JP3127239B2 - Method and apparatus for magnetizing a metal magnet - Google Patents

Method and apparatus for magnetizing a metal magnet

Info

Publication number
JP3127239B2
JP3127239B2 JP8935792A JP8935792A JP3127239B2 JP 3127239 B2 JP3127239 B2 JP 3127239B2 JP 8935792 A JP8935792 A JP 8935792A JP 8935792 A JP8935792 A JP 8935792A JP 3127239 B2 JP3127239 B2 JP 3127239B2
Authority
JP
Japan
Prior art keywords
magnetizing
magnetized
metal magnet
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8935792A
Other languages
Japanese (ja)
Other versions
JPH05258948A (en
Inventor
尋之 宗野
紀繁 山口
重郎 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP8935792A priority Critical patent/JP3127239B2/en
Publication of JPH05258948A publication Critical patent/JPH05258948A/en
Application granted granted Critical
Publication of JP3127239B2 publication Critical patent/JP3127239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モーター)等に使用する希土類磁石等の金属磁石の着磁
方法並びに装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for magnetizing a metal magnet such as a rare earth magnet used for a VCM (voice coil motor) or the like.

【0002】[0002]

【従来の技術】電子計算機の外部記憶装置としてのハー
ドディスク装置には、磁気ヘッドを機械的に駆動するた
めにVCMが使用され、該VCM用の永久磁石として片
面に2極着磁したものが要望されている。
2. Description of the Related Art In a hard disk device as an external storage device of an electronic computer, a VCM is used for mechanically driving a magnetic head, and a permanent magnet for the VCM which is magnetized in two poles on one side is required. Have been.

【0003】従来の片面2極着磁の方法を、図9及び図
10にて説明する。これらの図において、第1の着磁コ
イル1Aは、珪素鋼板を積層したヨーク2Aの周囲に導
線による巻線3Aを数ターン巻回したものであり、同様
に第2の着磁コイル1Bは、珪素鋼板を積層したヨーク
2Bの周囲に導線による巻線3Bを数ターン巻回したも
のである。そして、第1及び第2の着磁コイル1A,1
B上に所定の厚みを有する平板状金属磁石材4Aを載置
し、必要に応じて該金属磁石材4Aの上方にも同様の着
磁コイルを設け、各着磁コイルに通電して金属磁石材4
Aを着磁する。この場合、図10の矢印J,Kのように
第1の着磁コイル1Aと第2の着磁コイル1Bを巻回す
る電流の向きを逆向きとすることで(例えば図9の矢印
L,Mの向きの磁束を発生させて)金属磁石材4Aの片
面に相互に逆極性の磁極を形成することができる。
[0003] A conventional one-sided two-pole magnetizing method will be described with reference to FIGS. 9 and 10. In these figures, a first magnetized coil 1A is obtained by winding a winding 3A of a conducting wire several turns around a yoke 2A on which a silicon steel plate is laminated. Similarly, the second magnetized coil 1B is A winding 3B of a conductive wire is wound several turns around a yoke 2B on which silicon steel sheets are stacked. Then, the first and second magnetized coils 1A, 1
A plate-shaped metal magnet material 4A having a predetermined thickness is placed on B, and a similar magnetizing coil is provided above the metal magnet material 4A as necessary. Lumber 4
A is magnetized. In this case, as shown by arrows J and K in FIG. 10, the directions of the currents for winding the first magnetizing coil 1A and the second magnetizing coil 1B are reversed (for example, arrows L and K in FIG. 9). By generating a magnetic flux in the direction of M, magnetic poles of opposite polarities can be formed on one side of the metal magnet material 4A.

【0004】なお、着磁コイル1A,1Bに通電する電
流が極めて大きい条件では、珪素鋼板のヨーク2A,2
Bが磁気飽和するので、ヨークを省略した空芯着磁コイ
ルを採用する場合もある。
Under the condition that the current flowing through the magnetized coils 1A and 1B is extremely large, the yokes 2A and 2
Since B is magnetically saturated, an air-core magnetized coil omitting the yoke may be employed.

【0005】図11は従来の着磁方法で得られた片面2
極着磁の金属磁石4の1例であり、N極とS極の境界領
域は比較的広幅のニュートラルゾーンNZとなってい
る。
FIG. 11 shows one side 2 obtained by a conventional magnetizing method.
This is an example of the pole magnetized metal magnet 4, and the boundary region between the N pole and the S pole is a relatively wide neutral zone NZ.

【0006】図12は珪素鋼板のヨーク付きの着磁コイ
ルを使用した場合の着磁波形であり、第1の着磁コイル
1Aに対向した領域の磁束密度は正の極性で、第2の着
磁コイル1Bに対向した領域の磁束密度は負の極性であ
るが、ニュートラルゾーンNZにも磁束密度の小ピーク
が出現して磁界に乱れを生じている。
FIG. 12 shows a magnetization waveform when a magnetized coil having a yoke made of a silicon steel plate is used. The magnetic flux density in a region opposed to the first magnetized coil 1A has a positive polarity, and Although the magnetic flux density in the region facing the magnetic coil 1B has a negative polarity, a small peak of the magnetic flux density also appears in the neutral zone NZ, and the magnetic field is disturbed.

【0007】図13はヨーク無しの空芯着磁コイルを使
用した場合の着磁波形であり、やはりニュートラルゾー
ンNZにも磁束密度の小ピークが出現している。
FIG. 13 shows a magnetized waveform when an air-core magnetized coil without a yoke is used, and a small peak of the magnetic flux density also appears in the neutral zone NZ.

【0008】このような、ニュートラルゾーンNZにお
ける磁界の乱れは、フェライト磁石材の着磁では発生せ
ず、フェライトに比べ導電率の高い希土類磁石等の金属
磁石材4Aを着磁する際に発生することから、金属磁石
材4Aに流れる渦電流に起因しているものと認められ
る。
Such a disturbance of the magnetic field in the neutral zone NZ does not occur when the ferrite magnet material is magnetized, but when the metal magnet material 4A such as a rare earth magnet having a higher conductivity than ferrite is magnetized. Therefore, it is recognized that the eddy current flows through the metal magnet material 4A.

【0009】[0009]

【発明が解決しようとする課題】ところで、VCM用の
片面2極着磁の金属磁石の場合、前記ニュートラルゾー
ンができるだけ狭く、かつニュートラルゾーンにおける
磁界に乱れが無いことが要求される。しかし、図9及び
図10で説明した従来の着磁方法であると、ニュートラ
ルゾーンの幅が広いだけでなく、図12及び図13から
判るようにニュートラルゾーンの磁界に乱れが発生し、
このままではVCM用には使用できないのが現状であ
る。このため、現時点では片面に1極を有する金属磁石
を2個組み合わせ接合してVCM用に使用しているが、
2個接合する工程が必要でコスト高となり、また接合の
信頼性の問題もある。
Meanwhile, in the case of a single-sided, two-pole magnetized metal magnet for a VCM, it is required that the neutral zone is as narrow as possible and that the magnetic field in the neutral zone is not disturbed. However, according to the conventional magnetizing method described with reference to FIGS. 9 and 10, not only the width of the neutral zone is wide, but also as shown in FIGS. 12 and 13, the magnetic field of the neutral zone is disturbed.
At present, it cannot be used for VCM. For this reason, at the moment, two metal magnets having one pole on one side are combined and used for VCM.
There is a need for a step of joining two pieces, which increases the cost, and there is also a problem of reliability of joining.

【0010】さらに、VCM以外の用途に片面複数極着
磁の金属磁石を用いる場合においてもニュートラルゾー
ンにおける磁界の乱れは好ましくない。
Further, even when a single-sided, multi-pole magnetized metal magnet is used for applications other than VCM, disturbance of the magnetic field in the neutral zone is not preferable.

【0011】本発明は、上記の点に鑑み、ニュートラル
ゾーンを狭くしかつニュートラルゾーンの磁界の乱れを
解消可能な金属磁石の着磁方法並びに装置を提供するこ
とを目的とする。
In view of the above, it is an object of the present invention to provide a method and an apparatus for magnetizing a metal magnet capable of narrowing a neutral zone and eliminating disturbance of a magnetic field in the neutral zone.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の金属磁石の着磁方法は、金属磁石金属磁石
材の一方の面に近接対向させて第1の着磁コイル及び第
2の着磁コイルを配設するととともに当該第1及び第2
の着磁コイルの中間位置に中央導線を配設し、これら第
1及び第2の着磁コイルに相互に逆向きに巻回する電流
をそれぞれ通電するとともに、前記第1及び第2の着磁
コイルの相互に近接する巻線部分に流れる電流の進行方
向と同じ向きの電流を前記中央導線に通電するものであ
る。
In order to achieve the above object, a method of magnetizing a metal magnet according to the present invention comprises the steps of:
The first magnetized coil and the
2 and the first and second magnetized coils.
The center conductor is placed at the middle position of the magnetized coil of
Currents wound around the first and second magnetized coils in mutually opposite directions
And the first and second magnetizations
How the current flows through the windings adjacent to each other in the coil
A current in the same direction as the current flowing through the central conductor.
You.

【0013】[0013]

【0014】本発明に係る金属磁石の着磁装置は、金属
磁石材の片面に第1の磁極を形成するための第1の着磁
コイルと、前記第1の磁極の反対極性の第2の磁極を形
成するための第2の着磁コイルと、前記第1及び第2の
着磁コイルの相互に近接する巻線部分の中間位置でかつ
前記金属磁石材に近接した位置の中央導線とを備えた構
成となっている。
According to the present invention, there is provided a magnetizing apparatus for a metal magnet, comprising: a first magnetizing coil for forming a first magnetic pole on one side of a metal magnet material; and a second magnetizing coil having a polarity opposite to the first magnetic pole. A second magnetized coil for forming a magnetic pole, and a central conductor at a position intermediate between the winding portions of the first and second magnetized coils adjacent to each other and at a position close to the metal magnet material. It is provided with a configuration.

【00015 【作用】本発明においては、着磁の際に金属磁石材に流
れる渦電流の影響を中央導線に流す電流で相殺すること
ができ、この結果、得られる片面複数極着磁の金属磁石
のニュートラルゾーンを狭くできるとともに、ニュート
ラルゾーンにおける磁界の乱れを解消することができ
る。
According to the present invention, the influence of the eddy current flowing through the metal magnet material during magnetization can be offset by the current flowing through the central conductor, and as a result, a single-sided multi-pole magnetized metal magnet can be obtained. Can be narrowed, and disturbance of the magnetic field in the neutral zone can be eliminated.

【0016】[0016]

【実施例】以下、本発明に係る金属磁石の着磁方法並び
に装置の実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method and apparatus for magnetizing a metal magnet according to the present invention will be described below with reference to the drawings.

【0017】図1乃至図3で本発明の実施例にて用いる
着磁装置について説明する。これらの図において、第1
の着磁コイル1Aは珪素鋼板を積層した断面が方形のヨ
ーク2Aの周囲に導線による巻線3Aを数ターン巻回し
たものであり、同様に第2の着磁コイル1Bは、珪素鋼
板を積層した断面が方形のヨーク2Bの周囲に導線によ
る巻線3Bを数ターン巻回したものである。そして、ヨ
ーク2A,2Bの先端面と略同じ高さで図2のごとく第
1及び第2の着磁コイル1A,1Bの相互に近接した巻
線部分である直線部11A,11Bに平行に直線状中央
導線10が両ヨークの中間位置に配設されている。ここ
で、中央導線10は着磁すべき金属磁石材に生じる渦電
流による影響を打ち消す向きの電流を流すために設けら
れている。通常、中央導線10は巻線3A,3Bのいず
れかに電気的に直列接続され、同一電源で通電できるよ
うにする。
A magnetizing device used in the embodiment of the present invention will be described with reference to FIGS. In these figures, the first
The magnetizing coil 1A is formed by winding a winding 3A of a conductive wire several turns around a yoke 2A having a rectangular cross section in which a silicon steel plate is laminated. Similarly, the second magnetizing coil 1B is formed by laminating a silicon steel plate. A winding 3B of a conductive wire is wound several turns around a yoke 2B having a rectangular cross section. Then, as shown in FIG. 2, a straight line parallel to the straight portions 11A and 11B, which are winding portions of the first and second magnetized coils 1A and 1B, which are approximately the same height as the end surfaces of the yokes 2A and 2B. A central conductor 10 is disposed at an intermediate position between the two yokes. Here, the central conductor 10 is provided for flowing a current in a direction to cancel the influence of the eddy current generated in the metal magnet material to be magnetized. Usually, the center conductor 10 is electrically connected in series to one of the windings 3A and 3B so that it can be energized by the same power supply.

【0018】希土類磁石等の平板状金属磁石材4Aを着
磁するには、図4のように第1及び第2の着磁コイル1
A,1B上に所定の厚みを有する平板状金属磁石材4A
を載置し、第1の着磁コイル1Aの巻線3Aには図2の
ごとく例えば矢印Jの向き、第2の着磁コイル1Bの巻
線3Bには反対回りに巻回する矢印Kの向きの電流を流
すとともに、各巻線の直線部分11A,11Bにおける
電流の進行方向と同じ向き(矢印P)の電流を前記直線
状中央導線10に通電する。この結果、着磁コイル1
A,1Bで図4の矢印L,Mの向きの磁束を発生させて
金属磁石材4Aの片面に相互に逆極性の磁極を形成する
ことができるとともに、金属磁石材4A内に発生した渦
電流のニュートラルゾーンNZ付近に及ぼす影響を中央
導線10に流す矢印P方向の電流で相殺することができ
る。なお、必要に応じて図4の仮想線の如く、金属磁石
材4Aの上面に着磁用磁束の通りを良くするために磁性
体12を配置しても良い。
In order to magnetize a flat metal magnet material 4A such as a rare earth magnet, the first and second magnetized coils 1A as shown in FIG.
A, a flat metal magnet material 4A having a predetermined thickness on 1B
2, the winding 3A of the first magnetized coil 1A has, for example, the direction of arrow J as shown in FIG. 2, and the winding 3B of the second magnetized coil 1B has an arrow K wound in the opposite direction. A current in the same direction (arrow P) as the direction of current flow in the linear portions 11A and 11B of each winding is applied to the straight central conductor 10 while a current having the same direction is supplied. As a result, the magnetized coil 1
A and 1B can generate magnetic fluxes in the directions of arrows L and M in FIG. 4 to form magnetic poles of opposite polarities on one side of the metal magnet material 4A, and generate eddy currents generated in the metal magnet material 4A. Can be offset by the current in the direction of arrow P flowing through the central conductor 10. If necessary, a magnetic body 12 may be disposed on the upper surface of the metal magnet material 4A as shown by the phantom line in FIG.

【0019】図5は、図1乃至図3のヨーク付きの着磁
装置の着磁波形である。但し、第1及び第2の着磁コイ
ル1A,1Bに通電した電流値と中央導線10に通電し
た電流値とを等しく設定し、中央導線10の両側の各巻
線の直線部分11A,11Bの電流進行方向と当該中央
導線10の電流方向とを同じ向きとした場合である。こ
の図から、第1の着磁コイル1Aに対向した領域の磁束
密度は正の極性で、第2の着磁コイル1Bに対向した領
域の磁束密度は負の極性であり、ニュートラルゾーンN
Zの幅は極めて狭く、しかもニュートラルゾーンNZに
おける磁束密度の乱れも無いことが判る。
FIG. 5 shows the magnetized waveforms of the magnetized device with the yoke shown in FIGS. However, the current value applied to the first and second magnetized coils 1A and 1B and the current value applied to the central conductor 10 are set to be equal, and the currents of the straight portions 11A and 11B of each winding on both sides of the central conductor 10 are set. This is a case where the traveling direction and the current direction of the central conductor 10 are the same. From this figure, the magnetic flux density in the area facing the first magnetizing coil 1A has a positive polarity, and the magnetic flux density in the area facing the second magnetizing coil 1B has a negative polarity.
It can be seen that the width of Z is extremely narrow, and there is no disturbance in the magnetic flux density in the neutral zone NZ.

【0020】なお、第1及び第2の着磁コイル1A,1
Bに通電した電流値の1/2の電流値を中央導線10に
通電した場合には、金属磁石材内の渦電流の影響を完全
には無くすことができず、ニュートラルゾーンに磁界の
乱れが多少残こることが判った。
The first and second magnetized coils 1A, 1
When a current value of し た of the current value applied to B is applied to the central conductor 10, the influence of the eddy current in the metal magnet material cannot be completely eliminated, and disturbance of the magnetic field occurs in the neutral zone. It turns out that some will remain.

【0021】図1乃至図3の着磁装置を用いて図4の如
く着磁操作を行えば、図6のように、片面にN極とS極
を持ち、しかもニュートラルゾーンNZの幅Wが1mm以
下で極めて狭い幅となっていてニュートラルゾーンでの
磁界の乱れが無い金属磁石4が得られる。このように、
ニュートラルゾーンNZの幅が狭く、磁界に乱れの無い
金属磁石であれば、VCM用永久磁石等として十分利用
できる。
When the magnetizing operation is performed as shown in FIG. 4 using the magnetizing apparatus shown in FIGS. 1 to 3, as shown in FIG. 6, an N pole and an S pole are provided on one side and the width W of the neutral zone NZ is reduced. A metal magnet 4 having an extremely narrow width of 1 mm or less and having no magnetic field disturbance in the neutral zone can be obtained. in this way,
If the width of the neutral zone NZ is small and the magnetic field is not disturbed, the metal magnet can be sufficiently used as a permanent magnet for a VCM.

【0022】なお、着磁コイル1A,1Bに通電する電
流が極めて大きい条件では、珪素鋼板のヨーク2A,2
Bが磁気飽和するので、ヨークを省略した空芯着磁コイ
ルを採用する場合もある。但し、この場合でも巻線3
A,3Bと中央導線10の位置関係は実質的に同じで良
い。
Under the condition that the current flowing through the magnetizing coils 1A and 1B is extremely large, the yokes 2A and 2
Since B is magnetically saturated, an air-core magnetized coil omitting the yoke may be employed. However, even in this case, the winding 3
The positional relationship between A and 3B and the central conductor 10 may be substantially the same.

【0023】図7は図1乃至図3の着磁装置でヨークを
省略して空芯構造とした場合の着磁波形である。但し、
第1及び第2の着磁コイル1A,1Bに通電した電流値
と中央導線10に通電した電流値とを等しく設定し、中
央導線10の両側の各巻線の直線部分11A,11Bの
電流進行方向と当該中央導線10の電流方向とを同じ向
きとしている。第1の着磁コイル1Aに対向した領域の
磁束密度は正の極性で、第2の着磁コイル1Bに対向し
た領域の磁束密度は負の極性であり、やはりニュートラ
ルゾーンNZの幅は極めて狭く、しかもニュートラルゾ
ーンNZにおける磁束密度の乱れも無いことが判る。ま
た、各着磁コイルが空芯構造の場合、ヨークの渦電流に
起因する磁束密度の乱れも無くなっている。この結果、
空芯の着磁コイルと中央導線と組み合わせであっても、
片面にN極とS極を持ち、ニュートラルゾーンNZの幅
が1mm以下で極めて狭い幅となっており、ニュートラル
ゾーンでの磁界の乱れが無い金属磁石を得ることができ
る。
FIG. 7 shows a magnetized waveform when the yoke is omitted from the magnetizing device shown in FIGS. 1 to 3 to form an air-core structure. However,
The current value applied to the first and second magnetized coils 1A and 1B and the current value applied to the central conductor 10 are set to be equal, and the current advancing direction of the straight portions 11A and 11B of each winding on both sides of the central conductor 10 is set. And the current direction of the central conductor 10 is the same. The magnetic flux density in the area facing the first magnetizing coil 1A has a positive polarity, and the magnetic flux density in the area facing the second magnetizing coil 1B has a negative polarity, and the width of the neutral zone NZ is also extremely narrow. Further, it can be seen that there is no disturbance in the magnetic flux density in the neutral zone NZ. Further, when each magnetized coil has an air-core structure, disturbance of magnetic flux density due to eddy current of the yoke is eliminated. As a result,
Even with a combination of air-core magnetized coil and central conductor,
One side has an N pole and an S pole, and the width of the neutral zone NZ is 1 mm or less, which is an extremely narrow width, so that a metal magnet free from disturbance of the magnetic field in the neutral zone can be obtained.

【0024】図8は本発明の他の実施例を示す。この場
合、着磁すべき金属磁石材4Aの一方の側に図1乃至図
3に示す第1及び第2の着磁コイル1A,1B及び直線
状中央導線10を有する着磁装置を配置し、他方の側に
第3及び第4の着磁コイル1C,1D及び直線状中央導
線10Aを有する着磁装置を配置し、両方の着磁装置に
同時に通電して着磁を行う。但し、第1の着磁コイル1
Aに金属磁石材4Aを挟んで対向する第3の着磁コイル
1Cには第1の着磁コイル1Aと同方向に巻回する向き
の電流を流し、第2の着磁コイル1Bに金属磁石材4A
を挟んで対向する第4の着磁コイル1Dには第2の着磁
コイル1Bと同方向に巻回する向きの電流を流し、中央
導線10Aにも中央導線10と同方向の電流を流す。こ
の場合、中央導線10,10Aにそれぞれ流す電流の総
和が金属磁石材4A内を流れる渦電流を相殺するように
中央導線10,10Aの電流値を設定する。
FIG. 8 shows another embodiment of the present invention. In this case, a magnetizing device having the first and second magnetizing coils 1A and 1B and the straight central conductor 10 shown in FIGS. 1 to 3 is arranged on one side of the metal magnet material 4A to be magnetized, A magnetizing device having third and fourth magnetizing coils 1C and 1D and a linear central conductor 10A is arranged on the other side, and magnetizing is performed by energizing both magnetizing devices simultaneously. However, the first magnetized coil 1
A is passed through the third magnetized coil 1C, which is opposite to the first magnetized coil 1A in the same direction as the first magnetized coil 1A, and the metal magnet is passed through the second magnetized coil 1B. Material 4A
A current in the direction of winding in the same direction as the second magnetized coil 1B is passed through the fourth magnetized coil 1D opposed to the second magnetized coil 1B, and a current in the same direction as the central wire 10 is also passed through the central conductor 10A. In this case, the current values of the central conductors 10 and 10A are set such that the sum of the currents flowing through the central conductors 10 and 10A cancels the eddy current flowing through the metal magnet material 4A.

【0025】なお、図8の場合も各着磁コイルは空芯構
造であってもよく、また一方の中央導線10に前記渦電
流を相殺するのに充分な電流を供給できれば、他方の中
央導線10Aは省略しても良い。
In the case of FIG. 8 as well, each magnetizing coil may have an air-core structure, and if a sufficient current can be supplied to one central conductor 10 to cancel the eddy current, the other central conductor is used. 10A may be omitted.

【0026】上記各実施例において、着磁コイル及び中
央導線の線材として断面が円形のものを使用したが、断
面が方形のものにも本発明は有効である。また、3極以
上の磁極を片面に着磁する場合にも本発明は適用可能で
ある。
In the above embodiments, the magnetized coil and the central conductor have a circular cross section, but the present invention is also effective for a rectangular cross section. The present invention is also applicable to a case where three or more magnetic poles are magnetized on one side.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
金属磁石材の片面に第1の磁極を形成するための第1の
着磁コイル及び前記第1の磁極の反対極性の第2の磁極
を形成するための第2の着磁コイルの他に、前記第1及
び第2の着磁コイルの相互に近接する巻線部分の中間位
置でかつ前記金属磁石材に近接した位置に中央導線を配
し、該中央導線に前記金属磁石材内の渦電流を相殺する
ための電流を通電することで、隣接磁極間のニュートラ
ルゾーンを1mm以下と極めて狭い幅とした片面複数極着
磁の金属磁石を得ることができる。
As described above, according to the present invention,
In addition to a first magnetized coil for forming a first magnetic pole on one surface of a metal magnet material and a second magnetized coil for forming a second magnetic pole having a polarity opposite to the first magnetic pole, A central conductor is disposed at an intermediate position between the winding portions of the first and second magnetized coils which are close to each other and at a position close to the metal magnet material, and an eddy current in the metal magnet material is provided at the central conductor. By passing a current for canceling the magnetic field, it is possible to obtain a single-sided multi-pole magnetized metal magnet having a very narrow neutral zone between adjacent magnetic poles of 1 mm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る金属磁石の着磁方法並びに装置の
実施例であって、着磁装置を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a method and an apparatus for magnetizing a metal magnet according to the present invention, showing a magnetizing apparatus.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】同正面図である。FIG. 3 is a front view of the same.

【図4】図1乃至図3の着磁装置を用いた着磁方法を説
明するための正面図である。
FIG. 4 is a front view for explaining a magnetizing method using the magnetizing device shown in FIGS. 1 to 3;

【図5】図1乃至図3の着磁装置(ヨーク付き)の着磁
波形の1例を示す波形図である。
FIG. 5 is a waveform chart showing an example of a magnetization waveform of the magnetization device (with yoke) of FIGS. 1 to 3;

【図6】本発明で得られる片面複数極着磁の金属磁石の
1例を示す平面図である。
FIG. 6 is a plan view showing an example of a single-sided, multi-pole magnetized metal magnet obtained by the present invention.

【図7】図1乃至図3の着磁装置(ヨーク無しの空芯構
造)の着磁波形の1例を示す波形図である。
FIG. 7 is a waveform diagram showing an example of a magnetization waveform of the magnetization device (air core structure without yoke) of FIGS. 1 to 3;

【図8】本発明の実施例であって他の着磁方法を説明す
るための正面図である。
FIG. 8 is a front view for explaining another magnetizing method according to the embodiment of the present invention.

【図9】従来の着磁方法及び装置を示す正面図である。FIG. 9 is a front view showing a conventional magnetizing method and apparatus.

【図10】同平面図である。FIG. 10 is a plan view of the same.

【図11】従来の着磁方法で得られる片面複数極着磁の
金属磁石の1例を示す平面図である。
FIG. 11 is a plan view showing an example of a single-sided, multi-pole magnetized metal magnet obtained by a conventional magnetizing method.

【図12】従来の着磁装置(ヨーク付き)の着磁波形の
1例を示す波形図である。
FIG. 12 is a waveform chart showing an example of a magnetization waveform of a conventional magnetization device (with a yoke).

【図13】従来の着磁装置(ヨーク無しの空芯構造)の
着磁波形の1例を示す波形図である。
FIG. 13 is a waveform diagram showing an example of a magnetization waveform of a conventional magnetization device (air-core structure without a yoke).

【符号の説明】[Explanation of symbols]

1A,1B,1C,1D 着磁コイル 2A,2B ヨーク 3A,3B 巻線 4 金属磁石 4A 金属磁石材 10,10A 直線状中央導線 NZ ニュートラルゾーン 1A, 1B, 1C, 1D Magnetizing coil 2A, 2B Yoke 3A, 3B Winding 4 Metal magnet 4A Metal magnet material 10, 10A Straight central conductor NZ neutral zone

フロントページの続き (56)参考文献 特開 昭61−76242(JP,A) 特開 昭58−98904(JP,A) 特開 平4−12505(JP,A) 特開 昭54−69794(JP,A) 実開 昭60−48206(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01F 7/02 H01F 13/00 Continuation of the front page (56) References JP-A-61-76242 (JP, A) JP-A-58-98904 (JP, A) JP-A-4-12505 (JP, A) JP-A-54-69794 (JP) , A) Fully open 60-48206 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 7/02 H01F 13/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属磁石材の一方の面に近接対向させて
第1の着磁コイル及び第2の着磁コイルを配設するとと
ともに当該第1及び第2の着磁コイルの中間位置に中央
導線を配設し、これら第1及び第2の着磁コイルに相互
に逆向きに巻回する電流をそれぞれ通電するとともに、
前記第1及び第2の着磁コイルの相互に近接する巻線部
分に流れる電流の進行方向と同じ向きの電流を前記中央
導線に通電することを特徴とする金属磁石の着磁方法。
A first magnetizing coil and a second magnetizing coil are disposed so as to be close to and opposed to one surface of a metal magnet material, and a center is provided at an intermediate position between the first and second magnetizing coils. A conductor is disposed, and currents are wound around the first and second magnetized coils in mutually opposite directions, respectively.
A method for magnetizing a metal magnet, characterized in that a current having the same direction as a traveling direction of a current flowing through winding portions of the first and second magnetized coils which are close to each other is supplied to the central conductor.
【請求項2】 前記金属磁石材の他方の面に磁性体が配
設されている請求項1記載の金属磁石の着磁方法。
2. A method of magnetizing metal magnet of claim 1, wherein the magnetic material on the other surface of the metal magnetic material is disposed.
【請求項3】 前記金属磁石材の他方の面にも前記第1
及び第2の着磁コイルに対向する第3及び第4の着磁コ
イルをそれぞれ配設し、前記第1及び第2の着磁コイル
と同じ向きに巻回する電流をそれぞれ通電する請求項1
記載の金属磁石の着磁方法。
3. The first surface on the other surface of the metal magnet material.
And the third and fourth magnetizing coils disposed respectively facing the second magnetizing coil, claim 1 energizing current winding in the same direction as said first and second magnetizing coils respectively
The method for magnetizing a metal magnet as described above.
【請求項4】 前記第3及び第4の着磁コイルの中間位
置にもう1つの中央導線を配設し、前記第3及び第4の
着磁コイルの相互に近接する巻線部分に流れる電流の進
行方向と同じ向きの電流を当該もう1つの中央導線に通
電する請求項3記載の金属磁石の着磁方法。
4. A current flowing through a winding portion adjacent to the third and fourth magnetized coils, wherein another central conductor is disposed at an intermediate position between the third and fourth magnetized coils. 4. The method according to claim 3 , wherein a current having the same direction as the traveling direction of the current is supplied to the other central conductor.
【請求項5】 金属磁石材の片面に第1の磁極を形成す
るための第1の着磁コイルと、前記第1の磁極の反対極
性の第2の磁極を形成するための第2の着磁コイルと、
前記第1及び第2の着磁コイルの相互に近接する巻線部
分の中間位置でかつ前記金属磁石材に近接した位置の中
央導線とを備えたことを特徴とする金属磁石の着磁装
置。
5. A first magnetized coil for forming a first magnetic pole on one surface of a metal magnet material, and a second magnetized coil for forming a second magnetic pole having a polarity opposite to the first magnetic pole. A magnetic coil,
A metal magnet magnetizing device, comprising: a center conductor located at an intermediate position between winding portions of the first and second magnetized coils adjacent to each other and at a position close to the metal magnet material.
JP8935792A 1992-03-16 1992-03-16 Method and apparatus for magnetizing a metal magnet Expired - Lifetime JP3127239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8935792A JP3127239B2 (en) 1992-03-16 1992-03-16 Method and apparatus for magnetizing a metal magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8935792A JP3127239B2 (en) 1992-03-16 1992-03-16 Method and apparatus for magnetizing a metal magnet

Publications (2)

Publication Number Publication Date
JPH05258948A JPH05258948A (en) 1993-10-08
JP3127239B2 true JP3127239B2 (en) 2001-01-22

Family

ID=13968467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8935792A Expired - Lifetime JP3127239B2 (en) 1992-03-16 1992-03-16 Method and apparatus for magnetizing a metal magnet

Country Status (1)

Country Link
JP (1) JP3127239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058054A (en) * 2006-08-30 2008-03-13 Tdk Corp Magnetization state determination method and magnetization state determination device of permanent magnet
JP2008001990A (en) * 2007-07-13 2008-01-10 Shin Etsu Chem Co Ltd Method for manufacturing ferrous alloy sheet material for hard disk voice coil motor yoke

Also Published As

Publication number Publication date
JPH05258948A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JP3230647B2 (en) DC reactor
JPH0831635A (en) Mri magnetic field generating device
EP1207540B1 (en) Inductor component having a permanent magnet in the vicinity of magnetic gap
EP1178501B1 (en) Inductance component having a permanent magnet in the vicinity of a magnetic gap
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
US5706575A (en) Method of making eddy current-less pole tips for MRI magnets
JP3784629B2 (en) Current limiter
JP2001238349A (en) Current limiter
JP2002222718A (en) Transformer, transformer core, and method of manufacturing the same
JP3314908B2 (en) DC reactor
JP3418083B2 (en) Apparatus and method for multipolar magnetizing permanent magnet
JPS61203605A (en) Magnet having highly uniform magnetic field
JP3113438B2 (en) Magnetic field generator for MRI
JP3494902B2 (en) VCM magnetic circuit
JP2001358025A (en) Three-phase current limiter
JP2000030932A (en) Opposing permanent magnet type magnetic circuit
JP2819221B2 (en) Magnetic field generator
JP2024006779A (en) Permanent magnet field magnet and linear motor
JPH0530723A (en) Magnetic device
JPS5816270B2 (en) Jiki Bubble Kudousouchi
US20190267852A1 (en) Variable magnetic monopole field electro-magnet and inductor
JPS61247263A (en) Voice coil motor
JPH0444405B2 (en)
JPH08138936A (en) Method and device for magnetizing metal magnet
JPS59215003A (en) Magnet erasing head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12