As examples, a permanent magnet magnetized by the magnetizing device of FIG. 1 of the present invention and a permanent magnet magnetized by the conventional magnetizing device of FIG. 7 are shown as comparative examples. It was incorporated into the VCM of No. 5, and the relationship of the driving torque was compared. The current flowing through the magnetizing yoke is 10 kA, and the permanent magnet is 40 mm x 20 mm x 4 mm Nd-F.
The maximum energy product of the e-B sintered magnet is 42MGOe, and the VCM is 3.
For 5 inches, coil width 2mm, magnetizing head interval 8mm
In the example, the non-magnetized portion was magnetized with the slide distance set to 3 mm. The results are shown in FIG. FIG. 3 is a diagram showing the relationship between the position of the drive coil and the torque constant (the drive torque divided by the current value passed through the drive coil). The high-speed and high-accuracy positioning control performed by the hard disk requires that the torque constant be constant (small torque linearity error) and large regardless of the drive coil position. Comparing the results of the magnetized permanent magnets of the example and the comparative example, the torque of the example is larger in a wider range, but this is because there is no unmagnetized portion. From FIG. 3, VCM is calculated by the following equation (1).
When the linearity error of the torque in the driving coil drive range of ± 12 ° was calculated, it was 6.0% in the comparative example, 4.3% in the example, and 1.7% in the example. The torque linearity error is obtained by dividing the difference (Δk) between the maximum torque and the minimum torque within the drive range by the peak torque (k peak ) by the following equation (1). Torque linearity error (%) = (Δk / k peak ) × 100 (1)

【0007】[0007]

【発明の効果】本発明の着磁装置によれば、平板状ある
いはリング状の永久磁石を、片面あたり2極以上の極数
に磁化する時に、磁極の変わり目が完全に着磁されるの
で、モータの駆動トルクを大きくしたり、VCMのトル
クリニアリティをよくすることができる。また、従来の
着磁装置では着磁され難い磁極の変わり目を少しでも着
磁しようと、着磁コイルに大きな電流を流していた。本
発明の着磁装置によれば磁極の変わり目を効率的に着磁
できるためコイル電流を小さくできるので、着磁ヘッド
の発熱を小さくしてその寿命を大幅に延ばすことができ
る。これは、希土類磁石のように大きな着磁磁場を必要
とする着磁には有効である。
According to the magnetizing device of the present invention, when a flat plate-shaped or ring-shaped permanent magnet is magnetized to have two or more poles per surface, the transition of the magnetic poles is completely magnetized. It is possible to increase the driving torque of the motor and improve the torque linearity of the VCM. Further, in order to magnetize even a slight change in the magnetic pole that is difficult to be magnetized by the conventional magnetizing device, a large current is applied to the magnetizing coil. According to the magnetizing device of the present invention, since the change of the magnetic pole can be efficiently magnetized, the coil current can be made small, so that the heat generation of the magnetizing head can be made small and the life thereof can be greatly extended. This is effective for magnetizing which requires a large magnetizing magnetic field such as a rare earth magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の永久磁石の多極着磁装置の縦断面図
で、(a)は永久磁石のスライド前、(b)はスライド
後の状態を示した図。
FIG. 1 is a vertical cross-sectional view of a permanent magnet multipole magnetizing device of the present invention, in which (a) shows a state before sliding of a permanent magnet and (b) shows a state after sliding.

【図2】(a)、(b)、(c)は本発明の多極着磁装
置による永久磁石の着磁状態を示した図。
2 (a), (b) and (c) are diagrams showing a magnetized state of a permanent magnet by the multi-pole magnetizing device of the present invention.

【図3】VCMの駆動コイルの位置とトルク定数の関係
を求めた図。
FIG. 3 is a diagram showing a relationship between a position of a VCM drive coil and a torque constant.

【図4】DCブラシレスモータの永久磁石の使用例を示
した分解斜視図。
FIG. 4 is an exploded perspective view showing a usage example of a permanent magnet of a DC brushless motor.

【図5】VCMの永久磁石の使用例を示した分解斜視
図。
FIG. 5 is an exploded perspective view showing an example of use of a VCM permanent magnet.

【図6】(a)は従来のリング永久磁石の多極着磁装置
の構成を示した分解図、(b)は大電流パルス電源の構
成を示した図。
FIG. 6A is an exploded view showing a configuration of a conventional multi-pole magnetizing device for a ring permanent magnet, and FIG. 6B is a diagram showing a configuration of a large current pulse power supply.

【図7】従来の平板永久磁石の多極用着磁装置の構成を
示した図。
FIG. 7 is a diagram showing a configuration of a conventional flat-plate permanent magnet multipole magnetizing device.

【図8】(a)は従来の着磁装置による永久磁石の着磁
磁場を示した図、(b)は従来法による永久磁石の着磁
状態を示した図。
8A is a diagram showing a magnetizing magnetic field of a permanent magnet by a conventional magnetizing device, and FIG. 8B is a diagram showing a magnetizing state of a permanent magnet by a conventional method.

【符号の説明】[Explanation of symbols]

1、11、21…着磁ヘッド 2、12、22…着磁コイル 3、13、23…ヨーク 4、14、24…永久磁石 5、15、25…電流 6、16、26…磁束の流れ 7…スライド機構 71…シャフト 9、19、29…着磁ヨーク 18…大電流パルス電源 30…駆動コイル C…コンデンサ i…パルス電流 P…高電圧直流源 p1 …充電側 p2 …放電側 R…抵抗 S…サイリスタ sw…スイッチ1, 11, 21 ... Magnetizing heads 2, 12, 22 ... Magnetizing coils 3, 13, 23 ... Yokes 4, 14, 24 ... Permanent magnets 5, 15, 25 ... Currents 6, 16, 26 ... Magnetic flux flow 7 ... sliding mechanism 71 ... shaft 9, 19, 29 ... magnetizing yoke 18 ... large-current pulse power supply 30 ... driving coil C ... capacitor i ... pulse current P ... high voltage DC source p 1 ... charge side p 2 ... discharge side R ... Resistance S ... Thyristor sw ... Switch

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平板状あるいはリング状の永久磁石を片
面あたり2極以上の極数に磁化する着磁装置において、
着磁ヘッドを永久磁石に接する様に設け、着磁装置は1
度の通電後永久磁石を着磁磁場方向の垂直方向に未着磁
部分の幅だけスライドさせてもう一度通電するためのス
ライド機構を有することを特徴とする永久磁石の多極着
磁装置。
1. A magnetizing device for magnetizing a flat plate-shaped or ring-shaped permanent magnet with two or more poles per surface,
A magnetizing head is provided in contact with the permanent magnet, and the magnetizing device is
Magnetic field is not magnetized in the direction perpendicular to the direction of the magnetic field.
Multipolar magnetizing for a permanent magnet and having a slide mechanism for energizing again Slide by the width of the portion.
【請求項2】 平板状あるいはリング状の永久磁石を片
面あたり2極以上の極数に磁化する着磁装置において、
磁ヘッドを、永久磁石をはさんで対向して設け、着磁
装置は1度の通電後永久磁石を着磁磁場方向の垂直方向
にスライドさせてもう一度通電するためのスライド機構
を有することを特徴とする永久磁石の多極着磁装置。
2. A plate-shaped or ring-shaped permanent magnet
In a magnetizing device that magnetizes two or more poles per surface,
The magnetized heads, arranged to face across the permanent magnet, the magnetizing device has a slide mechanism for energizing again by sliding once energized after the permanent magnet in the direction perpendicular to the magnetizing magnetic field direction A multi-pole magnetizing device for permanent magnets characterized by the above.
【請求項3】 平板状あるいはリング状の永久磁石を片3. A plate-shaped or ring-shaped permanent magnet
面あたり2極以上の極数に磁化する着磁方法であって、A magnetizing method of magnetizing to two or more poles per surface,
着磁ヘッドを永久磁石に接する様に設けて1度通電してInstall the magnetizing head so that it is in contact with the permanent magnet, and energize it once.
初回着磁後、永久磁石を着磁磁場方向の垂直方向に初回After the initial magnetization, the permanent magnet is first moved in the direction perpendicular to the magnetic field direction.
着磁における未着磁部分の幅分だけスライドさせてもうSlide it by the width of the unmagnetized part
一度通電して仕上げ着磁することを特徴とする永久磁石Permanent magnet characterized by once energized and finish magnetized
の多極着磁方法。Multi-pole magnetizing method.
【請求項4】 平板状あるいはリング状の永久磁石を片4. A plate-shaped or ring-shaped permanent magnet
面あたり2極以上の極数に磁化する着磁方法であって、A magnetizing method of magnetizing to two or more poles per surface,
着磁ヘッドを永久磁石をはさんで対向して設けて1度通The magnetizing heads are installed facing each other with a permanent magnet in between and
電して初回着磁後、永久磁石を着磁磁場方向の垂直方向After magnetizing the magnet for the first time, magnetize the permanent magnet in the direction perpendicular to the magnetic field direction.
に初回着磁における未着磁部分の幅分だけスライドさせAnd slide it by the width of the unmagnetized part in the first magnetization.
てもう一度通電して仕上げ着磁することを特徴とする永The permanent magnet is characterized in that it is energized again to finish magnetizing.
久磁石の多極着磁方法。Multi-pole magnetization method for permanent magnets.
JP7312697A 1997-03-26 1997-03-26 Apparatus and method for multipolar magnetizing permanent magnet Expired - Fee Related JP3418083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312697A JP3418083B2 (en) 1997-03-26 1997-03-26 Apparatus and method for multipolar magnetizing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312697A JP3418083B2 (en) 1997-03-26 1997-03-26 Apparatus and method for multipolar magnetizing permanent magnet

Publications (2)

Publication Number Publication Date
JPH10270247A JPH10270247A (en) 1998-10-09
JP3418083B2 true JP3418083B2 (en) 2003-06-16

Family

ID=13509228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312697A Expired - Fee Related JP3418083B2 (en) 1997-03-26 1997-03-26 Apparatus and method for multipolar magnetizing permanent magnet

Country Status (1)

Country Link
JP (1) JP3418083B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012806A1 (en) * 2001-07-30 2003-02-13 Sumitomo Special Metals Co., Ltd. Method of magnetizing rare-earth magnet and rare-earth magnet
JP2008054380A (en) * 2006-08-22 2008-03-06 Tdk Corp Method and device for magnetizing permanent magnet
JP2008058054A (en) * 2006-08-30 2008-03-13 Tdk Corp Magnetization state determination method and magnetization state determination device of permanent magnet
CN104143406A (en) * 2014-06-30 2014-11-12 浙江长兴天辰磁业有限公司 Magnetizer
CN105529131B (en) * 2016-03-08 2017-10-13 佛山市川东磁电股份有限公司 A kind of radiation of magnetic Nd-Fe-B ring is magnetized technique and device
CN106548849B (en) * 2017-01-10 2017-11-17 江西天键电声有限公司 Earphone magnetic circuit component automatic magnetism-charging equipment

Also Published As

Publication number Publication date
JPH10270247A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
EP0620634B1 (en) Hybrid excitation type permanent magnet synchronous motor
JPH0336947A (en) D.c. machine wherein ferromagnetic permanent magnet is used
JPWO2013114542A1 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
JP4788986B2 (en) Linear motor
US5200729A (en) Permanent magnet and magnetization apparatus for producing the permanent magnet
US7576468B2 (en) Commutation of brushless electrodynamic machines
US2473353A (en) High-frequency vibrator mechanism
JPH0332387A (en) Plural phase reluctance type motor
JP3418083B2 (en) Apparatus and method for multipolar magnetizing permanent magnet
US10291162B1 (en) Flyback mode process harnessing generator action in electric motor
JP3474152B2 (en) Permanent magnet rotor magnetizing device
JPS6245786B2 (en)
JP4478905B2 (en) Linear motor
GB2289994A (en) Magnetic reluctance motor
JP2519435B2 (en) Magnetization method of electric motor
JP2004215326A (en) Dc motor with brush
JP2642240B2 (en) Linear motor
US4307443A (en) Magnetic induction converter
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
SU1265922A2 (en) Multipole d.c. electric machine
JPH0767274A (en) Permanent magnet rotor
SU1182584A1 (en) Method of magnetizing multipole rotors of electric machines with permanent magnets
KR100354927B1 (en) Apparatus coating magnet in Direct-current Motor
SU1056385A1 (en) Single-phase step motor
SU1403266A1 (en) D.c. electric motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees